1
|
Su J, Yang Y, Zhao F, Zhang Y, Su H, Wang D, Li K, Song Y, Cao G. Study of spermatogenic and Sertoli cells in the Hu sheep testes at different developmental stages. FASEB J 2023; 37:e23084. [PMID: 37410073 DOI: 10.1096/fj.202300373r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Spermatogenesis is a highly organized process by which undifferentiated spermatogonia self-renew and differentiate into spermatocytes and spermatids. The entire developmental process from spermatogonia to sperm occurs within the seminiferous tubules. Spermatogenesis is supported by the close interaction of germ cells with Sertoli cells. In this study, testicular tissues were collected from Hu sheep at 8 timepoints after birth: 0, 30, 90, 180, 270, 360, 540, and 720 days. Immunofluorescence staining and histological analysis were used to explore the development of male germ cells and Sertoli cells in the Hu sheep testes at these timepoints. The changes in seminiferous tubule diameter and male germ cells in the Hu sheep testes at these different developmental stages were analyzed. Then, specific molecular markers were used to study the proliferation and differentiation of spermatogonia, the timepoint of spermatocyte appearance, and the maturation and proliferation of Sertoli cells in the seminiferous tubules. Finally, the formation of the blood-testes barrier was studied using antibodies against the main components of the blood-testes barrier, β-catenin, and ZO-1. These findings not only increased the understanding of the development of the Hu sheep testes, but also laid a solid theoretical foundation for Hu sheep breeding.
Collapse
Affiliation(s)
- Jie Su
- Department of Psychosomatic Medicine, Inner Mongolia Medical University, Huhhot, China
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot, China
| | - Feifei Zhao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Yue Zhang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Hong Su
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Daqing Wang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot, China
| | - Kuo Li
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Huhhot, China
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot, China
| |
Collapse
|
2
|
Mu H, Liu S, Tian S, Chen B, Liu Z, Fan Y, Liu Y, Ma W, Zhang W, Fu M, Song X. Study on the SHP2-Mediated Mechanism of Promoting Spermatogenesis Induced by Active Compounds of Eucommiae Folium in Mice. Front Pharmacol 2022; 13:851930. [PMID: 35392568 PMCID: PMC8981153 DOI: 10.3389/fphar.2022.851930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Spermatogenesis directly determines the reproductive capacity of male animals. With the development of society, the increasing pressure on people’s lives and changes in the living environment, male fertility is declining. The leaf of Eucommia ulmoides Oliv. (Eucommiae Folium, EF) was recorded in the 2020 Chinese Pharmacopoeia and was used in traditional Chinese medicine as a tonic. In recent years, EF has been reported to improve spermatogenesis, but the mechanisms of EF remain was poorly characterized. In this study, the effect of EF ethanol extract (EFEE) on spermatogenesis was tested in mice. Chemical components related to spermatogenesis in EF were predicted by network pharmacology. The biological activity of the predicted chemical components was measured by the proliferation of C18-4 spermatogonial stem cells (SSCs) and the testosterone secretion of TM3 leydig cells. The biological activity of chlorogenic acid (CGA), the active compound in EF, was tested in vivo. The cell cycle was analysed by flow cytometry. Testosterone secretion was detected by ELISA. RNA interference (RNAi) was used to detect the effect of key genes on cell biological activity. Western blotting, qRT–PCR and immunofluorescence staining were used to analyse the molecular mechanism of related biological activities. The results showed that EFEE and CGA could improve spermatogenesis in mice. Furthermore, the main mechanism was that CGA promoted SSC proliferation, self-renewal and Leydig cell testosterone secretion by promoting the expression of SHP2 and activating the downstream signaling pathways involved in these biological processes. This study provided strong evidence for elucidating the mechanism by which EF promotes the spermatogenesis in mice and a new theoretical basis for dealing with the decrease in male reproductive capacity.
Collapse
Affiliation(s)
- Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shuangshi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shiyang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Beibei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Singh SP, Kharche SD, Pathak M, Soni YK, Ranjan R, Singh MK, Chauhan MS. Reproductive stage- and season-dependent culture characteristics of enriched caprine male germline stem cells. Cytotechnology 2022; 74:123-140. [PMID: 35185290 PMCID: PMC8816984 DOI: 10.1007/s10616-021-00515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
The present study aims to evaluate season- and reproductive-stage dependent variation in culture characteristics and expression of pluripotency and adhesion markers in caprine-male germline stem cells (cmGSCs). For this, testes from pre-pubertal (4-6 months) and adult (~ 2 years) bucks during non-breeding (July-August; n = 4 each) and breeding (October-November; n = 4 each) seasons were used to isolated testicular cells by two-step enzymatic digestion. After cmGSCs enrichment by multiple methods (differential platting, Percoll density gradient centrifugation, and MACS), cell viability of CD90+ cells was assessed before co-cultured onto the Sertoli cell feeder layer up to 3rd-passage (P-3). The culture characteristics of cmGSCs were compared during primary culture (P-0) and P-3 with different assays [BrdU-assay (proliferation), MTT-assay (senescence), and Cluster-forming activity-assay] and transcript expression analyses by qRT-PCR. Moreover, the co-localization of UCHL-1, CD90, and DBA was examined by a double-immunofluorescence method. In adult bucks, significantly (p < 0.05) higher cell numbers with the ability to proliferate faster and form a greater number of cell clusters, besides up-regulation of pluripotency and adhesion markers expression were observed during the breeding season than the non-breeding season. In contrast, such season-dependent variation was lacking in pre-pubertal bucks. The expression of transcripts during non-breeding seasons was significantly (p < 0.05) higher in pre-pubertal cmGSCs than in adult cells (UCHL-1 = 2.38-folds; CD-90 = 6.66-folds; PLZF = 20.87-folds; ID-4 = 4.75-folds; E-cadherin = 3.89-folds and β1-integrin = 5.70-folds). Overall, the reproductive stage and season affect the population, culture characteristics, and expression of pluripotency and adhesion specific markers in buck testis. These results provide an insight to develop an efficient system for successful cell culture processes targeting cmGSCs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-021-00515-x.
Collapse
Affiliation(s)
- Shiva Pratap Singh
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Suresh Dinkar Kharche
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Manisha Pathak
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Yogesh Kumar Soni
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Ravi Ranjan
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | - Manoj Kumar Singh
- Animal Genetics and Breeding Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, Uttar Pradesh 281122 India
| | | |
Collapse
|
4
|
Nakami W, Kipyegon AN, Nguhiu-Mwangi J, Tiambo C, Kemp S. Culture of spermatogonial stem cells and use of surrogate sires as a breeding technology to propagate superior genetics in livestock production: A systematic review. Vet World 2021; 14:3235-3248. [PMID: 35153418 PMCID: PMC8829400 DOI: 10.14202/vetworld.2021.3235-3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Spermatogonial stem cells (SSCs) have previously been isolated from animals’ testes, cultured in vitro, and successfully transplanted into compatible recipients. The SSC unique characteristic has potential for exploitation as a reproductive tool and this can be achieved through SSC intratesticular transplantation to surrogate sires. Here, we aimed at comprehensively analyzing published data on in vitro maintenance of SSC isolated from the testes of livestock animals and their applications. Materials and Methods: The literature search was performed in PubMed, Science Direct, and Google Scholar electronic databases. Data screening was conducted using Rayyan Intelligent Systematic Review software (https://www.rayyan.ai/). Duplicate papers were excluded from the study. Abstracts were read and relevant full papers were reviewed for data extraction. Results: From a total of 4786 full papers screened, data were extracted from 93 relevant papers. Of these, eight papers reported on long-term culture conditions (>1 month) for SSC in different livestock species, 22 papers on short-term cultures (5-15 days), 10 papers on transfection protocols, 18 papers on transplantation using different methods of preparation of livestock recipients, and five papers on donor-derived spermatogenesis. Conclusion: Optimization of SSC long-term culture systems has renewed the possibilities of utilization of these cells in gene-editing technologies to develop transgenic animals. Further, the development of genetically deficient recipients in the endogenous germline layer lends to a future possibility for the utilization of germ cell transplantation in livestock systems.
Collapse
Affiliation(s)
- Wilkister Nakami
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, 29053-00625 Nairobi, Kenya; Livestock Genetics Program International Livestock Research Institute, 30709-00100, Nairobi, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH)-ILRI, 30709-00100, Nairobi, Kenya
| | - Ambrose Ng'eno Kipyegon
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, 29053-00625 Nairobi, Kenya
| | - James Nguhiu-Mwangi
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, 29053-00625 Nairobi, Kenya
| | - Christian Tiambo
- Livestock Genetics Program International Livestock Research Institute, 30709-00100, Nairobi, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH)-ILRI, 30709-00100, Nairobi, Kenya
| | - Stephen Kemp
- Livestock Genetics Program International Livestock Research Institute, 30709-00100, Nairobi, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH)-ILRI, 30709-00100, Nairobi, Kenya
| |
Collapse
|
5
|
Binsila B, Selvaraju S, Ranjithkumaran R, Archana SS, Krishnappa B, Ghosh SK, Kumar H, Subbarao RB, Arangasamy A, Bhatta R. Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J Assist Reprod Genet 2021; 38:3155-3173. [PMID: 34661801 DOI: 10.1007/s10815-021-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Raghavendra B Subbarao
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Raghavendra Bhatta
- Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
6
|
Moshrefi M, Ghasemi-Esmailabad S, Ali J, Findikli N, Mangoli E, Khalili MA. The probable destructive mechanisms behind COVID-19 on male reproduction system and fertility. J Assist Reprod Genet 2021; 38:1691-1708. [PMID: 33977466 PMCID: PMC8112744 DOI: 10.1007/s10815-021-02097-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE The present study aims to summarize the current understanding of probable mechanisms and claims of adverse effects of SARS-CoV-2 on male fertility potential. METHODS Our search was including original articles, reviews, guidelines, letters to the editor, comments on guidelines, and editorials, regarding the male reproductive system. We used the words SARS-CoV-2, coronavirus, severe acute respiratory syndrome coronavirus 2, "2019 ncov," testis, sperm, male factor infertility, fertility treatment, semen, assisted reproductive technology (ART), sexual transmission, and ACE2. RESULTS Data showed coronavirus affects men more than women because of more expression of 2019 nCoV receptors (ACE2 and TMPRSS2) in testicular cells. Also, "Bioinformatics Analysis" suggests that sperm production may be damaged, since "Pseudo Time Analysis" has shown disruption in spermatogenesis. "Gene Ontology" (GO) showed an increase in viral reproduction and a decrease in sperm production-related terms. Recently, SARS-COV-2 mRNA and protein were detected in the semen of patients that had recovered from SARS-CoV-2 infection. Therefore, the probable disruption of blood-testis barrier (BTB) in febrile diseases is suspected in the acute phase of the disease enabling viral entry into the testes. Not only is spermatogenesis disturbed, but also disturbs gonadotropin, androgens, and testosterone secretion during SARS-CoV-2 infection. No sexual transmission has been reported yet; however, detection of the virus in semen still makes the sexual transmission an open question. CONCLUSION There is a concern that male fertility may be disturbed after the SARS-CoV-2 infection. Therefore, follow-up of the reproductive functions and male fertility may be necessary in recovered cases, especially in aged men.
Collapse
Affiliation(s)
- Mojgan Moshrefi
- Research and Clinical Center for Infertility, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Jaffar Ali
- Synbios Media, www.synbiosmedia.com, P.O. Box 02042, GPO, Shah Alam, Selangor Malaysia
| | - Necati Findikli
- Bahceci Fulya Assisted Reproduction Center, Istanbul, Turkey
- Department of Bioengineering, Beykent University, Istanbul, Turkey
| | - Esmat Mangoli
- Research and Clinical Center for Infertility, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
7
|
Du X, Wu S, Wei Y, Yu X, Ma F, Zhai Y, Yang D, Zhang M, Liu W, Zhu H, Wu J, Liao M, Li N, Bai C, Li G, Hua J. PAX7 promotes CD49f-positive dairy goat spermatogonial stem cells' self-renewal. J Cell Physiol 2020; 236:1481-1493. [PMID: 32692417 DOI: 10.1002/jcp.29954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is a complex process that originates from and depends on the spermatogonial stem cells (SSCs). The number of SSCs is rare, which makes the separation and enrichment of SSCs difficult and inefficient. The transcription factor PAX7 maintains fertility in normal spermatogenesis in mice. However, for large animals, much less is known about the SSCs' self-renewal regulation, especially in dairy goats. We isolated and enriched the CD49f-positive and negative dairy goat testicular cells by magnetic-activated cell sorting strategies. The RNA- sequencing and experimental data revealed that cells with a high CD49f and PAX7 expression are undifferentiated spermatogonia in goat testis. Our findings indicated that ZBTB16 (PLZF), PAX7, LIN28A, BMPR1B, FGFR1, and FOXO1 were expressed higher in CD49f-positive cells as compared to negative cells and goat fibroblasts cells. The expression and distribution of PAX7 in dairy goat also have been detected, which gradually decreased in testis tissue along with the increasing age. When the PAX7 gene was overexpressed in dairy goat immortal mGSCs-I-SB germ cell lines, the expression of PLZF, GFRα1, ID4, and OCT4 was upregulated. Together, our data demonstrated that there is a subset of spermatogonial stem cells with a high expression of PAX7 among the CD49f+ spermatogonia, and PAX7 can maintain the self-renewal of CD49f-positive SSCs.
Collapse
Affiliation(s)
- Xiaomin Du
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Siyu Wu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Yudong Wei
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Xiuwei Yu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Fanglin Ma
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Donghui Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Mengfei Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Wenqing Liu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Haijing Zhu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China.,Life Science Research Center, Yulin University, Yulin, Shaanxi, China
| | - Jiang Wu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China.,College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Mingzhi Liao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| | - Chunling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Shi L, Duan Y, Yao X, Song R, Ren Y. Effects of selenium on the proliferation and apoptosis of sheep spermatogonial stem cells in vitro. Anim Reprod Sci 2020; 215:106330. [PMID: 32216931 DOI: 10.1016/j.anireprosci.2020.106330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/08/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023]
Abstract
The objective of this study was to investigate effects of selenium (Se) on proliferation and apoptosis of sheep spermatogonial stem cells (SSC) in vitro. The SSC were assigned to five treatment groups (0, 2.0, 4.0, 8.0 and 16.0 μmol/L Se). After treatment with Se for 96 h, cell proliferation and apoptosis were evaluated. The relative abundance of P53 mRNA transcript and protein, cell cycle and apoptosis-related genes were detected using real-time PCR and Western blot quantifications, respectively. The results indicate there were the least cell proliferation rates in the Se16.0 group. Treatments with relatively greater Se concentrations (8.0 and 16.0 μmol/L) resulted in a greater percentage of apoptotic cells, which was consistent with the relative abundances of P53, P21, P27 and pro-apoptosis mRNA transcripts. There were relatively greater ROS concentrations in the control, Se8.0 and Se16.0 groups. Compared with the control group, treatment with the Se concentration of 16.0 μmol/L resulted in an increased abundance of P53, P21, P27 and BAX proteins. Treatment with Pifithrin-α suppressed the increase in abundance of P53 and P21 proteins induced by the relatively greater concentration of Se (16.0 μmol/L), however, did not result in a change in abundances of P27 and BAX proteins. These results indicate the regulatory functions of Se on proliferation and apoptosis of sheep SSC is associated with the P21-mediated P53 signalling pathway. The P27 and BAX proteins have limited functions during the apoptotic process of SSC induced by the relatively greater concentrations of Se.
Collapse
Affiliation(s)
- Lei Shi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yunli Duan
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruigao Song
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Youshe Ren
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China.
| |
Collapse
|
9
|
Zhu H, Zheng L, Wang L, Tang F, Arisha AH, Zhou H, Hua J. p53 inhibits the proliferation of male germline stem cells from dairy goat cultured on poly-L-lysine. Reprod Domest Anim 2020; 55:405-417. [PMID: 31985843 DOI: 10.1111/rda.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Male germline stem cells (mGSCs) can transmit genetic materials to the next generation and dedifferentiate into pluripotent stem cells. However, in livestock, mGSC lines are difficult to establish, because of the factors that affect their isolation and culture. The extracellular matrix serves as a substrate for attachment and affects the fate of these stem cells. Poly-L-lysine (PL), an extracellular matrix of choice, inhibits and/or kills cancer cells, and promotes the attachment of stem cells in culture. However, how it affects the characteristics and potentials of these stem cells in culture needs to be elucidated. Here, we isolated, enriched and cultured dairy goat mGSCs on five types of extracellular matrices. To explore the best extracellular matrix to use for culturing them, the characteristics and proliferation ability of the cells were determined. Results showed that the cells shared several characteristics with previously reported mGSCs, including the poor effect of PL on their proliferative and colony-forming abilities. Further examination showed upregulation of p53 expression in these cells, which could be inhibiting their proliferation. When a p53 inhibitor was included in the culture medium, it was confirmed to be responsible for the inhibition of proliferation in mGSCs. Optimal concentration of the inhibitor in the culture of these cells was 5 µM. Furthermore, addition of the p53 inhibitor increased the expression of the markers of self-renewal and cell cycle in goat mGSCs. In summary, suppressing p53 is beneficial for the proliferation of dairy goat mGSCs, cultured on PL.
Collapse
Affiliation(s)
- Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China.,Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Research Center of Life Science in Yulin University, Yulin, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Long Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Furong Tang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Ahmed H Arisha
- Department of physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hongchao Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Tian J, Ma K, Pei CB, Zhang SH, Li X, Zhou Y, Yan B, Wang HY, Ma LH. Relative safety of various spermatogenic stem cell purification methods for application in spermatogenic stem cell transplantation. Stem Cell Res Ther 2019; 10:382. [PMID: 31842987 PMCID: PMC6916234 DOI: 10.1186/s13287-019-1481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Spermatogonial stem cell (SSC) transplantation technology as a promising option for male fertility preservation has received increasing attention, along with efficient SSC purification technology as a necessary technical support; however, the safety of such application in patients with tumors remains controversial. METHODS In this study, we used a green fluorescent protein mouse xenograft model of B cell acute lymphocytic leukemia. We isolated and purified SSCs from the testicular tissue of model mice using density gradient centrifugation, immune cell magnetic bead separation, and flow cytometry. The purified SSCs were transplanted into convoluted seminiferous tubules of the nude mice and C57BL/6 male mice subjected to busulfan. The development and proliferation of SSCs in the recipient testis were periodically tested, along with whether B cell acute lymphocytic leukemia was induced following SSC implantation. The genetic characteristics of the offspring obtained from natural mating were also observed. RESULTS In testicular leukemia model mice, a large number of BALL cells infiltrated into the seminiferous tubule, spermatogenic cells, and sperm cells in the testis tissue decreased. After spermatogonial stem cell transplantation, the transplanted SSCs purified by immunomagnetic beads and flow cytometry methods colonized and proliferated extensively in the basement of the seminiferous tubules of mice; a large number of spermatogenic cells and sperm were found in recipient testicular tissue after 12 weeks of SSC transplantation. In leukemia detection in nude mice after transplantation in the three SSC purification groups, a large number of BALL cells could be detected in the blood of recipient mice 2-3 weeks after transplantation in the density gradient centrifugation group, but not in the blood of the flow cytometry sorting group and the immunomagnetic bead group after 16 weeks of observation. CONCLUSIONS In this study, we confirmed that immunomagnetic beads and flow cytometry methods of purifying SSCs from the testicular tissue of the testicular leukemia mouse model could be safely applied to the SSC transplantation technology without concomitant tumor implantation. The results thus provide a theoretical basis for the application of tumor SSC cryopreservation for fertility preservation in patients with tumors.
Collapse
Affiliation(s)
- Jia Tian
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Ke Ma
- Clinical College, Ningxia Medical University, Yinchuan, 750001, China
| | - Cheng-Bin Pei
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Shao-Hua Zhang
- Clinical College, Ningxia Medical University, Yinchuan, 750001, China
| | - Xue Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Yue Zhou
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Bei Yan
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Hong-Yan Wang
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Liang-Hong Ma
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China.
| |
Collapse
|
11
|
Bai Y, Zhu C, Feng M, Wei H, Li L, Tian X, Zhao Z, Liu S, Ma N, Zhang X, Shi R, Fu C, Wu Z, Zhang S. Previously claimed male germline stem cells from porcine testis are actually progenitor Leydig cells. Stem Cell Res Ther 2018; 9:200. [PMID: 30021628 PMCID: PMC6052628 DOI: 10.1186/s13287-018-0931-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/27/2018] [Accepted: 06/14/2018] [Indexed: 11/14/2022] Open
Abstract
Background Male germline stem cells (mGSCs) offer great promise in regenerative medicine and animal breeding due to their capacity to maintain self-renewal and to transmit genetic information to the next generation following spermatogenesis. Human testis-derived embryonic stem cell-like cells have been shown to possess potential of mesenchymal progenitors, but there remains confusion about the characteristics and origin of porcine testis-derived stem cells. Methods Porcine testis-derived stem cells were obtained from primary testicular cultures of 5-day old piglets, and selectively expanded using culture conditions for long-term culture and induction differentiation. The stem cell properties of porcine testis-derived stem cells were subsequently assessed by determining the expression of pluripotency-associated markers, alkaline phosphatase (AP) activity, and capacity for sperm and multilineage differentiation in vitro. The gene expression profile was compared via microarray analysis. Results We identified two different types of testis-derived stem cells (termed as C1 and C2 here) during porcine testicular cell culture. The gene expression microarray analysis showed that the transcriptome profile of C1 and C2 differed significantly from each other. The C1 appeared to be morphologically similar to the previously described mouse mGSCs, expressed pluripotency- and germ cell-associated markers, maintained the paternal imprinted pattern of H19, displayed alkaline phosphatase activity, and could differentiate into sperm. Together, these data suggest that C1 represent the porcine mGSC population. Conversely, the C2 appeared similar to the previously described porcine mGSCs with three-dimensional morphology, abundantly expressed Leydig cell lineage and mesenchymal cell-specific markers, and could differentiate into testosterone-producing Leydig cells, suggesting that they are progenitor Leydig cells (PLCs). Conclusion Collectively, we have established the expected characteristics and markers of authentic porcine mGSCs (C1). We found for the first time that, the C2, equivalent to previously claimed porcine mGSCs, are actually progenitor Leydig cells (PLCs). These findings provide new insights into the discrepancies among previous reports and future identification and analyses of testis-derived stem cells. Electronic supplementary material The online version of this article (10.1186/s13287-018-0931-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinshan Bai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.,School of Life Science and Engineering, Foshan University, Foshan, 528231, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
| | - Meiying Feng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Li Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Xiuchun Tian
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Zhihong Zhao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Shanshan Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ningfang Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xianwei Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Ruyi Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, 030001, China
| | - Chao Fu
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Production of fertile sperm from in vitro propagating enriched spermatogonial stem cells of farmed catfish, Clarias batrachus. ZYGOTE 2016; 24:814-824. [DOI: 10.1017/s0967199416000149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SummarySpermatogenesis is a highly co-ordinated and complex process. In vitro propagation of spermatogonial stem cells (SSCs) could provide an avenue in which to undertake in vivo studies of spermatogenesis. Very little information is known about the SSC biology of teleosts. In this study, collagenase-treated testicular cells of farmed catfish (Clarias batrachus, popularly known as magur) were purified by Ficoll gradient centrifugation followed by magnetic activated cell sorting using Thy1.2 (CD90.2) antibody to enrich for the spermatogonial cell population. The sorted spermatogonial cells were counted and gave ~3 × 106 cells from 6 × 106 pre-sorted cells. The purified cells were cultured in vitro for >2 months in L-15 medium containing fetal bovine serum (10%), carp serum (1%) and other supplements. Microscopic observations depicted typical morphological SSC features, bearing a larger nuclear compartment (with visible perinuclear bodies) within a thin rim of cytoplasm. Cells proliferated in vitro forming clumps/colonies. mRNA expression profiling by qPCR documented that proliferating cells were Plzf + and Pou2+, indicative of stem cells. From 60 days onwards of cultivation, the self-renewing population differentiated to produce spermatids (~6 × 107 on day 75). In vitro-produced sperm (2260 sperm/SSC) were free swimming in medium and hence motile (non-progressive) in nature. Of those, 2% were capable of fertilizing and generated healthy diploid fingerlings. Our documented evidence provides the basis for producing fertile magur sperm in vitro from cultured magur SSCs. Our established techniques of SSC propagation and in vitro sperm production together should trigger future in vivo experiments towards basic and applied biology research.
Collapse
|
13
|
Niu B, Wu J, Mu H, Li B, Wu C, He X, Bai C, Li G, Hua J. miR-204 Regulates the Proliferation of Dairy Goat Spermatogonial Stem Cells via Targeting to Sirt1. Rejuvenation Res 2016. [PMID: 26213858 DOI: 10.1089/rej.2015.1719] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The regulation of spermatogonial stem cell (SSC) proliferation and self-renewal is a complex process. Several studies on the microRNA regulation of mammalian spermatogenesis have been reported. Here, we predicted miRNA targeting of Sirt1, and a dual luciferase experiment confirmed that miR-204 interacted with the Sirt1 3'-untranslated region (3'-UTR). The expression of miR-204 and Sirt1 in dairy goat testicles was investigated, and the results showed that the expression pattern of Sirt1 was similar to that of miR-204 in the temporal-spatial distribution. The over-expression of Sirt1 in goat SSCs can promote SSCs' self-renewal gene expression and cell proliferation. Furthermore, miRNA sequencing results showed that Sirt1 had a higher expression level in dairy goat CD49f(+) and CD90(+) SSCs, but the expression level of miR-204 was lower. In an in vitro assay, Sirt1 was significantly down-regulated in dairy goat SSCs when transfected with miR-204 mimics, indicating that Sirt1 was a target of miR-204 in the dairy goat. On the basis of the results of RT-qPCR, fluorescence-activated cell sorting (FACS), and western blotting, we found that the over-expression of Sirt1 in goat SSCs can promote cellular proliferation and change self-renewal and pluripotent gene expression. Thus, miR-204 was involved in the regulation of dairy goat SSCs proliferation via Sirt1.
Collapse
Affiliation(s)
- Bowen Niu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Jiang Wu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China .,2 College of Agriculture, Guangdong Ocean University , Zhanjiang, China
| | - Hailong Mu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Bo Li
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Chongyang Wu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Xin He
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| | - Chunling Bai
- 3 Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University , Hohhot, China
| | - Guangpeng Li
- 3 Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University , Hohhot, China
| | - Jinlian Hua
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University , Yangling, Shaanxi, China
| |
Collapse
|
14
|
Hu X, Cao Y, Meng Y, Hou M. A novel modulation of structural and functional changes of mouse bone marrow derived dendritic cells (BMDCs) by interleukin-2(IL-2). Hum Vaccin Immunother 2015; 11:516-21. [PMID: 25622186 DOI: 10.1080/21645515.2015.1009336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
IL-2 is a pleiotropic cytokine produced by T cell after antigen activation of T cell and it is so called T cell growth factor. A large number of documents suggest that Il-2 plays pivotal roles in the immune response and now Il-2 is an approved drug being used for various kinds of diseases such as cancer and dermatitis. (1) The aim of present exploration was to look at effect of IL-2 on structural, phenotypic and functional maturation of murine BMDCs. The structural and phenotypic maturation of BMDCs under influence of IL-2 were evaluated by light microscope and flow cytometry (FCM). The functional maturation of BMDCs was confirmed by cytochemistry assay, FITC-dextran, acid phosphatase (ACP) activity, bio-assay and enzyme linked immunosorbent assay (ELISA).We elucidated that IL-2 up-regulated the expression of key surface markers such as: CD80, CD83, CD86, CD40 and MHC II molecules on BMDCs, down-regulated phagocytosis activity, induced more production of IL-12 and TNF-α secreted by BMDCs. Therefore it can be concluded that IL-2 effectively enhance the maturation of BMDCs. Our results provide direct evidence to support IL-2 would be used as a potent adjuvant in preparation of DC-based vaccines, as well as an immune remedy for cancer situation.
Collapse
Affiliation(s)
- Xiaofang Hu
- a Department of Clinical Detection ; General Hospital of Shenyang Military Command ; Shenyang , China
| | | | | | | |
Collapse
|
15
|
Wu J, Liao M, Zhu H, Kang K, Mu H, Song W, Niu Z, He X, Bai C, Li G, Li X, Hua J. CD49f-positive testicular cells in Saanen dairy goat were identified as spermatogonia-like cells by miRNA profiling analysis. J Cell Biochem 2015; 115:1712-23. [PMID: 24817091 DOI: 10.1002/jcb.24835] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 11/07/2022]
Abstract
miRNAs, a type of small RNA, play critical roles in mammalian spermatogenesis. Spermatogonia are the foundation of spermatogenesis and are valuable for the study of spermatogenesis. However, the expression profiling of the miRNAs in spermatogonia of dairy goats remains unclear. CD49f has been one of the surface markers used for spermatogonia enrichment by magnetic activated cell sorting (MACS). Therefore, we used a CD49f microbead antibody to purify CD49f-positive and -negative cells of dairy goat testicular cells by MACS and then analysed the miRNA expression in these cells in depth using Illumina sequencing technology. The results of miRNA expression profiling in purified CD49f-positive and -negative testicular cells showed that 933 miRNAs were upregulated in CD49f-positive cells and 916 miRNAs were upregulated in CD49f-negative cells with a twofold increase, respectively; several miRNAs and marker genes specific for spermatogonial stem cells (SSCs) in testis had a higher expression level in CD49f-positive testicular cells, including miR-221, miR-23a, miR-29b, miR-24, miR-29a, miR-199b, miR-199a, miR-27a, and miR-21 and CD90, Gfra1, and Plzf. The bioinformatics analysis of differently expressed miRNAs indicated that the target genes of these miRNAs in CD49f-positive cells were involved in cell-cycle biological processes and the cell-cycle KEGG pathway. In conclusion, our comparative miRNAome data provide useful miRNA profiling data of dairy goat spermatogonia cells and suggest that CD49f could be used to enrich dairy goat spermatogonia-like cells, including SSCs.
Collapse
Affiliation(s)
- Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Niu Z, Zheng L, Wu S, Mu H, Ma F, Song W, Zhu H, Wu J, He X, Hua J. Ras/ERK1/2 pathway regulates the self-renewal of dairy goat spermatogonia stem cells. Reproduction 2015; 149:445-452. [PMID: 25820901 DOI: 10.1530/rep-14-0506] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spermatogonia stem cells (SSCs), also named the male germline stem cells (mGSCs), which is located at the base of the seminiferous tubules of testis, is the basis for generating sperm steadily in male animals. Currently, there are some preliminary study on the self-renewal and differentiation of SSCs, but further mechanism, especially in large animals, has not been clearly understood. Ras/ERK1/2 pathway is widely distributed in multiple cells in vivo. It plays an important role in cell proliferation, differentiation and so on. However, the study on the function for the self-renewal of dairy goats SSCs has not been investigated. In this study, the dairy goat SSCs characterization were evaluated by semi-RT-PCR, alkaline phosphatase (AP) staining, and immunofluorescence staining. Then, Ras/ERK1/2 pathway was blocked by specific MEK1/2 inhibitor PD0325901. We analyzed the proliferation by cell number, cell growth curve, Brdu incorporation assay, and cell cycle analysis. The results showed that the proliferation was significantly inhibited by PD0325901. Cell apoptosis induced by blocking the Ras/ERK1/2 pathway was analyzed by TUNEL. The expression of ETV5 and BCL6B, the downstream gene of Ras/ERK1/2 pathway, was downregulated. This study suggest that the Ras/ERK1/2 pathway plays a critical role in maintaining the self-renewal of dairy goat SSCs via regulation of ETV5 and BCL6B. This study laid a foundation for insights into the mechanism of SSCs self-renewal comprehensively.
Collapse
Affiliation(s)
- Zhiwei Niu
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Liming Zheng
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Siyu Wu
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hailong Mu
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Fanglin Ma
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Wencong Song
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Haijing Zhu
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jiang Wu
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xin He
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jinlian Hua
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
17
|
Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction 2014; 147:R65-74. [PMID: 24357661 DOI: 10.1530/rep-13-0466] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis, an elaborate and male-specific process in adult testes by which a number of spermatozoa are produced constantly for male fertility, relies on spermatogonial stem cells (SSCs). As a sub-population of undifferentiated spermatogonia, SSCs are capable of both self-renewal (to maintain sufficient quantities) and differentiation into mature spermatozoa. SSCs are able to convert to pluripotent stem cells during in vitro culture, thus they could function as substitutes for human embryonic stem cells without ethical issues. In addition, this process does not require exogenous transcription factors necessary to produce induced-pluripotent stem cells from somatic cells. Moreover, combining genetic engineering with germ cell transplantation would greatly facilitate the generation of transgenic animals. Since germ cell transplantation into infertile recipient testes was first established in 1994, in vivo and in vitro study and manipulation of SSCs in rodent testes have been progressing at a staggering rate. By contrast, their counterparts in domestic animals, despite the failure to reach a comparable level, still burgeoned and showed striking advances. This review outlines the recent progressions of characterization, isolation, in vitro propagation, and transplantation of spermatogonia/SSCs from domestic animals, thereby shedding light on future exploration of these cells with high value, as well as contributing to the development of reproductive technology for large animals.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|