1
|
Chen D, Fang M, Huang E, Quan H, Zhang L, He Y, Zhou X, Ma B, Yuan X, Li J. DNA Methylation Mediates the Transcription of STAT4 to Regulate KISS1 During Follicular Development. Cells 2025; 14:523. [PMID: 40214477 PMCID: PMC11989168 DOI: 10.3390/cells14070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Maturation of follicles is the primary condition for the initiation of puberty, and excessive apoptosis of granulosa cells (GCs) will hinder the normal development of follicles in pigs. Signal Transducer and Activator of Transcription 4 (STAT4) plays an important role in cell proliferation and apoptosis. However, the mechanism of DNA methylation regulating STAT4 transcription and affecting follicle development in pigs remains unclear. To resolve this problem, we constructed a STAT4 overexpression vector and interference fragment to explore the effects of STAT4 on GC function and investigate the effects of changes in methylation status of the STAT4 promoter region on cell function and kisspeptin-1 (KISS1) expression, as well as the STAT4 effects on the development of the follicles of pigs and mice in vitro. We found that the expression of STAT4 decreased, while DNA methylation of the STAT4 promoter region increased with the growth of the follicles. After overexpression of STAT4, the apoptosis of GCs was increased but the proliferation, cell cycle and estrogen secretion of GCs were inhibited. When GCs were treated with DNA methyltransferase inhibitor (5-Aza-CdR), the methylation of the STAT4 promoter region decreased, resulting in a significant increase in the expression of STAT4. Consequently, the expression of KISS1 was inhibited. At the same time, the expressions of genes related to cell proliferation, cell cycle and estrogen secretion signaling pathways decreased, while the expressions of genes related to the apoptosis signaling pathway increased. After infection with the STAT4 lentiviral vector (LV-STAT4) in follicles of mice, the expression of STAT4 in ovaries of mice significantly increased, and the expression of KISS1 was significantly decreased. The capillaries on the surface of follicles were constricted, the age of puberty onset in mice was delayed while the levels of GnRH, LH, FSH and E2 in serum were decreased. In conclusion, we found that reduced methylation status of the STAT4 promoter region promoted the transcription of STAT4 and then inhibited the expression of KISS1, as well as promoted the apoptosis of GCs and ultimately inhibited the normal development of follicles in mammals.
Collapse
Affiliation(s)
- Danxia Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Ming Fang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Enyuan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Hongyan Quan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Liuhong Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Yingting He
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Xiaofeng Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
| | - Bin Ma
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia;
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia;
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (D.C.); (M.F.); (E.H.); (H.Q.); (L.Z.); (Y.H.); (X.Z.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
2
|
Samir H, Elfadadny A, Radwan F, El-Sherbiny HR, Swelum AA, Khalil WA, Watanabe G. Spatial local expressions of kisspeptin in the uterus and uterine tubes and its relationship to the reproductive potential in goats. Domest Anim Endocrinol 2024; 88:106850. [PMID: 38640803 DOI: 10.1016/j.domaniend.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Kisspeptins are neuropeptides encoded by the Kiss1 gene that was discovered as a metastasis suppressor gene in melanoma and breast cancer. Kisspeptin has pivotal functions for gonadotropin-releasing hormone secretion and plays integrated roles in the hypothalamic-pituitary-gonadal axis. However, little is known about the peripheral expression of kisspeptin in ruminants, especially in the female reproductive tract. Here, the objectives of the current study were to investigate the spatial localization of kisspeptin and mRNA expression of Kiss1 and its receptor (Kiss1r) in the fallopian tubes (FT) and uterus of goats at varied reproductive activity (cyclic versus true anoestrous goats, n=6, each). Specimens of the uterus and FT were collected and fixed using paraformaldehyde to investigate the localizations of kisspeptin in the selected tissues by immunohistochemistry. Another set of samples was snape-frozen to identify the expressions of mRNAs encoding Kiss1 and Kiss1r using real-time PCR. Results revealed immunolocalizations of kisspeptin in the uterus and the FT. The staining of kisspeptin was found mainly in the mucosal epithelium of the uterus the FT, and the endometrial glands. Very intense staining of kisspeptin was found in the uterine and FT specimens in the true anoestrous goats compared to that in cyclic ones. The expression of mRNA encoding Kiss1 gene was significantly higher in the uterine specimen of cyclic goats (1.00±0.09) compared to that in the true anoestrous goats (0.62±0.08) (P ˂0.05), while the expression of mRNA encoding Kiss1r was significantly (P ˂0.001) higher in the uterine tissues of true anoestrous goats (1.78±0.17) compared to that in cyclic ones (1.00±0.11). In conclusion, immunohistochemical localization of kisspeptin and the expression of mRNA encoding Kiss1/Kiss1r revealed spatial changes in the uterus and FT of goats according to the reproductive potential of goats (cyclic versus true anoestrous goats). However, the definitive local role of kisspeptin in the uterus and FT need further investigation.
Collapse
Affiliation(s)
- Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan.
| | - Ahmed Elfadadny
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira 22511, Egypt
| | - Faten Radwan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan; Veterinarian graduated from the Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Hossam R El-Sherbiny
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Arismendi D, Alanis C, Richter P, Paredes AH. Effect of triclosan exposure on ovarian hormones, trace elements and growth in female rats. CHEMOSPHERE 2022; 307:135964. [PMID: 35970220 DOI: 10.1016/j.chemosphere.2022.135964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (TCS) is an antibacterial compound used mainly in personal care products. Its widespread use for decades has made it one of the most widely detected compounds in environmental matrices and in biological fluids. Although it has been shown to be an endocrine disruptor in rats and aquatic species, its safe use by humans is unclear. The aim of the present study was to evaluate the effects of exposure to TCS in female rats. To this end, 14 rats were divided into two groups and fed daily as follows: the control group with sesame oil and the TCS group at a dose of 50 mg/kg/day for 28 days. Any signs of toxicity in the rats were observed daily, and the weight and phase of the estrous cycle were recorded. At the end, the rats were decapitated, the serum and ovaries were collected. The levels of testosterone and progesterone in serum were determined by immunoassay and mass spectrometry. Estradiol (in serum) and kisspeptin-10 (in serum and ovary) were measured only by immunoassays. Trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The weight gain study of the rats showed a significant decrease by exposure to TCS, while the estrous cycle was not significantly affected compared to the control. The optimized methods based on mass spectrometry showed a significant decrease in the levels of progesterone and testosterone due to exposure to TCS. In addition, elements determined by ICP-MS in rat serum showed significant changes in calcium, lithium and aluminum due to TCS treatment. Finally, the kisspeptin-10 levels did not show a negative effect due to the treatment by TCS. The results suggest that medium-term exposure to TCS did not significantly alter estrous cyclicity but caused alterations in growth, sex hormone levels and some elements in the rat serum.
Collapse
Affiliation(s)
- Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Constanza Alanis
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Alfonso H Paredes
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
4
|
Effects of time-restricted feeding and type of food on fertility competence in female mice. Sci Rep 2022; 12:7064. [PMID: 35488048 PMCID: PMC9054750 DOI: 10.1038/s41598-022-11251-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/12/2022] [Indexed: 01/08/2023] Open
Abstract
We assessed the effects of feeding regimen (ad libitum vs. time-restricted food access) and type of food (normal chow (NC: 12% fat) vs. moderately high calorie diet (mHCD: 31% fat)) on fertility competence of female mice. Mice fed mHCD had higher number of oocytes than mice fed NC. On the other hand, when mice were fed NC under time-restricted access to food (NT), the developmental rate to the blastocyst per number of normally fertilized ova was significantly decreased compared to others. The reactive oxygen species (ROS) level in oocytes increased in time-restricted food access and NC group. Transcriptome analysis of whole ovarian tissues from these mice showed a change in the cholesterol metabolism among the four groups. Time-restricted food access decreased serum LDL cholesterol level in both NC and mHCD groups. Moreover, the number of atretic follicles increased in NT mice compared to ad libitum food access mice. The present study shows that mHCD feeding increases the number of ovulated oocytes and that time-restricted feeding of NC impairs the developmental competence of oocytes after fertilization, probably due to the changes in serum cholesterol levels and an increase in the ROS content in oocytes.
Collapse
|
5
|
Berger T, Tang S, Tu L, Soto DA, Conley AJ, Nitta-Oda B. Changes in testicular gene expression following reduced estradiol synthesis: A complex pathway to increased porcine Sertoli cell proliferation. Mol Cell Endocrinol 2021; 523:111099. [PMID: 33271218 DOI: 10.1016/j.mce.2020.111099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
Porcine Sertoli cell number including number present at puberty is increased if testicular estradiol synthesis is reduced during the neonatal interval. Evaluating the changes in gene expression during the crucial interval of suppressed estradiol that leads to the increased Sertoli cell population will increase our understanding of Sertoli cell biology but this evaluation first required a more precise determination of the critical interval for treatment and timing of a detectable response. Previously, reduced testicular estrogens from 1 week of age were accompanied by increased Sertoli cell number at 6.5 weeks of age but the age at which Sertoli cell numbers were initially increased was unknown, one of the current objectives. Additional experiments were designed to further delineate the essential timing of treatment for the Sertoli cell response. Finally, changes in gene expression induced by the reduced estradiol synthesis were evaluated to elucidate molecular mechanisms. Experimental design typically consisted of one member of littermate pairs of boars treated with the aromatase inhibitor, letrozole, beginning at 1 week of age and the remaining member treated with canola oil vehicle. Weekly treatments continued through 5 weeks of age or tissue collection, whichever came first. Increases in Sertoli cell numbers were not detectable prior to 6.5 weeks of age and persistent treatment through 5 weeks of age was required to induce the increase in Sertoli cell numbers. This increase resulted from prolonging the first interval of Sertoli cell proliferation in the treated animals. Few genes exhibited dramatically altered transcription and similarities in pathway analysis or principal modified genes were quite limited in 2, 3, and 5-week-old boars. The critical timing and prolonged treatment required and the sequential changes in gene expression suggest a complex mechanism is involved in this model of increased proliferation of Sertoli cells.
Collapse
Affiliation(s)
- Trish Berger
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Simin Tang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Lien Tu
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Delia Alba Soto
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Alan J Conley
- And Department of Population Health and Reproduction, University of California, Davis, Davis, CA, USA
| | - Barbara Nitta-Oda
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| |
Collapse
|
6
|
Qiu J, Sun Y, Sun W, Wang Y, Fan T, Yu J. Neonatal exposure to bisphenol A advances pubertal development in female rats. Mol Reprod Dev 2020; 87:503-511. [PMID: 32109339 DOI: 10.1002/mrd.23329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/09/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Qiu
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Yanyan Sun
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Wen Sun
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Yonghong Wang
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Teng Fan
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| | - Jian Yu
- Department of Integrative MedicineChildren's Hospital of Fudan University Shanghai China
| |
Collapse
|
7
|
The Chronic and Unpredictable Stress Suppressed Kisspeptin Expression during Ovarian Cycle in Mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2019. [DOI: 10.12750/jarb.34.1.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Ignatiuk VM, Izvolskaya MS, Sharova VS, Voronova SN, Zakharova LA. Disruptions in the reproductive system of female rats after prenatal lipopolysaccharide-induced immunological stress: role of sex steroids. Stress 2019; 22:133-141. [PMID: 30369279 DOI: 10.1080/10253890.2018.1508440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Stress signals during fetal or early postnatal periods may disorganize reproductive axis development at different levels. This study was aimed to test the hypothesis that prenatal immunological stress induced by bacterial endotoxin, lipopolysaccharide (LPS), has impact on structure and function of the reproductive system in female offspring. Adult female Wistar rats were divided into two groups, a control group (n = 5) and a LPS group (n = 12). Rats were injected with LPS 50 μg/kg body or 0.9% saline intraperitoneally on the 12th day of pregnancy. After birth the female pups (n = 20 in each group) were divided into four groups: (group 1) 0.9% saline prenatally, sesame oil (vehicle) postnatally; (group 2) LPS prenatally, sesame oil postnatally; (group 3) LPS prenatally, fulvestrant postnatally; (group 4) LPS prenatally, flutamide postnatally. Pups were injected subcutaneously into the neck with fulvestrant (estrogen receptor antagonist), 1.5 mg/kg in sesame oil, from postnatal day (PND) 5 to PND14; or flutamide (androgen receptor antagonist), 20 mg/kg in sesame oil, from PND14 to PND30. Rats of the control group were injected with sesame oil during the same time period. Parameters were evaluated by ELISA (serum estradiol and testosterone) and ovarian histology. The main findings were: (1) prenatal stress during the critical period resulted in delayed vaginal opening, decreased body weight and serum concentrations of sex steroids, and significant disorders in ovarian development; (2) postnatal estradiol and testosterone antagonist treatments decreased follicular atresia through increasing the number of healthy follicles and restored endogenous steroid production. Lay summaryImmunological stress, caused by simulating infection through exposure to a bacterial toxin (LPS), during a critical period of fetal development in laboratory rats results in delayed reproductive maturity, decreased body weight and decreased secretion of sex steroids in female offspring, and abnormalities in the ovaries like those in polycystic ovarian syndrome. These prenatally toxin-induced sexual disorders in females could be corrected by estradiol/testosterone antagonists during the postnatal period.
Collapse
Affiliation(s)
- V M Ignatiuk
- a Moscow State University GSP-1 , Moscow , Russia
| | - M S Izvolskaya
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| | - V S Sharova
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| | - S N Voronova
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| | - L A Zakharova
- b Koltsov Institute of Developmental Biology , Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
9
|
Cellular fate decisions in the developing female anteroventral periventricular nucleus are regulated by canonical Notch signaling. Dev Biol 2018; 442:87-100. [PMID: 29885287 DOI: 10.1016/j.ydbio.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/05/2018] [Indexed: 01/20/2023]
Abstract
The hypothalamic anteroventral periventricular nucleus (AVPV) is the major regulator of reproductive function within the hypothalamic-pituitary-gonadal (HPG) axis. Despite an understanding of the function of neuronal subtypes within the AVPV, little is known about the molecular mechanisms regulating their development. Previous work from our laboratory has demonstrated that Notch signaling is required in progenitor cell maintenance and formation of kisspeptin neurons of the arcuate nucleus (ARC) while simultaneously restraining POMC neuron number. Based on these findings, we hypothesized that the Notch signaling pathway may act similarly in the AVPV by promoting development of kisspeptin neurons at the expense of other neuronal subtypes. To address this hypothesis, we utilized a genetic mouse model with a conditional loss of Rbpj in Nkx2.1 expressing cells (Rbpj cKO). We noted an increase in cellular proliferation, as marked by Ki-67, in the hypothalamic ventricular zone (HVZ) in Rbpj cKO mice at E13.5. This corresponded to an increase in general neurogenesis and more TH-positive neurons. Additionally, an increase in OLIG2-positive early oligodendrocytic precursor cells was observed at postnatal day 0 in Rbpj cKO mice. By 5 weeks of age in Rbpj cKO mice, TH-positive cells were readily detected in the AVPV but few kisspeptin neurons were present. To elucidate the direct effects of Notch signaling on neuron and glia differentiation, an in vitro primary hypothalamic neurosphere assay was employed. We demonstrated that treatment with the chemical Notch inhibitor DAPT increased mKi67 and Olig2 mRNA expression while decreasing astroglial Gfap expression, suggesting Notch signaling regulates both proliferation and early glial fate decisions. A modest increase in expression of TH in both the cell soma and neurite extensions was observed after extended culture, suggesting that inhibition of Notch signaling alone is enough to bias progenitors towards a dopaminergic fate. Together, these data suggest that Notch signaling restricts early cellular proliferation and differentiation of neurons and oligodendrocytes both in vivo and in vitro and acts as a fate selector of kisspeptin neurons.
Collapse
|
10
|
Yang R, Wang YM, Zhang L, Zhao ZM, Zhao J, Peng SQ. Prepubertal exposure to an oestrogenic mycotoxin zearalenone induces central precocious puberty in immature female rats through the mechanism of premature activation of hypothalamic kisspeptin-GPR54 signaling. Mol Cell Endocrinol 2016; 437:62-74. [PMID: 27519634 DOI: 10.1016/j.mce.2016.08.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/19/2016] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
Abstract
Sporadic epidemics and several researches in rodents indicated that zearalenone (ZEA) and its metabolites, the prevailing oestrogenic mycotoxins in foodstuffs, were a triggering factor for true precocious puberty development in girls. Nevertheless, the neuroendocrine mechanism through which ZEA mycoestrogens advance puberty onset is not fully understood. To elucidate this issue, hypothalamic kisspeptin-G-protein coupled receptor-54 (GPR54) signaling pathway that regulates the onset of puberty was focused on in the present study. Immature female SD rats were given a daily intragastric administration of corn oil (vehicle control), 50 μg/kg body weight (bw) of 17β-estradiol (E2, positive control), and 3 doses (0.2, 1 and 5 mg/kg bw) of ZEA for consecutive 5 days starting from postnatal day 15, respectively. Puberty onset was evaluated by detecting the physiological and hormonal responses, and hypothalamic kisspeptin-GPR54 pathway was determined to reveal the neuroendocrine mechanism. As the markers of puberty onset, vaginal opening was significantly accelerated and uterine weight was increased in both E2 and 5 mg/kg ZEA groups. Serum levels of follicle stimulating hormone, luteinizing hormone and estradiol were also markedly elevated by E2 and 5 mg/kg ZEA, which is compatible with the changes in peripheral reproductive organs. The mRNA and protein expressions of hypothalamic gonadotropin-releasing hormone (GnRH) were both obviously elevated by E2 and 5 mg/kg ZEA. GnRH expression changes occurred in parallel with increased expressions of hypothalamic Kiss1 and its receptor GPR54 at both mRNA and protein levels. Most of these changes were also noted in 1 mg/kg ZEA group, but none in 0.2 mg/kg group. Therefore, within the context of this study, the No Observed Adverse Effect Level (NOAEL) for ZEA in terms of oestrogenic activity and puberty-promoting effect in immature female rats was considered to be 0.2 mg/kg bw per day, and the Lowest Observed Adverse Effect Level (LOAEL) was 1 mg/kg bw per day. In conclusion, prepubertal exposure to dietary relevant levels of ZEA induced central precocious puberty in female rats by premature activation of hypothalamic kisspeptin-GPR54-GnRH signaling pathway, followed by the stimulation of gonadotropins release at an earlier age, resulting in the advancement of vaginal opening and enlargement of uterus at periphery.
Collapse
MESH Headings
- Animals
- Estrogens/toxicity
- Estrous Cycle/drug effects
- Female
- Genitalia, Female/drug effects
- Genitalia, Female/growth & development
- Genitalia, Female/pathology
- Gonadotropin-Releasing Hormone/genetics
- Gonadotropin-Releasing Hormone/metabolism
- Hormones/blood
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Kisspeptins/metabolism
- Male
- Mycotoxins/toxicity
- Pituitary Gland/drug effects
- Pituitary Gland/metabolism
- Puberty, Precocious/blood
- Puberty, Precocious/chemically induced
- Puberty, Precocious/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Kisspeptin-1
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Sexual Maturation/drug effects
- Signal Transduction/drug effects
- Zearalenone/toxicity
Collapse
Affiliation(s)
- Rong Yang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Yi-Mei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China.
| | - Li Zhang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Zeng-Ming Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Jun Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Shuang-Qing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China.
| |
Collapse
|
11
|
Role of Nesfatin-1 in the Reproductive Axis of Male Rat. Sci Rep 2016; 6:32877. [PMID: 27599613 PMCID: PMC5013388 DOI: 10.1038/srep32877] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022] Open
Abstract
Nesfatin-1 is an important molecule in the regulation of reproduction. However, its role in the reproductive axis in male animals remains to be understood. Here, we found that nesfatin-1 was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN), periventricular nucleus (PeN), and lateral hypothalamic area (LHA) of the hypothalamus; adenohypophysis and Leydig cells in male rats. Moreover, the concentrations of serum nesfatin-1 and its mRNA in hypothalamo-pituitary-gonadal axis (HPGA) vary with the age of the male rat. After intracerebroventricular injection of nesfatin-1, the hypothalamic genes for gonadotrophin releasing hormone (GnRH), kisspeptin (Kiss-1), pituitary genes for follicle-stimulate hormone β(FSHβ), luteinizing hormone β(LHβ), and genes for testicular steroidogenic acute regulatory (StAR) expression levels were decreased significantly. Nesfatin-1 significantly increased the expression of genes for 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), and cytochrome P450 cleavage (P450scc) in the testis of pubertal rats, but their levels decreased in adult rats (P < 0.05), along with the serum FSH, LH, and testosterone (T) concentrations. After nesfatin-1 addition in vitro, T concentrations of the supernatant were significantly higher than that in the control group. These results were suggestive of the role of nesfatin-1 in the regulation of the reproductive axis in male rats.
Collapse
|