1
|
Domrazek K, Jurka P. Prevalence of Chlamydophila spp. and Canid herpesvirus-1 in Polish dogs. Vet World 2024; 17:226-232. [PMID: 38406369 PMCID: PMC10884577 DOI: 10.14202/vetworld.2024.226-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Chlamydophila spp. affect Leydig and Sertoli cells by dysregulating spermatogenesis, inducing apoptosis and sperm DNA fragmentation, as well as benign prostate hyperplasia. Canid herpes virus 1 (CHV-1) infection in male dogs is manifested by lesions on the base of the penis and foreskin. There is a lack of information on the influence of these microorganisms on the quality of canine semen. Seroprevalence of Chlamydophila spp. (55%-61%) and CHV-1 (22%-81%) in Europe is high. The prevalence of Chlamydophila spp. and CHV-1 has been evaluated using polymerase chain reaction (PCR) only in Sweden and Croatia, respectively. No positive samples were detected in either case. The aim of this study was to evaluate the epidemiological situation in Polish male dogs (PMDs) to provide a solution to limit the spread of these microorganisms using assisted reproduction techniques or elimination from the reproduction of CHV-1 carriers. In addition, we assessed the semen quality of Chlamydophila spp. carriers and CHV-1 carriers. Materials and Methods Cotton swabs were collected from prepuce or semen from each dog (n = 130). Real-time PCR for Chlamydophila spp. and CHV-1, as well as semen analysis, was performed using the computer-assisted semen analysis system. Results To the best of our knowledge, this is the first report of Chlamydophila spp. infection in PMD confirmed by real-time PCR. All parameters, except progressive movement in Chlamydophila semen carriers, were normal. Conclusion The average velocity values for a dog with Chlamydia are detailed. No CHV-1 was detected. The results achieved should be verified on the basis of a larger number of studies. However, the high prevalence of these pathogens in the PMD population has not been established.
Collapse
Affiliation(s)
- Kinga Domrazek
- Laboratory of Small Animal Reproduction, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C Street, Warsaw 02-787, Poland
| | - Piotr Jurka
- Laboratory of Small Animal Reproduction, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C Street, Warsaw 02-787, Poland
| |
Collapse
|
2
|
Li CX, Gao J, Shi SR, Gao WW, Zhu XQ, Lei YP, Zhang Y, Zheng WB. The Seroprevalence of Chlamydia Infection in Sheep in Shanxi Province, China. Vet Sci 2022; 9:vetsci9120656. [PMID: 36548817 PMCID: PMC9784335 DOI: 10.3390/vetsci9120656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Chlamydia, an obligate intracellular bacterium, can cause chlamydiosis in humans and animals worldwide and also leads to serious economic losses to the sheep industry. However, the information on Chlamydia infection in sheep was limited in Shanxi Province, northern China. In the present study, a total of 984 serum samples of sheep were collected from 11 regions in Shanxi Province, northern China in the autumn of 2020. The antibodies against Chlamydia and Chlamydia abortus were examined by the indirect hemagglutination assay (IHA) and indirect enzyme-linked immunosorbent assay (ELISA), respectively. The result showed that 351 (35.67%, 95% CI 32.68-38.66) of 984 serum samples were positive for Chlamydia, and the seroprevalence ranged from 6.67% to 70.79% among the different regions. In addition, antibodies to C. abortus infection were detected in 78 (7.93%, 95% CI 6.24-9.61) of 984 serum samples, and the seroprevalence ranged from 6.24% to 14.81% among the different regions. This is the first report on the seroprevalence of Chlamydia and C. abortus in sheep in Shanxi province, northern China. The findings provide baseline information for preventing and controlling Chlamydia infection in sheep in Shanxi Province, China.
Collapse
Affiliation(s)
- Chen-Xu Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jin Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Sheng-Rong Shi
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wen-Wei Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yu-Ping Lei
- Veterinary Laboratory, Shanxi Provincial Animal Disease Prevention and Control Center, Taiyuan 030008, China
| | - Yu Zhang
- Veterinary Laboratory, Shanxi Provincial Animal Disease Prevention and Control Center, Taiyuan 030008, China
- Correspondence: (Y.Z.); (W.-B.Z.)
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (Y.Z.); (W.-B.Z.)
| |
Collapse
|
3
|
Sheng CY, Gong QL, Ma BY, Liu Y, Ge GY, Li DL, Luan MH, Diao NC, Li JM, Shi K, Leng X, Du R. Prevalence of Chlamydia in Pigs in China from 1985 to 2020: A Systematic Review and Meta-Analysis. Vector Borne Zoonotic Dis 2021; 21:517-533. [PMID: 33887161 DOI: 10.1089/vbz.2020.2694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlamydia is a small gram-negative (G-) microorganism that can be dangerous to human and animals. In this study, we conducted a systematic review and meta-analysis of Chlamydia infection in swine in China. From PubMed, ScienceDirect, Chinese Web of knowledge (CNKI), VIP Chinese journal database, and Wanfang database, we collected a total of 72 publications reported in 1985-2020. The prevalence of Chlamydia was 22.48% in China. In the sampling year subgroup, the prevalence after 2011 was the highest (26.14%). In southern China, the prevalence was 30.97%. By contrast, the prevalence in northern China was only 10.79%. Also the difference was significant (p < 0.05). In the provincial level, Hubei had the highest rate of 36.23%. Boars had a higher prevalence (29.47%). The prevalence of Chlamydia detection in pigs with reproductive disorders (21.86%) was higher than that without reproductive disorders. Among the three age groups, finishing pigs (21.43%) had the highest prevalence. The prevalence in large-scale farmed pigs (28.58%) was the highest in the subgroup of feeding methods. The prevalence in farms was 24.29%, which was the highest in the survey areas. The prevalence in spring was the highest with 40.51%. Other methods had the highest prevalence (39.61%) than enzyme-linked immunosorbent assay (ELISA) and indirect hemagglutination assay. The prevalence of Chlamydia psittaci 18.41% was lower than the prevalence of Chlamydia abortus (41.35%). We also analyzed the impact of different climate factor subgroups (rainfall, temperature, and humidity) on the probability of pigs suffering from the disease. The results showed that Chlamydia was widespread in pigs in China. We suggest that we should strengthen the detection of Chlamydia in the semen of breeding pigs and pigs with reproductive disorders, and reasonably control the environment of large-scale pig farms, so as to reduce further infection of Chlamydia in pigs.
Collapse
Affiliation(s)
- Chen-Yan Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Qing-Long Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Bao-Yi Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Yi Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Gui-Yang Ge
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Dong-Li Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Mei-Hui Luan
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Nai-Chao Diao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China
| | - Jian-Ming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun P.R. China
| | - Rui Du
- Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, P.R. China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, P.R. China
| |
Collapse
|