1
|
Liu H, Tang Y, Sun L, Li S, Luo L, Chen Z, Li G. Involvement of Histone Acetyltransferase 1 (HAT1) in the Spermatogenesis of Non-Condensed Nuclear Sperm in Chinese Mitten Crab, Eriocheir sinensis. Biochem Genet 2025; 63:183-196. [PMID: 38416273 DOI: 10.1007/s10528-024-10700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024]
Abstract
Chinese mitten crab, Eriocheir sinensis, is a decapod crustacean with a special, non-condensated nucleus in the sperm. Studies have shown that the nuclear compact state of male germ cells during the spermatogenesis is closely related to histone modification. To explore the possible role of histone acetyltransferase 1 (HAT1) in the chromatin organization during the E. sinensis spermatogenesis, we took the testis tissues of both adult and juvenile crabs as the materials of study and analyzed the biological functions of HAT1 by whole transcriptome sequencing and bioinformatics, then further analyzed the expression and distribution of HAT1 using the methods of RT-qRCR, western blotting, and immunofluorescence location. The results showed that HAT1 is an alkaline-unstable hydrophilic protein. It was predicted to interact with a variety of histones and chromosome assembly proteins, including Asf1b, Chaf1b, and Hist1h3f, and is involved in many biological functions pertaining to chromatin dynamics such as chromatin organization, DNA dependent nucleosome assembly, DNA conformational changes, and so on. HAT1 was up-regulated in the adult testes compared to the juvenile (n = 3, P < 0.05). HAT1 was mainly located in the nuclei of male germ cells of E. sinensis. As spermatogenesis proceeded, the expression of HAT1 decreased and even disappeared in the nuclei (n = 3, P < 0.05). HAT1 is an important player in histone acetylation, which facilitates chromatin alteration in a three-dimensional conformation. The expression of HAT1 in different male germ cells might indicate the chromatin dynamics at the diversity stages of spermatogenesis. The high expression of HAT1 at the early stages of E. sinensis spermatogenesis hints the active involvement in chromatin organization, while its progressively reduced expression accompanied by the progression of spermatogenesis suggests a relatively gradual stabilization and stereotyping of chromatin. As for the disappearance of HAT1 in mature sperm with non-condensed nuclei, the reduction in histones targeted by HAT1 or histone acetylation may be an important initiator.
Collapse
Affiliation(s)
- Huiting Liu
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yulian Tang
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lishuang Sun
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
2
|
Mo Y, Sun L, Li S, Luo L, Liu H, Huang S, Chen Z, Li G. The mechanism of INO80D involved in chromatin remodeling regulating spermatogenesis in Chinese mitten crab (Eriocheir sinensis). Mol Genet Genomics 2024; 299:83. [PMID: 39212752 DOI: 10.1007/s00438-024-02177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The INO80D protein, a component of the INO80 chromatin remodeling complex, plays a pivotal role in chromatin remodeling, gene expression, and DNA repair within mammalian sperm. In contrast to the condensed nuclear structure of mammalian sperm, Chinese mitten crab, Eriocheir sinensis, exhibits a distinctively decondensed sperm nucleus. The distribution and function of INO80D during the E. sinensis spermatogenesis were previously enigmatic. Our research endeavored to elucidate the distribution and function of INO80D, thereby enhancing our comprehension of sperm decondensation and the process of spermatogenesis in this species. Employing transcriptome sequencing, RT-qPCR, western blot analysis, and immunofluorescence techniques, we observed a pronounced upregulation of INO80D in the adult E. sinensis in comparison to the juvenile. The protein predominantly resides in the cellular nucleus, with high levels in spermatogonia and spermatocytes, less in stage I and III spermatids, and lowest in mature sperm. The results indicated that INO80D is initially instrumental in chromatin decondensation to facilitate gene accessibility and DNA repair during the early phases of spermatogenesis. Its role subsequently shifts to maintaining decondensed chromatin stability and genetic integrity during spermiogenesis. The sustained presence of INO80D during spermiogenesis is essential for the ultimate maturation of the decondensed sperm nucleus, imperative for preserving the unique decondensed state and the protection of genetic material in E. sinensis. Our study concludes that INO80D exerts a multifaceted influence on the spermatogenesis of E. sinensis, impacting chromatin decondensation, genetic integrity, and the regulation of early gene expression. This understanding could potentially improve crab breeding in aquaculture.
Collapse
Affiliation(s)
- Yinyin Mo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lishuang Sun
- Hainan General Hospital, Haikou, 570311, Hainan, China
- Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huiting Liu
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shi Huang
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
3
|
Li C, Yu R, Liu H, Qiao J, Zhang F, Mu S, Guo M, Zhang H, Li Y, Kang X. Sperm acrosomal released proteome reveals MDH and VDAC3 from mitochondria are involved in acrosome formation during spermatogenesis in Eriocheir sinensis. Gene 2023; 887:147784. [PMID: 37689223 DOI: 10.1016/j.gene.2023.147784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Acrosome is inextricably related to membranous organelles. The origin of acrosome is still controversial, one reason is that limited articles were reported about the proteomic analysis of the acrosome. Mitochondrial proteins were found exist in the acrosome, nevertheless, only limited attention has been paid to the function of mitochondrial proteins in the acrosome formation. Eriocheir sinensis sperm has a large acrosome, which makes it an ideal model to study acrosome formation. Here, we firstly compared the rate of acrosome reaction induced by the calcium ionophore A23187 and ionomycin. The rate of acrosome reaction induced by ionomycin is higher (95.8%) than A23187 (58.7%). Morphological changes were observed using light, confocal and transmission electron microscopy. Further more, proteins released during the acrosome reaction as induced by ionomycin were collected for LC-MS/MS analysis. A total of 945 proteins, including malate dehydrogenase (MDH) and voltage-dependent anion channel 3 (VDAC3), were identified in the acrosomal released proteome. The number of proteins from mitochondria (17.57%) was higher compared with endoplasmic reituculum (1.59%) and lysosomes (1.8%). To investigate the functions of target mitochondrial proteins during spermatogenesis, poly-antibodies of MDH in E. sinensis were prepared. The characteristics, further analyzed using immunofluorescence, of two mitochondrial proteins during acrosome formation showed that MDH and VDAC3 were independently involved in the formation of acrosomal membrane. These findings illustrate the acrosomal released proteome and provide important data resource for understanding the relationship between mitochondria and the acrosome in Decapoda crustacean.
Collapse
Affiliation(s)
- Chao Li
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Ruifang Yu
- College of Life Science in Hebei University, Baoding, China
| | - Huan Liu
- College of Life Science in Hebei University, Baoding, China
| | - Jiashan Qiao
- College of Life Science in Hebei University, Baoding, China
| | - Fenghao Zhang
- College of Life Science in Hebei University, Baoding, China
| | - Shumei Mu
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Mingshen Guo
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Han Zhang
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Yanqin Li
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China
| | - Xianjiang Kang
- College of Life Science in Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding 071000, China; Hebei Province Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071000, China.
| |
Collapse
|
4
|
Tang Y, Ni A, Li S, Sun L, Li G. Expression, localization, and function of P4HB in the spermatogenesis of Chinese mitten crab ( Eriocheir sinensis). PeerJ 2023; 11:e15547. [PMID: 37334119 PMCID: PMC10276555 DOI: 10.7717/peerj.15547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background The sperm of Chinese mitten crab (Eriocheir sinensis) have special noncondensed nuclei. The formation and stability of the special nuclei are closely related to the correct folding of proteins during spermatogenesis. P4HB plays a key role in protein folding, but its expression and role in the spermatogenesis of E. sinensis are unclear. Objective To investigate the expression and distribution characteristics of P4HB in the spermatogenesis of E. sinensis as well as its possible role. Methods The testis tissues of adult and juvenile E. sinensis were used as materials. We utilized a variety of techniques, including homology modeling, phylogenetic analysis, RT-qPCR, western blotting, and immunofluorescence staining to predict the protein structure and sequence homology of P4HB, analyze its expression in the testis tissues, and localize and semi-quantitatively assess its expression in different male germ cells. Results The sequence of P4HB protein in E. sinensis shared a high similarity of 58.09% with the human protein disulfide isomerase, and the phylogenetic tree analysis indicated that the protein sequence was highly conserved among crustaceans, arthropods, and other animals species. P4HB was found to be expressed in both juvenile and adult E. sinensis testis tissues, with different localization patterns observed all over the developmental stages of male germ cells. It was higher expressed in the spermatogonia, spermatocytes, and stage I spermatids, followed by the mature sperm than in the stage II and III spermatids. The subcellular localization analysis revealed that P4HB was predominantly expressed in the cytoplasm, cell membrane, and extracellular matrix in the spermatogonia, spermatocytes, stage I and stage II spermatids, with some present in specific regions of the nuclei in the spermatogonia. In contrast, P4HB was mainly localized in the nuclei of stage III spermatids and sperm, with little expression observed in the cytoplasm. Conclusion P4HB was expressed in the testis tissues of both adult and juvenile E. sinensis, but the expression and localization were different in male germ cells at various developmental stages. The observed differences in the expression and localization of P4HB may be an essential factor in maintaining the cell morphology and structure of diverse male germ cells in E. sinensis. Additionally, P4HB expressed in the nuclei of spermatogonia, late spermatids, and sperm may play an indispensable role in maintaining the stability of the noncondensed spermatozoal nuclei in E. sinensis.
Collapse
|
5
|
Tang Y, Sun L, Li S, Liu H, Luo L, Chen Z, Li G. Role of cytoskeleton-related proteins in the acrosome reaction of Eriocheir sinensis spermatozoa. BMC Genom Data 2023; 24:4. [PMID: 36782118 PMCID: PMC9926718 DOI: 10.1186/s12863-023-01112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Cytoskeleton-related proteins are essential for cell shape maintenance and cytoskeleton remodeling. The spermatozoa of Eriocheir sinensis (Chinese mitten crab) have a unique cellular structure, and the mechanism of spermatozoal metamorphosis during the acrosome reaction is not well understood. In this study, the E. sinensis spermatozoa were induced using calcium ionophore A23187 to undergo the acrosome reaction in vitro, and the acrosome-reacting and fresh (non-reacting) spermatozoa were collected separately. The differential expression of cytoskeleton-related protein genes in acrosome-reacting and fresh spermatozoa of E. sinensis was analyzed by whole transcriptome sequencing and bioinformatics analysis, and PPI network and miRNA-mRNA regulation network were constructed to analyze their possible function and regulation mechanism. The results showed that numerous differentially expressed cytoskeleton-related protein genes, miRNAs and lncRNAs were found in acrosome-reacting and fresh spermatozoa of E. sinensis; 27 cytoskeleton-related protein genes were down regulated and 687 miRNAs were up regulated in acrosome-reacting spermatozoa; 147 miRNAs target these 27 cytoskeleton-related protein genes. In the PPI networks, RAC1, BCAR1, RDX, NCKAP1, EPS8, CDC42BPA, LIMK1, ELMO2, GNAI1 and OCRL were identified as hub proteins. These proteins are mainly involved in the regulation of cytoskeleton organization, actin cytoskeleton organization, microtubule skeleton organization and small GTPase-mediated signal transduction and other biological processes, and play roles in pathways such as actin cytoskeletal regulation and axon guidance. miR-9, miR-31 and two novel miRNAs in the miRNA-mRNA regulatory network are the core miRNAs targeting cytoskeleton-related protein genes. miR-9 targets and regulates OBSCN, CDC42BPA, ELMO2, BCAS3, TPR and OCRL; while miR-31 targets and regulates CDC42BPA and TPR. This study provides a theoretical basis for revealing the mechanism of acrosome reaction under the special spermatozoa morphology of E. sinensis.
Collapse
Affiliation(s)
- Yulian Tang
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lishuang Sun
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huiting Liu
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
6
|
Marçal R, Pacheco M, Guilherme S. Unveiling the nexus between parental exposure to toxicants and heritable spermiotoxicity - Is life history a shield or a shadow? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103955. [PMID: 35970510 DOI: 10.1016/j.etap.2022.103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The knowledge on parental experiences is critical to predict how organisms react to environmental challenges. So, the DNA integrity of Procambarus clarkii spermatozoa exposed ex vivo to the herbicide penoxsulam (Px) or ethyl methanesulfonate (EMS; model genotoxicant) was assessed with and without the influence of in vivo parental exposure to the same agents. The parental exposure alone did not affect the DNA of unexposed spermatozoa. However, the history of Px exposure increased the vulnerability to oxidative lesions in Px-exposed offspring. Otherwise, parental exposure to EMS allowed the development of protection mechanisms expressed when F1 was also exposed to EMS, unveiling life history as a shield. The parental exposure to a different agent adverse and decisively affected Px spermiotoxic potential, pointing out life history as a shadow to progeny. Given the complexity of the aquatic contamination scenarios, involving mixtures, the spermiotoxicity of Px to wild P. clarkii populations emerged as probable.
Collapse
Affiliation(s)
- R Marçal
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Pacheco
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - S Guilherme
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Ari Prabowo T, Bintara S, Mira Yusiatik L, Tri Widayati D. Detection of DNA Damage in Frozen Bovine Semen Using Eosin Staining. Pak J Biol Sci 2022; 25:396-400. [PMID: 35638509 DOI: 10.3923/pjbs.2022.396.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Early detection of DNA defects in spermatozoa is vital because genetic abnormalities are associated with infertility and miscarriage. Eosin is an acidic stain with negatively charged chromatolytic components also found in the cytoplasm of spermatozoa. This study aimed to observe the effectiveness of eosin staining in detecting spermatozoa DNA deterioration. <b>Materials and Methods:</b> A total of four-hundred frozen beef straws from Simmental, Limousin and Brahman cattle and Ongole crossbreeds, were obtained from the Singosari National Artificial Insemination Center, Malang, Indonesia.Hydrogen peroxide was used to degrade frozen sperm. In addition, the sperm was subjected to three treatments: Agarose trapping, membrane lysis and eosin staining. <b>Results:</b> Damaged bull spermatozoa stained with eosin were bright red in color around the head and mid piece, whereas the head of undamaged spermatozoa were darker red. The average value of damaged DNA was 89.08±3.27% as assessed with eosin staining. <b>Conclusion:</b> Eosin staining effectively detects DNA damage in bull spermatozoa, but extended effectiveness tests are considered necessary.
Collapse
|
8
|
Chen T, Zhou Y, Liu X, Liu Y, Yuan J, Wang Z. Adenylyl cyclase 3 deficiency results in dysfunction of blood-testis barrier during mouse spermiogenesis. Theriogenology 2021; 180:40-52. [PMID: 34953349 DOI: 10.1016/j.theriogenology.2021.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Human infertility has become a global medical and social health problem. Mice deficient in type 3 adenylyl cyclase (AC3), a key enzyme that synthesizes cyclic adenosine monophosphate (cAMP), develop male infertility, although the underlying molecular mechanisms remain unknown. We performed a label-free quantitative (LFQ) proteomics analyses to identify testicular differentially expressed proteins (DEPs) and their respective biological processes. Furthermore, histological examination demonstrated that AC3 deficiency in mice led to mild impairment of spermatogenesis, including the thinning of seminiferous epithelium and local lesions in the testis. We further identified that the integrity of the blood-testis barrier (BTB) was impaired in AC3 knockout (AC3-/-) mice accompanied with the reduction in the expression of tight junctions (TJs) and ectoplasmic specialization (ESs)-related proteins. In addition, the deletion of AC3 in mice also reduced the germ cell proliferation, increased apoptosis, and decreased lipid deposition in the seminiferous tubules. Collectively, our results revealed a role of AC3 in regulating the BTB integrity during spermatogenesis. Thus, our findings provide new perspectives for future research in male infertility.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Yanfen Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Xinxia Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Yuxin Liu
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Junkai Yuan
- School of Basic Medical Sciences, Hebei University, Baoding, 071030, Hebei, PR China
| | - Zhenshan Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China.
| |
Collapse
|
9
|
Chen T, Mu S, Guo M, Zhang Z, Kang X. Dynamics of hyperacetylated histone H4 (H4Kac) during spermatogenesis in four decapod crustaceans. Tissue Cell 2021; 73:101594. [PMID: 34333381 DOI: 10.1016/j.tice.2021.101594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/08/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
During spermatogenesis, the transition from histone to protamine is highly conserved in most invertebrates and vertebrates. Thus far, a large and growing body of literature has demonstrated that histones and histone modifications still exist in the sperm nucleus of decapod crustaceans. H4Kac is believed to play an important role in the process of sperm chromatin condensation. However, the dynamics of hyperacetylated histone H4 (H4Kac) during spermatogenesis in decapoda are still unknown. In this paper, the distribution of H4Kac in four decapod crustaceans (Eriocheir sinensis, Charybdis japonica, Procambarus clarkii, and Macrobrachium nipponense) were investigated via immunofluorescence. Our results indicated that H4Kac was visible in the mature sperm nucleus of E. sinensis, C. japonica, and M. nipponense. Unlike the other three species, H4Kac was translocated from the nuclei to cytoplasm in mid-spermatids of P. clarkii. Eventually, H4Kac were not present in mature spermatozoa of P. clarkii. Importantly, we observed for the first time that H4Kac was distributed outside the nucleus, which reminds us that H4Kac may participate in the formation of acrosome structure in decapod crustaceans and may be a prerequisite for proper chromatin decondensation.
Collapse
Affiliation(s)
- Tingrong Chen
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Shumei Mu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Mingshen Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, First Central Hospital of Baoding, 071000, Hebei, China
| | - Xianjiang Kang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, PR China; Department of Reproductive Medicine, First Central Hospital of Baoding, 071000, Hebei, China.
| |
Collapse
|