1
|
Samie KA, Kowalewski MP, Schuler G, Gastal GDA, Bollwein H, Scarlet D. Roles of GDF9 and BMP15 in equine follicular development: in vivo content and in vitro effects of IGF1 and cortisol on granulosa cells. BMC Vet Res 2025; 21:292. [PMID: 40289073 PMCID: PMC12034142 DOI: 10.1186/s12917-025-04744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND In horses, the mechanisms behind ovarian follicle growth and oocyte maturation remain largely unknown. In other species, oocyte-secreted factors growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) have been related to the acquisition of developmental competence and to interaction with granulosa cells for the regulation of follicle development. This study assessed the expression and localization of GDF9 in the equine ovary, and its possible relationship with granulosa cell function. RESULTS Using custom-made antibodies, GDF9 protein was localized in oocytes from the primary follicle stage onwards. Together with BMP15, its intrafollicular concentration was higher in small antral follicles compared to larger ones (P < 0.05). Negative correlations were observed between intrafollicular BMP15 concentration and estradiol sulfate (E2S) (r = -0.36, P = 0.048), as well as between BMP15 and E2S/P4 ratio (r = -0.37, P = 0.046). In vivo, equine granulosa cells showed increasing mRNA expression of genes involved in steroidogenesis (STAR and HSD3B2) and cell proliferation (KI67) with increasing follicle size, while expression of GDF9 and of apoptosis-related genes (BCL2 and CASP3) were not affected by follicle size. Simultaneous stimulation of granulosa cells in vitro with IGF1 and cortisol significantly increased HSD3B2 and CYP19A1 transcriptional levels, as well as E2 concentration in culture media, while IGF1-induced P4 secretion was suppressed in the presence of cortisol. Blocking the stimulatory effect of IGF1 on E2, E2S and P4 by H89 was associated with increased GDF9 mRNA levels and reduced STAR, PCNA, KI67 and BCL2 mRNA expression. Significant negative correlations of GDF9 with STAR and PCNA mRNA, respectively, were seen in vivo and in vitro. CONCLUSIONS Together, our results show GDF9 localization and expression in the equine ovary and a temporal relationship with steroidogenesis and cell proliferation within the surrounding granulosa cells. Moreover, results of the in vitro study suggest a supporting role of cortisol during follicle maturation. Our study sheds light on possible mechanisms for the regulation of ovarian function in horses using GDF9.
Collapse
Affiliation(s)
- Kosar Abbasi Samie
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Gerhard Schuler
- Veterinary Clinic for Reproductive Medicine and Neonatology, Justus-Liebig-University, Frankfurter Strasse 106, 35392, Giessen, Germany
| | - Gustavo D A Gastal
- Instituto Nacional de Investigación Agropecuaria INIA, Estacion Experimental La Estanzela, Ruta 50 km 11, Cologne, Colonia, 39173, Uruguay
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
- AgroVet-Strickhof, Vetsuisse Faculty, Eschikon, Lindau, Switzerland
| | - Dragos Scarlet
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland.
- Clinic of Reproductive Medicine, Vetsuisse Faculty Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland.
- AgroVet-Strickhof, Vetsuisse Faculty, Eschikon, Lindau, Switzerland.
| |
Collapse
|
2
|
Li Y, Li F, Shu J, Meng C, Zhang J, Zhang J, Qian Y, Wang H, Ding Q, Cao S. Acute heat stress regulates estradiol synthesis in ovine ovarian granulosa cells through the SREBPs/MVK-LHR pathway. Anim Reprod Sci 2025; 272:107649. [PMID: 39615443 DOI: 10.1016/j.anireprosci.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The adverse effects of heat stress on reproductive performance of sheep are becoming increasingly severe. Previous research has revealed that heat stress decreases both cholesterol and estradiol content; however, regulation of estradiol by cholesterol and its regulatory mechanism under heat stress are unclear. Mevalonate kinase (MVK), a key cholesterol synthesis pathway enzyme, binds to the luteinizing hormone receptor (LHR; a key gene regulating hormone synthesis) mRNA. In this study, ovine ovarian granulosa cells (GCs) were used in an in vitro model. To elucidate the underlying molecular mechanism, immunofluorescence, quantitative reverse transcription polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, and an RNA electrophoretic mobility shift assay (REMSA) were used to investigate whether the decrease in cholesterol caused by acute heat stress resulted in a decrease in estradiol synthesis. Acute heat stress reduced the cholesterol content in ovine ovarian GCs, which transactivated the cholesterol synthesis pathway corresponding to the gene expression of sterol regulatory element-binding protein (SREBP-1A), SREBP-2, and MVK. Upregulated MVK increased the MVK-LHR mRNA complex, which caused LHR mRNA decay and downregulation, further leading to the downregulation of CYP19A1 and a decrease in estradiol. The cholesterol synthesis inhibitor, PF-429242, alleviated the decrease in estradiol synthesis caused by acute heat stress. Overall, acute heat stress caused a decrease in total cholesterol, which transactivated the expression of cholesterol synthesis genes, such as SREBP-1A, SREBP2, and MVK, increasing the MVK-LHR complex, downregulating LHR expression, and further decreasing estradiol.
Collapse
Affiliation(s)
- Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Fan Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Jiaao Shu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Chunhua Meng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Jun Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Jianli Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Yong Qian
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Huili Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China
| | - Qiang Ding
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shaoxian Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China; Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing 210014, China.
| |
Collapse
|
3
|
Yang Y, Feng W, Zhou J, Zhang R, Lin X, Sooranna SR, Deng Y, Shi D. Epigenetic modifications of gonadotropin receptors can regulate follicular development. Anim Reprod Sci 2024; 268:107534. [PMID: 39047429 DOI: 10.1016/j.anireprosci.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The spatiotemporal transcription of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR) are crucial events for follicular development. However, their regulatory mechanisms are unclear. DNA methylation and histone acetylation are the main epigenetic modifications, and play important roles in transcriptional expression, which regulate cell responses including cell proliferation, senescence and apoptosis. This review will discuss the dynamic epigenetic modifications of FSHR and LHCGR that occur during the process of follicular development and their response to gonadotropins. In addition, some alteration patterns that occur during these epigenetic modifications, as well as their retrospect retrotransposons, which regulate the gene expression levels of FSHR and LHCGR will be discussed.
Collapse
Affiliation(s)
- Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wanyou Feng
- School of Environmental and Life Sciences, Nanning Normal University, Nanning 530023, China
| | - Jinhua Zhou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Lin
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Han B, Tian D, Li X, Liu S, Tian F, Liu D, Wang S, Zhao K. Multiomics Analyses Provide New Insight into Genetic Variation of Reproductive Adaptability in Tibetan Sheep. Mol Biol Evol 2024; 41:msae058. [PMID: 38552245 PMCID: PMC10980521 DOI: 10.1093/molbev/msae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Domestication and artificial selection during production-oriented breeding have greatly shaped the level of genomic variability in sheep. However, the genetic variation associated with increased reproduction remains elusive. Here, two groups of samples from consecutively monotocous and polytocous sheep were collected for genome-wide association, transcriptomic, proteomic, and metabolomic analyses to explore the genetic variation in fecundity in Tibetan sheep. Genome-wide association study revealed strong associations between BMPR1B (p.Q249R) and litter size, as well as between PAPPA and lambing interval; these findings were validated in 1,130 individuals. Furthermore, we constructed the first single-cell atlas of Tibetan sheep ovary tissues and identified a specific mural granulosa cell subtype with PAPPA-specific expression and differential expression of BMPR1B between the two groups. Bulk RNA-seq indicated that BMPR1B and PAPPA expressions were similar between the two groups of sheep. 3D protein structure prediction and coimmunoprecipitation analysis indicated that mutation and mutually exclusive exons of BMPR1B are the main mechanisms for prolific Tibetan sheep. We propose that PAPPA is a key gene for stimulating ovarian follicular growth and development, and steroidogenesis. Our work reveals the genetic variation in reproductive performance in Tibetan sheep, providing insights and valuable genetic resources for the discovery of genes and regulatory mechanisms that improve reproductive success.
Collapse
Affiliation(s)
- Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Song Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
5
|
Chu Q, Yu YX, Zhang JZ, Zhang YT, Yu JP. Effects of flaxseed oil supplementation on metaphase II oocyte rates in IVF cycles with decreased ovarian reserve: a randomized controlled trial. Front Endocrinol (Lausanne) 2024; 15:1280760. [PMID: 38469148 PMCID: PMC10925664 DOI: 10.3389/fendo.2024.1280760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/31/2024] [Indexed: 03/13/2024] Open
Abstract
Background This study was designed to explore the effects of flaxseed oil on the metaphase II (MII) oocyte rates in women with decreased ovarian reserve (DOR). Methods The women with DOR were divided into a study group (n = 108, flaxseed oil treatment) and a control group (n = 110, no treatment). All patients were treated with assisted reproductive technology (ART). Subsequently, the ART stimulation cycle parameters, embryo transfer (ET) results, and clinical reproductive outcomes were recorded. The influencing factors affecting the MII oocyte rate were analyzed using univariate analysis and multivariate analysis. Results Flaxseed oil reduced the recombinant human follicle-stimulating hormone (r-hFSH) dosage and stimulation time and increased the peak estradiol (E2) concentration in DOR women during ART treatment. The MII oocyte rate, fertilization rate, cleavage rate, high-quality embryo rate, and blastocyst formation rate were increased after flaxseed oil intervention. The embryo implantation rate of the study group was higher than that of the control group (p = 0.05). Additionally, the female age [odds ratio (OR): 0.609, 95% confidence interval (CI): 0.52-0.72, p < 0.01] was the hindering factor of MII oocyte rate, while anti-Müllerian hormone (AMH; OR: 100, 95% CI: 20.31-495, p < 0.01), peak E2 concentration (OR: 1.00, 95% CI: 1.00-1.00, p = 0.01), and the intake of flaxseed oil (OR: 2.51, 95% CI: 1.06-5.93, p = 0.04) were the promoting factors for MII oocyte rate. Conclusion Flaxseed oil improved ovarian response and the quality of oocytes and embryos, thereby increasing the fertilization rate and high-quality embryo rate in DOR patients. The use of flaxseed oil was positively correlated with MII oocyte rate in women with DOR. Clinical trial number https://www.chictr.org.cn/, identifier ChiCTR2300073785.
Collapse
Affiliation(s)
| | | | | | | | - Jia-ping Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Piau TB, de Queiroz Rodrigues A, Paulini F. Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies. Growth Horm IGF Res 2023; 72-73:101561. [PMID: 38070331 DOI: 10.1016/j.ghir.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
The role of the insulin-like growth factor (IGF) system has attracted close attention. The activity of IGF binding proteins (IGFBPs) within the ovary has not been fully elucidated to date. These proteins bind to IGF with an equal, or greater, affinity than to the IGF1 receptor, thus being in the main position to regulate IGF signalling, in addition to extending the half-life of IGFs within the bloodstream and promoting IGF storage in specific tissue niches. IGF1 has an important part in cell proliferation, differentiation and apoptosis. Considering the importance of IGFs in oocyte maturation, this review sought to elucidate aspects including: IGF production mechanisms; constituent members of their family and their respective functions; the role that these factors play during folliculogenesis, together with their functions during oocyte maturation and apoptosis, and their performance during luteal development. This review also explores the role of IGFs in biotechnological applications, focusing specifically on animal genetic gain.
Collapse
Affiliation(s)
- Tathyana Benetis Piau
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Aline de Queiroz Rodrigues
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
7
|
Dehghanian Reyhan V, Sadeghi M, Miraei-Ashtiani SR, Ghafouri F, Kastelic JP, Barkema HW. Integrated transcriptome and regulatory network analyses identify candidate genes and pathways modulating ewe fertility. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Liang W, Zhu T, Tan N, Jing G, Xie L, Dang Y, Li Z. In missed abortion the decrease of IGF-1 down-regulates PI3K/AKT signaling pathway reducing the secretion of progesterone and β-hCG. Growth Horm IGF Res 2022; 65:101479. [PMID: 35752133 DOI: 10.1016/j.ghir.2022.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To explore whether the reduction of IGF-1 in missed abortion down-regulates PI3K/AKT signaling pathway, thereby causing trophoblast cell apoptosis and reducing the secretion of β-hCG and progesterone. DESIGN 12 pairs of serum and villous tissues were selected from missed abortion patients and normal early pregnant women who had terminated pregnancy by artificial abortion. The subjects in two groups had same age and gestational week. Wes Simple Western system and qRT-PCR were used to detect the expression of IGF-1, IGF-1R, PI3K/AKT signaling pathway and apoptosis-related factors in villous tissues. Radioimmunoassay and Enzyme-linked immunosorbent assay were used to detect β-hCG, progesterone and IGF-1 in serum. RESULTS The serum levels of β-hCG, progesterone and IGF-1 were decreased in missed abortion group than those in normal early pregnant women. In addition, compared with normal early pregnant women, the genes and proteins levels of IGF-1 and PI3K/AKT signaling pathway and anti-apoptosis related factors were significantly decreased. CONCLUSIONS Our results suggested that the reduction of IGF-1 in missed abortion patients could down-regulate the expression of PI3K/AKT signaling pathway, thereby increasing the apoptosis of trophoblast cells, leading to decreased secretion of β-hCG and progesterone, which may be one of the important mechanisms of missed abortion.
Collapse
Affiliation(s)
- Weitao Liang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tianyuan Zhu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, China
| | - Na Tan
- Lanzhou Cihetang Hospital, Lanzhou 730030, China
| | - Guangzhuang Jing
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li'ao Xie
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Man L, Lustgarten Guahmich N, Kallinos E, Caiazza B, Khan M, Liu ZY, Patel R, Torres C, Pepin D, Yang HS, Bodine R, Zaninovic N, Schattman G, Rosenwaks Z, James D. Chronic superphysiologic AMH promotes premature luteinization of antral follicles in human ovarian xenografts. SCIENCE ADVANCES 2022; 8:eabi7315. [PMID: 35263130 PMCID: PMC8906729 DOI: 10.1126/sciadv.abi7315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
Anti-Müllerian hormone (AMH) is produced by growing ovarian follicles and provides a diagnostic measure of reproductive reserve in women; however, the impact of AMH on folliculogenesis is poorly understood. We cotransplanted human ovarian cortex with control or AMH-expressing endothelial cells in immunocompromised mice and recovered antral follicles for purification and downstream single-cell RNA sequencing of granulosa and theca/stroma cell fractions. A total of 38 antral follicles were observed (19 control and 19 AMH) at long-term intervals (>10 weeks). In the context of exogenous AMH, follicles exhibited a decreased ratio of primordial to growing follicles and antral follicles of increased diameter. Transcriptomic analysis and immunolabeling revealed a marked increase in factors typically noted at more advanced stages of follicle maturation, with granulosa and theca/stroma cells also displaying molecular hallmarks of luteinization. These results suggest that superphysiologic AMH alone may contribute to ovulatory dysfunction by accelerating maturation and/or luteinization of antral-stage follicles.
Collapse
Affiliation(s)
- Limor Man
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nicole Lustgarten Guahmich
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eleni Kallinos
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Barbara Caiazza
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Monica Khan
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zong-Ying Liu
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ritaben Patel
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carmen Torres
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Pepin
- Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02214, USA
| | - He S. Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard Bodine
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nikica Zaninovic
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
| | - Glenn Schattman
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zev Rosenwaks
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daylon James
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|