1
|
Barco S, Sollfrank S, Trinchero A, Adenaeuer A, Abolghasemi H, Conti L, Häuser F, Kremer Hovinga JA, Lackner KJ, Loewecke F, Miloni E, Vazifeh Shiran N, Tomao L, Wuillemin WA, Zieger B, Lämmle B, Rossmann H. Severe plasma prekallikrein deficiency: Clinical characteristics, novel KLKB1 mutations, and estimated prevalence. J Thromb Haemost 2020; 18:1598-1617. [PMID: 32202057 DOI: 10.1111/jth.14805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Severe plasma prekallikrein (PK) deficiency is an autosomal-recessive defect characterized by isolated activated partial thromboplastin time prolongation. To date, no comprehensive methodologically firm analysis has investigated the diagnostic, clinical, and genetic characteristics of PK deficiency, and its prevalence remains unknown. PATIENTS/METHODS We described new families with PK deficiency, retrieved clinical and laboratory information of cases systematically searched in the (gray) literature, and collected blood of these cases for complementary analyses. The Genome Aggregation Database (gnomAD) and the population-based Gutenberg Health Study served to study the prevalence of mutations and relevant genetic variants. RESULTS We assembled a cohort of 111 cases from 89 families and performed new genetic analyses in eight families (three unpublished). We identified new KLKB1 mutations, excluded the pathogenicity of some of the previously described ones, and estimated a prevalence of severe PK deficiency of 1/155 668 overall and 1/4725 among Africans. One individual reported with PK deficiency had, in fact, congenital kininogen deficiency associated with decreased PK activity. One quarter of individuals had factor XII clotting activity below the reference range. Four major bleeding events were described in 96 individuals, of which 3 were provoked, for a prevalence of 4% and an annualized rate of 0.1%. The prevalence of cardiovascular events was 15% (6% <40 years; 21% 40-65 years; 33% >65 years) for an annualized rate of 0.4%. CONCLUSIONS We characterized the genetic background of severe PK deficiency, critically appraised mutations, and provided prevalence estimates. Our data on laboratory characteristics and clinical course of severe PK deficiency may have clinical implications.
Collapse
Affiliation(s)
- Stefano Barco
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
- Clinic of Angiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Stefanie Sollfrank
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Alice Trinchero
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Anke Adenaeuer
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Laura Conti
- Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Johanna A Kremer Hovinga
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Karl J Lackner
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Felicia Loewecke
- Zentrum für Kinder- und Jugendmedizin, Klinik IV, Universitätsklinikum Freiburg, Freiburg, Germany
| | | | - Nader Vazifeh Shiran
- Department of Hematology and Blood Banking, Paramedical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luigi Tomao
- Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Pediatric Hematology-Oncology, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Walter A Wuillemin
- Division of Hematology and Central Hematology Laboratory, Department of Internal Medicine, Kantonsspital Lucerne, Lucerne, Switzerland
| | - Barbara Zieger
- Zentrum für Kinder- und Jugendmedizin, Klinik IV, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Bernhard Lämmle
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Haemostasis Research Unit, University College London, London, UK
| | - Heidi Rossmann
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
4
|
Abstract
Nurses often encounter abnormal laboratory assays that require them to investigate further to ensure that appropriate patient care is provided. A prolonged activated partial thromboplastin time (PTT) with a normal prothrombin time (PT) assay demand further examination, to rule out laboratory error or bleeding disorders. Prekallikrein deficiency is a rare coagulation deficiency that presents itself with a prolonged PTT and a normal PT. It was first identified in 4 of the 11 Fletcher family children in 1965, coincidentally when one of the Fletcher children was undergoing a workup for an adenoidectomy. Both the Fletcher parents had normal coagulation laboratory assays with no history of bleeding tendencies. The term Fletcher factor deficiency was used until Fletcher factor was later identified as plasma prekallikrein. A prekallikrein deficiency is inherited as an autosomal recessive trait. The purpose of this article is to provide a basic review for nurses on hemostasis, identify the 6 causes of a prolonged PTT with a normal or slightly prolonged PT, and to present 2 recently diagnosed adult cases, not previously reported in the medical literature.
Collapse
Affiliation(s)
- M Thomas Quail
- Department of Public Health, Bureau of Environmental Health, Commonwealth of Massachusetts, Boston, MA 02108, USA.
| |
Collapse
|
5
|
Liu J, Clermont AC, Gao BB, Feener EP. Intraocular hemorrhage causes retinal vascular dysfunction via plasma kallikrein. Invest Ophthalmol Vis Sci 2013; 54:1086-94. [PMID: 23299478 DOI: 10.1167/iovs.12-10537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Retinal hemorrhages occur in a variety of sight-threatening conditions including ocular trauma, high altitude retinopathy, and chronic diseases such as diabetic and hypertensive retinopathies. The goal of this study is to investigate the effects of blood in the vitreous on retinal vascular function in rats. METHODS Intravitreal injections of autologous blood, plasma kallikrein (PK), bradykinin, and collagenase were performed in Sprague-Dawley and Long-Evans rats. Retinal vascular permeability was measured using vitreous fluorophotometry and Evans blue dye permeation. Leukostasis was measured by fluorescein isothiocyanate-coupled concanavalin A lectin and acridine orange labeling. Retinal hemorrhage was examined on retinal flatmounts. Primary cultures of bovine retinal pericytes were cultured in the presence of 25 nM PK for 24 hours. The pericyte-conditioned medium was collected and the collagen proteome was analyzed by tandem mass spectrometry. RESULTS Intravitreal injection of autologous blood induced retinal vascular permeability and retinal leukostasis, and these responses were ameliorated by PK inhibition. Intravitreal injections of exogenous PK induced retinal vascular permeability, leukostasis, and retinal hemorrhage. Proteomic analyses showed that PK increased collagen degradation in pericyte-conditioned medium and purified type IV collagen. Intravitreal injection of collagenase mimicked PK's effect on retinal hemorrhage. CONCLUSIONS Intraocular hemorrhage increases retinal vascular permeability and leukostasis, and these responses are mediated, in part, via PK. Intravitreal injections of either PK or collagenase, but not bradykinin, induce retinal hemorrhage in rats. PK exerts collagenase-like activity that may contribute to blood-retinal barrier dysfunction.
Collapse
Affiliation(s)
- Jia Liu
- Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
6
|
Prekallikrein deficiency presenting as recurrent cerebrovascular accident: case report and review of the literature. Case Rep Hematol 2012; 2012:723204. [PMID: 22953077 PMCID: PMC3431062 DOI: 10.1155/2012/723204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/24/2012] [Indexed: 11/17/2022] Open
Abstract
We report the case of a woman with history of hypertension and hyperlipidemia presenting with recurrent episodes consistent clinically with cerebrovascular accidents (CVA), and MRI changes suggestive of ischemia versus vasculitis as their cause. No anatomical neurological, rheumatic, cardioembolic, or arteriosclerotic etiologies could be determined by extensive workup. Incidentally, the patient was found to have prolonged activated Partial Thromboplastin Time (aPTT) and a normal Prothrombin Time (PT); further testing revealed a prekallikrein deficiency. Since no other cause for the CVAs was established, and other prothrombotic states were ruled out, it is proposed that they are clinical manifestations derived from the prekallikrein deficiency, which in a patient with known cardiovascular risk factors could lead to thrombotic complications such as stroke.
Collapse
|
7
|
Cunha NB, Murad AM, Ramos GL, Maranhão AQ, Brígido MM, Araújo ACG, Lacorte C, Aragão FJL, Covas DT, Fontes AM, Souza GHMF, Vianna GR, Rech EL. Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Transgenic Res 2011; 20:841-55. [PMID: 21069460 DOI: 10.1007/s11248-010-9461-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 10/24/2010] [Indexed: 12/12/2022]
Abstract
The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a β-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).
Collapse
Affiliation(s)
- Nicolau B Cunha
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica (PqEB), Av. W5 Norte, Brasília, DF 70770-917, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Girolami A, Scarparo P, Candeo N, Lombardi AM. Congenital prekallikrein deficiency. Expert Rev Hematol 2011; 3:685-95. [PMID: 21091145 DOI: 10.1586/ehm.10.69] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The congenital deficiency of prekallikrein (PK) is a rare condition in which there is a peculiar discrepancy between a severe in vitro defect and absence of bleeding. The gene controlling PK synthesis is located on chromosome 4 and consists of 14 exons and 15 introns. Only approximately 80 cases of PK deficiency have been described in the literature. Owing to the lack of bleeding, most cases go undetected or, if detected, go unreported. Occasional bleeding or thrombosis have been reported in a few patients but this was only due to the presence of associated risk factors. It is certain that the defect does not protect from thrombosis. Diagnosis is based on the presence of a great prolongation of partial thromboplastin time and normal prothrombin time and thrombin time. The long partial thromboplastin time is fully corrected by the addition of normal plasma or normal serum and presents the unusual feature of shortening on long incubation times. Platelet and vascular tests are normal. Immunological studies allow differentiation into two types, namely cases of true deficiency, which are approximately 70% of the total, and cases with abnormal forms. PK is a glycoprotein synthesized in the liver as a single-chain peptide of 88000 Da. It mostly circulates (∼75%) as a complex with high-molecular-weight kininogen. It is cleaved by FXIIa into a heavy chain and a light chain (catalytic domain), held together by disulfide bonds. Molecular biology techniques have so far only been applied to eleven families, and these studies do not yet allow definite phenotype/genotype conclusions. The exons involved are 5, 8, 11, 14 and 15. The noncoagulative effects of PK, mainly based on the effect of kallikrein, have been studied less, since they appear to be the result of the involvement of other components of the contact phase. Kallikrein can mainly affect the formation of bradykinin from high-molecular-weight kininogen and the activation of pro-urokinase to urokinase. Bradykinin causes inflammation, vasodilatation and an increase in vessel permeability. The activation of pro-urokinase results in enhanced fibrinolysis. However, fibrinolysis has been reported to be normal or defective in these patients.
Collapse
Affiliation(s)
- Antonio Girolami
- Department of Medical and Surgical Sciences, Padua University, Via Ospedale, Padua, Italy.
| | | | | | | |
Collapse
|
9
|
Liu J, Gao BB, Clermont AC, Blair P, Chilcote TJ, Sinha S, Flaumenhaft R, Feener EP. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat Med 2011; 17:206-10. [PMID: 21258336 PMCID: PMC3038677 DOI: 10.1038/nm.2295] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/16/2010] [Indexed: 01/20/2023]
Abstract
Hyperglycemia is associated with greater hematoma expansion and poor clinical outcomes after intracerebral hemorrhage. We show that cerebral hematoma expansion triggered by intracerebral infusion of autologous blood is greater in diabetic rats and mice compared to nondiabetic controls and that this augmented expansion is ameliorated by plasma kallikrein (PK) inhibition or deficiency. Intracerebral injection of purified PK augmented hematoma expansion in both diabetic and acutely hyperglycemic rats, whereas injection of bradykinin, plasmin or tissue plasminogen activator did not elicit such a response. This response, which occurs rapidly, was prevented by co-injection of the glycoprotein VI agonist convulxin and was mimicked by glycoprotein VI inhibition or deficiency, implicating an effect of PK on inhibiting platelet aggregation. We show that PK inhibits collagen-induced platelet aggregation by binding collagen, a response enhanced by elevated glucose concentrations. The effect of hyperglycemia on hematoma expansion and PK-mediated inhibition of platelet aggregation could be mimicked by infusing mannitol. These findings suggest that hyperglycemia augments cerebral hematoma expansion by PK-mediated osmotic-sensitive inhibition of hemostasis.
Collapse
Affiliation(s)
- Jia Liu
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|