1
|
Jeong JY, Park H, Yoo H, Kim EJ, Jeon B, Lee JD, Kang D, Lee CJ, Paek SH, Roh EJ, Yi GS, Kang SS. Trifluoperazine and Its Analog Suppressed the Tumorigenicity of Non-Small Cell Lung Cancer Cell; Applicability of Antipsychotic Drugs to Lung Cancer Treatment. Biomedicines 2022; 10:biomedicines10051046. [PMID: 35625784 PMCID: PMC9138877 DOI: 10.3390/biomedicines10051046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Despite significant advances in diagnostic and therapeutic technologies, lung cancer remains the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases. Recently, some antipsychotics have been shown to possess anticancer activity. However, the effects of antipsychotics on NSCLC need to be further explored. We examined the effects of trifluoperazine (TFP), a commonly used antipsychotic drug, and its synthetic analogs on A549 human lung cancer cells. In addition, cell proliferation analysis, colony formation assay, flow cytometry, western blot analysis, and in vivo xenograft experiments were performed. Key genes and mechanisms possibly affected by TFP are significantly related to better survival outcomes in lung cancer patients. Treatment with TFP and a selected TFP analog 3dc significantly inhibited the proliferation, anchorage-dependent/independent colony formation, and migration of A549 cells. Treatment with 3dc affected the expression of genes related to the apoptosis and survival of A549 cells. Treatment with 3dc promoted apoptosis and DNA fragmentation. In all experiments, including in vivo studies of metastatic lung cancer development, 3dc had more substantial anticancer effects than TFP. According to our analysis of publicly available clinical data and in vitro and in vivo experiments, we suggest that some kinds of antipsychotics prevent the progression of NSCLC. Furthermore, this study indicates a synthetic TFP analog that could be a potential therapeutic for lung cancer.
Collapse
Affiliation(s)
- Joo Yeon Jeong
- Department of Anatomy & Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Haangik Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Hong Yoo
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University Hospital, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.Y.); (J.D.L.)
| | - Eun-Jin Kim
- Department of Physiology & Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (E.-J.K.); (D.K.)
| | - Borami Jeon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; (B.J.); (E.J.R.)
| | - Jong Deog Lee
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gyeongsang National University Hospital, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (H.Y.); (J.D.L.)
| | - Dawon Kang
- Department of Physiology & Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (E.-J.K.); (D.K.)
| | - Changjoon Justin Lee
- Center for Glia-Neuron Interaction and Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea;
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34141, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, College of Medicine, Seoul National University, Seoul 03080, Korea;
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; (B.J.); (E.J.R.)
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
- Correspondence: (G.-S.Y.); (S.S.K.); Tel.: +82-42-350-4318 (G.-S.Y.); +82-55-772-8033 (S.S.K.)
| | - Sang Soo Kang
- Department of Anatomy & Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
- Correspondence: (G.-S.Y.); (S.S.K.); Tel.: +82-42-350-4318 (G.-S.Y.); +82-55-772-8033 (S.S.K.)
| |
Collapse
|
2
|
Guo M, Yi T, Wang Q, Wang D, Feng P, Kesheng D, Chunyan H. TSST-1 protein exerts indirect effect on platelet activation and apoptosis. Platelets 2022; 33:998-1008. [PMID: 35073811 DOI: 10.1080/09537104.2022.2026907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Thrombocytopenia or platelet dysfunction is a risk factor for severe infection. Staphylococcus aureus (S. aureus) releases a variety of virulence factors especially toxic shock syndrome toxin 1 (TSST-1), which may cause toxic shock syndrome. S. aureus, when carrying the tst gene, is more prone to cause toxic shock syndrome and is responsible for an especially high rate of mortality. However, the effect of TSST-1 protein on platelets is unknown. Patients with the tst gene positive S. aureus bacteremia showed more serious infection, higher mortality and lower platelet count. The tst gene positive S. aureus strains induce more platelet apoptosis and activation and corresponding up-regulation of Bak and down-regulation of Bcl-XL in addition to the activation of Caspase-3. C57BL/6 mice infected with the tst gene positive strains resulted in both a decrease in platelet count and an increase in platelet apoptosis and/or activation events and mortality. Moreover, TSST-1 protein, encoded by tst gene, caused the decrease of platelet count, the increase of platelet apoptosis and activation events and the level of inflammatory cytokines in vivo. However, TSST-1 protein was unable to induce traditional activation and apoptosis on human platelets in vitro. These results suggested that TSST-1 protein may exert indirect effects on platelet activation and apoptosis in vivo.
Collapse
Affiliation(s)
- Min Guo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tiantian Yi
- Department of Clinical Laboratory, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Qian Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Daqing Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Feng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dai Kesheng
- Jiangsu Institute of Hematology, the First Affiliated Hospital and Collaborative Innovation Center of Hematology, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - He Chunyan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Xie L, Xu DM, Cai XJ, Zhang ZW, Yu WJ, Qiu JF, Xu CW, He CL, Xu XR, Yin J. Apoptosis in platelets from adult patients with chronic idiopathic thrombocytopenic purpura. Blood Coagul Fibrinolysis 2021; 32:434-442. [PMID: 34102655 DOI: 10.1097/mbc.0000000000001054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adult chronic idiopathic thrombocytopenic purpura (cITP) is a chronic and usually life-long haemorrhagic disorder in which enhanced platelet destruction and weakened platelet production lead to thrombocytopenia. Platelets were isolated from blood samples collected from 40 adult patients with cITP and 40 healthy volunteers. Mitochondrial membrane potential (ΔΨm) and plasma membrane phosphatidylserine externalization were determined by flow cytometry, and activation of caspase-3 and expressions of Bax, Bak and Bcl-xL were analysed by western blotting. Flow cytometry showed increased mitochondrial depolarization and lower ΔΨm in platelets from adult patients with cITP. In addition, plasma membrane phosphatidylserine externalization was observed on platelets from adult patients with cITP, but rarely from healthy volunteers. Western blot analysis of platelet proteins revealed that, in adult cITP patients, caspase-3 was activated, which cleaved gelsolin and to release a 47-kDa fragment. Moreover, the expressions of Bax and Bak were elevated, and Bcl-xL was decreased markedly in platelets from adult patients with cITP. Our findings reveal, based on loss of mitochondrial membrane potential (Δψm), phosphatidylserine exposure, caspase-3 activation, enhanced expression of Bax and Bak, and attenuated expression of Bcl-xL, that platelet death in the pathogenesis of thrombocytopenia in chronic ITP in adults is apoptotic.
Collapse
Affiliation(s)
- Long Xie
- Department of Clinical Laboratory Medicine
| | | | | | | | | | | | | | | | - Xian-Ru Xu
- Division of Inventional Ultrasonic Therapeutics, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jun Yin
- Department of Clinical Laboratory Medicine
- Division of Hematology
| |
Collapse
|
4
|
Hosseini E, Mohtashami M, Ghasemzadeh M. Down-regulation of platelet adhesion receptors is a controlling mechanism of thrombosis, while also affecting post-transfusion efficacy of stored platelets. Thromb J 2019; 17:20. [PMID: 31660046 PMCID: PMC6806620 DOI: 10.1186/s12959-019-0209-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Physiologically, upon platelet activation, uncontrolled propagation of thrombosis is prevented by regulating mechanisms which affect the expression and function of either platelet adhesion receptors or integrins. Receptor ectodomain shedding is an elective mechanism which is mainly involved in down-regulation of adhesion receptors GPIbα and GPVI. Platelet integrin αIIbβ3 can also be modulated with a calpain-dependent proteolytic cleavage. In addition, activating signals may induce the internalization of expressed receptors to selectively down-regulate their intensity. Alternatively, further activation of platelets is associated with microvesiculation as a none-selective mechanism which leads to the loss of membrane- bearing receptors. In a non-physiological condition, the storage of therapeutic platelets has also shown to be associated with the unwilling activation of platelets which triggers receptors down-regulation via aforementioned different mechanisms. Notably, herein the changes are time-dependent and not controllable. While the expression and shedding of pro-inflammatory molecules can induce post-transfusion adverse effects, stored-dependent loss of adhesion receptors by ectodomain shedding or microvesiculation may attenuate post-transfusion adhesive functions of platelets causing their premature clearance from circulation. In its first part, the review presented here aims to describe the mechanisms involved in down-regulation of platelet adhesion receptors. It then highlights the crucial role of ectodomain shedding and microvesiculation in the propagation of "platelet storage lesion" which may affect the post-transfusion efficacy of platelet components.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran
| | - Maryam Mohtashami
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran
| | - Mehran Ghasemzadeh
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran.,2Australian Center for Blood Diseases, Monash University, Melbourne, Victoria 3004 Australia
| |
Collapse
|
5
|
Study on the Role of Calreticulin Within Platelet from Adult Patients with Chronic Immune Thrombocytopenic Purpura. Indian J Hematol Blood Transfus 2018; 34:711-718. [PMID: 30369746 DOI: 10.1007/s12288-018-0955-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 02/05/2023] Open
Abstract
To observe the differences in proteins between adult patients with chronic immune thrombocytopenic purpura (ITP) and healthy adults. 30 patients with chronic ITP and 30 healthy controls were enrolled into the study. The platelet total protein was extracted from peripheral venous blood of 10 chronic ITP patients and 10 healthy controls respectively, and subjected to two-dimensional electrophoresis (2-DE) to find the differential protein spot between chronic ITP patients and healthy controls, then the differential protein spots were identified by mass spectrometry. Subsequently, platelets RNA and proteins were isolated from the other 20 chronic ITP patients and 20 healthy controls respectively, and used for confirming the 2-DE and mass spectrometry results by using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme linked immunosorbent assay (ELISA). 2-DE combined with mass spectrometry revealed that calreticulin (CRT) expressed normally within platelets from healthy controls, while it reduced within platelets from patients with chronic ITP. qPCR and ELISA confirmed that CRT was decreased at both RNA transcription and protein expression levels within platelets from chronic ITP patients compared with healthy controls. Decreased transcription and expression of CRT within platelets may play an important role in the pathogenesis of chronic ITP, which is worthy of further study.
Collapse
|
6
|
De Silva E, Kim H. Drug-induced thrombocytopenia: Focus on platelet apoptosis. Chem Biol Interact 2018; 284:1-11. [PMID: 29410286 DOI: 10.1016/j.cbi.2018.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/23/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
Thrombocytopenia is a serious and potentially fatal complication of drug therapy that results either from a decrease in bone marrow platelet production or the excessive destruction of circulating platelets. Although multiple mechanisms are responsible for deregulated platelet clearance, the role of programmed platelet death (apoptosis) in drug-induced thrombocytopenia has been relatively under-investigated until recently. Here we review apoptotic signaling pathways in platelets, with a focus on current data that provide mechanistic insights into drug-induced apoptosis and thrombocytopenia.
Collapse
Affiliation(s)
- Enoli De Silva
- Centre for Blood Research, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada; Faculty of Dentistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
7
|
Gao Q, Xiang Y, Chen Z, Zeng L, Ma X, Zhang Y. βγ-CAT, a non-lens betagamma-crystallin and trefoil factor complex, induces calcium-dependent platelet apoptosis. Thromb Haemost 2017; 105:846-54. [DOI: 10.1160/th10-10-0690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/29/2011] [Indexed: 11/05/2022]
Abstract
SummaryIn recent years, it has been reported that apoptosis may occur in platelets and play a role in the clearance of effete platelets. βγ-CAT, a newly identified non-lens βγ-crystallin and trefoil factor complex from frog Bombina maxima skin secretions, caused several in vivo toxic effects on mammals. Through determined haematological parameters of rabbits, it has been found that βγ-CAT significantly reduced the number of platelets in a time-dependent manner. Here, in order to explore the effect of βγ-CAT on platelets, washed platelets were incubated with various concentrations of βγ-CAT for 30 minutes. We found that βγ-CAT induced several apoptosis events in human platelets, including caspase-3 activation, phosphatidylserine (PS) exposure, depolarisation of mitochondrial inner transmembrane potential (ΔΨm), cytochrome c re-lease and strong expression of pro-apoptotic Bax and Bak proteins. However, βγ-CAT did not significantly induce platelet activation as detected by P-selectin surface expression, GPIIb/IIIa activation and platelet aggregation. In addition, we observed that βγ-CAT-induced PS exposure and ΔΨm depolarisation in platelets are Ca2+-dependent. Taken together, βγ-CAT can induce Ca2+-dependent platelet apoptosis but does not cause platelet activation.
Collapse
|
8
|
Gaidos G, Panaitiu AE, Guo B, Pellegrini M, Mierke DF. Identification and Characterization of the Interaction Site between cFLIPL and Calmodulin. PLoS One 2015; 10:e0141692. [PMID: 26529318 PMCID: PMC4631386 DOI: 10.1371/journal.pone.0141692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/11/2015] [Indexed: 11/18/2022] Open
Abstract
Overexpression of the cellular FLICE-like inhibitory protein (cFLIP) has been reported in a number of tumor types. As an inactive procaspase-8 homologue, cFLIP is recruited to the intracellular assembly known as the Death Inducing Signaling Complex (DISC) where it inhibits apoptosis, leading to cancer cell proliferation. Here we characterize the molecular details of the interaction between cFLIPL and calmodulin, a ubiquitous calcium sensing protein. By expressing the individual domains of cFLIPL, we demonstrate that the interaction with calmodulin is mediated by the N-terminal death effector domain (DED1) of cFLIPL. Additionally, we mapped the interaction to a specific region of the C-terminus of DED1, referred to as DED1 R4. By designing DED1/DED2 chimeric constructs in which the homologous R4 regions of the two domains were swapped, calmodulin binding properties were transferred to DED2 and removed from DED1. Furthermore, we show that the isolated DED1 R4 peptide binds to calmodulin and solve the structure of the peptide-protein complex using NMR and computational refinement. Finally, we demonstrate an interaction between cFLIPL and calmodulin in cancer cell lysates. In summary, our data implicate calmodulin as a potential player in DISC-mediated apoptosis and provide evidence for a specific interaction with the DED1 of cFLIPL.
Collapse
Affiliation(s)
- Gabriel Gaidos
- Chemistry Department, Dartmouth College, Hanover, NH, United States of America
| | | | - Bingqian Guo
- Chemistry Department, Dartmouth College, Hanover, NH, United States of America
| | - Maria Pellegrini
- Chemistry Department, Dartmouth College, Hanover, NH, United States of America
| | - Dale F. Mierke
- Chemistry Department, Dartmouth College, Hanover, NH, United States of America
- * E-mail:
| |
Collapse
|
9
|
Yu S, Huang H, Deng G, Xie Z, Ye Y, Guo R, Cai X, Hong J, Qian D, Zhou X, Tao Z, Chen B, Li Q. miR-326 targets antiapoptotic Bcl-xL and mediates apoptosis in human platelets. PLoS One 2015; 10:e0122784. [PMID: 25875481 PMCID: PMC4395162 DOI: 10.1371/journal.pone.0122784] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/15/2015] [Indexed: 12/20/2022] Open
Abstract
Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets were stored in vitro. The antiapoptotic Bcl-2 family regulator Bcl-xL has been identified as a putative target of miR-326. In the present study, dual reporter luciferase assays were used to characterize the function of miR-326 in the regulation of the apoptosis of platelet cells. These assays demonstrated that miR-326 bound to the 3′-translated region of Bcl-xL. To directly assess the functional effects of miR-326 expression, levels of Bcl-xL and the apoptotic status of stored apheresis platelets were measured after transfection of miR-326 mimic or inhibitor. Results indicated that miR-326 inhibited Bcl-xL expression and induced apoptosis in stored platelets. Additionally, miR-326 inhibited Bcl-2 protein expression and enhanced Bak expression, possibly through an indirect mechanism, though there was no effect on the expression of Bax. The effect of miR-326 appeared to be limited to apoptosis, with no significant effect on platelet activation. These results provide new insight into the molecular mechanisms affecting differential platelet gene regulation, which may increase understanding of the role of platelet apoptosis in multiple diseases.
Collapse
Affiliation(s)
- Shifang Yu
- The Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Department of Transfusion Medicine, The First Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Huicong Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Gang Deng
- The Ningbo Central Blood Station, Ningbo, China
| | - Zuoting Xie
- The Department of Transfusion Medicine, The First Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Yincai Ye
- The Department of Transfusion Medicine, The First Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Ruide Guo
- The Department of Transfusion Medicine, The First Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Xuejiao Cai
- The Department of Transfusion Medicine, The First Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Junying Hong
- The Department of Transfusion Medicine, The First Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Dingliang Qian
- The Department of Laboratory Medicine, The Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China
| | - Xiangjing Zhou
- The Department of Transfusion Medicine, The First Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Zhihua Tao
- The Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (QL); (ZT)
| | - Bile Chen
- The Department of Transfusion Medicine, The First Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Qiang Li
- The Department of Laboratory Medicine, The Third Affiliated Hospital of the Wenzhou Medical University, Ruian, China
- * E-mail: (QL); (ZT)
| |
Collapse
|
10
|
Yokokura S, Yurimoto S, Matsuoka A, Imataki O, Dobashi H, Bandoh S, Matsunaga T. Calmodulin antagonists induce cell cycle arrest and apoptosis in vitro and inhibit tumor growth in vivo in human multiple myeloma. BMC Cancer 2014; 14:882. [PMID: 25424011 PMCID: PMC4258255 DOI: 10.1186/1471-2407-14-882] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/19/2014] [Indexed: 02/02/2023] Open
Abstract
Background Human multiple myeloma (MM) is an incurable hematological malignancy for which novel therapeutic agents are needed. Calmodulin (CaM) antagonists have been reported to induce apoptosis and inhibit tumor cell invasion and metastasis in various tumor models. However, the antitumor effects of CaM antagonists on MM are poorly understood. In this study, we investigated the antitumor effects of naphthalenesulfonamide derivative selective CaM antagonists W-7 and W-13 on MM cell lines both in vitro and in vivo. Methods The proliferative ability was analyzed by the WST-8 assay. Cell cycle was evaluated by flow cytometry after staining of cells with PI. Apoptosis was quantified by flow cytometry after double-staining of cells by Annexin-V/PI. Molecular changes of cell cycle and apoptosis were determined by Western blot. Intracellular calcium levels and mitochondrial membrane potentials were determined using Fluo-4/AM dye and JC-10 dye, respectively. Moreover, we examined the in vivo anti-MM effects of CaM antagonists using a murine xenograft model of the human MM cell line. Results Treatment with W-7 and W-13 resulted in the dose-dependent inhibition of cell proliferation in various MM cell lines. W-7 and W-13 induced G1 phase cell cycle arrest by downregulating cyclins and upregulating p21cip1. In addition, W-7 and W-13 induced apoptosis via caspase activation; this occurred partly through the elevation of intracellular calcium levels and mitochondrial membrane potential depolarization and through inhibition of the STAT3 phosphorylation and subsequent downregulation of Mcl-1 protein. In tumor xenograft mouse models, tumor growth rates in CaM antagonist-treated groups were significantly reduced compared with those in the vehicle-treated groups. Conclusions Our results demonstrate that CaM antagonists induce cell cycle arrest, induce apoptosis via caspase activation, and inhibit tumor growth in a murine MM model and raise the possibility that inhibition of CaM might be a useful therapeutic strategy for the treatment of MM.
Collapse
Affiliation(s)
- Shigeyuki Yokokura
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Carmustine is one of the alkylating chemotherapeutic agents, which are used to treat various types of cancers, such as brain tumors, Hodgkins and non-Hodgkins lymphoma and multiple myeloma. However, carmustine has the side effect of thrombocytopenia, and the mechanism is not completely understood. In this study, we show that carmustine dose-dependently induced depolarization of mitochondrial inner transmembrane potential (ΔΨm), up-regulation of Bax, down-regulation of Bcl-2 and caspase-3 activation. Carmustine did not induce surface expression of P-selectin or PAC-1 binding, whereas, obviously reduced collagen and thrombin-induced platelet aggregation. Dicumarol, c-Jun NH2-terminal kinase-specific inhibitor, reduced carmustine-induced ΔΨm depolarization in platelets. The numbers of circulating platelets were reduced, and the tail bleeding time was significantly increased in mice that were injected with carmustine. Taken together, these data indicate that carmustine induced platelet apoptosis, suggesting the possible pathogenesis of thrombocytopenia in patients treated with carmustine.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health , Suzhou , China
| | | | | | | | | | | |
Collapse
|
12
|
Wu Y, Dai J, Zhang W, Yan R, Zhang Y, Ruan C, Dai K. Arsenic trioxide induces apoptosis in human platelets via C-Jun NH2-terminal kinase activation. PLoS One 2014; 9:e86445. [PMID: 24466103 PMCID: PMC3899281 DOI: 10.1371/journal.pone.0086445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/10/2013] [Indexed: 01/18/2023] Open
Abstract
Arsenic trioxide (ATO), one of the oldest drugs in both Western and traditional Chinese medicine, has become an effective anticancer drug, especially in the treatment of acute promyelocytic leukemia (APL). However, thrombocytopenia occurred in most of ATO-treated patients with APL or other malignant diseases, and the pathogenesis remains unclear. Here we show that ATO dose-dependently induces depolarization of mitochondrial inner transmembrane potential (ΔΨm), up-regulation of Bax and down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation, and phosphotidylserine (PS) exposure in platelets. ATO did not induce surface expression of P-selectin and PAC-1 binding, whereas, obviously reduced collagen, ADP, and thrombin induced platelet aggregation. ATO dose-dependently induced c-Jun NH2-terminal kinase (JNK) activation, and JNK specific inhibitor dicumarol obviously reduced ATO-induced ΔΨm depolarization in platelets. Clinical therapeutic dosage of ATO was intraperitoneally injected into C57 mice, and the numbers of circulating platelets were significantly reduced after five days of continuous injection. The data demonstrate that ATO induces caspase-dependent apoptosis via JNK activation in platelets. ATO does not incur platelet activation, whereas, it not only impairs platelet function but also reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia in patients treated with ATO.
Collapse
Affiliation(s)
- Yicun Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Jin Dai
- School of Life Sciences, Peking University, Beijing, China
| | - Weilin Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Rong Yan
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Yiwen Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, China
- * E-mail:
| |
Collapse
|
13
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
14
|
Yang SH, Li YT, Du DY. Oxidized low-density lipoprotein-induced CD147 expression and its inhibition by high-density lipoprotein on platelets in vitro. Thromb Res 2013; 132:702-11. [PMID: 24144446 DOI: 10.1016/j.thromres.2013.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are believed to progressively degrade the collagenous components of the protective fibrous cap, leading to atherosclerotic plaque rupture or destabilization. Oxidized low-density lipoprotein (ox-LDL) enhances the release of CD147, known as the extracellular MMP inducer, from coronary smooth muscle cells. However, whether ox-LDL can induce platelet CD147 expression is unknown. Therefore, we investigated the influence of ox-LDL and high-density lipoprotein (HDL) on CD147 expression on human platelets. MATERIALS AND METHODS Washed platelets were incubated with ox-LDL (or native LDL) and HDL or anti-LOX-1 monoclonal antibody prior to incubation with ox-LDL. In parallel, buffer (PBS) was added to washed platelets as a control. The expression levels of CD147, CD62P, CD63 and Annexin V were assessed by flow cytometry, and soluble CD147 from the platelets was assessed by an enzyme-linked immunosorbent assay. Laser scanning microscopy (LSM) and transmission electron microscopy (TEM) were used to visualize the morphological changes and granule release, respectively, from the platelets. RESULTS Platelets treated with ox-LDL exhibited a significant increase in the expression of CD147 (or Annexin V), followed by increases in CD62P and CD63, compared with the control group. In contrast, HDL or anti-LOX-1 monoclonal antibody decreased these effects. The expression of soluble CD147 increased as the concentration of ox-LDL used to treat the platelets increased. After exposure to ox-LDL, morphological changes and granule release in the platelets were visualized by LSM and TEM. Additionally, the TEM revealed that HDL inhibits alpha-granule release. CONCLUSIONS In platelets, ox-LDL stimulates the release of CD147 via binding to LOX-1, whereas HDL inhibits this effect. This finding could provide new insights concerning the influence of ox-LDL and HDL on plaque stability by the up-regulation of CD147 on platelets.
Collapse
Affiliation(s)
- Sheng-Hua Yang
- Coronary Heart Disease Diagnosis and Treatment Center of the Chinese People's Liberation Army, the 305th Hospital of Chinese People's Liberation Army, Wenjin Street, Beijing, 100017, PR China
| | | | | |
Collapse
|
15
|
The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS One 2013; 8:e75044. [PMID: 24023970 PMCID: PMC3762754 DOI: 10.1371/journal.pone.0075044] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022] Open
Abstract
A combination of hyperthermia with radiotherapy and chemotherapy for various solid tumors has been practiced clinically. However, hyperthermic therapy has side effects, such as thrombocytopenia. Up to now, the pathogenesis of hyperthermia-induced thrombocytopenia remains unclear. Previous studies have shown that hyperthermia induces platelet apoptosis. However, the signaling pathways and molecular mechanisms involved in hyperthermia-induced platelet apoptosis have not been determined. Here we show that hyperthermia induced intracellular reactive oxygen species (ROS) production and mitochondrial ROS generation in a time-dependent manner in platelets. The mitochondria-targeted ROS scavenger Mito-TEMPO blocked intracellular ROS and mitochondrial ROS generation. By contrast, inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, nitric oxide synthase, cyclooxygenase and lipoxygenase did not. Furthermore, Mito-TEMPO inhibited hyperthermia-induced malonyldialdehyde production and cardiolipin peroxidation. We also showed that hyperthermia-triggered platelet apoptosis was inhibited by Mito-TEMPO. Furthermore, Mito-TEMPO ameliorated hyperthermia-impaired platelet aggregation and adhesion function. Lastly, hyperthermia decreased platelet manganese superoxide dismutase (MnSOD) protein levels and enzyme activity. These data indicate that mitochondrial ROS play a pivotal role in hyperthermia-induced platelet apoptosis, and decreased of MnSOD activity might, at least partially account for the enhanced ROS levels in hyperthermia-treated platelets. Therefore, determining the role of mitochondrial ROS as contributory factors in platelet apoptosis, is critical in providing a rational design of novel drugs aimed at targeting mitochondrial ROS. Such therapeutic approaches would have potential clinical utility in platelet-associated disorders involving oxidative damage.
Collapse
|
16
|
Wang Z, Cai F, Hu L, Lu Y. The role of mitochondrial permeability transition pore in regulating the shedding of the platelet GPIbα ectodomain. Platelets 2013; 25:373-81. [DOI: 10.3109/09537104.2013.821604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Abstract
Aspirin is widely used in the treatment of a number of clinical conditions. Although aspirin is being thought to be a relatively "safe" medicine, it also has some side effects, particularly the risk of bleeding which may be severe and lead to death. The mechanisms, however, are not totally understood. It has been reported recently that aspirin induces apoptosis in many cell types. Thus, the aim of the current study is to explore whether aspirin induces platelet apoptosis. The data show that mitochondrial transmembrane potential (ΔΨm) depolarizations and phosphatidylserine (PS) exposures were dose-dependently induced by aspirin in platelets. To further confirm that aspirin incurs platelet apoptosis, caspase-3 activity was measured in platelets, and the result indicated that aspirin induced caspase-3 activation. Furthermore, the mean volume of platelets incubated with aspirin was obviously reduced. Caspase inhibitor z-VAD-fmk inhibited aspirin induced apoptotic platelet shrinkage and ΔΨm depolarization, but had no effect on PS exposure. In addition, platelets incubated with cyclooxygenase inhibitor indomethacin did not incur ΔΨm depolarazation and PS exposure. Taken together, the data indicate that aspirin induces platelet apoptosis via caspase-3 activation.
Collapse
Affiliation(s)
- Lili Zhao
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics , Beijing , China
| | | | | | | | | | | |
Collapse
|
18
|
Cisplatin induces platelet apoptosis through the ERK signaling pathway. Thromb Res 2012; 130:81-91. [PMID: 22445428 DOI: 10.1016/j.thromres.2012.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/28/2012] [Accepted: 02/19/2012] [Indexed: 01/12/2023]
Abstract
Cisplatin (cis-diamminedichloroplatinum II) is one of the most widely used anti-tumor agents. However, cisplatin-based chemotherapy is usually accompanied by adverse side effects such as thrombocytopenia, and the mechanism remains unclear. Here we show that cisplatin induced several platelet apoptotic events including up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-X(L), mitochondrial translocation of Bax, mitochondrial inner transmembrane potential depolarization, caspase-3 activation and phosphatidylserine (PS) exposure. Cisplatin dose-dependently induced activation of extracellular signal-regulated protein kinase (ERK) in platelets. Caspase-3 inhibitor z-DEVD-fmk dramatically inhibited cisplatin-induced caspase-3 activation and PS exposure without affecting ERK activation. Blockade of the ERK pathway significantly prevented platelet apoptosis. Furthermore, levels of reactive oxygen species (ROS) and Ca(2+) were significantly elevated by cisplatin, and scavenging of ROS and Ca(2+) obviously inhibited platelet apoptosis induced by cisplatin. In addition, cisplatin did not induce platelet activation, whereas it obviously impaired platelet functions. These data indicate that cisplatin induces platelet apoptosis through the ERK signaling pathway, which might contribute to cisplatin-related haematological toxicity.
Collapse
|
19
|
Sobol AB, Kaminska M, Walczynska M, Walkowiak B. Effect of uremia and hemodialysis on platelet apoptosis. Clin Appl Thromb Hemost 2012; 19:320-3. [PMID: 22387580 DOI: 10.1177/1076029612437576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The blood platelet proteome of hemodialyzed patients with uremia exhibits significant difference in comparison with the blood platelet proteome of healthy individuals. This alteration is manifested by the presence of high concentrations of low-molecular peptides within the whole range of isoelectric points. Increased platelet apoptosis has been put forward as a possible cause of this phenomenon. The aim of the present research was to assess whether blood platelet populations from hemodialyzed patients with uremia exhibit higher binding capacity of Annexin V than control samples from healthy donors. It was found that blood platelets of hemodialyzed patients, in the period between dialyses, bound significantly more Annexin V with no different incorporation of propidium iodide in comparison with platelets of control donors and conservatively treated patients with uremia. The results support the hypothesis that the process of hemodialysis may be at least partially responsible for triggering blood platelet apoptosis and result in increased risk of thrombosis.
Collapse
Affiliation(s)
- Anna B Sobol
- The Advanced Technology Centre BioTechMed, Lodz, Poland.
| | | | | | | |
Collapse
|
20
|
Abstract
For many years, programmed cell death, known as apoptosis, was attributed exclusively to nucleated cells. Currently, however, apoptosis is also well-documented in anucleate platelets. This review describes extrinsic and intrinsic pathways of apoptosis in nucleated cells and in platelets, platelet apoptosis induced by multiple chemical stimuli and shear stresses, markers of platelet apoptosis, mitochodrial control of platelet apoptosis, and apoptosis mediated by platelet surface receptors PAR-1, GPIIbIIIa and GPIbα. In addition, this review presents data on platelet apoptosis provoked by aging of platelets in vitro during platelet storage, platelet apoptosis in pathological settings in humans and animal models, and inhibition of platelet apoptosis by cyclosporin A, intravenous immunoglobulin and GPIIbIIIa antagonist drugs.
Collapse
Affiliation(s)
- Valery Leytin
- Division of Transfusion Medicine, Department of Laboratory Medicine, The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
21
|
Zhang W, Liu J, Sun R, Zhao L, Du J, Ruan C, Dai K. Calpain activator dibucaine induces platelet apoptosis. Int J Mol Sci 2011; 12:2125-37. [PMID: 21731431 PMCID: PMC3127107 DOI: 10.3390/ijms12042125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/06/2011] [Accepted: 03/18/2011] [Indexed: 11/19/2022] Open
Abstract
Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.
Collapse
Affiliation(s)
- Weilin Zhang
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, 37 Xueyuan Road, Haidian District, Beijing 100083, China; E-Mails: (W.Z.); (J.L.); (R.S.); (L.Z.); (J.D.)
| | - Jun Liu
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, 37 Xueyuan Road, Haidian District, Beijing 100083, China; E-Mails: (W.Z.); (J.L.); (R.S.); (L.Z.); (J.D.)
| | - Ruichen Sun
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, 37 Xueyuan Road, Haidian District, Beijing 100083, China; E-Mails: (W.Z.); (J.L.); (R.S.); (L.Z.); (J.D.)
| | - Lili Zhao
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, 37 Xueyuan Road, Haidian District, Beijing 100083, China; E-Mails: (W.Z.); (J.L.); (R.S.); (L.Z.); (J.D.)
| | - Juan Du
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, 37 Xueyuan Road, Haidian District, Beijing 100083, China; E-Mails: (W.Z.); (J.L.); (R.S.); (L.Z.); (J.D.)
| | - Changgeng Ruan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215007, China; E-Mail:
| | - Kesheng Dai
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, 37 Xueyuan Road, Haidian District, Beijing 100083, China; E-Mails: (W.Z.); (J.L.); (R.S.); (L.Z.); (J.D.)
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215007, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 0086-10-82339862; Fax: 0086-10-82127801
| |
Collapse
|
22
|
Role of calcium in phosphatidylserine externalisation in red blood cells from sickle cell patients. Anemia 2010; 2011:379894. [PMID: 21490763 PMCID: PMC3065920 DOI: 10.1155/2011/379894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/23/2010] [Indexed: 01/15/2023] Open
Abstract
Phosphatidylserine exposure occurs in red blood cells (RBCs) from sickle cell disease (SCD) patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates Ca2+ entry, providing an obvious link with phosphatidylserine exposure. The role of Ca2+ was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [Ca2+] was increased. This effect was inhibited by dipyridamole, intracellular Ca2+ chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high K+ saline. Ca2+ levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with Ca2+ entry through the deoxygenation-induced pathway (Psickle), activating the Gardos channel. [Ca2+] required for phosphatidylserine scrambling are in the range achievable in vivo.
Collapse
|