1
|
Frasson I, Quarta S, Ruvoletto M, Biasiolo A, Chinellato M, Turato C, Maggi M, Cendron L, Richter SN, Pontisso P. SerpinB3/Protease Activated Receptor-2 Axis Is Essential for SARS CoV-2 Infection. ACS Infect Dis 2025. [PMID: 40408638 DOI: 10.1021/acsinfecdis.5c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Recent research has proposed several host factors required for SARS-CoV-2 infection and involved in the inflammatory response. Among these, members of the human serpin family and PAR2 have been suggested to play a relevant role. As it has been shown that one of the multiple activities of protease inhibitor SerpinB3 is the activation of PAR2, we have modulated the expression of these two molecules on both human bronchial and hepatic cells and assessed cell surface Spike binding and SARS-CoV-2 infectivity. Our findings indicate that both SerpinB3 and PAR2 play a pivotal role in viral infection and downregulate the expression of interferon-γ, a cytokine with a well-known antiviral effect. These results underscore the potential of the SerpinB3-PAR2 axis as a target for antiviral therapy and provide support for addressing serpins as targets for this purpose.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35128 Padua, Italy
| | - Santina Quarta
- Department of Medicine, University of Padua, via Giustiniani, 2, 35128 Padua, Italy
| | | | - Alessandra Biasiolo
- Department of Medicine, University of Padua, via Giustiniani, 2, 35128 Padua, Italy
| | - Monica Chinellato
- Department of Medicine, University of Padua, via Giustiniani, 2, 35128 Padua, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Maristella Maggi
- Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Laura Cendron
- Department of Biology, University of Padua, via Bassi 58/B, 35121 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35128 Padua, Italy
- Microbiology and Virology Unit, Padua University Hospital, Padua 35128, Italy
| | - Patrizia Pontisso
- Department of Medicine, University of Padua, via Giustiniani, 2, 35128 Padua, Italy
| |
Collapse
|
2
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
3
|
Zhang Y, Zhou X, Chen S, Sun X, Zhou C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023; 14:2180951. [PMID: 36827455 PMCID: PMC9980623 DOI: 10.1080/21505594.2023.2180951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart failure and sudden cardiac death and is invariably caused by myocardial viral infection following active inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or immunological insults to the heart may play a role. Cellular and mouse experimental models that utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the different stages of development of viral myocarditis were discussed, concentrating on the mechanisms of innate and adaptive immunity in the development of CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,School of public health, Nantong University, Nantong, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,CONTACT Chenglin Zhou Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
4
|
Crosstalk between hemostasis and immunity in cancer pathogenesis. Thromb Res 2022; 213 Suppl 1:S3-S7. [DOI: 10.1016/j.thromres.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022]
|
5
|
Becher PM, Hinrichs S, Fluschnik N, Hennigs JK, Klingel K, Blankenberg S, Westermann D, Lindner D. Role of Toll-like receptors and interferon regulatory factors in different experimental heart failure models of diverse etiology: IRF7 as novel cardiovascular stress-inducible factor. PLoS One 2018. [PMID: 29538462 PMCID: PMC5851607 DOI: 10.1371/journal.pone.0193844] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality in the western world. Although optimal medical care and treatment is widely available, the prognosis of patients with HF is still poor. Toll-like receptors (TLRs) are important compartments of the innate immunity. Current studies have identified TLRs as critical mediators in cardiovascular diseases. In the present study, we investigated the involvement of TLRs and interferon (IFN) regulatory factors (IRFs) in different experimental HF models including viral myocarditis, myocardial ischemia, diabetes mellitus, and cardiac hypertrophy. In addition, we investigated for the first time comprehensive TLR and IRF gene and protein expression under basal conditions in murine and human cardiac tissue. We found that Tlr4, Tlr9 and Irf7 displayed highest gene expression under basal conditions, indicating their significant role in first-line defense in the murine and human heart. Moreover, induction of TLRs and IRFs clearly differs between the various experimental HF models of diverse etiology and the concomitant inflammatory status. In the HF model of acute viral-induced myocarditis, TLR and IRF activation displayed the uppermost gene expression in comparison to the remaining experimental HF models, indicating the highest amount of myocardial inflammation in myocarditis. In detail, Irf7 displayed by far the highest gene expression during acute viral infection. Interestingly, post myocardial infarction TLR and IRF gene expression was almost exclusively increased in the infarct zone after myocardial ischemia (Tlr2, Tlr3, Tlr6, Tlr7, Tlr9, Irf3, Irf7). With one exception, Irf3 showed a decreased gene expression in the remote zone post infarction. Finally, we identified Irf7 as novel cardiovascular stress-inducible factor in the pathologically stressed heart. These findings on TLR and IRF function in the inflamed heart highlight the complexity of inflammatory immune response and raise more interesting questions for future investigation.
Collapse
Affiliation(s)
- Peter Moritz Becher
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- * E-mail:
| | - Svenja Hinrichs
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Nina Fluschnik
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Jan K. Hennigs
- Section Pneumology, Department of Medicine II, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Stefan Blankenberg
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dirk Westermann
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Diana Lindner
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
6
|
Lê VB, Riteau B, Alessi MC, Couture C, Jandrot-Perrus M, Rhéaume C, Hamelin MÈ, Boivin G. Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections. Br J Pharmacol 2017; 175:388-403. [PMID: 29105740 DOI: 10.1111/bph.14084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Protease-activated receptor 1 (PAR1) has been demonstrated to be involved in the pathogenesis of viral diseases. However, its role remains controversial. The goal of our study was to investigate the contribution of PAR1 to respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. EXPERIMENTAL APPROACH Pharmacological approaches were used to investigate the role of PAR1 during RSV and hMPV infection, in vitro using epithelial A549 cells and in vivo using a mouse model of virus infection. KEY RESULTS In vitro, the PAR1 antagonist RWJ-56110 reduced the replication of RSV and hMPV in A549 cells. In agreement with these results, RWJ-56110-treated mice were protected against RSV and hMPV infections, as indicated by less weight loss and mortality. This protective effect in mice correlated with decreased lung viral replication and inflammation. In contrast, hMPV-infected mice treated with the PAR1 agonist TFLLR-NH2 showed increased mortality, as compared to infected mice, which were left untreated. Thrombin generation was shown to occur downstream of PAR1 activation in infected mice via tissue factor exposure as part of the inflammatory response, and thrombin inhibition by argatroban reduced the pathogenicity of the infection with no additive effect to that induced by PAR1 inhibition. CONCLUSION AND IMPLICATIONS These data show that PAR1 plays a detrimental role during RSV and hMPV infections in mice via, at least, a thrombin-dependent mechanism. Thus, the use of PAR1 antagonists and thrombin inhibitors may have potential as a novel approach for the treatment of RSV and hMPV infections.
Collapse
Affiliation(s)
- Vuong Ba Lê
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Béatrice Riteau
- UMR INSERM U1062/INRA 1260/AMU, Aix Marseille University, Marseille, France
| | | | - Christian Couture
- Department of Anatomy-Pathology, Laval University Institute of Cardiology and Pneumology, Quebec City, Quebec, Canada
| | | | - Chantal Rhéaume
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Marie-Ève Hamelin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Antoniak S, Tatsumi K, Bode M, Vanja S, Williams JC, Mackman N. Protease-Activated Receptor 1 Enhances Poly I:C Induction of the Antiviral Response in Macrophages and Mice. J Innate Immun 2016; 9:181-192. [PMID: 27820939 DOI: 10.1159/000450853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022] Open
Abstract
The coagulation cascade is activated during viral infections as part of the host defense system. Coagulation proteases activate cells by cleavage of protease-activated receptors (PARs). Recently, we reported that the activation of PAR-1 enhanced interferon (IFN)β and CXCL10 expression in cardiac fibroblasts and in the hearts of mice infected with Coxsackievirus B3. In this study, we used the double-stranded RNA mimetic polyinosinic:polycytidylic acid (poly I:C) to induce an antiviral response in macrophages and mice. Activation of PAR-1 enhanced poly I:C induction of IFNβ and CXCL10 expression in the murine macrophage cell line RAW264.7, bone-marrow derived mouse macrophages (BMM) and mouse splenocytes. Next, poly I:C was used to induce a type I IFN innate immune response in the spleen and plasma of wild-type (WT) and PAR-1-/- mice. We found that poly I:C treated PAR-1-/- mice and WT mice given the thrombin inhibitor dabigatran etexilate exhibited significantly less IFNβ and CXCL10 expression in the spleen and plasma than WT mice. These studies suggest that thrombin activation of PAR-1 contributes to the antiviral response in mice.
Collapse
Affiliation(s)
- Silvio Antoniak
- Thrombosis and Hemostasis Program, Division of Hematology and Oncology, Department of Medicine, UNC McAllister Heart Institute, Chapel Hill, N.C., USA
| | | | | | | | | | | |
Collapse
|