1
|
Aryal B, Kwakye J, Ariyo OW, Ghareeb AFA, Milfort MC, Fuller AL, Khatiwada S, Rekaya R, Aggrey SE. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants (Basel) 2025; 14:471. [PMID: 40298812 PMCID: PMC12023971 DOI: 10.3390/antiox14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Heat stress (HS) is one of the most important stressors in chickens, and its adverse effects are primarily caused by disturbing the redox homeostasis. An increase in electron leakage from the mitochondrial electron transport chain is the major source of free radical production under HS, which triggers other enzymatic systems to generate more radicals. As a defense mechanism, cells have enzymatic and non-enzymatic antioxidant systems that work cooperatively against free radicals. The generation of free radicals, particularly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), under HS condition outweighs the cellular antioxidant capacity, resulting in oxidative damage to macromolecules, including lipids, carbohydrates, proteins, and DNA. Understanding these detrimental oxidative processes and protective defense mechanisms is important in developing mitigation strategies against HS. This review summarizes the current understanding of major oxidative and antioxidant systems and their molecular mechanisms in generating or neutralizing the ROS/RNS. Importantly, this review explores the potential mechanisms that lead to the development of oxidative stress in heat-stressed chickens, highlighting their unique behavioral and physiological responses against thermal stress. Further, we summarize the major findings associated with these oxidative and antioxidant mechanisms in chickens.
Collapse
Affiliation(s)
- Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), Gainesville, GA 30501, USA
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Saroj Khatiwada
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| |
Collapse
|
2
|
Hou M, Yue M, Han X, Sun T, Zhu Y, Li Z, Han J, Zhao B, Tu M, An Y. Comparative analysis of BAG1 and BAG2: Insights into their structures, functions and implications in disease pathogenesis. Int Immunopharmacol 2024; 143:113369. [PMID: 39405938 DOI: 10.1016/j.intimp.2024.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024]
Abstract
As BAG family members, Bcl-2 associated athanogene family protein 1 (BAG1) and 2 (BAG2) are implicated in multiple cellular processes, including apoptosis, autophagy, protein folding and homeostasis. Although structurally similar, they considerably differ in many ways. Unlike BAG2, BAG1 has four isoforms (BAG1L, BAG1M, BAG1S and BAG1 p29) displaying different expression features and functional patterns. BAG1 and BAG2 play different cellular functions by interacting with different molecules to participate in the regulation of various diseases, including cancer/tumor and neurodegenerative diseases. Commonly, BAG1 acts as a protective factor to predict a good prognosis of patients with some types of cancer or a risk factor in some other cancers, while BAG2 is regarded as a risk factor to promote cancer/tumor progression. In neurodegenerative diseases, BAG2 commonly acts as a neuroprotective factor. In this review, we summarized the differences in molacular structure and biological function between BAG1 and BAG2, as well as the influences of them on pathogenesis of diseases, and explore the prospects for their clinical therapy application by specifying the activators and inhibitors of BAG1 and BAG2, which might provide a better understanding of the underlying pathogenesis and developing the targeted therapy strategies for diseases.
Collapse
Affiliation(s)
- Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Devi S, Charvat A, Millbern Z, Vinueza N, Gestwicki JE. Exploration of the binding determinants of protein phosphatase 5 (PP5) reveals a chaperone-independent activation mechanism. J Biol Chem 2024; 300:107435. [PMID: 38830406 PMCID: PMC11259706 DOI: 10.1016/j.jbc.2024.107435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
The protein phosphatase 5 (PP5) is normally recruited to its substrates by the molecular chaperones, heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90). This interaction requires the tetratricopeptide repeat (TPR) domain of PP5, which binds to an EEVD motif at the extreme C termini of cytosolic Hsp70 and Hsp90 isoforms. In addition to bringing PP5 into proximity with chaperone-bound substrates, this interaction also relieves autoinhibition in PP5's catalytic domain, promoting its phosphatase activity. To better understand the molecular determinants of this process, we screened a large, pentapeptide library for binding to PP5. This screen identified the amino acid preferences at each position, which we validated by showing that the optimal sequences bind 4- to 7-fold tighter than the natural EEVD motifs and stimulate PP5's enzymatic activity. The enhanced affinity for PP5's TPR domain was confirmed using a protein-adaptive differential scanning fluorimetry assay. Using this increased knowledge of structure-activity relationships, we re-examined affinity proteomics results to look for potential EEVD-like motifs in the C termini of known PP5-binding partners. This search identified elongator acetyltransferase complex subunit 1 (IKBKAP) as a putative partner, and indeed, we found that its C-terminal sequence, LSLLD, binds directly to PP5's TPR domain in vitro. Consistent with this idea, mutation of elongator acetyltransferase complex subunit 1's terminal aspartate was sufficient to interrupt the interaction with PP5 in vitro and in cells. Together, these findings reveal the sequence preferences of PP5's TPR domain and expand the scope of PP5's functions to include chaperone-independent complexes.
Collapse
Affiliation(s)
- Shweta Devi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, USA
| | - Annemarie Charvat
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, USA
| | - Zoe Millbern
- Department of Textile Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Nelson Vinueza
- Department of Textile Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
4
|
Singh MK, Shin Y, Ju S, Han S, Choe W, Yoon KS, Kim SS, Kang I. Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. Int J Mol Sci 2024; 25:4209. [PMID: 38673794 PMCID: PMC11050489 DOI: 10.3390/ijms25084209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The heat shock response is an evolutionarily conserved mechanism that protects cells or organisms from the harmful effects of various stressors such as heat, chemicals toxins, UV radiation, and oxidizing agents. The heat shock response triggers the expression of a specific set of genes and proteins known as heat shock genes/proteins or molecular chaperones, including HSP100, HSP90, HSP70, HSP60, and small HSPs. Heat shock proteins (HSPs) play a crucial role in thermotolerance and aiding in protecting cells from harmful insults of stressors. HSPs are involved in essential cellular functions such as protein folding, eliminating misfolded proteins, apoptosis, and modulating cell signaling. The stress response to various environmental insults has been extensively studied in organisms from prokaryotes to higher organisms. The responses of organisms to various environmental stressors rely on the intensity and threshold of the stress stimuli, which vary among organisms and cellular contexts. Studies on heat shock proteins have primarily focused on HSP70, HSP90, HSP60, small HSPs, and ubiquitin, along with their applications in human biology. The current review highlighted a comprehensive mechanism of heat shock response and explores the function of heat shock proteins in stress management, as well as their potential as therapeutic agents and diagnostic markers for various diseases.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.J.); (S.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Li X, Zhang L, Wei X, Datta T, Wei F, Xie Z. Polyploidization: A Biological Force That Enhances Stress Resistance. Int J Mol Sci 2024; 25:1957. [PMID: 38396636 PMCID: PMC10888447 DOI: 10.3390/ijms25041957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Organisms with three or more complete sets of chromosomes are designated as polyploids. Polyploidy serves as a crucial pathway in biological evolution and enriches species diversity, which is demonstrated to have significant advantages in coping with both biotic stressors (such as diseases and pests) and abiotic stressors (like extreme temperatures, drought, and salinity), particularly in the context of ongoing global climate deterioration, increased agrochemical use, and industrialization. Polyploid cultivars have been developed to achieve higher yields and improved product quality. Numerous studies have shown that polyploids exhibit substantial enhancements in cell size and structure, physiological and biochemical traits, gene expression, and epigenetic modifications compared to their diploid counterparts. However, some research also suggested that increased stress tolerance might not always be associated with polyploidy. Therefore, a more comprehensive and detailed investigation is essential to complete the underlying stress tolerance mechanisms of polyploids. Thus, this review summarizes the mechanism of polyploid formation, the polyploid biochemical tolerance mechanism of abiotic and biotic stressors, and molecular regulatory networks that confer polyploidy stress tolerance, which can shed light on the theoretical foundation for future research.
Collapse
Affiliation(s)
- Xiaoying Li
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Luyue Zhang
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou 450002, China
| | - Tanusree Datta
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Fang Wei
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Zhang ZT, Wang H, Dong H, Cong B. Comparative hemolymph proteomic analyses of the freezing and resistance-freezing Ostrinia furnacalis (Guenée). Sci Rep 2024; 14:2580. [PMID: 38297109 PMCID: PMC10830562 DOI: 10.1038/s41598-024-52792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), is one of the most harmful pests of maize in Asia. It poses a significant threat to maize production, causing economic losses due to its strong ecological adaptation. In this study, we compared and analyzed the hemolymph proteome between freezing and resistance-freezing O. furnacalis strains using two-dimensional gel electrophoresis to gain insights into the mechanisms of cold resistance. The results revealed that 300-400 hemolymph protein spots were common, with 24 spots showing differences between the two strains. Spectrometry analysis revealed 21 protein spots, including 17 upregulated spots and 4 downregulated ones. The expression of upregulation/downregulation proteins plays a crucial role in the metabolism, energy supply, and defense reaction of insects. Proteomics research not only provides a method for investigating protein expression patterns but also identifies numerous attractive candidates for further exploration.
Collapse
Affiliation(s)
- Zhu-Ting Zhang
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
- Kaili University, 556011, Kaili, People's Republic of China
| | - Huan Wang
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Hui Dong
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Bin Cong
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| |
Collapse
|
7
|
Mishra S, Spaccarotella K, Gido J, Samanta I, Chowdhary G. Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation. Int J Mol Sci 2023; 24:15670. [PMID: 37958654 PMCID: PMC10649217 DOI: 10.3390/ijms242115670] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
As a consequence of global climate change, the frequency, severity, and duration of heat stress are increasing, impacting plant growth, development, and reproduction. While several studies have focused on the physiological and molecular aspects of heat stress, there is growing concern that crop quality, particularly nutritional content and phytochemicals important for human health, is also negatively impacted. This comprehensive review aims to provide profound insights into the multifaceted effects of heat stress on plant-nutrient relationships, with a particular emphasis on tissue nutrient concentration, the pivotal nutrient-uptake proteins unique to both macro- and micronutrients, and the effects on dietary phytochemicals. Finally, we propose a new approach to investigate the response of plants to heat stress by exploring the possible role of plant peroxisomes in the context of heat stress and nutrient mobilization. Understanding these complex mechanisms is crucial for developing strategies to improve plant nutrition and resilience during heat stress.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Kim Spaccarotella
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Jaclyn Gido
- Department of Biology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA
| | - Ishita Samanta
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| | - Gopal Chowdhary
- Plant Molecular Biology Laboratory, School of Biotechnology, KIIT—Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India (G.C.)
| |
Collapse
|
8
|
Zhang Y, Peng Y, Liu J, Yan J, Zhu K, Sun X, Bu X, Wang X, Ahammed GJ, Liu Y, Sun Z, Qi M, Wang F, Li T. Tetratricopeptide repeat protein SlREC2 positively regulates cold tolerance in tomato. PLANT PHYSIOLOGY 2023; 192:648-665. [PMID: 36760172 PMCID: PMC10152682 DOI: 10.1093/plphys/kiad085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Cold stress is a key environmental constraint that dramatically affects the growth, productivity, and quality of tomato (Solanum lycopersicum); however, the underlying molecular mechanisms of cold tolerance remain poorly understood. In this study, we identified REDUCED CHLOROPLAST COVERAGE 2 (SlREC2) encoding a tetratricopeptide repeat protein that positively regulates tomato cold tolerance. Disruption of SlREC2 largely reduced abscisic acid (ABA) levels, photoprotection, and the expression of C-REPEAT BINDING FACTOR (CBF)-pathway genes in tomato plants under cold stress. ABA deficiency in the notabilis (not) mutant, which carries a mutation in 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (SlNCED1), strongly inhibited the cold tolerance of SlREC2-silenced plants and empty vector control plants and resulted in a similar phenotype. In addition, foliar application of ABA rescued the cold tolerance of SlREC2-silenced plants, which confirms that SlNCED1-mediated ABA accumulation is required for SlREC2-regulated cold tolerance. Strikingly, SlREC2 physically interacted with β-RING CAROTENE HYDROXYLASE 1b (SlBCH1b), a key regulatory enzyme in the xanthophyll cycle. Disruption of SlBCH1b severely impaired photoprotection, ABA accumulation, and CBF-pathway gene expression in tomato plants under cold stress. Taken together, this study reveals that SlREC2 interacts with SlBCH1b to enhance cold tolerance in tomato via integration of SlNCED1-mediated ABA accumulation, photoprotection, and the CBF-pathway, thus providing further genetic knowledge for breeding cold-resistant tomato varieties.
Collapse
Affiliation(s)
- Ying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinxia Peng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Juan Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Kangyou Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
- Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Henan University of Science and Technology, Luoyang 471023, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhouping Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang 110866, China
| |
Collapse
|
9
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
10
|
Yuan T, Liang J, Dai J, Zhou XR, Liao W, Guo M, Aslam M, Li S, Cao G, Cao S. Genome-Wide Identification of Eucalyptus Heat Shock Transcription Factor Family and Their Transcriptional Analysis under Salt and Temperature Stresses. Int J Mol Sci 2022; 23:ijms23148044. [PMID: 35887387 PMCID: PMC9318532 DOI: 10.3390/ijms23148044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Heat shock transcription factors (HSFs) activate heat shock protein gene expression by binding their promoters in response to heat stress and are considered to be pivotal transcription factors in plants. Eucalyptus is a superior source of fuel and commercial wood. During its growth, high temperature or other abiotic stresses could impact its defense capability and growth. Hsf genes have been cloned and sequenced in many plants, but rarely in Eucalyptus. In this study, we used bioinformatics methods to analyze and identify Eucalyptus Hsf genes, their chromosomal localization and structure. The phylogenetic relationship and conserved domains of their encoded proteins were further analyzed. A total of 36 Hsf genes were identified and authenticated from Eucalyptus, which were scattered across 11 chromosomes. They could be classified into three classes (A, B and C). Additionally, a large number of stress-related cis-regulatory elements were identified in the upstream promoter sequence of HSF, and cis-acting element analysis indicated that the expression of EgHsf may be regulated by plant growth and development, metabolism, hormones and stress responses. The expression profiles of five representative Hsf genes, EgHsf4, EgHsf9, EgHsf13, EgHsf24 and EgHsf32, under salt and temperature stresses were examined by qRT-PCR. The results show that the expression pattern of class B genes (EgHsf4, EgHsf24 and EgHsf32) was more tolerant to abiotic stresses than that of class A genes (EgHsf9 and EgHsf13). However, the expressions of all tested Hsf genes in six tissues were at different levels. Finally, we investigated the network of interplay between genes, and the results suggest that there may be synergistic effects between different Hsf genes in response to abiotic stresses. We conclude that the Hsf gene family played an important role in the growth and developmental processes of Eucalyptus and could be vital for maintaining cell homeostasis against external stresses. This study provides basic information on the members of the Hsf gene family in Eucalyptus and lays the foundation for the functional identification of related genes and the further investigation of their biological functions in plant stress regulation.
Collapse
Affiliation(s)
- Tan Yuan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Jianxiang Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Jiahao Dai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Xue-Rong Zhou
- Commonwealth Scientific Industrial Research Organization (CSIRO) Agriculture Food, Canberra, ACT 2601, Australia;
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Mingliang Guo
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.G.); (M.A.)
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohammad Aslam
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.G.); (M.A.)
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shubin Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
| | - Guangqiu Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
- Correspondence: (G.C.); (S.C.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.Y.); (J.L.); (J.D.); (W.L.); (S.L.)
- Correspondence: (G.C.); (S.C.)
| |
Collapse
|
11
|
Sayyed UMH, Mahalakshmi R. Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation. J Biol Chem 2022; 298:101870. [PMID: 35346689 PMCID: PMC9052162 DOI: 10.1016/j.jbc.2022.101870] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/15/2023] Open
Abstract
The human mitochondrial outer membrane is biophysically unique as it is the only membrane possessing transmembrane β-barrel proteins (mitochondrial outer membrane proteins, mOMPs) in the cell. The most vital of the three mOMPs is the core protein of the translocase of the outer mitochondrial membrane (TOM) complex. Identified first as MOM38 in Neurospora in 1990, the structure of Tom40, the core 19-stranded β-barrel translocation channel, was solved in 2017, after nearly three decades. Remarkably, the past four years have witnessed an exponential increase in structural and functional studies of yeast and human TOM complexes. In addition to being conserved across all eukaryotes, the TOM complex is the sole ATP-independent import machinery for nearly all of the ∼1000 to 1500 known mitochondrial proteins. Recent cryo-EM structures have provided detailed insight into both possible assembly mechanisms of the TOM core complex and organizational dynamics of the import machinery and now reveal novel regulatory interplay with other mOMPs. Functional characterization of the TOM complex using biochemical and structural approaches has also revealed mechanisms for substrate recognition and at least five defined import pathways for precursor proteins. In this review, we discuss the discovery, recently solved structures, molecular function, and regulation of the TOM complex and its constituents, along with the implications these advances have for alleviating human diseases.
Collapse
Affiliation(s)
- Ulfat Mohd Hanif Sayyed
- Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | | |
Collapse
|
12
|
Yusof NA, Masnoddin M, Charles J, Thien YQ, Nasib FN, Wong CMVL, Abdul Murad AM, Mahadi NM, Bharudin I. Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress? Polar Biol 2022. [DOI: 10.1007/s00300-022-03006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe Antarctic Peninsula is one of the fastest-warming places on Earth. Elevated sea water temperatures cause glacier and sea ice melting. When icebergs melt into the ocean, it “freshens” the saltwater around them, reducing its salinity. The oceans absorb excess anthropogenic carbon dioxide (CO2) causing decline in ocean pH, a process known as ocean acidification. Many marine organisms are specifically affected by ocean warming, freshening and acidification. Due to the sensitivity of Antarctica to global warming, using biomarkers is the best way for scientists to predict more accurately future climate change and provide useful information or ecological risk assessments. The 70-kilodalton (kDa) heat shock protein (HSP70) chaperones have been used as biomarkers of stress in temperate and tropical environments. The induction of the HSP70 genes (Hsp70) that alter intracellular proteins in living organisms is a signal triggered by environmental temperature changes. Induction of Hsp70 has been observed both in eukaryotes and in prokaryotes as response to environmental stressors including increased and decreased temperature, salinity, pH and the combined effects of changes in temperature, acidification and salinity stress. Generally, HSP70s play critical roles in numerous complex processes of metabolism; their synthesis can usually be increased or decreased during stressful conditions. However, there is a question as to whether HSP70s may serve as excellent biomarkers in the Antarctic considering the long residence time of Antarctic organisms in a cold polar environment which appears to have greatly modified the response of heat responding transcriptional systems. This review provides insight into the vital roles of HSP70 that make them ideal candidates as biomarkers for identifying resistance and resilience in response to abiotic stressors associated with climate change, which are the effects of ocean warming, freshening and acidification in Antarctic organisms.
Collapse
|
13
|
Garcia G, Homentcovschi S, Kelet N, Higuchi-Sanabria R. Imaging of Actin Cytoskeletal Integrity During Aging in C. elegans. Methods Mol Biol 2022; 2364:101-137. [PMID: 34542850 DOI: 10.1007/978-1-0716-1661-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton plays a fundamental role in the regulation of multiple cellular pathways, including trafficking and locomotion. The functional integrity of the cytoskeleton is important during aging, as the decline of cytoskeletal integrity contributes to the physiological consequence of aging. Moreover, improving cytoskeletal form and function throughout aging is sufficient to drive life span extension and promote organismal health in multiple model systems. For these reasons, optimized protocols for visualization of the actin cytoskeleton and its downstream consequences on health span and life span are critical for understanding the aging process. In C. elegans, the actin cytoskeleton shows diverse morphologies across tissues, potentially due to the significantly different functions of each cell type. This chapter describes an imaging platform utilizing LifeAct to visualize the actin cytoskeleton in live, whole nematodes throughout the aging process and methods to perform follow-up studies on the life span and health span of these organisms.
Collapse
Affiliation(s)
- Gilberto Garcia
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Homentcovschi
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Naame Kelet
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular & Cellular Biology, University of California, Berkeley, Berkeley, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Park JY, Ryu J, Park JE, Hong EJ, Shin HJ. Heat shock protein 70 could enhance porcine epidemic diarrhoea virus replication by interacting with membrane proteins. Vet Res 2021; 52:138. [PMID: 34717778 PMCID: PMC8557036 DOI: 10.1186/s13567-021-01006-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the role of heat shock protein 70 (HSP70) in porcine epidemic diarrhoea virus (PEDV) replication. We found that PEDV infection induced strong HSP70 overexpression in the very early stage of infection. We also confirmed that HSP70 overexpression increased the speed of PEDV replication, resulting in the generation of more virions. In contrast, knockout of HSP70 in cells significantly downregulated PEDV protein expression, resulting in a significant reduction in PEDV replication. Most importantly, we confirmed that among the structural proteins of PEDV, membrane (M) proteins have this important role. We found that membrane proteins control cellular HSP70 expression in PEDV-infected cells. We confirmed HSP70/M complex formation by both immunoprecipitation and immunofluorescence assays. Additionally, PEDV M overexpression induced strong HSP70 expression. All our results clearly confirmed that in PEDV-infected cells, the M protein plays a very important role in PEDV replication in collaboration with HSP70.
Collapse
Affiliation(s)
- Jae-Yeon Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, 13434, Republic of Korea
| | - Jihoon Ryu
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 13434, Republic of Korea
| | - Jung-Eun Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, 13434, Republic of Korea.,Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 13434, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, 13434, Republic of Korea.,Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 13434, Republic of Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, 13434, Republic of Korea. .,Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 13434, Republic of Korea.
| |
Collapse
|
15
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
16
|
Abstract
Human papillomavirus (HPV) infection is a multi-step process that implies complex interactions of the viral particles with cellular proteins. The HPV capsid includes the two structural proteins L1 and L2, that play crucial roles on infectious viral entry. L2 is particularly relevant for the intracellular trafficking of the viral DNA towards the nucleus. Here, using proteomic studies we identified CCT proteins as novel interaction partners of HPV-16 L2. The CCT multimeric complex is an essential chaperonin which interacts with a large number of protein targets. We analysed the binding of different components of the CCT complex to L2. We confirmed the interaction of this structural viral protein with the CCT subunit 3 (CCT3) and we found that this interaction requires the N-terminal region of L2. Defects in HPV-16 pseudoviral particle (PsVs) infection were revealed by siRNA-mediated knockdown of some CCT subunits. While a substantial drop in the viral infection was associated with the ablation of CCT component 2, even more pronounced effects on infectivity were observed upon depletion of CCT component 3. Using confocal immunofluorescence assays, CCT3 co-localised with HPV PsVs at early times after infection, with L2 being required for this to occur. Further analysis showed the colocalization of several other subunits of CCT with the PsVs. Moreover, we observed a defect in capsid uncoating and a change in PsVs intracellular normal processing when ablating CCT3. Taken together, these studies demonstrate the importance of CCT chaperonin during HPV infectious entry.ImportanceSeveral of the mechanisms that function during the infection of target cells by HPV particles have been previously described. However, many aspects of this process remain unknown. In particular, the role of cellular proteins functioning as molecular chaperones during HPV infections has been only partially investigated. To the best of our knowledge, we describe here for the first time, a requirement of the CCT chaperonin for HPV infection. The role of this cellular complex seems to be determined by the binding of its component 3 to the viral structural protein L2. However, CCT's effect on HPV infection most probably comprises the whole chaperonin complex. Altogether, these studies define an important role for the CCT chaperonin in the processing and intracellular trafficking of HPV particles and in subsequent viral infectious entry.
Collapse
|
17
|
Rehman A, Atif RM, Azhar MT, Peng Z, Li H, Qin G, Jia Y, Pan Z, He S, Qayyum A, Du X. Genome wide identification, classification and functional characterization of heat shock transcription factors in cultivated and ancestral cottons (Gossypium spp.). Int J Biol Macromol 2021; 182:1507-1527. [PMID: 33965497 DOI: 10.1016/j.ijbiomac.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Heat shock transcription factors (HSF) have been demonstrated to play a significant transcriptional regulatory role in plants and considered as an integral part of signal transduction pathways against environmental stresses especially heat stress. Despite of their importance, HSFs have not yet been identified and characterized in all cotton species. In this study, we report the identification of 42, 39, 67, and 79 non-redundant HSF genes from diploid cottons G. arboreum (A2) and G. raimondii (D5), and tetraploid cottons G. barbadense (AD2) and G. hirsutum (AD1) respectively. The chromosome localization of identified HSFs revealed their random distribution on all the 13 chromosomes of A and D genomes of cotton with few regions containing HSFs in clusters. The genes structure and conserved domain analysis revealed the family-specific conservation of intron/exon organization and conserved domains in HSFs. Various abiotic stress-related cis-regulatory elements were identified from the putative promoter regions of cotton HSFs suggesting their possible role in mediating abiotic stress tolerance. The combined phylogenetic analysis of all the cotton HSFs grouped them into three subfamilies; with 145 HSFs belong to class A, 85 to class B, and 17 to class C subfamily. Moreover, a detailed analysis of HSF gene family in four species of cotton elucidated the role of allopolyploid and hybridization during evolutionary cascade of allotetraploid cotton. Comparatively, existence of more orthologous genes in cotton species than Arabidopsis, advocated that polyploidization produced new cotton specific orthologous gene clusters. Phylogenetic, collinearity and multiple synteny analyses exhibited dispersed, segmental, proximal, and tandem gene duplication events in HSF gene family. Duplication of gene events suggests that HSF gene family of cotton evolution was under strong purifying selection. Expression analysis revealed that GarHSF04 were found to be actively involved in PEG and salinity tolerance in G. arboreum. GhiHSF14 upregulated in heat and downregulated in salinity whilst almost illustrated similar behavior under cold and PEG treatments and GhiHSF21 exhibited down regulation almost across all the stresses in G. hirsutum. Overwhelmingly, present study paves the way to better understand the evolution of cotton HSF TFs and lays a foundation for future investigation of HSFs in improving abiotic stress tolerance in cotton.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China; Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; Center of Advanced Studies in Agriculture & Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Guangyong Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China.
| |
Collapse
|
18
|
Jonsdottir TK, Gabriela M, Gilson PR. The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:141-167. [PMID: 34569024 DOI: 10.1007/978-3-030-78397-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The genus Plasmodium comprises intracellular eukaryotic parasites that infect many vertebrate groups and cause deadly malaria disease in humans. The parasites employ a suite of heat shock proteins to help traffic other proteins to different compartments within their own cells and that of the host cells they parasitise. This review will cover the role of these chaperones in protein export and host cell modification in the asexual blood stage of the human parasite P. falciparum which is the most deadly and well-studied parasite species. We will examine the role chaperones play in the import of proteins into the secretory pathway from where they are escorted to the vacuole space surrounding the intraerythrocytic parasite. Here, other heat shock proteins unfold protein cargoes and extrude them into the red blood cell (RBC) cytosol from where additional chaperones of parasite and possibly host origin refold the cargo proteins and guide them to their final functional destinations within their RBC host cells. The secretory pathway also serves as a launch pad for proteins targeted to the non-photosynthetic apicoplast organelle of endosymbiotic origin, and the role of heat shock proteins in trafficking proteins here will be reviewed. Finally, the function of chaperones in protein trafficking into the mitochondrion, the remaining organelle of endosymbiotic origin, will be discussed.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
19
|
Rehman A, Atif RM, Qayyum A, Du X, Hinze L, Azhar MT. Genome-wide identification and characterization of HSP70 gene family in four species of cotton. Genomics 2020; 112:4442-4453. [DOI: 10.1016/j.ygeno.2020.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
|
20
|
Park JC, Kim DH, Lee Y, Lee MC, Kim TK, Yim JH, Lee JS. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100749. [PMID: 33065474 DOI: 10.1016/j.cbd.2020.100749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 01/07/2023]
Abstract
Heat shock proteins (Hsp) are class of conserved and ubiquitous stress proteins present in all living organisms from primitive to higher level. Various studies have demonstrated multiple cellular functions of Hsp in living organisms as an important biomarker in response to abiotic and biotic stressors including temperature, salinity, pH, hypoxia, environmental pollutants, and pathogens. However, full understanding on the mechanism and pathway involved in the induction of Hsp still remains challenging, especially in aquatic invertebrates. In this study, the entire Hsp family and subfamily members in the marine rotifers Brachionus spp., one of the cosmopolitan ecotoxicological model organisms, have been genome-widely identified. In Brachionus spp. Hsp family was comprised of Hsp10, small hsp (sHsp), Hsp40, Hsp60, Hsp70/105, and Hsp90, with highest number of genes found within Hsp40 DnaJ homolog subfamily C members. Also, the differences in the orientation of the conserved motifs within Hsp family may have induced differences in transcriptional gene modulation in response to thermal stress in Brachionus koreanus. Overall, Hsp family-specific domains were highly conserved in all three Brachionus spp., relative to Homo sapiens and across other animal taxa and these findings will be helpful for future ecotoxicological studies focusing on Hsps.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Tai Kyoung Kim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Joung Han Yim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Wang L, Xu X, Jiang Z, You Q. Modulation of protein fate decision by small molecules: targeting molecular chaperone machinery. Acta Pharm Sin B 2020; 10:1904-1925. [PMID: 33163343 PMCID: PMC7606112 DOI: 10.1016/j.apsb.2020.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Modulation of protein fate decision and protein homeostasis plays a significant role in altering the protein level, which acts as an orientation to develop drugs with new mechanisms. The molecular chaperones exert significant biological functions on modulation of protein fate decision and protein homeostasis under constantly changing environmental conditions through extensive protein–protein interactions (PPIs) with their client proteins. With the help of molecular chaperone machinery, the processes of protein folding, trafficking, quality control and degradation of client proteins could be arranged properly. The core members of molecular chaperones, including heat shock proteins (HSPs) family and their co-chaperones, are emerging as potential drug targets since they are involved in numerous disease conditions. Development of small molecule modulators targeting not only chaperones themselves but also the PPIs among chaperones, co-chaperones and clients is attracting more and more attention. These modulators are widely used as chemical tools to study chaperone networks as well as potential drug candidates for a broader set of diseases. Here, we reviewed the key checkpoints of molecular chaperone machinery HSPs as well as their co-chaperones to discuss the small molecules targeting on them for modulation of protein fate decision.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoli Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 25 83271351.
| |
Collapse
|
22
|
Gonadal transcriptomic analysis of the mud crab Scylla olivacea infected with rhizocephalan parasite Sacculina beauforti. Genomics 2020; 112:2959-2969. [DOI: 10.1016/j.ygeno.2020.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
|
23
|
Wang M, Wei K, Qian B, Feiler S, Lemekhova A, Büchler MW, Hoffmann K. HSP70-eIF4G Interaction Promotes Protein Synthesis and Cell Proliferation in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12082262. [PMID: 32823513 PMCID: PMC7464799 DOI: 10.3390/cancers12082262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide and features various tumor escape mechanisms from treatment-induced stress. HSP70 plays a critical role in cell protection under stress. eIF4G physiologically regulates the formation of the protein-ribosomal complex and maintains cellular protein synthesis. However, the precise cooperation of both in HCC remains poorly understood. In this study, we demonstrate that HSP70 expression is positively correlated with eIF4G in tumor specimens from 25 HCC patients, in contrast to the adjacent non-tumorous tissues, and that both influence the survival of HCC patients. Mechanistically, this study indicates that HSP70 and eIF4G interact with each other in vitro. We further show that the HSP70–eIF4G interaction contributes to promoting cellular protein synthesis, enhancing cell proliferation, and inhibiting cell apoptosis. Collectively, this study reveals the pivotal role of HSP70–eIF4G interaction as an escape mechanism in HCC. Therefore, modulation of the HSP70–eIF4G interaction might be a potential novel therapeutic target of HCC treatment.
Collapse
|
24
|
Grune T. Oxidized protein aggregates: Formation and biological effects. Free Radic Biol Med 2020; 150:120-124. [PMID: 32097679 DOI: 10.1016/j.freeradbiomed.2020.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022]
Abstract
The study of protein aggregates has a long history. While in the first decades until the 80ies of the 20th century only the observation of the presence of such aggregates was reported, later the biochemistry of the formation and the biological effects of theses aggregates were described. This review focusses on the complexity of the biological effects of protein aggregates and its potential role in the aging process.
Collapse
Affiliation(s)
- Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| |
Collapse
|
25
|
Assessment of Antibacterial Activity and the Effect of Copper and Iron Zerovalent Nanoparticles on Gene Expression DnaK in Pseudomonas aeruginosa. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-019-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
de Souza RB, Moreira-de-Sousa C, Ansoar-Rodríguez Y, Coelho MPM, de Souza CP, Bueno OC, Fontanetti CS. Histopatology and HSP70 analysis of the midgut of Rhinocricus padbergi (Diplopoda) in the evaluation of the toxicity of two new metallic-insecticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3023-3033. [PMID: 31838689 DOI: 10.1007/s11356-019-07203-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Millipedes are organisms of the edaphic fauna and have been used as bioindicators for the evaluation of pollutants in the environment, as they are in constant contact with the soil. This study used the millipede Rhinocricus padbergi as surrogate to evaluate the toxicity of two metallic-insecticides that has been developed for leaf-cutting ants management. Millipedes were exposed in terrariums containing different concentrations of the metallic-insecticides and, after periods of 21 and 90 days, three individuals from each terrarium were dissected in order to remove the midgut, the organ where absorption of nutrients and, consequently, toxic substances occurs. The toxic action of the metallic-insecticides was analyzed through qualitative and semi-quantitative analysis of morphophysiological alterations and by quantitative analysis of the HSP70 stress protein. The results showed that the metallic-insecticides may increase HSP70 labeling, although not at all concentrations and periods of exposure. Histopathological alterations were not significant at any concentration, indicating that the cytoprotective action of HSP70 is able to prevent severe damage to the midgut. It is therefore suggested that the metallic-insecticides are not toxic to the species studied here as no toxicity was observed under the conditions tested. In addition, stress protein localization in midgut helps understand how morphophysiological processes can potentially be affected by pesticide exposure.
Collapse
Affiliation(s)
- Raphael B de Souza
- Institute of Bioscience, UNESP - São Paulo State University, Rio Claro, São Paulo, Brazil.
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, Campinas, Brazil.
| | | | | | | | | | - Odair Correa Bueno
- Institute of Bioscience, UNESP - São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Carmem S Fontanetti
- Institute of Bioscience, UNESP - São Paulo State University, Rio Claro, São Paulo, Brazil
| |
Collapse
|
27
|
Lyon MS, Milligan C. Extracellular heat shock proteins in neurodegenerative diseases: New perspectives. Neurosci Lett 2019; 711:134462. [PMID: 31476356 DOI: 10.1016/j.neulet.2019.134462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 01/20/2023]
Abstract
One pathological hallmark of neurodegenerative diseases and CNS trauma is accumulation of insoluble, hydrophobic molecules and protein aggregations found both within and outside cells. These may be the consequences of an inadequate or overburdened cellular response to stresses resulting from potentially toxic changes in extra- and intracellular environments. The upregulated expression of heat shock proteins (HSPs) is one example of a highly conserved cellular response to both internal and external stress. Intracellularly these proteins act as chaperones, playing vital roles in the folding of nascent polypeptides, the translocation of proteins between subcellular locations, and the disaggregation of misfolded or aggregated proteins in an attempt to maintain cellular proteostasis during both homeostatic and stressful conditions. While the predominant study of the HSPs has focused on their intracellular chaperone functions, it remains unclear if all neuronal populations can mount a complete stress response. Alternately, it is now well established that some members of this family of proteins can be secreted by nearby, non-neuronal cells to act in the extracellular environment. This review addresses the current literature detailing the use of exogenous and extracellular HSPs in the treatment of cellular and animal models of neurodegenerative disease. These findings offer a new measure of therapeutic potential to the HSPs, but obstacles must be overcome before they can be efficiently used in a clinical setting.
Collapse
Affiliation(s)
- Miles S Lyon
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
28
|
Protective Effects of Euthyroidism Restoration on Mitochondria Function and Quality Control in Cardiac Pathophysiology. Int J Mol Sci 2019; 20:ijms20143377. [PMID: 31295805 PMCID: PMC6678270 DOI: 10.3390/ijms20143377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunctions are major contributors to heart disease onset and progression. Under ischemic injuries or cardiac overload, mitochondrial-derived oxidative stress, Ca2+ dis-homeostasis, and inflammation initiate cross-talking vicious cycles leading to defects of mitochondrial DNA, lipids, and proteins, concurrently resulting in fatal energy crisis and cell loss. Blunting such noxious stimuli and preserving mitochondrial homeostasis are essential to cell survival. In this context, mitochondrial quality control (MQC) represents an expanding research topic and therapeutic target in the field of cardiac physiology. MQC is a multi-tier surveillance system operating at the protein, organelle, and cell level to repair or eliminate damaged mitochondrial components and replace them by biogenesis. Novel evidence highlights the critical role of thyroid hormones (TH) in regulating multiple aspects of MQC, resulting in increased organelle turnover, improved mitochondrial bioenergetics, and the retention of cell function. In the present review, these emerging protective effects are discussed in the context of cardiac ischemia-reperfusion (IR) and heart failure, focusing on MQC as a strategy to blunt the propagation of connected dangerous signaling cascades and limit adverse remodeling. A better understanding of such TH-dependent signaling could provide insights into the development of mitochondria-targeted treatments in patients with cardiac disease.
Collapse
|
29
|
Zhou M, Zheng S, Liu R, Lu J, Lu L, Zhang C, Liu Z, Luo C, Zhang L, Yant L, Wu Y. Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.). BMC Genomics 2019; 20:505. [PMID: 31215411 PMCID: PMC6580518 DOI: 10.1186/s12864-019-5876-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/31/2019] [Indexed: 01/31/2023] Open
Abstract
Background Environmental toxicity from non-essential heavy metals such as cadmium (Cd), which is released from human activities and other environmental causes, is rapidly increasing. Wheat can accumulate high levels of Cd in edible tissues, which poses a major hazard to human health. It has been reported that heat shock transcription factor A 4a (HsfA4a) of wheat and rice conferred Cd tolerance by upregulating metallothionein gene expression. However, genome-wide identification, classification, and comparative analysis of the Hsf family in wheat is lacking. Further, because of the promising role of Hsf genes in Cd tolerance, there is need for an understanding of the expression of this family and their functions on wheat under Cd stress. Therefore, here we identify the wheat TaHsf family and to begin to understand the molecular mechanisms mediated by the Hsf family under Cd stress. Results We first identified 78 putative Hsf homologs using the latest available wheat genome information, of which 38 belonged to class A, 16 to class B and 24 to class C subfamily. Then, we determined chromosome localizations, gene structures, conserved protein motifs, and phylogenetic relationships of these TaHsfs. Using RNA sequencing data over the course of development, we surveyed expression profiles of these TaHsfs during development and under different abiotic stresses to characterise the regulatory network of this family. Finally, we selected 13 TaHsf genes for expression level verification under Cd stress using qRT-PCR. Conclusions To our knowledge, this is the first report of the genome organization, evolutionary features and expression profiles of the wheat Hsf gene family. This work therefore lays the foundation for targeted functional analysis of wheat Hsf genes, and contributes to a better understanding of the roles and regulatory mechanism of wheat Hsfs under Cd stress. Electronic supplementary material The online version of this article (10.1186/s12864-019-5876-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Shigang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Rong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Chihong Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Zehou Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Congpei Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, section 4 of South RenMin Road, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Bernadotte A, Kumar R, Winblad B, Pavlov PF. In silico identification and biochemical characterization of the human dicarboxylate clamp TPR protein interaction network. FEBS Open Bio 2018; 8:1830-1843. [PMID: 30410862 PMCID: PMC6212638 DOI: 10.1002/2211-5463.12521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022] Open
Abstract
Dicarboxylate clamp tetratricopeptide repeat (dcTPR) motif‐containing proteins are well‐known partners of the heat shock protein (Hsp) 70 and Hsp90 molecular chaperones. Together, they facilitate a variety of intracellular processes, including protein folding and maturation, protein targeting, and protein degradation. An extreme C‐terminal sequence, the EEVD motif, is identical in Hsp70 and Hsp90, and is indispensable for their interaction with dcTPR proteins. However, almost no information is available on the existence of other potential dcTPR‐interacting proteins. We searched the human protein database for proteins with C‐terminal sequences similar to that of Hsp70/Hsp90 to identify potential partners of dcTPR proteins. The search identified 112 proteins containing a Hsp70/Hsp90‐like signature at their C termini. Gene Ontology enrichment analysis of identified proteins revealed enrichment of distinct protein classes, such as molecular chaperones and proteins of the ubiquitin–proteasome system, highlighting the possibility of functional specialization of proteins containing a Hsp70/Hsp90‐like signature. We confirmed interactions of selected proteins containing Hsp70/Hsp90‐like C termini with dcTPR proteins both in vitro and in situ. Analysis of interactions of 10‐amino‐acid peptides corresponding to the C termini of identified proteins with dcTPR proteins revealed significant differences in binding strength between various peptides. We propose a hierarchical mode of interaction within the dcTPR protein network. These findings describe a novel dcTPR protein interaction networks and provide a rationale for selective regulation of protein–protein interactions within this network.
Collapse
Affiliation(s)
- Alexandra Bernadotte
- Department of Molecular Biochemistry and Biophysics Karolinska Institutet Solna Sweden.,Faculty of Mechanics and Mathematics Lomonosov Moscow State University Russia
| | - Rajnish Kumar
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden.,Memory Clinic Theme Aging Karolinska University Hospital Huddinge Sweden
| | - Pavel F Pavlov
- Division of Neurogeriatrics Department of Neuroscience Care and Society Karolinska Institutet Huddinge Sweden.,Memory Clinic Theme Aging Karolinska University Hospital Huddinge Sweden
| |
Collapse
|
31
|
Higuchi-Sanabria R, Paul JW, Durieux J, Benitez C, Frankino PA, Tronnes SU, Garcia G, Daniele JR, Monshietehadi S, Dillin A. Spatial regulation of the actin cytoskeleton by HSF-1 during aging. Mol Biol Cell 2018; 29:2522-2527. [PMID: 30133343 PMCID: PMC6254583 DOI: 10.1091/mbc.e18-06-0362] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There are many studies suggesting an age-associated decline in the actin cytoskeleton, and this has been adopted as common knowledge in the field of aging biology. However, a direct identification of this phenomenon in aging multicellular organisms has not been performed. Here, we express LifeAct::mRuby in a tissue-specific manner to interrogate cytoskeletal organization as a function of age. We show for the first time in Caenorhabditis elegans that the organization and morphology of the actin cytoskeleton deteriorate at advanced age in the muscles, intestine, and hypodermis. Moreover, hsf-1 is essential for regulating cytoskeletal integrity during aging, so that knockdown of hsf-1 results in premature aging of actin and its overexpression protects actin cytoskeletal integrity in the muscles, the intestine, and the hypodermis. Finally, hsf-1 overexpression in neurons alone is sufficient to protect cytoskeletal integrity in nonneuronal cells.
Collapse
Affiliation(s)
| | - Joseph W Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and
| | - Jenni Durieux
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and
| | - Camila Benitez
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and
| | - Phillip A Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and
| | - Sarah U Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and
| | - Gilberto Garcia
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and
| | - Joseph R Daniele
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and
| | | | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, and.,The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
32
|
Xu L, Gong W, Zhang H, Perrett S, Jones GW. The same but different: the role of Hsp70 in heat shock response and prion propagation. Prion 2018; 12:170-174. [PMID: 30074427 DOI: 10.1080/19336896.2018.1507579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The Hsp70 chaperone machinery is a key component of the heat-shock response and a modulator of prion propagation in yeast. A major factor in optimizing Hsp70 function is the highly coordinated activities of the nucleotide-binding and substrate-binding domains of the protein. Hsp70 inter-domain communication occurs through a bidirectional allosteric interaction network between the two domains. Recent findings identified the β6/β7 region of the substrate-binding domain as playing a critical role in optimizing Hsp70 function in both the stress response and prion propagation and highlighted the allosteric interaction interface between the domains. Importantly, while functional changes in Hsp70 can result in phenotypic consequences for both the stress response and prion propagation, there can be significant differences in the levels of phenotypic impact that such changes illicit.
Collapse
Affiliation(s)
- Linan Xu
- a Department of Biology , Maynooth University , Maynooth, Co. Kildare , Ireland
| | - Weibin Gong
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Hong Zhang
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,c University of the Chinese Academy of Sciences , Beijing , China
| | - Sarah Perrett
- b National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,c University of the Chinese Academy of Sciences , Beijing , China
| | - Gary W Jones
- d Centre for Biomedical Science Research, School of Clinical and Applied Sciences , Leeds Beckett University , Leeds , UK
| |
Collapse
|
33
|
Nixon BR, Sebag SC, Glennon MS, Hall EJ, Kounlavong ES, Freeman ML, Becker JR. Nuclear localized Raf1 isoform alters DNA-dependent protein kinase activity and the DNA damage response. FASEB J 2018; 33:1138-1150. [PMID: 30106602 DOI: 10.1096/fj.201800336r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Raf1/c-Raf is a well-characterized serine/threonine-protein kinase that links Ras family members with the MAPK/ERK signaling cascade. We have identified a novel splice isoform of human Raf1 that causes protein truncation and loss of the C-terminal kinase domain (Raf1-tr). We found that Raf1-tr has increased nuclear localization compared with full-length Raf1, and this finding was secondary to reduced binding of Raf1-tr to the cytoplasmic chaperone FK506 binding protein 5. We show that Raf1-tr has increased binding to DNA-dependent protein kinase (DNA-PK), which inhibits DNA-PK function and causes amplification of irradiation- and bleomycin-induced DNA damage. We found that the human colorectal cancer cell line, HCT-116, displayed reduced expression of Raf1-tr, and reintroduction of Raf1-tr sensitized the cells to bleomycin-induced apoptosis. Furthermore, we identified differential Raf1-tr expression in breast cancer cell lines and showed that breast cancer cells with increased Raf1-tr expression become sensitized to bleomycin-induced apoptosis. Collectively, these results demonstrate a novel Raf1 isoform in humans that has a unique noncanonical role in regulating the double-stranded DNA damage response pathway through modulation of DNA-PK function.-Nixon, B. R., Sebag, S. C., Glennon, M. S., Hall, E. J., Kounlavong, E. S., Freeman, M. L., Becker, J. R. Nuclear localized Raf1 isoform alters DNA-dependent protein kinase activity and the DNA damage response.
Collapse
Affiliation(s)
- Benjamin R Nixon
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and
| | - Sara C Sebag
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and
| | - Michael S Glennon
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and
| | - Eric J Hall
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and
| | - Emily S Kounlavong
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and
| | - Michael L Freeman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and
| | - Jason R Becker
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
34
|
Cho H, Shan SO. Substrate relay in an Hsp70-cochaperone cascade safeguards tail-anchored membrane protein targeting. EMBO J 2018; 37:embj.201899264. [PMID: 29973361 DOI: 10.15252/embj.201899264] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are aggregation-prone in aqueous environments, and their biogenesis poses acute challenges to cellular protein homeostasis. How the chaperone network effectively protects integral membrane proteins during their post-translational targeting is not well understood. Here, biochemical reconstitutions showed that the yeast cytosolic Hsp70 is responsible for capturing newly synthesized tail-anchored membrane proteins (TAs) in the soluble form. Moreover, direct interaction of Hsp70 with the cochaperone Sgt2 initiates a sequential series of TA relays to the dedicated TA targeting factor Get3. In contrast to direct loading of TAs to downstream chaperones, stepwise substrate loading via Hsp70 maintains the solubility and targeting competence of TAs, ensuring their efficient delivery to the endoplasmic reticulum (ER). Inactivation of cytosolic Hsp70 severely impairs TA translocation in vivo Our results demonstrate a new role of cytosolic Hsp70 in directly assisting the targeting of an essential class of integral membrane proteins and provide a paradigm for how "substrate funneling" through a chaperone cascade preserves the conformational quality of nascent membrane proteins during their biogenesis.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
35
|
Pavlov PF, Hutter‐Paier B, Havas D, Windisch M, Winblad B. Development of GMP-1 a molecular chaperone network modulator protecting mitochondrial function and its assessment in fly and mice models of Alzheimer's disease. J Cell Mol Med 2018; 22:3464-3474. [PMID: 29704317 PMCID: PMC6010752 DOI: 10.1111/jcmm.13624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/03/2018] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD) and may play an important role in the pathogenesis of disease. It has been shown that amyloid beta peptide (Aβ) and amyloid precursor protein (APP) interact with mitochondria contributing to the mitochondrial dysfunction in AD. Prevention of abnormal protein targeting to mitochondria can protect normal mitochondrial function, increase neuronal survival and at the end, ameliorate symptoms of AD and other neurodegenerative disorders. First steps of mitochondrial protein import are coordinated by molecular chaperones Hsp70 and Hsp90 that bind to the newly synthesized mitochondria-destined proteins and deliver them to the protein import receptors on the surface of organelle. Here, we have described the development of a novel compound named GMP-1 that disrupts interactions between Hsp70/Hsp90 molecular chaperones and protein import receptor Tom70. GMP-1 treatment of SH-SY5Y cells results in decrease in mitochondria-associated APP and protects SH-SY5Y cells from toxic effect of Aβ1-42 exposure. Experiments in drosophila and mice models of AD demonstrated neuroprotective effect of GMP-1 treatment, improvement in memory and behaviour tests as well as restoration of mitochondrial function.
Collapse
Affiliation(s)
- Pavel F. Pavlov
- Division of NeurogeriatricsDepartment of Neuroscience Care and SocietyKarolinska InstitutetHuddingeSweden
- GreatMatterPharma ABSolnaSweden
| | | | | | | | - Bengt Winblad
- Division of NeurogeriatricsDepartment of Neuroscience Care and SocietyKarolinska InstitutetHuddingeSweden
- GreatMatterPharma ABSolnaSweden
| |
Collapse
|
36
|
Kim J, Gee HY, Lee MG. Unconventional protein secretion – new insights into the pathogenesis and therapeutic targets of human diseases. J Cell Sci 2018; 131:131/12/jcs213686. [DOI: 10.1242/jcs.213686] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Most secretory proteins travel through a well-documented conventional secretion pathway involving the endoplasmic reticulum (ER) and the Golgi complex. However, recently, it has been shown that a significant number of proteins reach the plasma membrane or extracellular space via unconventional routes. Unconventional protein secretion (UPS) can be divided into two types: (i) the extracellular secretion of cytosolic proteins that do not bear a signal peptide (i.e. leaderless proteins) and (ii) the cell-surface trafficking of signal-peptide-containing transmembrane proteins via a route that bypasses the Golgi. Understanding the UPS pathways is not only important for elucidating the mechanisms of intracellular trafficking pathways but also has important ramifications for human health, because many of the proteins that are unconventionally secreted by mammalian cells and microorganisms are associated with human diseases, ranging from common inflammatory diseases to the lethal genetic disease of cystic fibrosis. Therefore, it is timely and appropriate to summarize and analyze the mechanisms of UPS involvement in disease pathogenesis, as they may be of use for the development of new therapeutic approaches. In this Review, we discuss the intracellular trafficking pathways of UPS cargos, particularly those related to human diseases. We also outline the disease mechanisms and the therapeutic potentials of new strategies for treating UPS-associated diseases.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
37
|
Johnston CL, Marzano NR, van Oijen AM, Ecroyd H. Using Single-Molecule Approaches to Understand the Molecular Mechanisms of Heat-Shock Protein Chaperone Function. J Mol Biol 2018; 430:4525-4546. [PMID: 29787765 DOI: 10.1016/j.jmb.2018.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 02/01/2023]
Abstract
The heat-shock proteins (Hsp) are a family of molecular chaperones, which collectively form a network that is critical for the maintenance of protein homeostasis. Traditional ensemble-based measurements have provided a wealth of knowledge on the function of individual Hsps and the Hsp network; however, such techniques are limited in their ability to resolve the heterogeneous, dynamic and transient interactions that molecular chaperones make with their client proteins. Single-molecule techniques have emerged as a powerful tool to study dynamic biological systems, as they enable rare and transient populations to be identified that would usually be masked in ensemble measurements. Thus, single-molecule techniques are particularly amenable for the study of Hsps and have begun to be used to reveal novel mechanistic details of their function. In this review, we discuss the current understanding of the chaperone action of Hsps and how gaps in the field can be addressed using single-molecule methods. Specifically, this review focuses on the ATP-independent small Hsps and the broader Hsp network and describes how these dynamic systems are amenable to single-molecule techniques.
Collapse
Affiliation(s)
- Caitlin L Johnston
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Nicholas R Marzano
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Antoine M van Oijen
- School of Chemistry, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Heath Ecroyd
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
38
|
Gee HY, Kim J, Lee MG. Unconventional secretion of transmembrane proteins. Semin Cell Dev Biol 2018; 83:59-66. [PMID: 29580969 DOI: 10.1016/j.semcdb.2018.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
Over the past 20 years it has become evident that eukaryotic cells utilize both conventional and unconventional pathways to deliver proteins to their target sites. Most proteins with a signal peptide and/or a transmembrane domain are conventionally transported through the endoplasmic reticulum to the Golgi apparatus and then to the plasma membrane. However, an increasing number of both soluble cargos (Type I, II, and III) and integral membrane proteins (Type IV) have been found to reach the plasma membrane via unconventional protein secretion (UPS) pathways that bypass the Golgi apparatus under certain conditions, such as cellular stress or development. Well-known examples of transmembrane proteins that undergo Type IV UPS pathways are position-specific antigen subunit alpha 1 integrin, cystic fibrosis transmembrane conductance regulator, myeloproliferative leukemia virus oncogene, and pendrin. Although we collectively refer to all Golgi-bypassing routes as UPS, individual trafficking pathways are diverse compared to the conventional pathways, and the molecular mechanisms of UPS pathways are not yet completely defined. This review summarizes the intracellular trafficking pathways of UPS cargo proteins, particularly those with transmembrane domains, and discusses the molecular machinery involved in the UPS of transmembrane proteins.
Collapse
Affiliation(s)
- Heon Yung Gee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jiyoon Kim
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
39
|
Molecular Chaperones: Structure-Function Relationship and their Role in Protein Folding. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Liu Z, Wang Z, Huang M, Yan L, Ma Z, Yin Y. The FgSsb-FgZuo-FgSsz complex regulates multiple stress responses and mycotoxin production via folding the soluble SNARE Vam7 and β2-tubulin in Fusarium graminearum. Environ Microbiol 2017; 19:5040-5059. [PMID: 29076607 DOI: 10.1111/1462-2920.13968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
Abstract
Hsp70 proteins play important roles in protein folding in the budding yeast, but their functions in pathogenic fungi are largely unknown. Here, we found that Fusarium graminearum Hsp70 proteins FgSsb, FgSsz and their cochaperone FgZuo formed a complex. This complex was required for microtubule morphology, vacuole fusion and endocytosis. More importantly, the β2-tubulin FgTub2 and SNARE protein FgVam7 were identified as targeting proteins of this complex. We further found that the complex FgSsb-FgZuo-FgSsz controlled sensitivity of F. graminearum to the antimicrotubule drug carbendazim and cold stress via regulating the folding of FgTub2. Moreover, this complex assisted the folding of FgVam7, subsequently modulated vacuole fusion and responses to heavy metal, osmotic and oxidative stresses. In addition, the deletion of this complex led to dramatically decreased deoxynivalenol biosynthesis. This study uncovers a novel regulating mechanism of Hsp70 in multiple stress responses in a filamentous fungus.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhihui Wang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mengmeng Huang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Zhonghua Ma
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yanni Yin
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
41
|
Zupanska AK, Schultz ER, Yao J, Sng NJ, Zhou M, Callaham JB, Ferl RJ, Paul AL. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. ASTROBIOLOGY 2017; 17:1077-1111. [PMID: 29088549 PMCID: PMC8024390 DOI: 10.1089/ast.2016.1538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight. Key Words: ARG1-Spaceflight-Gene expression-Physiological adaptation-BRIC. Astrobiology 17, 1077-1111.
Collapse
Affiliation(s)
- Agata K. Zupanska
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Eric R. Schultz
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - JiQiang Yao
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
- Present address: Moffitt Cancer Center, Tampa, Florida
| | - Natasha J. Sng
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Mingqi Zhou
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Jordan B. Callaham
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Robert J. Ferl
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - Anna-Lisa Paul
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
42
|
Jahangirizadeh Z, Ghafouri H, Sajedi RH, Sarikhan S, Taghdir M, Sariri R. Molecular cloning, prokaryotic expression, purification, structural studies and functional implications of Heat Shock Protein 70 (Hsp70) from Rutilus frisii kutum. Int J Biol Macromol 2017; 108:798-807. [PMID: 29107750 DOI: 10.1016/j.ijbiomac.2017.10.174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
A novel Hsp70 chaperone from Rutilus frisii kutum was identified, cloned, expressed, purified and its functional characteristics revealed. The 3D structure of Hsp70 from Rutilus kutum was constructed using the crystal structure of E. coli Hsp70 as the template, with 47% sequence identity. The in vitro ATPase activity assay after 60min, ATP hydrolysis of purified recombinant Hsp70 (8μM) was improved by binding to denatured thermally luciferase (3μM) about 2.5-fold compared with that of Hsp70 alone. Based on the results, it was found that the purified Hsp70 chaperone was able to considerably suppress heat-induced aggregation of luciferase by binding to DnaJ co-chaperone (5μM) more than 70% after 10min at 42°C. In addition, Hsp70 DnaJ complex improved the refolding of heat-shocked luciferase nearly 40% after 60min at 25°C. It was concluded that Hsp70 protein from Rutilus frisii kutum has the critical role in preventing heat-induced aggregation of luciferase and refolding of heat-denatured luciferase was strictly dependent on the activity of Hsp70, thus, this protein can potentially be used for improving the functional properties of luciferase in various applications.
Collapse
Affiliation(s)
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, IR Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, IR Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, IR Iran
| |
Collapse
|
43
|
The small heat shock protein Hsp27: Present understanding and future prospects. J Therm Biol 2017; 69:149-154. [DOI: 10.1016/j.jtherbio.2017.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 01/16/2023]
|
44
|
Bose D, Chakrabarti A. Substrate specificity in the context of molecular chaperones. IUBMB Life 2017; 69:647-659. [PMID: 28748601 DOI: 10.1002/iub.1656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/03/2017] [Indexed: 12/23/2022]
Abstract
Molecular chaperones are one of the key players in protein biology and as such their structure and mechanism of action have been extensively studied. However the substrate specificity of molecular chaperones has not been well investigated. This review aims to summarize what is known about the substrate specificity and substrate recognition motifs of chaperones so as to better understand what substrate specificity means in the context of molecular chaperones. Available literature shows that the majority of chaperones have broad substrate range and recognize non-native conformations of proteins depending on recognition of hydrophobic and/or charged patches. Based on these recognition motifs chaperones can select for early, mid or late folding intermediates. Another major contributor to chaperone specificity are the co-chaperones they interact with as well as the sub-cellular location they are expressed in and the inducability of their expression. Some chaperones which have only one or a few known substrates are reported. In their case the mode of recognition seems to be specific structural complementarity between chaperone and substrate. It can be concluded that the vast majority of chaperones do not show a high degree of specificity but recognize elements that signal non-native protein conformation and their substrate range is modulated by the context they function in. However a few chaperones are known that display exquisite specificity of their substrate e.g. mammalian heat shock protein 47 collagen interaction. © 2017 IUBMB Life, 69(9):647-659, 2017.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| |
Collapse
|
45
|
RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology. G3-GENES GENOMES GENETICS 2017; 7:2023-2038. [PMID: 28500055 PMCID: PMC5499113 DOI: 10.1534/g3.117.041632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.
Collapse
|
46
|
Dwivedi S, Kumar M, Trivedi SP. Mitigating potential of Melissa officinale against As 3+-induced cytotoxicity and transcriptional alterations of Hsp70 and Hsp27 in fish, Channa punctatus (Bloch). ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:306. [PMID: 28573351 DOI: 10.1007/s10661-017-6002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The mitigating potential of Melissa officinale (MO) (Lamiaceae) against arsenite (As3+)-induced oxidative stress, cytogenotoxicity, and expression of stress genes in fish, Channa punctatus (Bloch), teleost, was explored. After confirming the composition of MO extract, caffeic acid (0.96%), hesperidin (1.73%), naringenin (7.70%), lutenolin (3.29%), kaempferol (11.46%) and hesperetin (6.24%), by HPLC-PDA analysis, the experiment was set up in six groups (G1-G6), each containing 10 specimens. Blood, muscle, gills and liver tissues of control and treated fishes were excised at an interval of 24 till 96 h. Ameliorative potential of MO was confirmed by satisfactory restoration of altered activities of malondialdehyde, hydrogen peroxide, superoxide dismutase, catalase, glutathione peroxidise, glutathione reductase, reduced glutathione and ascorbate peroxidase in G4, G5 and G6, co-exposed with 96 h-LC50/10 As3+ with MO. A significant (p < 0.05) recovery in the frequencies of cytogenotoxic markers, micronuclei, disintegrated nucleus and echinocytes, which were expressed significantly (p < 0.05) in G3 exposed to sub-lethal concentration of ATO alone, was recorded in fish groups (G4, G5 and G6) together treated with 96 h-LC50/10 of ATO and 2, 4 and 8 ppm of MO, respectively. Moreover, the expression of Hsp70 gene was downregulated (2.29-fold); whereas, Hsp27 gene was upregulated (1.16-fold) in G6, the group co-exposed with 96 h-LC50/10 As3+ with 8 ppm of MO in comparison with G3 (3.11-fold for Hsp70; 0.51-fold for Hsp27) after 96 h of exposure period. Thus, it can be inferred that the MO at its tested concentration can be effectively used to mitigate As3+ generated toxicities in C. punctatus.
Collapse
Affiliation(s)
- Shraddha Dwivedi
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Manoj Kumar
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Sunil P Trivedi
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
- ETBL, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India.
| |
Collapse
|
47
|
Study on association of HSP70_hom gene polymorphism with rheumatoid arthritis using capillary electrophoresis-laser induced fluorescence. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Do Carmo S, Crynen G, Paradis T, Reed J, Iulita MF, Ducatenzeiler A, Crawford F, Cuello AC. Hippocampal Proteomic Analysis Reveals Distinct Pathway Deregulation Profiles at Early and Late Stages in a Rat Model of Alzheimer's-Like Amyloid Pathology. Mol Neurobiol 2017; 55:3451-3476. [PMID: 28502044 DOI: 10.1007/s12035-017-0580-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
Abstract
The cerebral accumulation and cytotoxicity of amyloid beta (Aβ) is central to Alzheimer's pathogenesis. However, little is known about how the amyloid pathology affects the global expression of brain proteins at different disease stages. In order to identify genotype and time-dependent significant changes in protein expression, we employed quantitative proteomics analysis of hippocampal tissue from the McGill-R-Thy1-APP rat model of Alzheimer-like amyloid pathology. McGill transgenic rats were compared to wild-type rats at early and late pathology stages, i.e., when intraneuronal Aβ amyloid burden is conspicuous and when extracellular amyloid plaques are abundant with more pronounced cognitive deficits. After correction for multiple testing, the expression levels of 64 proteins were found to be considerably different in transgenic versus wild-type rats at the pre-plaque stage (3 months), and 86 proteins in the post-plaque group (12 months), with only 9 differentially regulated proteins common to the 2 time-points. This minimal overlap supports the hypothesis that different molecular pathways are affected in the hippocampus at early and late stages of the amyloid pathology throughout its continuum. At early stages, disturbances in pathways related to cellular responses to stress, protein homeostasis, and neuronal structure are predominant, while disturbances in metabolic energy generation dominate at later stages. These results shed new light on the molecular pathways affected by the early accumulation of Aβ and how the evolving amyloid pathology impacts other complex metabolic pathways.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Tiffany Paradis
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jon Reed
- Roskamp Institute, Sarasota, FL, USA
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Adriana Ducatenzeiler
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Zhuravleva A, Korzhnev DM. Protein folding by NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:52-77. [PMID: 28552172 DOI: 10.1016/j.pnmrs.2016.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 06/07/2023]
Abstract
Protein folding is a highly complex process proceeding through a number of disordered and partially folded nonnative states with various degrees of structural organization. These transiently and sparsely populated species on the protein folding energy landscape play crucial roles in driving folding toward the native conformation, yet some of these nonnative states may also serve as precursors for protein misfolding and aggregation associated with a range of devastating diseases, including neuro-degeneration, diabetes and cancer. Therefore, in vivo protein folding is often reshaped co- and post-translationally through interactions with the ribosome, molecular chaperones and/or other cellular components. Owing to developments in instrumentation and methodology, solution NMR spectroscopy has emerged as the central experimental approach for the detailed characterization of the complex protein folding processes in vitro and in vivo. NMR relaxation dispersion and saturation transfer methods provide the means for a detailed characterization of protein folding kinetics and thermodynamics under native-like conditions, as well as modeling high-resolution structures of weakly populated short-lived conformational states on the protein folding energy landscape. Continuing development of isotope labeling strategies and NMR methods to probe high molecular weight protein assemblies, along with advances of in-cell NMR, have recently allowed protein folding to be studied in the context of ribosome-nascent chain complexes and molecular chaperones, and even inside living cells. Here we review solution NMR approaches to investigate the protein folding energy landscape, and discuss selected applications of NMR methodology to studying protein folding in vitro and in vivo. Together, these examples highlight a vast potential of solution NMR in providing atomistic insights into molecular mechanisms of protein folding and homeostasis in health and disease.
Collapse
Affiliation(s)
- Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
50
|
Fitter S, Gronthos S, Ooi SS, Zannettino AC. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70. Stem Cells 2017; 35:940-951. [DOI: 10.1002/stem.2560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Stephen Fitter
- Myeloma Research Laboratory, Faculty of Health and Medical Science, Adelaide Medical School
- Cancer Theme, South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide; Adelaide South Australia Australia
- Cancer Theme, South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Soo Siang Ooi
- Myeloma Research Laboratory, Faculty of Health and Medical Science, Adelaide Medical School
- Cancer Theme, South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Andrew C.W. Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Science, Adelaide Medical School
- Cancer Theme, South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| |
Collapse
|