1
|
Han J, Rotenberg D. Multi-omics analysis reveals discordant proteome and transcriptome responses in larval guts of Frankliniella occidentalis infected with an orthotospovirus. INSECT MOLECULAR BIOLOGY 2025. [PMID: 40279100 DOI: 10.1111/imb.12992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025]
Abstract
The western flower thrips, Frankliniella occidentalis, is the principal thrips vector of Orthotospovirus tomatomaculae (order Bunyavirales, family Tospoviridae), a devastating plant-pathogenic virus commonly referred to as tomato spotted wilt virus (TSWV). The larval gut is the gateway for virus transmission by F. occidentalis adults to plants. In a previous report, gut expression at the transcriptome level was subtle but significant in response to TSWV in L1s. Since it has been well documented that the relationship between the expression of mRNA and associated protein products in eukaryotic cells is often discordant, we performed identical, replicated experiments to identify and quantify virus-responsive larval gut proteins to expand our understanding of insect host response to TSWV. While we documented statistically significant, positive correlations between the abundance of proteins (4189 identified) and their cognate mRNAs expressed in first and second instar guts, there was virtually no alignment of individual genes identified to be differentially modulated by virus infection at the transcriptome and proteome levels. Predicted protein-protein interaction networks associated with clusters of co-expressed proteins revealed wide variation in correlation strength between protein and cognate transcript abundance, which appeared to be associated with the type of cellular processes, cellular compartments and network connectivity represented by the proteins. In total, our findings indicate distinct and dynamic regulatory mechanisms of transcript and protein abundance (expression, modifications and/or turnover) in virus-infected gut tissues. This study provides molecular candidates for future functional analysis of thrips vector competence and underscores the necessity of examining complex virus-vector interactions at a systems level.
Collapse
Affiliation(s)
- Jinlong Han
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Ertekin A, Morgan BR, Ryder SP, Massi F. Structure and Dynamics of the CCCH-Type Tandem Zinc Finger Domain of POS-1 and Implications for RNA Binding Specificity. Biochemistry 2024; 63:2632-2647. [PMID: 39321355 DOI: 10.1021/acs.biochem.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
CCCH-type tandem zinc finger (TZF) motifs are found in many RNA-binding proteins involved in regulating mRNA stability, translation, and splicing. In Caenorhabditis elegans, several RNA-binding proteins that regulate embryonic development and cell fate determination contain CCCH TZF domains, including POS-1. Previous biochemical studies have shown that despite high levels of sequence conservation, POS-1 recognizes a broader set of RNA sequences compared to the human homologue tristetraprolin. However, the molecular basis of these differences remains unknown. In this study, we refined the consensus RNA sequence and determined the differing binding specificities of the two zinc fingers of POS-1. We also determined the solution structure and characterized the internal dynamics of the TZF domain of POS-1. From the structure, we identified unique features that define the RNA binding specificity of POS-1. We also observed that the TZF domain of POS-1 is in equilibrium between interconverting conformations. Transitions between these conformations require internal motions involving many residues with correlated dynamics in each ZF. We propose that the correlated dynamics are necessary to allow allosteric communication between the nucleotide-binding pockets observed in the N-terminal ZF. Our study shows that both the structure and conformational plasticity of POS-1 are important in ensuring recognition of its RNA binding targets.
Collapse
Affiliation(s)
- Asli Ertekin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Brittany R Morgan
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Sean P Ryder
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Francesca Massi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
3
|
do Nascimento RG, da Conceição MPF, de Bastos DR, de Toledo Osorio CAB, López RVM, Reis EM, Cerqueira OLD. Prognostic value of Maspin protein level in patients with triple negative breast cancer. Sci Rep 2024; 14:15982. [PMID: 38987610 PMCID: PMC11237076 DOI: 10.1038/s41598-024-53870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/06/2024] [Indexed: 07/12/2024] Open
Abstract
The search for prognostic markers in breast cancer has bumped into a typical feature of these tumors, intra and intertumoral heterogeneity. Changes in the expression profile, localization of these proteins or shedding to the surrounding stroma can be useful in the search for new markers. In this context, classification by molecular subtypes can bring perspectives for both diagnosis and screening for appropriate treatments. However, the Triple Negative (TN) subtype, which is already the one with the worst prognosis, lacks appropriate and consistent molecular markers. In this work, we analyzed 346 human breast cancer samples in tissue microarrays (TMA) from cases diagnosed with invasive breast carcinoma to assess the expression and localization pattern of Maspin and their correlation with clinical parameters. To complement our findings, we also used TCGA data to analyze the mRNA levels of these respective genes. Our data suggests that the TN subtype demonstrates a higher level of cytoplasmic Maspin compared to the other subtypes. Maspin transcript levels follow the same trend. However, TN patients with lower Maspin expression tend to have worse overall survival and free-survival metastasis rates. Finally, we used Maspin expression data to verify possible relationships with the clinicopathological information of our cohort. Our univariate analyses indicate that Maspin is related to the expression of estrogen receptor (ER) and progesterone receptor (PR). Furthermore, Maspin expression levels also showed correlation with Scarff-Bloom-Richardson (SBR) parameter, and stromal Maspin showed a relationship with lymph node involvement. Our data is not consistently robust enough to categorize Maspin as a prognostic marker. However, it does indicate a change in the expression profile within the TN subtype.
Collapse
Affiliation(s)
- Renan Gomes do Nascimento
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil
- Department of Clinical Pharmacy and Oncology, Hospital São Camilo (HSC), São Paulo, SP, 02401-300, Brazil
| | - Mércia Patrícia Ferreira da Conceição
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil
| | - Daniel Rodrigues de Bastos
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil
| | | | - Rossana Verónica Mendoza López
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil
| | - Eduardo Moraes Reis
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Otto Luiz Dutra Cerqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinical Hospital Faculty of Medicine, University of São Paulo (HCFMUSP), São Paulo, SP, 01246-000, Brazil.
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
4
|
Kong SH, Bae JM, Kim JH, Kim SW, Han D, Shin CS. Protein Signatures of Parathyroid Adenoma according to Tumor Volume and Functionality. Endocrinol Metab (Seoul) 2024; 39:375-386. [PMID: 38509667 PMCID: PMC11066450 DOI: 10.3803/enm.2023.1827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/22/2023] [Accepted: 12/21/2023] [Indexed: 03/22/2024] Open
Abstract
BACKGRUOUND Parathyroid adenoma (PA) is a common endocrine disease linked to multiple complications, but the pathophysiology of the disease remains incompletely understood. The study aimed to identify the key regulator proteins and pathways of PA according to functionality and volume through quantitative proteomic analyses. METHODS We conducted a retrospective study of 15 formalin-fixed, paraffin-embedded PA samples from tertiary hospitals in South Korea. Proteins were extracted, digested, and the resulting peptides were analyzed using liquid chromatography-tandem mass spectrometry. Pearson correlation analysis was employed to identify proteins significantly correlated with clinical variables. Canonical pathways and transcription factors were analyzed using Ingenuity Pathway Analysis. RESULTS The median age of the participants was 52 years, and 60.0% were female. Among the 8,153 protein groups analyzed, 496 showed significant positive correlations with adenoma volume, while 431 proteins were significantly correlated with parathyroid hormone (PTH) levels. The proteins SLC12A9, LGALS3, and CARM1 were positively correlated with adenoma volume, while HSP90AB2P, HLA-DRA, and SCD5 showed negative correlations. DCPS, IRF2BPL, and FAM98A were the main proteins that exhibited positive correlations with PTH levels, and SLITRK4, LAP3, and AP4E1 had negative correlations. Canonical pathway analysis demonstrated that the RAN and sirtuin signaling pathways were positively correlated with both PTH levels and adenoma volume, while epithelial adherence junction pathways had negative correlations. CONCLUSION Our study identified pivotal proteins and pathways associated with PA, offering potential therapeutic targets. These findings accentuate the importance of proteomics in understanding disease pathophysiology and the need for further research.
Collapse
Affiliation(s)
- Sung Hye Kong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
5
|
Asseri AH, Islam MR, Alghamdi RM, Altayb HN. Identification of natural antimicrobial peptides mimetic to inhibit Ca 2+ influx DDX3X activity for blocking dengue viral infectivity. J Bioenerg Biomembr 2024; 56:125-139. [PMID: 38095733 DOI: 10.1007/s10863-023-09996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 04/06/2024]
Abstract
Viruses are microscopic biological entities that can quickly invade and multiply in a living organism. Each year, over 36,000 people die and nearly 400 million are infected with the dengue virus (DENV). Despite dengue being an endemic disease, no targeted and effective antiviral peptide resource is available against the dengue species. Antiviral peptides (AVPs) have shown tremendous ability to fight against different viruses. Accelerating antiviral drug discovery is crucial, particularly for RNA viruses. DDX3X, a vital cell component, supports viral translation and interacts with TRPV4, regulating viral RNA metabolism and infectivity. Its diverse signaling pathway makes it a potential therapeutic target. Our study focuses on inhibiting viral RNA translation by blocking the activity of the target gene and the TRPV4-mediated Ca2+ cation channel. Six major proteins from camel milk were first extracted and split with the enzyme pepsin. The antiviral properties were then analyzed using online bioinformatics programs, including AVPpred, Meta-iAVP, AMPfun, and ENNAVIA. The stability of the complex was assessed using MD simulation, MM/GBSA, and principal component analysis. Cytotoxicity evaluations were conducted using COPid and ToxinPred. The top ten AVPs, determined by optimal scores, were selected and saved for docking studies with the GalaxyPepDock tools. Bioinformatics analyses revealed that the peptides had very short hydrogen bond distances (1.8 to 3.6 Å) near the active site of the target protein. Approximately 76% of the peptide residues were 5-11 amino acids long. Additionally, the identified peptide candidates exhibited desirable properties for potential therapeutic agents, including a net positive charge, moderate toxicity, hydrophilicity, and selectivity. In conclusion, this computational study provides promising insights for discovering peptide-based therapeutic agents against DENV.
Collapse
Affiliation(s)
- Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Md Rashedul Islam
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Advanced Biological Invention Centre (Bioinventics), Rajshahi, 6204, Bangladesh
| | - Reem M Alghamdi
- Department of Radiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hisham N Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
6
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
7
|
Elowe CR, Stager M, Gerson AR. Sarcolipin relates to fattening, but not sarco/endoplasmic reticulum Ca2+-ATPase uncoupling, in captive migratory gray catbirds. J Exp Biol 2024; 227:jeb246897. [PMID: 38044822 DOI: 10.1242/jeb.246897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
In order to complete their energetically demanding journeys, migratory birds undergo a suite of physiological changes to prepare for long-duration endurance flight, including hyperphagia, fat deposition, reliance on fat as a fuel source, and flight muscle hypertrophy. In mammalian muscle, SLN is a small regulatory protein which binds to sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and uncouples Ca2+ transport from ATP hydrolysis, increasing energy consumption, heat production, and cytosolic Ca2+ transients that signal for mitochondrial biogenesis, fatigue resistance and a shift to fatty acid oxidation. Using a photoperiod manipulation of captive gray catbirds (Dumetella carolinensis), we investigated whether SLN may play a role in coordinating the development of the migratory phenotype. In response to long-day photostimulation, catbirds demonstrated migratory restlessness and significant body fat stores, alongside higher SLN transcription while SERCA2 remained constant. SLN transcription was strongly correlated with h-FABP and PGC1α transcription, as well as fat mass. However, SLN was not significantly correlated with HOAD or CD36 transcripts or measurements of SERCA activity, SR membrane Ca2+ leak, Ca2+ uptake rates, pumping efficiency or mitochondrial biogenesis. Therefore, SLN may be involved in the process of storing fat and shifting to fat as a fuel, but the mechanism of its involvement remains unclear.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| | - Maria Stager
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003-9316, USA
| |
Collapse
|
8
|
Elowe CR, Babbitt C, Gerson AR. White-throated sparrow ( Zonotrichia albicollis) liver and pectoralis flight muscle transcriptomic changes in preparation for migration. Physiol Genomics 2023; 55:544-556. [PMID: 37694280 DOI: 10.1152/physiolgenomics.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
Migratory songbirds undertake challenging journeys to reach their breeding grounds each spring. They accomplish these nonstop flapping feats of endurance through a suite of physiological changes, including the development of substantial fat stores and flight muscle hypertrophy and an increased capacity for fat catabolism. In addition, migratory birds may show large reductions in organ masses during flight, including the flight muscle and liver, which they must rapidly rebuild during their migratory stopover before replenishing their fat stores. However, the molecular basis of this capacity for rapid tissue remodeling and energetic output has not been thoroughly investigated. We performed RNA-sequencing analysis of the liver and pectoralis flight muscle of captive white-throated sparrows in experimentally photostimulated migratory and nonmigratory condition to explore the mechanisms of seasonal change to metabolism and tissue mass regulation that may facilitate these migratory journeys. Based on transcriptional changes, we propose that tissue-specific adjustments in preparation for migration may alleviate the damaging effects of long-duration activity, including a potential increase to the inflammatory response in the muscle. Furthermore, we hypothesize that seasonal hypertrophy balances satellite cell recruitment and apoptosis, while little evidence appeared in the transcriptome to support myostatin-, insulin-like growth factor 1-, and mammalian target of rapamycin-mediated pathways for muscle growth. These findings can encourage more targeted molecular studies on the unique integration of pathways that we find in the development of the migratory endurance phenotype in songbirds.NEW & NOTEWORTHY Migratory songbirds undergo significant physiological changes to accomplish their impressive migratory journeys. However, we have a limited understanding of the regulatory mechanisms underlying these changes. Here, we explore the transcriptomic changes to the flight muscle and liver of white-throated sparrows as they develop the migratory condition. We use these patterns to develop hypotheses about metabolic flexibility and tissue restructuring in preparation for migration.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| | - Courtney Babbitt
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| | - Alexander R Gerson
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
9
|
Cignarella A, Boscaro C, Albiero M, Bolego C, Barton M. Post-Transcriptional and Epigenetic Regulation of Estrogen Signaling. J Pharmacol Exp Ther 2023; 386:288-297. [PMID: 37391222 DOI: 10.1124/jpet.123.001613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Post-translational and epigenetic regulation are important mechanisms controlling functions of genes and proteins. Although the "classic" estrogen receptors (ERs) have been acknowledged to function in mediating estrogen effects via transcriptional mechanisms, estrogenic agents modulate the turnover of several proteins via post-transcriptional and post-translational pathways including epigenetics. For instance, the metabolic and angiogenic action of G-protein coupled estrogen receptor (GPER) in vascular endothelial cells has been recently elucidated. By interacting with GPER, 17β-estradiol and the GPER agonist G1 enhance endothelial stability of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and capillary tube formation by increasing ubiquitin-specific peptidase 19 levels, thereby reducing PFKFB3 ubiquitination and proteasomal degradation. In addition to ligands, the functional expression and trafficking of ERs can be modulated by post-translational modification, including palmitoylation. MicroRNAs (miRNAs), the most abundant form of endogenous small RNAs in humans, regulate multiple target genes and are at the center of the multi-target regulatory network. This review also discusses the emerging evidence of how miRNAs affect glycolytic metabolism in cancer, as well as their regulation by estrogens. Restoring dysregulated miRNA expression represents a promising strategy to counteract the progression of cancer and other disease conditions. Accordingly, estrogen post-transcriptional regulatory and epigenetic mechanisms represent novel targets for pharmacological and nonpharmacological intervention for the treatment and prevention of hormone-sensitive noncommunicable diseases, including estrogen-sensitive cancers of the reproductive system in women. SIGNIFICANCE STATEMENT: The effects of estrogen are mediated by several mechanisms that are not limited to the transcriptional regulation of target genes. Slowing down the turnover of master regulators of metabolism by estrogens allows cells to rapidly adapt to environmental cues. Identification of estrogen-targeted microRNAs may lead to the development of novel RNA therapeutics that disrupt pathological angiogenesis in estrogen-dependent cancers.
Collapse
Affiliation(s)
- Andrea Cignarella
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Carlotta Boscaro
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Mattia Albiero
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Chiara Bolego
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Matthias Barton
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| |
Collapse
|
10
|
Hou X, Ke J, Chen X, Ai T, Liu X, Qian L, Xiang W, Wang J, Wang C. Changes in the liver of Tinca tinca under successive domestication using an integrated multi-omics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101107. [PMID: 37354750 DOI: 10.1016/j.cbd.2023.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Domestication is the process of modifying the phenotype of a population through anthropic selection from human perspectives. Successive generations of domestication have influenced the physiological characteristics of tench Tinca tinca. In current study, we investigated gene and protein expression alterations in the liver of fifth-generation (F5). A total of 420 genes were found to be upregulated and 351 genes were downregulated, while 410 proteins were upregulated and 279 proteins were downregulated in domesticated T. tinca (DT). The integrated analysis of omics data revealed a total of 55 genes/proteins exhibiting consistent upregulation and 12 genes/proteins displaying consistent downregulation in DT. The upregulated genes/proteins in DT, such as SSR1, DERLIN2, OS9, DNAJB11, and HYOU1, exhibit enrichment in the protein processing in the endoplasmic reticulum pathway. Additionally, upregulated genes/proteins such as IL2RB, F13B, and IRF3 are associated with immune response. Conversely, downregulated genes/proteins in DT, including HSD11B1, CYP24A1, and COMT, play roles in hormone metabolism. These findings indicate that domestication can have a substantial impact on the physiological modifications related to protein processing, immune response, and hormone metabolism in DT. These adaptations potentially enhance their ability to thrive in artificial aquaculture environments, leading to improved growth and development. The exploration of genetic changes in DT will not only improve aquaculture practices but also provide significant insights into the broader process of domestication and its effects on physiological functions.
Collapse
Affiliation(s)
- Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jing Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Tao Ai
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Xiaochen Liu
- Agricultural Technology Extension Station of the 10th Division, Xinjiang Production and Construction Corps, Beitun, Xinjiang, China
| | - Long Qian
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Wei Xiang
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
11
|
Ding X, Du Y, Sun B, Liu L, Le S, Wu C, Chen J, Chen X, Chen S, Xia J. MicroRNA let-7a mediates posttranscriptional inhibition of Nr4A1 and exacerbates cardiac allograft rejection. Cell Signal 2023:110783. [PMID: 37356602 DOI: 10.1016/j.cellsig.2023.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Acute allograft rejection remains a major obstacle after heart transplantation, and CD4+ T cells play a crucial role in allograft rejection. Upregulation of Nr4A1 could regulate CD4+ T-cell function and alleviate allograft rejection. However, the regulatory mechanism of Nr4A1 in allograft rejection remains elusive. METHODS BCLb/c mouse hearts were transplanted into WT C57BL/6 mice, and dynamic detection of the changes in Nr4A1 expression revealed that Nr4A1 was regulated posttranscriptionally after heart transplantation. Potential upstream miRNAs of Nr4A1 were screened, and the transfection of cells with these miRNA mimics/inhibitors and dual-luciferase reporter experiments were performed to clarify the regulatory mechanism of miRNAs on Nr4A1 expression. The miRNA agomiR/antagomiR was applied in vivo to validate the role of the corresponding miRNA in heart transplantation. Finally, Nr4A1 knockout mice and an adoptive T-cell cotransfer model were used to confirm the specific effects of miRNA. RESULTS The expression of Nr4A1 protein (rather than mRNA) exhibited a trend of initially increasing and then decreasing rapidly, and this phenomenon could not be reversed by lysosomal or proteasomal inhibitors. The miRNA let-7a directly binds to the Nr4A1 3'UTR and posttranscriptionally regulates Nr4A1 expression. The let-7a antagomiR prolonged allograft survival and regulated CD4+ T-cell function by upregulating Nr4A1 protein expression in CD4+ T cells. CONCLUSIONS This study confirmed that let-7a is a potential target for interfering with Nr4A1 expression in CD4+ T cells and preventing the pathological progression of cardiac allograft rejection.
Collapse
Affiliation(s)
- Xiangchao Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Sun
- Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Liang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sheng Le
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chuangyan Wu
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuling Chen
- Departments of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province and Central Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Kondo S, Kubota S, Takigawa M. Analyses of the Posttranscriptional Regulation of CCN Genes: Approach to Multiple Steps of CCN2 Gene Expression. Methods Mol Biol 2023; 2582:127-155. [PMID: 36370348 DOI: 10.1007/978-1-0716-2744-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cells generally control the concentration of mRNA via transcriptional and posttranscriptional regulation, so the separate contributions of synthesis and degradation (decay) cannot be discriminated by the quantification of mRNA. To elucidate the contribution of posttranscriptional regulation, all experimental procedures for the analysis of the total transcript level, transcriptional induction, degradation of the target mRNA, and inhibition of mRNA translation are performed either individually or in combination. From our experience, measurement of the steady-state levels of mRNA using quantitative real-time polymerase chain reaction is an essential first step in quantifying the ccn2 gene expression. Subsequently, the effect of transcription rates should be assessed by reporter assays of the ccn2 promoter and nuclear run-on assays. The stability of ccn2 mRNAs is then evaluated in the presence of a metabolic inhibitor actinomycin D, followed by mRNA degradation assays in vitro. Finally, repression of ccn2 mRNA translation can be estimated by comparing the expression of mRNA and protein changes. We herein report the strategic methods used in a series of analyses to elucidate the possible involvement of the posttranscriptional regulatory mechanism of the ccn2 gene and show how this approach can, in theory, be used to elucidate the posttranscriptional regulation of other genes belonging to the CCN family.
Collapse
Affiliation(s)
- Seiji Kondo
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
13
|
Wang X, Huang Z, Li L, Yang Y, Zhang J, Wang L, Yuan J, Li Y. The Role of Alternative Splicing Factors, DDB2-Related Ageing and DNA Damage Repair in the Progression and Prognosis of Stomach Adenocarcinoma Patients. Genes (Basel) 2022; 14:genes14010039. [PMID: 36672781 PMCID: PMC9858704 DOI: 10.3390/genes14010039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
DNA damage response is a key signal transduction pathway in triggering ageing and tumor progression. Abnormal alternative splicing (AS) is associated with tumors and ageing. However, the role of AS factors associated with DNA damage repair and ageing in stomach adenocarcinoma (STAD) remains unclear. We downloaded the percentage of splicing (PSI) values for AS in STAD from the TCGA SpliceSeq database. The PSI values of DNA repair gene AS events were integrated with STAD patient survival data for Cox regression analysis. The prediction model for the overall survival (OS) was constructed by the clinical traits. The tumor immune microenvironment was analyzed by CIBERSORT and ESTIMATE. We detected 824 AS events originating from 166 DNA repair genes. Cox regression analysis provided 21 prognostic AS events connected with OS statistically, and a prognostic prediction model was constructed. The expression of these AS factors was higher in STAD tumors. DDB2 high senescence levels were associated with active immune responses and better survival in STAD patients. We built a novel prognostic model founded on DNA repair genes with AS events and identified that DDB2 may be a potential biomarker to apply in clinics.
Collapse
Affiliation(s)
- Xinshu Wang
- Postgraduate Training Base of Jinzhou Medical University, Shanghai East Hospital, Shanghai 200120, China
| | - Zhiyuan Huang
- Research Center for Translational Medicine, East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Yuntong Yang
- Research Center for Translational Medicine, East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Jiyuan Zhang
- Research Center for Translational Medicine, East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Li Wang
- Research Center for Translational Medicine, East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
- Correspondence: (J.Y.); (Y.L.); Tel.: +86-138-1823-3596 (J.Y.); +86-188-1730-0177 (Y.L.)
| | - Yunhui Li
- Research Center for Translational Medicine, East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
- Ji’an Hospital, Shanghai East Hospital, Ji’an 343000, China
- Correspondence: (J.Y.); (Y.L.); Tel.: +86-138-1823-3596 (J.Y.); +86-188-1730-0177 (Y.L.)
| |
Collapse
|
14
|
Cerqueira OLD, Botelho MCS, Fiore APZP, Osório CABDT, Tomasin R, Morais MCC, López RVM, Cardoso EC, Vilella-Arias SA, Reis EM, Bruni-Cardoso A. Prognostic value of integrin αV expression and localization pattern in invasive breast carcinomas. Neoplasia 2022; 30:100803. [PMID: 35526305 PMCID: PMC9092997 DOI: 10.1016/j.neo.2022.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/18/2022] [Indexed: 10/25/2022]
|
15
|
Ehses J, Schlegel M, Schröger L, Schieweck R, Derdak S, Bilban M, Bauer K, Harner M, Kiebler MA. The dsRBP Staufen2 governs RNP assembly of neuronal Argonaute proteins. Nucleic Acids Res 2022; 50:7034-7047. [PMID: 35687120 PMCID: PMC9262589 DOI: 10.1093/nar/gkac487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Mature microRNAs are bound by a member of the Argonaute (Ago1-4) protein family, forming the core of the RNA-induced silencing complex (RISC). Association of RISC with target mRNAs results in ribonucleoprotein (RNP) assembly involved in translational silencing or RNA degradation. Yet, the dynamics of RNP assembly and its underlying functional implications are unknown. Here, we have characterized the role of the RNA-binding protein Staufen2, a candidate Ago interactor, in RNP assembly. Staufen2 depletion resulted in the upregulation of Ago1/2 and the RISC effector proteins Ddx6 and Dcp1a. This upregulation was accompanied by the displacement of Ago1/2 from processing bodies, large RNPs implicated in RNA storage, and subsequent association of Ago2 with polysomes. In parallel, Staufen2 deficiency decreased global translation and increased dendritic branching. As the observed phenotypes can be rescued by Ago1/2 knockdown, we propose a working model in which both Staufen2 and Ago proteins depend on each other and contribute to neuronal homeostasis.
Collapse
Affiliation(s)
- Janina Ehses
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Melina Schlegel
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Luise Schröger
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University, of Vienna, 1090 Vienna, Austria
| | - Karl Bauer
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Max Harner
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Michael A Kiebler
- To whom correspondence should be addressed. Tel: +49 89 2180 75884; Fax: +49 89 2180 75885;
| |
Collapse
|
16
|
Tanner RL, Gleason LU, Dowd WW. Environment-driven shifts in inter-individual variation and phenotypic integration within subnetworks of the mussel transcriptome and proteome. Mol Ecol 2022; 31:3112-3127. [PMID: 35363903 PMCID: PMC9321163 DOI: 10.1111/mec.16452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
The environment can alter the magnitude of phenotypic variation among individuals, potentially influencing evolutionary trajectories. However, environmental influences on variation are complex and remain understudied. Populations in heterogeneous environments might exhibit more variation, the amount of variation could differ between benign and stressful conditions, and/or variation might manifest in different ways among stages of the gene‐to‐protein expression cascade or among physiological functions. Here, we explore these three issues by quantifying patterns of inter‐individual variation in both transcript and protein expression levels among California mussels, Mytilus californianus Conrad. Mussels were exposed to five ecologically relevant treatments that varied in the mean and interindividual heterogeneity of body temperature. To target a diverse set of physiological functions, we assessed variation within 19 expression subnetworks, including canonical stress‐response pathways and empirically derived coexpression clusters that represent a diffuse set of cellular processes. Variation in expression was particularly pronounced in the treatments with high mean and heterogeneous body temperatures. However, with few exceptions, environment‐dependent shifts of variation in the transcriptome were not reflected in the proteome. A metric of phenotypic integration provided evidence for a greater degree of constraint on relative expression levels (i.e., stronger correlation) within expression subnetworks in benign, homogeneous environments. Our results suggest that environments that are more stressful on average – and which also tend to be more heterogeneous – can relax these expression constraints and reduce phenotypic integration within biochemical subnetworks. Context‐dependent “unmasking” of functional variation may contribute to interindividual differences in physiological phenotype and performance in stressful environments.
Collapse
Affiliation(s)
- Richelle L Tanner
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.,Environmental Science & Policy Program, Chapman University, Orange, CA, 92866, USA
| | - Lani U Gleason
- Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, 95819, USA
| | - W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
17
|
Monteiro GA, Duarte SOD. The Effect of Recombinant Protein Production in Lactococcus lactis Transcriptome and Proteome. Microorganisms 2022; 10:microorganisms10020267. [PMID: 35208722 PMCID: PMC8877491 DOI: 10.3390/microorganisms10020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Lactococcus lactis is a food-grade, and generally recognized as safe, bacterium, which making it ideal for producing plasmid DNA (pDNA) or recombinant proteins for industrial or pharmaceutical applications. The present paper reviews the major findings from L. lactis transcriptome and proteome studies, with an overexpression of native or recombinant proteins. These studies should provide important insights on how to engineer the plasmid vectors and/or the strains in order to achieve high pDNA or recombinant proteins yields, with high quality standards. L. lactis harboring high copy numbers of plasmids for DNA vaccines production showed altered proteome profiles, when compared with a smaller copy number plasmid. For live mucosal vaccination applications, the cell-wall anchored antigens had shown more promising results, when compared with intracellular or secreted antigens. However, previous transcriptome and proteome studies demonstrated that engineering L. lactis to express membrane proteins, mainly with a eukaryotic background, increases the overall cellular burden. Genome engineering strategies could be used to knockout or overexpress the pinpointed genes, so as to increase the profitability of the process. Studies about the effect of protein overexpression on Escherichia coli and Bacillus subtillis transcriptome and proteome are also included.
Collapse
Affiliation(s)
- Gabriel A. Monteiro
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Sofia O. D. Duarte
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
18
|
Narayan V, McMahon M, O'Brien JJ, McAllister F, Buffenstein R. Insights into the Molecular Basis of Genome Stability and Pristine Proteostasis in Naked Mole-Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:287-314. [PMID: 34424521 DOI: 10.1007/978-3-030-65943-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is the longest-lived rodent, with a maximal reported lifespan of 37 years. In addition to its long lifespan - which is much greater than predicted based on its small body size (longevity quotient of ~4.2) - naked mole-rats are also remarkably healthy well into old age. This is reflected in a striking resistance to tumorigenesis and minimal declines in cardiovascular, neurological and reproductive function in older animals. Over the past two decades, researchers have been investigating the molecular mechanisms regulating the extended life- and health- span of this animal, and since the sequencing and assembly of the naked mole-rat genome in 2011, progress has been rapid. Here, we summarize findings from published studies exploring the unique molecular biology of the naked mole-rat, with a focus on mechanisms and pathways contributing to genome stability and maintenance of proteostasis during aging. We also present new data from our laboratory relevant to the topic and discuss our findings in the context of the published literature.
Collapse
Affiliation(s)
| | - Mary McMahon
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | | | | | - Rochelle Buffenstein
- Calico Life Sciences, LLC, South San Francisco, CA, USA. .,Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
19
|
Xu Z, Asakawa S. A model explaining mRNA level fluctuations based on activity demands and RNA age. PLoS Comput Biol 2021; 17:e1009188. [PMID: 34297727 PMCID: PMC8336849 DOI: 10.1371/journal.pcbi.1009188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/04/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
Cellular RNA levels typically fluctuate and are influenced by different transcription rates and RNA degradation rates. However, the understanding of the fundamental relationships between RNA abundance, environmental stimuli, RNA activities, and RNA age distributions is incomplete. Furthermore, the rates of RNA degradation and transcription are difficult to measure in transcriptomic experiments in living organisms, especially in studies involving humans. A model based on activity demands and RNA age was developed to explore the mechanisms of RNA level fluctuations. Using single-cell time-series gene expression experimental data, we assessed the transcription rates, RNA degradation rates, RNA life spans, RNA demand, accumulated transcription levels, and accumulated RNA degradation levels. This model could also predict RNA levels under simulation backgrounds, such as stimuli that induce regular oscillations in RNA abundance, stable RNA levels over time that result from long-term shortage of total RNA activity or from uncontrollable transcription, and relationships between RNA/protein levels and metabolic rates. This information contributes to existing knowledge. Detected cellular RNA levels usually fluctuate. The understanding of the fundamental relationships between RNA level fluctuations, the rates of RNA degradation and transcription, environmental stimuli, RNA activities, and RNA age distributions is incomplete. In the present research, we developed a model based on the demands of RNA (related to intrinsic and/or extrinsic information), RNA age (determines the survival time and biological activity of an RNA), transcription, and RNA degradation to explain the mechanism underlying intracellular RNA level fluctuations. We also explored applicability of the model for analysing dynamic processes between interacting biomolecules, such as the relationship between RNA and protein level fluctuations. Using single-cell time-series gene expression experimental data, we assessed some biological parameters, such as transcription rates, RNA degradation rates, and RNA life spans. This model could also predict RNA levels under simulation backgrounds, such as stimuli that induce regular oscillations in RNA abundance, stable RNA levels over time that result from long-term shortage of total RNA activity or from uncontrollable transcription, and relationships between RNA/protein levels and metabolic rates. This information contributes to existing knowledge and provides a new perspective for future studies.
Collapse
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou, China
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: ,
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
McCarthy J. Engineering and standardization of posttranscriptional biocircuitry in Saccharomyces cerevisiae. Integr Biol (Camb) 2021; 13:210-220. [PMID: 34270725 DOI: 10.1093/intbio/zyab013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/14/2022]
Abstract
This short review considers to what extent posttranscriptional steps of gene expression can provide the basis for novel control mechanisms and procedures in synthetic biology and biotechnology. The term biocircuitry is used here to refer to functionally connected components comprising DNA, RNA or proteins. The review begins with an overview of the diversity of devices being developed and then considers the challenges presented by trying to engineer more scaled-up systems. While the engineering of RNA-based and protein-based circuitry poses new challenges, the resulting 'toolsets' of components and novel mechanisms of operation will open up multiple new opportunities for synthetic biology. However, agreed procedures for standardization will need to be placed at the heart of this expanding field if the full potential benefits are to be realized.
Collapse
Affiliation(s)
- John McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
21
|
Zhang M, Zhen Y, Mi T, Lin S. Integrated RNA-seq and Proteomic Studies Reveal Resource Reallocation towards Energy Metabolism and Defense in Skeletonema marinoi in Response to CO 2 Increase. Appl Environ Microbiol 2021; 87:AEM.02614-20. [PMID: 33355106 PMCID: PMC8090871 DOI: 10.1128/aem.02614-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
Rising atmospheric CO2 concentrations are causing ocean acidification (OA) with significant consequences for marine organisms. Because CO2 is essential for photosynthesis, the effect of elevated CO2 on phytoplankton is more complex and the mechanism is poorly understood. Here we applied RNA-seq and iTRAQ proteomics to investigate the impacts of CO2 increase (from ∼400 to 1000 ppm) on the temperate coastal marine diatom Skeletonema marinoi We identified 32,389 differentially expressed genes (DEGs) and 1,826 differentially expressed proteins (DEPs) from elevated CO2 conditions, accounting for 48.5% of total genes and 25.9% of total proteins we detected, respectively. Elevated pCO2 significantly inhibited the growth of S marinoi, and the 'omic' data suggested that this might be due to compromised photosynthesis in the chloroplast and raised mitochondrial energy metabolism. Furthermore, many genes/proteins associated with nitrogen metabolism, transcriptional regulation, and translational regulation were markedly up-regulated, suggesting enhanced protein synthesis. In addition, S marinoi exhibited higher capacity of ROS production and resistance to oxidative stress. Overall, elevated pCO2 seems to repress photosynthesis and growth of S marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.Importance Rising atmospheric CO2 concentrations are causing ocean acidification with significant consequences for marine organisms. Chain-forming centric diatoms of Skeletonema is one of the most successful groups of eukaryotic primary producers with widespread geographic distribution. Among the recognized 28 species, S. marinoi can be a useful model for investigating the ecological, genetic, physiological, and biochemical characteristics of diatoms in temperate coastal regions. In this study, we found that the elevated pCO2 seems to repress photosynthesis and growth of S. marinoi, and through massive gene expression reconfiguration induce cells to increase investment in protein synthesis, energy metabolism and antioxidative stress defense, likely to maintain pH homeostasis and population survival. This survival strategy may deprive this usually dominant diatom in temperate coastal waters of its competitive advantages in acidified environments.
Collapse
Affiliation(s)
- Mei Zhang
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
- Department of marine science, University of Connecticut, Groton, CT 06340, USA
| | - Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tiezhu Mi
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Senjie Lin
- Department of marine science, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
22
|
Regulation of ddb2 expression in blind cavefish and zebrafish reveals plasticity in the control of sunlight-induced DNA damage repair. PLoS Genet 2021; 17:e1009356. [PMID: 33544716 PMCID: PMC7891740 DOI: 10.1371/journal.pgen.1009356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/18/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
We have gained considerable insight into the mechanisms which recognize and repair DNA damage, but how they adapt to extreme environmental challenges remains poorly understood. Cavefish have proven to be fascinating models for exploring the evolution of DNA repair in the complete absence of UV-induced DNA damage and light. We have previously revealed that the Somalian cavefish Phreatichthys andruzzii, lacks photoreactivation repair via the loss of light, UV and ROS-induced photolyase gene transcription mediated by D-box enhancer elements. Here, we explore whether other systems repairing UV-induced DNA damage have been similarly affected in this cavefish model. By performing a comparative study using P. andruzzii and the surface-dwelling zebrafish, we provide evidence for a conservation of sunlight-regulated Nucleotide Excision Repair (NER). Specifically, the expression of the ddb2 gene which encodes a key NER recognition factor is robustly induced following exposure to light, UV and oxidative stress in both species. As in the case of the photolyase genes, D-boxes in the ddb2 promoter are sufficient to induce transcription in zebrafish. Interestingly, despite the loss of D-box-regulated photolyase gene expression in P. andruzzii, the D-box is required for ddb2 induction by visible light and oxidative stress in cavefish. However, in the cavefish ddb2 gene this D-box-mediated induction requires cooperation with an adjacent, highly conserved E2F element. Furthermore, while in zebrafish UV-induced ddb2 expression results from transcriptional activation accompanied by stabilization of the ddb2 mRNA, in P. andruzzii UV induces ddb2 expression exclusively via an increase in mRNA stability. Thus, we reveal plasticity in the transcriptional and post transcriptional mechanisms regulating the repair of sunlight-induced DNA damage under long-term environmental challenges.
Collapse
|
23
|
Bosso A, Di Maro A, Cafaro V, Di Donato A, Notomista E, Pizzo E. Enzymes as a Reservoir of Host Defence Peptides. Curr Top Med Chem 2021; 20:1310-1323. [PMID: 32223733 DOI: 10.2174/1568026620666200327173815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Host defence peptides (HDPs) are powerful modulators of cellular responses to various types of insults caused by pathogen agents. To date, a wide range of HDPs, from species of different kingdoms including bacteria, plant and animal with extreme diversity in structure and biological activity, have been described. Apart from a limited number of peptides ribosomally synthesized, a large number of promising and multifunctional HDPs have been identified within protein precursors, with properties not necessarily related to innate immunity, consolidating the fascinating hypothesis that proteins have a second or even multiple biological mission in the form of one or more bio-active peptides. Among these precursors, enzymes constitute certainly an interesting group, because most of them are mainly globular and characterized by a fine specific internal structure closely related to their catalytic properties and also because they are yet little considered as potential HDP releasing proteins. In this regard, the main aim of the present review is to describe a panel of HDPs, identified in all canonical classes of enzymes, and to provide a detailed description on hydrolases and their corresponding HDPs, as there seems to exist a striking link between these structurally sophisticated catalysts and their high content in cationic and amphipathic cryptic peptides.
Collapse
Affiliation(s)
- Andrea Bosso
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Valeria Cafaro
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Alberto Di Donato
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
24
|
Cuollo L, Antonangeli F, Santoni A, Soriani A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. BIOLOGY 2020; 9:biology9120485. [PMID: 33371508 PMCID: PMC7767554 DOI: 10.3390/biology9120485] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary A fundamental feature of cellular senescence is the emergence of the Senescence-Associated Secretory Phenotype (SASP), which represents a considerable source of inflammatory and tissue-remodeling cues. The pathophysiological relevance of senescence and SASP has generated a fertile area of research aimed at manipulating the SASP to fight cancer and age-related conditions. This review enlightens the most important mechanisms that regulate the SASP and summarizes the current evidence on the feasibility of intervening on its composition, providing a reading frame of the general potentialities of SASP modulation. Abstract Cellular senescence represents a robust tumor-protecting mechanism that halts the proliferation of stressed or premalignant cells. However, this state of stable proliferative arrest is accompanied by the Senescence-Associated Secretory Phenotype (SASP), which entails the copious secretion of proinflammatory signals in the tissue microenvironment and contributes to age-related conditions, including, paradoxically, cancer. Novel therapeutic strategies aim at eliminating senescent cells with the use of senolytics or abolishing the SASP without killing the senescent cell with the use of the so-called “senomorphics”. In addition, recent works demonstrate the possibility of modifying the composition of the secretome by genetic or pharmacological intervention. The purpose is not to renounce the potent immunostimulatory nature of SASP, but rather learning to modulate it for combating cancer and other age-related diseases. This review describes the main molecular mechanisms regulating the SASP and reports the evidence of the feasibility of abrogating or modulating the SASP, discussing the possible implications of both strategies.
Collapse
Affiliation(s)
- Lorenzo Cuollo
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (L.C.); (A.S.)
- Center for Life Nano Science, Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), 00185 Rome, Italy;
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (L.C.); (A.S.)
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, 86077 Pozzilli, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (L.C.); (A.S.)
- Correspondence:
| |
Collapse
|
25
|
Zhang M, Xing Y, Wang F, Mi T, Zhen Y. Responses of triacylglycerol synthesis in Skeletonema marinoi to nitrogen and phosphate starvations. JOURNAL OF PHYCOLOGY 2020; 56:1505-1520. [PMID: 32602937 DOI: 10.1111/jpy.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Skeletonema marinoi is one of the most widespread marine planktonic diatoms in temperate coastal regions and sometimes can form massive blooms. Yet, the molecular mechanisms of triacylglycerol (TAG) synthesis in nutrient-deficient conditions for this species are still unknown. This study aimed to investigate how the TAG biosynthetic pathway of S. marinoi reacts to the culture age and nitrogen (N) or phosphorus (P) deficiency at molecular levels. Meanwhile, we also described the physiological and biochemical changes of S. marinoi in response to N or P starvation over time. To obtain reliable qRT-PCR data, six putative reference genes were identified for assessing expression stability using geNorm and BestKeeper software, and Actin exhibited the most stable expression across 45 tested S. marinoi samples. We found that the expression of TAG biosynthesis-related genes and ACCase enzyme activity varied in response to the different nutrient conditions and culture age. Taken together, we speculated that the capacity of TAG biosynthesis in S. marinoi is induced by N or P stress, and increases with culture age. Furthermore, TAG biosynthesis appears to respond more strongly to P deficiency than to N deficiency. Our study provides important insights into how diatoms regulate the TAG biosynthetic pathway when stressed by nutrient limitation. Besides, the data obtained from this study also provide useful clues for further exploring genes that can be used for metabolic engineering to enhance lipid production.
Collapse
Affiliation(s)
- Mei Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
| | - Yongze Xing
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536002, China
| | - Fuwen Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
| | - Tiezhu Mi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
| | - Yu Zhen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China
| |
Collapse
|
26
|
Yang X, Zhan P, Feng S, Ji H, Tian W, Wang M, Cheng C, Song B. SRSF6 regulates alternative splicing of genes involved in DNA damage response and DNA repair in HeLa cells. Oncol Rep 2020; 44:1851-1862. [PMID: 32901876 PMCID: PMC7551351 DOI: 10.3892/or.2020.7750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing (AS) occurs in nearly all human genes and abnormal AS has a close association with cancer. Serine and arginine-rich splicing factor 6 (SRSF6), a canonical member of the serine/arginine-rich protein family, has been characterized as an important regulator of AS. However, the role of SRSF6 in regulating AS in cancers has remained to be fully elucidated. In the present study, the median expression of SRSF6 in tumors was determined to be higher compared with that in matched normal tissues in 13 out of 16 cancer types from The Cancer Genome Atlas. To investigate the biological effects of SRSF6 overexpression, an SRSF6-overexpression model of HeLa cells was constructed and it was revealed that SRSF6 overexpression resulted in significantly higher apoptosis and lower proliferation compared to control cells. Transcriptome analysis indicated that overexpression of SRSF6 in cancer cells induced large-scale changes in transcriptional expression levels and AS. Two groups of cervical cancer tumor samples in which SRSF6 was differentially expressed were then selected to analyze potential SRSF6-regulated AS. It was determined that the pattern of SRSF6-regulated AS in clinical samples was similar to that in cancer cells and AS genes were enriched in DNA damage response (DDR) pathways, including DNA repair and double-strand break repair via homologous recombination. Furthermore, AS events regulated by SRSF6 were validated using reverse transcription-quantitative PCR. The present results highlighted that SRSF6 is able to trigger the activation of DDR pathways via regulation of AS to influence cancer progression. These results markedly expand the current understanding of the mechanisms underlying SRSF6-mediated gene regulation and suggest the potential use of SRSF6 as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Peng Zhan
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Shuqiang Feng
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - He Ji
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wenjie Tian
- Department of Urology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Mengdi Wang
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Chao Cheng
- ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China
| | - Bin Song
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
27
|
Nakazawa K, Shichino Y, Iwasaki S, Shiina N. Implications of RNG140 (caprin2)-mediated translational regulation in eye lens differentiation. J Biol Chem 2020; 295:15029-15044. [PMID: 32839273 DOI: 10.1074/jbc.ra120.012715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/07/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of gene expression at the translational level is key to determining cell fate and function. An RNA-binding protein, RNG140 (caprin2), plays a role in eye lens differentiation and has been reported to function in translational regulation. However, the mechanism and its role in eyes has remained unclear. Here, we show that RNG140 binds to the translation initiation factor eukaryotic initiation factor 3 (eIF3) and suppresses translation through mechanisms involving suppression of eIF3-dependent translation initiation. Comprehensive ribosome profiling revealed that overexpression of RNG140 in cultured Chinese hamster ovary cells reduces translation of long mRNAs, including those associated with cell proliferation. RNG140-mediated translational regulation also operates in the mouse eye, where RNG140 knockout increased the translation of long mRNAs. mRNAs involved in lens differentiation, such as crystallin mRNAs, are short and can escape translational inhibition by RNG140 and be translated in differentiating lenses. Thus, this study provides insights into the mechanistic basis of lens cell transition from proliferation to differentiation via RNG140-mediated translational regulation.
Collapse
Affiliation(s)
- Kaori Nakazawa
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan; Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan; Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan.
| |
Collapse
|
28
|
Xu Z, Asakawa S. Physiological RNA dynamics in RNA-Seq analysis. Brief Bioinform 2020; 20:1725-1733. [PMID: 30010714 DOI: 10.1093/bib/bby045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Physiological RNA dynamics cause problems in transcriptome analysis. Physiological RNA accumulation affects the analysis of RNA quantification, and physiological RNA degradation affects the analysis of the RNA sequence length, feature site and quantification. In the present article, we review the effects of physiological degradation and accumulation of RNA on analysing RNA sequencing data. Physiological RNA accumulation and degradation probably led to such phenomena as incorrect estimations of transcription quantification, differential expressions, co-expressions, RNA decay rates, alternative splicing, boundaries of transcription, novel genes, new single-nucleotide polymorphisms, small RNAs and gene fusion. Thus, the transcriptomic data obtained up to date warrant further scrutiny. New and improved techniques and bioinformatics software are needed to produce accurate data in transcriptome research.
Collapse
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
29
|
Piran M, Karbalaei R, Piran M, Aldahdooh J, Mirzaie M, Ansari-Pour N, Tang J, Jafari M. Can We Assume the Gene Expression Profile as a Proxy for Signaling Network Activity? Biomolecules 2020; 10:biom10060850. [PMID: 32503292 PMCID: PMC7355924 DOI: 10.3390/biom10060850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Studying relationships among gene products by expression profile analysis is a common approach in systems biology. Many studies have generalized the outcomes to the different levels of central dogma information flow and assumed a correlation of transcript and protein expression levels. However, the relation between the various types of interaction (i.e., activation and inhibition) of gene products to their expression profiles has not been widely studied. In fact, looking for any perturbation according to differentially expressed genes is the common approach, while analyzing the effects of altered expression on the activity of signaling pathways is often ignored. In this study, we examine whether significant changes in gene expression necessarily lead to dysregulated signaling pathways. Using four commonly used and comprehensive databases, we extracted all relevant gene expression data and all relationships among directly linked gene pairs. We aimed to evaluate the ratio of coherency or sign consistency between the expression level as well as the causal relationships among the gene pairs. Through a comparison with random unconnected gene pairs, we illustrate that the signaling network is incoherent, and inconsistent with the recorded expression profile. Finally, we demonstrate that, to infer perturbed signaling pathways, we need to consider the type of relationships in addition to gene-product expression data, especially at the transcript level. We assert that identifying enriched biological processes via differentially expressed genes is limited when attempting to infer dysregulated pathways.
Collapse
Affiliation(s)
- Mehran Piran
- Bioinformatics and Computational Biology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71336-54361, Iran;
| | - Reza Karbalaei
- Department of Biology, Temple University, Philadelphia, PA 19122, USA;
| | - Mehrdad Piran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 14177-55469, Iran;
| | - Jehad Aldahdooh
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00270 Helsinki, Finland;
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-134, Iran;
| | - Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK;
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00270 Helsinki, Finland;
- Correspondence: (J.T.); (M.J.)
| | - Mohieddin Jafari
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00270 Helsinki, Finland;
- Correspondence: (J.T.); (M.J.)
| |
Collapse
|
30
|
Guo ZH, You ZH, Wang YB, Huang DS, Yi HC, Chen ZH. Bioentity2vec: Attribute- and behavior-driven representation for predicting multi-type relationships between bioentities. Gigascience 2020; 9:giaa032. [PMID: 32533701 PMCID: PMC7293023 DOI: 10.1093/gigascience/giaa032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/06/2020] [Accepted: 03/13/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The explosive growth of genomic, chemical, and pathological data provides new opportunities and challenges for humans to thoroughly understand life activities in cells. However, there exist few computational models that aggregate various bioentities to comprehensively reveal the physical and functional landscape of biological systems. RESULTS We constructed a molecular association network, which contains 18 edges (relationships) between 8 nodes (bioentities). Based on this, we propose Bioentity2vec, a new method for representing bioentities, which integrates information about the attributes and behaviors of a bioentity. Applying the random forest classifier, we achieved promising performance on 18 relationships, with an area under the curve of 0.9608 and an area under the precision-recall curve of 0.9572. CONCLUSIONS Our study shows that constructing a network with rich topological and biological information is important for systematic understanding of the biological landscape at the molecular level. Our results show that Bioentity2vec can effectively represent biological entities and provides easily distinguishable information about classification tasks. Our method is also able to simultaneously predict relationships between single types and multiple types, which will accelerate progress in biological experimental research and industrial product development.
Collapse
Affiliation(s)
- Zhen-Hao Guo
- XinJiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, No. 40-1, Beijing South Road, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu-Hong You
- XinJiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, No. 40-1, Beijing South Road, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Bin Wang
- School of Cyber Science and Technology, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - De-Shuang Huang
- Computer Science Department, Tongji University, Shanghai 200000, China
| | - Hai-Cheng Yi
- XinJiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, No. 40-1, Beijing South Road, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Heng Chen
- XinJiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, No. 40-1, Beijing South Road, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Carvalho Barbosa C, Calhoun SH, Wieden HJ. Non-coding RNAs: what are we missing? Biochem Cell Biol 2020; 98:23-30. [DOI: 10.1139/bcb-2019-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, the importance of small non-coding RNAs (sncRNAs) as regulatory molecules has become apparent in all three domains of life (archaea, bacteria, eukaryotes). In fact, sncRNAs play an important role in the control of gene expression at both the transcriptional and the post-transcriptional level, with crucial roles in fine-tuning cell responses during internal and external stress. Multiple pathways for sncRNA biogenesis and diverse mechanisms of regulation have been reported, and although biogenesis and mechanisms of sncRNAs in prokaryotes and eukaryotes are different, remarkable similarities exist. Here, we briefly review and compare the major sncRNA classes that act post-transcriptionally, and focus on recent discoveries regarding the ribosome as a target of regulation and the conservation of these mechanisms between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Cristina Carvalho Barbosa
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sydnee H. Calhoun
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
32
|
Abstract
Numerous studies based on new single-cell and single-gene techniques show that individual genes can be transcribed in short bursts or pulses accompanied by changes in pulsing frequencies. Since so many examples of such discontinuous or fluctuating transcription have been found from prokaryotes to mammals, it now seems to be a common mode of gene expression. In this review we discuss the occurrence of the transcriptional fluctuations, the techniques used for their detection, their putative causes, kinetic characteristics, and probable physiological significance.
Collapse
Affiliation(s)
- Evgeny Smirnov
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Matúš Hornáček
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Tomáš Vacík
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Dušan Cmarko
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics , First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
33
|
Tanner RL, Dowd WW. Inter-individual physiological variation in responses to environmental variation and environmental change: Integrating across traits and time. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110577. [PMID: 31521705 DOI: 10.1016/j.cbpa.2019.110577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
Greater understanding of physiological responses to climate change demands deeper comprehension of the causes and consequences of physiological variation. Increasingly, population trait means are being deconstructed into variable signals at the level of individuals. We advocate for greater consideration of such inter-individual physiological variation and how it both depends on and interacts with environmental variability. First, we review several studies on the intertidal mussel Mytilus californianus to illustrate how the magnitude of inter-individual variation may depend on the environmental context analyzed (i.e., is the mean condition benign or stressful?) and/or on the specific physiological metric investigated. Stressful conditions may reveal or mask variation in disparate ways at different levels of analysis (e.g., transcriptome vs. proteome), but we often lack crucial information regarding the relationships among these different physiological metrics and their consequences for fitness. We then reanalyze several published datasets to ask whether individuals employ divergent strategies over time in response to acute heat stress; such time-dependence would further complicate interpretation of physiological variation. However, definitive conclusions are precluded by limited sample sizes and short timescales in extant datasets. A key remaining challenge is to extend these analytical frameworks to longer periods over which individuals in a population experience repeated, but spatially variable, episodic stress events. We conclude that variation at multiple levels of analysis should be investigated over longer periods and, where possible, within individuals (or genotypes) experiencing repeated environmental challenges. Although difficult in practice, such studies will facilitate improved understanding of potential population-level physiological responses to climate change.
Collapse
Affiliation(s)
- Richelle L Tanner
- Washington State University, School of Biological Sciences, P.O. Box 644236, Pullman, WA 99164-4236, USA.
| | - W Wesley Dowd
- Washington State University, School of Biological Sciences, P.O. Box 644236, Pullman, WA 99164-4236, USA
| |
Collapse
|
34
|
Kim EK, Lee SY, Kim Y, Ahn SM, Jang HH. Peroxiredoxin 1 post-transcriptionally regulates snoRNA expression. Free Radic Biol Med 2019; 141:1-9. [PMID: 31158443 DOI: 10.1016/j.freeradbiomed.2019.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/28/2022]
Abstract
Peroxiredoxin 1 (Prx1) is a member of the Prx family that detoxifies various peroxide substrates through conserved catalytic cysteine residues with the use of reducing equivalents. In addition to this well-known role of Prx1, we have previously demonstrated that Prx1 also has RNA-binding properties, but its function as an RNA-binding protein (RBP) remains unknown. To characterize the role of Prx1 as an RBP, we pulled down Prx1-RNA complexes and sequenced the target RNAs of Prx1. Through sequencing and further validation studies, we revealed that Prx1 binds to a specific subset of small nucleolar RNAs (snoRNAs) and regulates these molecules at the post-transcriptional level. We also found that active cysteine residues provide a structural and functional link between these two distinct functions of Prx1 (i.e., ROS scavenging and RNA-binding activities). Prx1 functions as a snoRNA-binding protein in its reduced state, and post-transcriptionally regulates the expression of a set of snoRNAs. However, when the active cysteine residues are oxidized, Prx1 loses its activity as a snoRNA-binding protein. This study is the first report describing the novel role of Prx1 as a post-transcriptional regulator of snoRNAs.
Collapse
Affiliation(s)
- Eun-Kyung Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Sun Young Lee
- Center for Cancer Genome Discovery, Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Yosup Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Sung-Min Ahn
- Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Division of Medical Oncology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea.
| | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
35
|
Nogimori T, Nishiura K, Kawashima S, Nagai T, Oishi Y, Hosoda N, Imataka H, Kitamura Y, Kitade Y, Hoshino SI. Dom34 mediates targeting of exogenous RNA in the antiviral OAS/RNase L pathway. Nucleic Acids Res 2019; 47:432-449. [PMID: 30395302 PMCID: PMC6326797 DOI: 10.1093/nar/gky1087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/19/2018] [Indexed: 11/21/2022] Open
Abstract
The 2′-5′-oligoadenylate synthetase (OAS)/RNase L pathway is an innate immune system that protects hosts against pathogenic viruses and bacteria through cleavage of exogenous single-stranded RNA; however, this system's selective targeting mechanism remains unclear. Here, we identified an mRNA quality control factor Dom34 as a novel restriction factor for a positive-sense single-stranded RNA virus. Downregulation of Dom34 and RNase L increases viral replication, as well as half-life of the viral RNA. Dom34 directly binds RNase L to form a surveillance complex to recognize and eliminate the exogenous RNA in a manner dependent on translation. Interestingly, the feature detected by the surveillance complex is not the specific sequence of the viral RNA but the ‘exogenous nature’ of the RNA. We propose the following model for the selective targeting of exogenous RNA; OAS3 activated by the exogenous RNA releases 2′-5′-oligoadenylates (2–5A), which in turn converts latent RNase L to an active dimer. This accelerates formation of the Dom34-RNase L surveillance complex, and its selective localization to the ribosome on the exogenous RNA, thereby promoting degradation of the RNA. Our findings reveal that the selective targeting of exogenous RNA in antiviral defense occurs via a mechanism similar to that in the degradation of aberrant transcripts in RNA quality control.
Collapse
Affiliation(s)
- Takuto Nogimori
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Kyutatsu Nishiura
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sho Kawashima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takahiro Nagai
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuka Oishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Nao Hosoda
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hiroaki Imataka
- Department of Materials Science and Chemistry and Molecular Nanotechnology Research Center, Graduate School of Engineering, University of Hyogo, Himeji 671-2201, Japan
| | - Yoshiaki Kitamura
- Department of Biomolecular Science, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yukio Kitade
- Department of Biomolecular Science, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
36
|
Xiao R, Li C, Wang C, Cao Y, Zhang L, Guo Y, Xin Y, Zhang H, Zhou G. Adipogenesis associated Mth938 domain containing (AAMDC) protein expression is regulated by alternative polyadenylation and microRNAs. FEBS Lett 2019; 593:1724-1734. [DOI: 10.1002/1873-3468.13449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Rong Xiao
- College of Life Science Liaocheng University China
| | - Chengping Li
- College of Life Science Liaocheng University China
| | - Chao Wang
- College of Life Science Liaocheng University China
| | - Yang Cao
- Branch of Animal Husbandry Jilin Academy of Agricultural Sciences Gongzhuling China
| | - Lichun Zhang
- Branch of Animal Husbandry Jilin Academy of Agricultural Sciences Gongzhuling China
| | - Yan Guo
- College of Life Science Liaocheng University China
| | - Youzhi Xin
- College of Life Science Liaocheng University China
| | - Haiyan Zhang
- College of Life Science Liaocheng University China
| | - Guoli Zhou
- College of Life Science Liaocheng University China
| |
Collapse
|
37
|
Wang R, Han X, Xu S, Xia B, Jiang Y, Xue Y, Wang R. Cloning and characterization of a tyrosine decarboxylase involved in the biosynthesis of galanthamine in Lycoris aurea. PeerJ 2019; 7:e6729. [PMID: 31024762 PMCID: PMC6474336 DOI: 10.7717/peerj.6729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background Galanthamine, one kind of Amaryllidaceae alkaloid extracted from the Lycoris species, is used in the treatment of Alzheimer’s disease. In regards to medical and economic importance, the biosynthesis and regulatory mechanism of the secondary metabolites in Lycoris remain uninvestigated. Methods BLAST was used to identify the sequence of tyrosine decarboxylase in the transcriptome of Lycoris aurea (L’Hér) Herb. The enzyme activity of this TYDC was determined by using heterologous expressed protein in the Escherichia coli cells. The related productive contents of tyramine were detected using High Performance Liquid Chromatography (HPLC). According to the available micro RNA sequencing profiles and degradome database of L. aurea, microRNA396 were isolated, which targets to LaTYDC1 and RNA Ligase-Mediated-Rapid Amplification of cDNA Ends (RLM-RACE) were used to confirm the cleavage. The expression levels of miR396 and LaTYDC1 were measured using a quantitative real-time polymerase chain reaction (qRT-PCR). Results LaTYDC1 was mainly expressed in root, bulb, leaf and flower fitting the models for galanthamine accumulation. This decarboxylase efficiently catalyzes tyrosine to tyramine conversion. Under methyl jasmonate (MeJA) treatment, the expression of LaTYDC1 and the content of tyramine sharply increase. The use of RLM-RACE confirms that miR396 promotes the degradation of LaTYDC1 mRNA. Under MeJA treatment, the expression of miR396 was suppressed while the expression level of LaTYDC1 sharply increased. Following the increase of the miR396 transcriptional level, LaTYDC1 was significantly repressed. Conclusion LaTYDC1 participates in the biosynthesis of galanthamine, and is regulated by miR396. This finding also provides genetic strategy for improving the yield of galanthamine in the future.
Collapse
Affiliation(s)
- Rong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xiaokang Han
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sheng Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Bing Xia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yumei Jiang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yong Xue
- Eco-environmental Protection Research Institute, Shanghai Environmental Protection Monitoring Station of Agriculture, Shanghai Engineering Research Centre of Low-carbon Agriculture (SERLA), Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ren Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
38
|
Wang H, Wu P. Prediction of RNA-protein interactions using conjoint triad feature and chaos game representation. Bioengineered 2019; 9:242-251. [PMID: 30117758 PMCID: PMC6984769 DOI: 10.1080/21655979.2018.1470721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RNA-protein interactions (RPIs) play a very important role in a wide range of post-transcriptional regulations, and identifying whether a given RNA-protein pair can form interactions or not is a vital prerequisite for dissecting the regulatory mechanisms of functional RNAs. Currently, expensive and time-consuming biological assays can only determine a very small portion of all RPIs, which calls for computational approaches to help biologists efficiently and correctly find candidate RPIs. Here, we integrated a successful computing algorithm, conjoint triad feature (CTF), and another method, chaos game representation (CGR), for representing RNA-protein pairs and by doing so developed a prediction model based on these representations and random forest (RF) classifiers. When testing two benchmark datasets, RPI369 and RPI2241, the combined method (CTF+CGR) showed some superiority compared with four existing tools. Especially on RPI2241, the CTF+CGR method improved prediction accuracy (ACC) from 0.91 (the best record of all published works) to 0.95. When independently testing a newly constructed dataset, RPI1449, which only contained experimentally validated RPIs released between 2014 and 2016, our method still showed some generalization capability with an ACC of 0.75. Accordingly, we believe that our hybrid CTF+CGR method will be an important tool for predicting RPIs in the future.
Collapse
Affiliation(s)
- Hongchu Wang
- a Department of Mathematics , South China Normal University , Guangzhou P.R. of China
| | - Pengfei Wu
- b College of Informatics , Huazhong Agricultural University , Wuhan P.R. of China
| |
Collapse
|
39
|
Moritz CP, Mühlhaus T, Tenzer S, Schulenborg T, Friauf E. Poor transcript-protein correlation in the brain: negatively correlating gene products reveal neuronal polarity as a potential cause. J Neurochem 2019; 149:582-604. [PMID: 30664243 DOI: 10.1111/jnc.14664] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/15/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023]
Abstract
Transcription, translation, and turnover of transcripts and proteins are essential for cellular function. The contribution of those factors to protein levels is under debate, as transcript levels and cognate protein levels do not necessarily correlate due to regulation of translation and protein turnover. Here we propose neuronal polarity as a third factor that is particularly evident in the CNS, leading to considerable distances between somata and axon terminals. Consequently, transcript levels may negatively correlate with cognate protein levels in CNS regions, i.e., transcript and protein levels behave reciprocally. To test this hypothesis, we performed an integrative inter-omics study and analyzed three interconnected rat auditory brainstem regions (cochlear nuclear complex, CN; superior olivary complex, SOC; inferior colliculus, IC) and the rest of the brain as a reference. We obtained transcript and protein sets in these regions of interest (ROIs) by DNA microarrays and label-free mass spectrometry, and performed principal component and correlation analyses. We found 508 transcript|protein pairs and detected poor to moderate transcript|protein correlation in all ROIs, as evidenced by coefficients of determination from 0.34 to 0.54. We identified 57-80 negatively correlating gene products in the ROIs and intensively analyzed four of them for which the correlation was poorest. Three cognate proteins (Slc6a11, Syngr1, Tppp) were synaptic and hence candidates for a negative correlation because of protein transport into axon terminals. Thus, we systematically analyzed the negatively correlating gene products. Gene ontology analyses revealed overrepresented transport/synapse-related proteins, supporting our hypothesis. We present 30 synapse/transport-related proteins with poor transcript|protein correlation. In conclusion, our analyses support that protein transport in polar cells is a third factor that influences the protein level and, thereby, the transcript|protein correlation. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/ha28n/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Christian P Moritz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Synaptopathies and Autoantibodies, Institut NeuroMyoGène INSERM U1217/ CNRS, UMR 5310, Faculty of Medicine, University Jean Monnet, Saint-Étienne, France
| | - Timo Mühlhaus
- Computational Systems Biology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Schulenborg
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
40
|
Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A, See L, Chen CA, Schaaf CP, Rosenfeld JA, Panzer JA, Moog U, Hao S, Bye A, Kirk EP, Stankiewicz P, Breman AM, McBride A, Kandula T, Dubbs HA, Macintosh R, Cardamone M, Zhu Y, Ying K, Dias KR, Cho MT, Henderson LB, Baskin B, Morris P, Tao J, Cowley MJ, Dinger ME, Roscioli T, Caluseriu O, Suchowersky O, Sachdev RK, Lichtarge O, Tang J, Boycott KM, Holder JL, Zoghbi HY. A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell 2019; 172:924-936.e11. [PMID: 29474920 DOI: 10.1016/j.cell.2018.02.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/23/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.
Collapse
Affiliation(s)
- Vincenzo A Gennarino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| | - Elizabeth E Palmer
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia; Genetics of Learning Disability Service, Waratah, NSW 2298, Australia
| | - Laura M McDonell
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Li Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda Koire
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren See
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica A Panzer
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann Bye
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Edwin P Kirk
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia; Genetics Laboratory, NSW Health Pathology East Randwick, Sydney, NSW, Australia
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arran McBride
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Tejaswi Kandula
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Holly A Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Michael Cardamone
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Ying Zhu
- Genetics Laboratory, NSW Health Pathology East Randwick, Sydney, NSW, Australia
| | - Kevin Ying
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Kerith-Rae Dias
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Megan T Cho
- GeneDx, 207 Perry Pkwy Gaithersburg, MD 20877, USA
| | | | | | - Paula Morris
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Jiang Tao
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Tony Roscioli
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; Genetics Laboratory, NSW Health Pathology East Randwick, Sydney, NSW, Australia; Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Randwick, NSW 2031, Australia
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, AB T6G 2H7, Canada
| | - Oksana Suchowersky
- Department of Medical Genetics, University of Alberta, AB T6G 2H7, Canada; Departments of Medicine (Neurology) and Pediatrics, University of Alberta, AB, Canada
| | - Rani K Sachdev
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - J Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Satoh R. [The Molecular Basis of Drug Discovery Targeting the Regulatory Mechanism of MAPK Signaling via the Spatial Regulation of RNA-binding Proteins]. YAKUGAKU ZASSHI 2019; 139:7-12. [PMID: 30606933 DOI: 10.1248/yakushi.18-00189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) is a highly conserved serine/threonine kinase that regulates multiple cellular processes such as cell proliferation, differentiation, apoptosis, and inflammation. Rnc1 has been identified as a regulator of Pmk1 MAPK signaling, a homologue of extracellular signal-regulated kinase (ERK)-1 MAPK in mammals. Rnc1 encodes a K-homology (KH)-type RNA-binding protein (RBP). Previously, it was reported that Rnc1 acts as a negative regulator of Pmk1 MAPK signaling through the mRNA stabilization of Pmp1, the MAPK phosphatase for Pmk1 in our laboratory. We analyzed the spatial regulation of Rnc1 and discovered that Rnc1 is exported from the nucleus by the mRNA-export system. The nuclear export of Rnc1 is important for exerting its function to stabilize Pmp1 mRNA. Therefore, the spatial regulation of Rnc1 affects MAPK signaling activity. We also reported that Nrd1, an RRM-type RBP, plays a critical role in cytokinesis by binding to and stabilizing myosin mRNA. Notably, Rnc1 and Nrd1 localize to stress granules (SGs) in response to various environmental stresses. Moreover, SG formation is inhibited in the Nrd1 or Rnc1 deletion cells, whereas the overproduction of Nrd1 or Rnc1, as well as that of mammalian RBP TIA-1, induces granule formation. These data show that Nrd1 and Rnc1 regulate SG formation as a novel SG component. Alterations of SG formation are linked to neurodegenerative diseases and resistance to anti-cancer drugs, thus conferring remarkable clinical importance to SGs. This review discusses the spatial regulation of RBPs or SG formation as novel targets for drug discovery.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| |
Collapse
|
42
|
Networks of mRNA Processing and Alternative Splicing Regulation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:1-27. [PMID: 31342435 DOI: 10.1007/978-3-030-19966-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mRNA processing events introduce an intricate layer of complexity into gene expression processes, supporting a tremendous level of diversification of the genome's coding and regulatory potential, particularly in vertebrate species. The recent development of massive parallel sequencing methods and their adaptation to the identification and quantification of different RNA species and the dynamics of mRNA metabolism and processing has generated an unprecedented view over the regulatory networks that are established at this level, which contribute to sustain developmental, tissue specific or disease specific gene expression programs. In this chapter, we provide an overview of the recent evolution of transcriptome profiling methods and the surprising insights that have emerged in recent years regarding distinct mRNA processing events - from the 5' end to the 3' end of the molecule.
Collapse
|
43
|
Favero M, Belluzzi E, Trisolino G, Goldring MB, Goldring SR, Cigolotti A, Pozzuoli A, Ruggieri P, Ramonda R, Grigolo B, Punzi L, Olivotto E. Inflammatory molecules produced by meniscus and synovium in early and end-stage osteoarthritis: a coculture study. J Cell Physiol 2018; 234:11176-11187. [PMID: 30456760 DOI: 10.1002/jcp.27766] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023]
Abstract
The aim of this study was to identify the molecules and pathways involved in the cross-talk between meniscus and synovium that may play a critical role in osteoarthritis (OA) pathophysiology. Samples of synovium and meniscus were collected from patients with early and end-stage OA and cultured alone or cocultured. Cytokines, chemokines, metalloproteases, and their inhibitors were evaluated at the gene and protein levels. The extracellular matrix (ECM) changes were also investigated. In early OA cultures, higher levels of interleukin-6 (IL-6) and IL-8 messenger RNA were expressed by synovium and meniscus in coculture compared with meniscus cultured alone. RANTES release was significantly increased when the two tissues were cocultured compared with meniscus cultured alone. Increased levels of matrix metalloproteinase-3 (MMP-3) and MMP-10 proteins, as well as increased release of glycosaminoglycans and aggrecan CS846 epitope, were observed when synovium was cocultured with meniscus. In end-stage OA cultures, increased levels of IL-8 and monocyte chemoattractant protein-1 (MCP-1) proteins were released in cocultures compared with cultures of meniscus alone. Chemokine (C-C motif) ligand 21 (CCL21) protein release was higher in meniscus cultured alone and in coculture compared with synovium cultured alone. Increased levels of MMP-3 and 10 proteins were observed when tissues were cocultured compared with meniscus cultured alone. Aggrecan CS846 epitope release was increased in cocultures compared with cultures of either tissue cultured alone. Our study showed the production of inflammatory molecules by synovium and meniscus which could trigger inflammatory signals in early OA patients, and induce ECM loss in the progressive and final stages of OA pathology.
Collapse
Affiliation(s)
- Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy.,RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Belluzzi
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy.,Musculoskeletal Pathology and Oncology Laboratory, Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Giovanni Trisolino
- Department of Pediatric Orthopedics and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Steven R Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Augusto Cigolotti
- Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Pietro Ruggieri
- Department of Orthopaedics and Orthopaedic Oncology, University of Padova, Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy
| | - Brunella Grigolo
- RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy
| | - Eleonora Olivotto
- RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
44
|
Barfield SJ, Aglyamova GV, Bay LK, Matz MV. Contrasting effects of
Symbiodinium
identity on coral host transcriptional profiles across latitudes. Mol Ecol 2018; 27:3103-3115. [DOI: 10.1111/mec.14774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Sarah J. Barfield
- Department of Integrative Biology University of Texas at Austin Austin Texas
| | - Galina V. Aglyamova
- Department of Integrative Biology University of Texas at Austin Austin Texas
| | - Line K. Bay
- Australian Institute of Marine Science Townsville QLD Australia
| | - Mikhail V. Matz
- Department of Integrative Biology University of Texas at Austin Austin Texas
| |
Collapse
|
45
|
Cai X, Huang L, Yang G, Yu Z, Wen J, Zhou S. Transcriptomic, Proteomic, and Bioelectrochemical Characterization of an Exoelectrogen Geobacter soli Grown With Different Electron Acceptors. Front Microbiol 2018; 9:1075. [PMID: 29963016 PMCID: PMC6013743 DOI: 10.3389/fmicb.2018.01075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/07/2018] [Indexed: 01/10/2023] Open
Abstract
The ability of Geobacter species to transfer electrons outside cells enables them to play an important role in biogeochemical and bioenergy processes. Our knowledge of the extracellular electron transfer (EET) process in the genus Geobacter is mainly from the study of G. sulfurreducens, and in order to fully investigate the EET mechanisms in the genus Geobacter, other Geobacter species should also be considered. This study focused on the EET of Geobacter soli GSS01, which exhibited a capability of reducing insoluble Fe(III) oxides and generating electrical current comparable with G. sulfurreducens PCA. Electrochemical characterization, including cyclic voltammetry, differential pulse voltammetry, and electrochemical in situ FTIR spectra, revealed that different redox proteins contributed to the electrochemical behaviors of G. soli and G. sulfurreducens. Based on comparative transcriptomic and proteomic analyses, OmcS was the most upregulated protein in both G. soli and G. sulfurreducens cells grown with insoluble Fe(III) oxides vs. soluble electron acceptor. However, the proteins including OmcE and PilA that were previously reported as being important for EET in G. sulfurreducens were downregulated or unchanged in G. soli cells grown with insoluble electron acceptors vs. soluble electron acceptor, and many proteins that were upregulated in G. soli cells grown with insoluble electron acceptors vs. soluble electron acceptor, such as OmcN, are not important for EET in G. sulfurreducens. We also identified 30 differentially expressed small RNAs (sRNAs) in G. soli cells grown with different acceptors. Taken together, these findings help to understand the versatile EET mechanisms that exist in the genus Geobacter and point to the possibility of sRNA in modulating EET gene expression.
Collapse
Affiliation(s)
- Xixi Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingyan Huang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guiqin Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, China
| | - Junlin Wen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
46
|
The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity. Nat Commun 2018; 9:2307. [PMID: 29899501 PMCID: PMC5998047 DOI: 10.1038/s41467-018-04776-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Ion channels are well placed to transduce environmental cues into signals used by cells to generate a wide range of responses, but little is known about their role in the regulation of RNA metabolism. Here we show that the TRPV4 cation channel binds the DEAD-box RNA helicase DDX3X and regulates its function. TRPV4-mediated Ca2+ influx releases DDX3X from the channel and drives DDX3X nuclear translocation, a process that involves calmodulin (CaM) and the CaM-dependent kinase II. Genetic depletion or pharmacological inhibition of TRPV4 diminishes DDX3X-dependent functions, including nuclear viral export and translation. Furthermore, TRPV4 mediates Ca2+ influx and nuclear accumulation of DDX3X in cells exposed to the Zika virus or the purified viral envelope protein. Consequently, targeting of TRPV4 reduces infectivity of dengue, hepatitis C and Zika viruses. Together, our results highlight the role of TRPV4 in the regulation of DDX3X-dependent control of RNA metabolism and viral infectivity. The ion channel TRPV4 senses many environmental cues, but its role in virus infection is not known. Here, Doñate-Macián et al. show that Zika virus induces TRPV4-mediated Ca2+ influx into cells, resulting in the nuclear accumulation of the DDX3X RNA helicase, which increases virus replication.
Collapse
|
47
|
Li M, Zhao J, Tang N, Sun H, Huang J. Horizontal Gene Transfer From Bacteria and Plants to the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. FRONTIERS IN PLANT SCIENCE 2018; 9:701. [PMID: 29887874 PMCID: PMC5982333 DOI: 10.3389/fpls.2018.00701] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/07/2018] [Indexed: 05/28/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) belong to Glomeromycotina, and are mutualistic symbionts of many land plants. Associated bacteria accompany AMF during their lifecycle to establish a robust tripartite association consisting of fungi, plants and bacteria. Physical association among this trinity provides possibilities for the exchange of genetic materials. However, very few horizontal gene transfer (HGT) from bacteria or plants to AMF has been reported yet. In this study, we complement existing algorithms by developing a new pipeline, Blast2hgt, to efficiently screen for putative horizontally derived genes from a whole genome. Genome analyses of the glomeromycete Rhizophagus irregularis identified 19 fungal genes that had been transferred between fungi and bacteria/plants, of which seven were obtained from bacteria. Another 18 R. irregularis genes were found to be recently acquired from either plants or bacteria. In the R. irregularis genome, gene duplication has contributed to the expansion of three foreign genes. Importantly, more than half of the R. irregularis foreign genes were expressed in various transcriptomic experiments, suggesting that these genes are functional in R. irregularis. Functional annotation and available evidence showed that these acquired genes may participate in diverse but fundamental biological processes such as regulation of gene expression, mitosis and signal transduction. Our study suggests that horizontal gene influx through endosymbiosis is a source of new functions for R. irregularis, and HGT might have played a role in the evolution and symbiotic adaptation of this arbuscular mycorrhizal fungus.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinjie Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Nianwu Tang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
48
|
Zeng Z, Li M, Chen J, Li Q, Ning Q, Zhao J, Xu Y, Xie J, Yu J. Reduced MBD2 expression enhances airway inflammation in bronchial epithelium in COPD. Int J Chron Obstruct Pulmon Dis 2018. [PMID: 29535511 PMCID: PMC5836663 DOI: 10.2147/copd.s148595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common inflammatory lung disease characterized by inflammatory cells activation and production of inflammatory mediators. Methyl-CpG-binding domain protein 2 (MBD2) plays an important role in diverse immunological disorders by regulating immune cell functions, such as differentiation and mediator secretion. However, the role of MBD2 in COPD remains unknown. Methods MBD2 protein expression in lung tissues of patients with COPD and cigarette smoke (CS)-exposed mice were evaluated by Western blot and immunohistochemistry. The role of MBD2 in cigarette smoke extract (CSE)-induction of inflammatory mediator expression in the human bronchial epithelial (HBE) cell line was assessed by silencing MBD2 expression in vitro. The involvement of signaling pathways in mediation of inflammation was tested with signaling inhibitors. Results Compared with controls, MBD2 expression was distinctly reduced in the bronchial epithelium of both patients with COPD and CS-exposed mice. Moreover, MBD2 expression was decreased in HBE after CSE stimulation in vitro. Moreover, MBD2 knockdown enhanced interleukin (IL)-6 and IL-8 expression in HBE in the presence and absence of CSE treatment by the ERK signaling pathway. Conclusion MBD2 protein expression was reduced in the airway epithelium of COPD. In HBE, this reduced expression was associated with increased levels of IL-6 and IL-8 mediated by the ERK pathway. These results suggest that MBD2 could contribute to chronic airway inflammation in COPD.
Collapse
Affiliation(s)
- Zhilin Zeng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease.,Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Miao Li
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Jinkun Chen
- Acadia Junior High School, Winnipeg, MB, Canada
| | - Qinghai Li
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Qin Ning
- Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease
| | - Jun Yu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
49
|
Jia H, Sun W, Li M, Zhang Z. Integrated Analysis of Protein Abundance, Transcript Level, and Tissue Diversity To Reveal Developmental Regulation of Maize. J Proteome Res 2018; 17:822-833. [DOI: 10.1021/acs.jproteome.7b00586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Haitao Jia
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Wei Sun
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Manfei Li
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Zuxin Zhang
- National Key Laboratory of
Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
50
|
Huang W, Ma HY, Huang Y, Li Y, Wang GL, Jiang Q, Wang F, Xiong AS. Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress. PHYSIOLOGIA PLANTARUM 2017; 161:468-485. [PMID: 28767140 DOI: 10.1111/ppl.12609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/09/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
Chlorophyll (Chl) is essential for light harvesting and energy transduction in photosynthesis. A proper amount of Chl within plant cells is important to celery (Apium graveolens) yield and quality. Temperature stress is an influential abiotic stress affecting Chl biosynthesis and plant growth. There are limited proteomic studies regarding Chl accumulation under temperature stress in celery leaves. Here, the proteins from celery leaves under different temperature treatments (4, 25 and 38°C) were analyzed using a proteomic approach. There were 71 proteins identified through MALDI-TOF-TOF analysis. The relative abundance of proteins involved in carbohydrate and energy metabolism, protein metabolism, amino acid metabolism, antioxidant and polyamine biosynthesis were enhanced under cold stress. These temperature stress-responsive proteins may establish a new homeostasis to enhance temperature tolerance. Magnesium chelatase (Mg-chelatase) and glutamate-1-semialdehyde aminotransferase (GSAT), related to Chl biosynthesis, showed increased abundances under cold stress. Meanwhile, the Chl contents were decreased in heat- and cold-stressed celery leaves. The inhibition of Chl biosynthesis may be due to the downregulated mRNA levels of 15 genes involved in Chl biosynthesis. The study will expand our knowledge on Chl biosynthesis and the temperature tolerance mechanisms in celery leaves.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|