1
|
Ghani MU, Shi J, Du Y, Zhong L, Cui H. A comprehensive review on the dynamics of protein kinase CK2 in cancer development and optimizing therapeutic strategies. Int J Biol Macromol 2024; 280:135814. [PMID: 39306165 DOI: 10.1016/j.ijbiomac.2024.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Protein kinase 2 (CK2) is an enzyme ubiquitously present and exhibits extensive kinase activity. It has been strongly linked to tumor progression through the abnormal phosphorylation of key proteins. Research has consistently demonstrated that CK2 is deregulated in various cancer types, with enhanced protein expression and nuclear distribution in tumor cells. CK2 plays a crucial role in a complex network that promotes cell infiltration, migration, proliferation, apoptosis, and cancer progression through multiple pathways, including PI3K/AKT, JAK2/STAT3, ATF4/CDKN1, and HSP90/Cdc37. In addition to its role in cancer growth, there is mounting evidence that CK2 may also affect the immunological dynamics of cancer by altering immune cell functions within the tumor microenvironment, thus facilitating tumor immune evasion. Recent research has increasingly focused on CK2, recognizing it as a therapeutic objective for oncological interventions. This review will critically examine the structure and signaling pathways of CK2, highlighting the significance of further research aimed at enhancing our understanding of the CK2 machinery. Finally, we conclude by refining therapeutic options, notably transitioning from non-pharmacological techniques to strategic CK2 inhibitor use. This development shortens the path to the desired outcome, establishing a pioneering standard in cancer therapy.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Junbo Shi
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yi Du
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
2
|
Montenarh M, Götz C. Protein Kinase CK2α', More than a Backup of CK2α. Cells 2023; 12:2834. [PMID: 38132153 PMCID: PMC10741536 DOI: 10.3390/cells12242834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The serine/threonine protein kinase CK2 is implicated in the regulation of fundamental processes in eukaryotic cells. CK2 consists of two catalytic α or α' isoforms and two regulatory CK2β subunits. These three proteins exist in a free form, bound to other cellular proteins, as tetrameric holoenzymes composed of CK2α2/β2, CK2αα'/β2, or CK2α'2/β2 as well as in higher molecular forms of the tetramers. The catalytic domains of CK2α and CK2α' share a 90% identity. As CK2α contains a unique C-terminal sequence. Both proteins function as protein kinases. These properties raised the question of whether both isoforms are just backups of each other or whether they are regulated differently and may then function in an isoform-specific manner. The present review provides observations that the regulation of both CK2α isoforms is partly different concerning the subcellular localization, post-translational modifications, and aggregation. Up to now, there are only a few isoform-specific cellular binding partners. The expression of both CK2α isoforms seems to vary in different cell lines, in tissues, in the cell cycle, and with differentiation. There are different reports about the expression and the functions of the CK2α isoforms in tumor cells and tissues. In many cases, a cell-type-specific expression and function is known, which raises the question about cell-specific regulators of both isoforms. Another future challenge is the identification or design of CK2α'-specific inhibitors.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany;
| | | |
Collapse
|
3
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
4
|
Nickelsen A, Götz C, Lenz F, Niefind K, König S, Jose J. Analyzing the interactome of human CK2β in prostate carcinoma cells reveals HSP70-1 and Rho guanin nucleotide exchange factor 12 as novel interaction partners. FASEB Bioadv 2023; 5:114-130. [PMID: 36876296 PMCID: PMC9983076 DOI: 10.1096/fba.2022-00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
CK2β is the non-catalytic modulating part of the S/T-protein kinase CK2. However, the overall function of CK2β is poorly understood. Here, we report on the identification of 38 new interaction partners of the human CK2β from lysates of DU145 prostate cancer cells using photo-crosslinking and mass spectrometry, whereby HSP70-1 was identified with high abundance. The KD value of its interaction with CK2β was determined as 0.57 μM by microscale thermophoresis, this being the first time, to our knowledge, that a KD value of CK2β with another protein than CK2α or CK2α' was quantified. Phosphorylation studies excluded HSP70-1 as a substrate or activity modulator of CK2, suggesting a CK2 activity independent interaction of HSP70-1 with CK2β. Co-immunoprecipitation experiments in three different cancer cell lines confirmed the interaction of HSP70-1 with CK2β in vivo. A second identified CK2β interaction partner was Rho guanin nucleotide exchange factor 12, indicating an involvement of CK2β in the Rho-GTPase signal pathway, described here for the first time to our knowledge. This points to a role of CK2β in the interaction network affecting the organization of the cytoskeleton.
Collapse
Affiliation(s)
- Anna Nickelsen
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| | - Claudia Götz
- Department of Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Florian Lenz
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| | - Karsten Niefind
- Department of Chemistry, Institute of BiochemistryUniversity of CologneKölnGermany
| | - Simone König
- Interdisciplinary Center for Clinical Research, Core Unit Proteomics, Medical FacultyUniversity of MünsterMünsterGermany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
5
|
Sun Z, Li Q, Li X, Shi Y, Nan C, Jin Q, Wang X, Zhuo Y, Zhao Z. Casein kinase 2 attenuates brain injury induced by intracerebral hemorrhage via regulation of NR2B phosphorylation. Front Cell Neurosci 2022; 16:911973. [PMID: 35928572 PMCID: PMC9345180 DOI: 10.3389/fncel.2022.911973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Objective Intracerebral hemorrhage (ICH) is a common cerebrovascular disease with high incidence, disability, and mortality. Casein kinase 2 (CK2) is a serine/threonine kinase with hundreds of identified substrates and plays an important role in many diseases. This study aimed to explore whether CK2 plays protective roles in ICH-induced neuronal apoptosis, inflammation, and oxidative stress through regulation NR2B phosphorylation. Methods CK2 expression level of brain tissues taken from ICH patients was determined by immunoblotting. Neurons from embryonic rat and astrocytes from newborn rats were cultured and treated by Hemoglobin chloride (Hemin). The proliferation of astrocytes, the apoptosis and oxidative stress of neurons and the inflammatory factors of astrocytes were detected. CK2 expression was determined in ICH model rats. The effects of CK2 overexpression plasmid (pc-CK2) on neurobehavioral defects and brain water content in ICH rats were observed. Results CK2 expression in ICH patients was down-regulated. Overexpression of CK2 promoted the astrocyte proliferation, inhibited neuronal apoptosis, and reduced astrocyte-mediated inflammation. N-methyl-D-aspartate receptor 2B (NR2B) reversed the effects of pc-CK2 on neurons and astrocytes. CK2 phosphorylated NR2B at the S1480 site, down-regulated the expression of NR2B and interfered with the interaction between NR2B and postsynaptic density protein 95 (PSD95). In vivo experiments showed that the expression of CK2 decreased and the expression of NR2B increased in ICH rats. Furthermore, pc-CK2 attenuated neurobehavioral defects, brain water content and neuronal damage in ICH rats. Conclusion CK2 phosphorylated NR2B, down-regulated the expression of NR2B, interfered with the interaction between NR2B and PSD95, alleviated inflammatory reactions, inhibited neuronal apoptosis and oxidative stress after ICH. CK2 and NR2B may be new potential therapeutic targets for the treatment of ICH. However, the limitation of this study is that we only investigated the regulation of NR2B by CK2.
Collapse
Affiliation(s)
- Zhimin Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, The Third Hospital of Shijiazhuang City, Shijiazhuang, China
| | - Qiyao Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaopeng Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, The First Hospital of Handan City, Handan, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qianxu Jin
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyan Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, China
| | - Yayu Zhuo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Zongmao Zhao,
| |
Collapse
|
6
|
CSNK2 in cancer: pathophysiology and translational applications. Br J Cancer 2022; 126:994-1003. [PMID: 34773100 PMCID: PMC8980014 DOI: 10.1038/s41416-021-01616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Protein kinase CSNK2 (CK2) is a pleiotropic serine/threonine kinase frequently dysregulated in solid and hematologic malignancies. To consolidate a wide range of biological and clinically oriented data from this unique kinase in cancer, this systematic review summarises existing knowledge from in vitro, in vivo and pre-clinical studies on CSNK2 across 24 different human cancer types. CSNK2 mRNA transcripts, protein levels and activity were found to be routinely upregulated in cancer, and commonly identified phosphotargets included AKT, STAT3, RELA, PTEN and TP53. Phenotypically, it frequently influenced evasion of apoptosis, enhancement of proliferation, cell invasion/metastasis and cell cycle control. Clinically, it held prognostic significance across 14 different cancers, and its inhibition in xenograft experiments resulted in a positive treatment response in 12. In conjunction with commentary on preliminary studies of CSNK2 inhibitors in humans, this review harmonises an extensive body of CSNK2 data in cancer and reinforces its emergence as an attractive target for cancer therapy. Continuing to investigate CSNK2 will be crucial to advancing our understanding of CSNK2 biology, and offers the promise of important new discoveries scientifically and clinically.
Collapse
|
7
|
Druggable exosites of the human kino-pocketome. J Comput Aided Mol Des 2020; 34:219-230. [PMID: 31925639 DOI: 10.1007/s10822-019-00276-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Small molecules binding at any of the multiple regulatory sites on the molecular surface of a protein kinase may stabilize or disrupt the corresponding interaction, leading to consequent modulation of the kinase cellular activity. As such, each of these sites represents a potential drug target. Even targeting sites outside the immediate ATP site, the so-called exosites, may cause desirable biological effects through an allosteric mechanism. Targeting exosites can alleviate adverse effects and toxicity that is common when ATP-site compounds bind promiscuously to many other types of kinases. In this study we have identified, catalogued, and annotated all potentially druggable exosites on the protein kinase domains within the existing structural human kinome. We then priority-ranked these exosites by those most amenable to drug design. In order to identify pockets that are either consistent across the kinome, or unique and specific to a particular structure, we have also implemented a normalized representation of all pockets, and displayed these graphically. Finally, we have built a database and designed a web-based interface for users interested in accessing the 3-dimensional representations of these pockets. We envision this information will assist drug discovery efforts searching for untargeted binding pockets in the human kinome.
Collapse
|
8
|
Rational drug-design approach supported with thermodynamic studies - a peptide leader for the efficient bi-substrate inhibitor of protein kinase CK2. Sci Rep 2019; 9:11018. [PMID: 31358826 PMCID: PMC6662822 DOI: 10.1038/s41598-019-47404-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous inhibitors of protein kinases act on the basis of competition, targeting the ATP binding site. In this work, we present a procedure of rational design of a bi-substrate inhibitor, complemented with biophysical assays. The inhibitors of this type are commonly engineered by combining ligands carrying an ATP-like part with a peptide or peptide-mimicking fragment that determines specificity. Approach presented in this paper led to generation of a specific system for independent screening for efficient ligands and peptides, by means of thermodynamic measurements, that assessed the ability of the identified ligand and peptide to combine into a bi-substrate inhibitor. The catalytic subunit of human protein kinase CK2 was used as the model target. Peptide sequence was optimized using peptide libraries [KGDE]-[DE]-[ST]-[DE]3-4-NH2, originated from the consensus CK2 sequence. We identified KESEEE-NH2 peptide as the most promising one, whose binding affinity is substantially higher than that of the reference RRRDDDSDDD peptide. We assessed its potency to form an efficient bi-substrate inhibitor using tetrabromobenzotriazole (TBBt) as the model ATP-competitive inhibitor. The formation of ternary complex was monitored using Differential Scanning Fluorimetry (DSF), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC).
Collapse
|
9
|
Nagatoshi Y, Fujita Y. Protein kinase CK2α subunits constitutively activate ABA signaling in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1525998. [PMID: 30335565 PMCID: PMC6279320 DOI: 10.1080/15592324.2018.1525998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Protein kinase CK2 (formerly known as casein kinase II), a Ser/Thr protein kinase highly conserved in eukaryotes, is essential for cell survival by regulating a wide range of plant growth, development, and stress responses. A growing body of evidence has shown a link between CK2 and abscisic acid (ABA) signaling in response to abiotic stress. However, the roles of CK2 subunits in ABA signaling remain unclear in plants. Our recent work in Arabidopsis thaliana has revealed that CK2α and CK2β subunits inversely modulate ABA signal output. Here, we examine the roles of CK2αs, by assessing how CK2αs affect ABA signaling. Together with the previous findings, our mutant and transient expression analyses demonstrate that CK2αs positively modulate ABA signaling through the core ABA signaling pathway in the presence of ABA, though the positive effect of CK2αs are much smaller than that of core ABA signaling components in ABA response. In addtion, our current and previous findings also suggest that CK2αs play a role in maintaining constitutively active ABA signaling even in the absence of ABA independently of the core ABA signaling pathway. Thus, we found that CK2αs constitutively activate ABA signaling in the presence or absence of ABA in a different manner in Arabidopsis plants.
Collapse
Affiliation(s)
- Yukari Nagatoshi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Yasunari Fujita
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
10
|
Tang S, Zhang N, Zhou Y, Cortopassi WA, Jacobson MP, Zhao LJ, Zhong RG. Structure-based Discovery of Novel CK2α-Binding Cyclic Peptides with Anti-cancer Activity. Mol Inform 2018; 38:e1800089. [PMID: 30307134 DOI: 10.1002/minf.201800089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022]
Abstract
Protein kinase CK2 is considered as an emerging target in cancer therapy, and recent efforts have been made to develop its ATP-competitive inhibitors, but achieving selectivity with respect to related kinases remains challenging because of the highly conserved ATP-binding pocket of kinases. Non-ATP competitive inhibitors might solve this challenge; one such strategy is to identify compounds that target the CK2α/CK2β interface as CK2 holoenzyme antagonists. Here we improved the binding affinity to CK2α and cell-based anti-cancer activity of a CK2β-derived cyclic peptide (Pc) by combining structure-based computational design with experimental evaluation. By analyzing molecular dynamics simulations of Pc bound to CK2α, a series of Pc-derived peptides was rationally designed and synthesized to evaluate their binding affinity to CK2α, as well as anti-proliferative and pro-apoptotic effects against HepG2 cancer cell line. One amino acid substitutions on Pc, I192F, exhibited over 10-fold improvement in the predicted binding affinity to CK2α when compared to Pc, and a cell-permeable version, I192F-Tat, also demonstrated more potent anti-proliferative and pro-apoptotic effects against HepG2 compared to Pc. A second modification of Pc, H193W, also led to more potent cell-based activity, despite having weaker binding affinity (∼5×) to CK2α. The discovery of the I192F and H193W peptides provides new insights for further optimization of CK2 antagonist candidates as anti-cancer leads.
Collapse
Affiliation(s)
- Shan Tang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Yue Zhou
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Wilian A Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94143, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94143, United States
| | - Li-Jiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Ru-Gang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
11
|
Montenarh M, Götz C. Ecto-protein kinase CK2, the neglected form of CK2. Biomed Rep 2018; 8:307-313. [PMID: 29556379 DOI: 10.3892/br.2018.1069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 01/21/2023] Open
Abstract
Ecto-protein kinases, including protein kinase CK2 (former name, casein kinase 2), have been the focus of research for more than 30 years. At the beginning of the ecto-kinase research their identification was performed with substrates and inhibitors whose specificity under the current knowledge was rather limited. Since all currently known ecto-kinases, including ecto-CK2, have intracellular counterparts, one has to exclude that an ecto-localization originates from intracellular counterparts after cell damage. Protein kinase CK2 is involved in cellular key processes such as cell cycle progression, inhibition of apoptosis, DNA damage repair, differentiation and many other processes. CK2 is composed of two catalytic CK2α or CK2α' subunits and two non-catalytic CK2β subunits. Progress in the ecto-kinase and in particular ecto-CK2 studies was made with the use of transfected tagged CK2 subunits, which allowed to follow their individual transport and localization on the cell surface after transfection. Furthermore, immunofluorescence studies with antibodies against CK2 subunits as well as affinity chromatography with a binding partner of CK2 subunits have improved ecto-kinase research. The use of new and more specific inhibitors as well as of substrates, which do not cross the plasma membrane, have further improved the specificity for ecto-CK2. From the various substrates of ecto-CK2, it can be concluded that ecto-CK2 plays a role in Alzheimer disease, cell adhesion, platelet aggregation, immune response and cellular signalling. New tools and techniques, to study ecto-CK2 activity, are required to identify new substrates and thereby new functional implications for ecto-CK2.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|
12
|
Zhou Y, Zhang N, Chen W, Zhao L, Zhong R. Underlying mechanisms of cyclic peptide inhibitors interrupting the interaction of CK2α/CK2β: comparative molecular dynamics simulation studies. Phys Chem Chem Phys 2017; 18:9202-10. [PMID: 26974875 DOI: 10.1039/c5cp06276d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein-protein interactions (PPIs) are fundamental to all biological processes. Recently, the CK2β-derived cyclic peptide Pc has been demonstrated to efficiently antagonize the CK2α/CK2β interaction and strongly affect the phosphorylation of CK2β-dependent CK2 substrate specificity. The binding affinity of Pc to CK2α is destroyed to different extents by two single-point mutations of Tyr188 to Ala (Y188A) and Phe190 to Ala (F190A), which exert negative effects on the inhibitory activity (IC50) of Pc against the CK2α/CK2β interaction from 3.0 μM to 54.0 μM and ≫100 μM, respectively. However, the structural influences of Y188A and F190A mutations on the CK2α-Pc complex remain unclear. In this study, comparative molecular dynamics (MD) simulations, principal component analysis (PCA), domain cross-correlation map (DCCM) analysis and energy calculations were performed on wild type (WT), Y188A mutant, and F190A mutant systems. The results revealed that ordered communications between hydrophobic and polar interactions were essential for CK2α-Pc binding in the WT system. In addition to the loss of the hydrogen bond between Gln36 of CK2α and Gly189 of Pc in the two mutants, the improper recognition mechanisms occurred through different pathways. These pathways included the weakened hydrophobic interactions in the Y188A mutant as well as decreased polar and hydrophobic interactions in the F190A mutant. The energy analysis results qualitatively elucidated the instability of the two mutants and energetic contributions of the key residues. This study not only revealed the structural mechanisms for the decreased binding affinity of Y188A and F190A mutant CK2α-Pc complexes, but also provided valuable clues for the rational design of CK2α/CK2β subunit interaction inhibitors with high affinity and specificity.
Collapse
Affiliation(s)
- Yue Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Na Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Wenjuan Chen
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
13
|
Götz C, Montenarh M. Protein kinase CK2 in development and differentiation. Biomed Rep 2016; 6:127-133. [PMID: 28357063 DOI: 10.3892/br.2016.829] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022] Open
Abstract
Among the human kinomes, protein kinase CK2 (formerly termed casein kinase II) is considered to be essential, as it is implicated in the regulation of various cellular processes. Experiments with pharmacological inhibitors of the kinase activity of CK2 provide evidence that CK2 is essential for development and differentiation. Therefore, the present review addresses the role of CK2 during embryogenesis, neuronal, adipogenic, osteogenic and myogenic differentiation in established model cell lines, and in embryonic, neural and mesenchymal stem cells. CK2 kinase activity appears to be essential in the early stages of differentiation, as CK2 inhibition at early time points generally prevents differentiation. In addition, the present review reports on target proteins of CK2 in embryogenesis and differentiation.
Collapse
Affiliation(s)
- Claudia Götz
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| | - Mathias Montenarh
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Germany
| |
Collapse
|
14
|
Role of CK2-dependent phosphorylation of Ifh1 and Crf1 in transcriptional regulation of ribosomal protein genes in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1004-13. [DOI: 10.1016/j.bbagrm.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/17/2023]
|
15
|
Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci 2015; 72:3305-22. [PMID: 25990538 PMCID: PMC11113558 DOI: 10.1007/s00018-015-1929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.
Collapse
Affiliation(s)
- Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Sofia Giacosa
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Yann Wallez
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
16
|
Schechter MA, Hsieh MKH, Njoroge LW, Thompson JW, Soderblom EJ, Feger BJ, Troupes CD, Hershberger KA, Ilkayeva OR, Nagel WL, Landinez GP, Shah KM, Burns VA, Santacruz L, Hirschey MD, Foster MW, Milano CA, Moseley MA, Piacentino V, Bowles DE. Phosphoproteomic profiling of human myocardial tissues distinguishes ischemic from non-ischemic end stage heart failure. PLoS One 2014; 9:e104157. [PMID: 25117565 PMCID: PMC4130503 DOI: 10.1371/journal.pone.0104157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/06/2014] [Indexed: 12/31/2022] Open
Abstract
The molecular differences between ischemic (IF) and non-ischemic (NIF) heart failure are poorly defined. A better understanding of the molecular differences between these two heart failure etiologies may lead to the development of more effective heart failure therapeutics. In this study extensive proteomic and phosphoproteomic profiles of myocardial tissue from patients diagnosed with IF or NIF were assembled and compared. Proteins extracted from left ventricular sections were proteolyzed and phosphopeptides were enriched using titanium dioxide resin. Gel- and label-free nanoscale capillary liquid chromatography coupled to high resolution accuracy mass tandem mass spectrometry allowed for the quantification of 4,436 peptides (corresponding to 450 proteins) and 823 phosphopeptides (corresponding to 400 proteins) from the unenriched and phospho-enriched fractions, respectively. Protein abundance did not distinguish NIF from IF. In contrast, 37 peptides (corresponding to 26 proteins) exhibited a ≥ 2-fold alteration in phosphorylation state (p<0.05) when comparing IF and NIF. The degree of protein phosphorylation at these 37 sites was specifically dependent upon the heart failure etiology examined. Proteins exhibiting phosphorylation alterations were grouped into functional categories: transcriptional activation/RNA processing; cytoskeleton structure/function; molecular chaperones; cell adhesion/signaling; apoptosis; and energetic/metabolism. Phosphoproteomic analysis demonstrated profound post-translational differences in proteins that are involved in multiple cellular processes between different heart failure phenotypes. Understanding the roles these phosphorylation alterations play in the development of NIF and IF has the potential to generate etiology-specific heart failure therapeutics, which could be more effective than current therapeutics in addressing the growing concern of heart failure.
Collapse
Affiliation(s)
- Matthew A. Schechter
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael K. H. Hsieh
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Linda W. Njoroge
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - J. Will Thompson
- Duke Proteomics Core, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Erik J. Soderblom
- Duke Proteomics Core, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bryan J. Feger
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Constantine D. Troupes
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kathleen A. Hershberger
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Olga R. Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Whitney L. Nagel
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gina P. Landinez
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kishan M. Shah
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Virginia A. Burns
- Duke Translational Research Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lucia Santacruz
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew D. Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew W. Foster
- Division of Pulmonary, Allergy and Critical Care, Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carmelo A. Milano
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - M. Arthur Moseley
- Duke Proteomics Core, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Valentino Piacentino
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dawn E. Bowles
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
17
|
Schnitzler A, Olsen BB, Issinger OG, Niefind K. The Protein Kinase CK2Andante Holoenzyme Structure Supports Proposed Models of Autoregulation and Trans-Autophosphorylation. J Mol Biol 2014; 426:1871-82. [DOI: 10.1016/j.jmb.2014.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
|
18
|
Identification of a novel protein interaction motif in the regulatory subunit of casein kinase 2. Mol Cell Biol 2013; 34:246-58. [PMID: 24216761 DOI: 10.1128/mcb.00968-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Casein kinase 2 (CK2) regulates multiple cellular processes and can promote oncogenesis. Interactions with the CK2β regulatory subunit of the enzyme target its catalytic subunit (CK2α or CK2α') to specific substrates; however, little is known about the mechanisms by which these interactions occur. We previously showed that by binding CK2β, the Epstein-Barr virus (EBV) EBNA1 protein recruits CK2 to promyelocytic leukemia (PML) nuclear bodies, where increased CK2-mediated phosphorylation of PML proteins triggers their degradation. Here we have identified a KSSR motif near the dimerization interface of CK2β as forming part of a protein interaction pocket that mediates interaction with EBNA1. We show that the EBNA1-CK2β interaction is primed by phosphorylation of EBNA1 on S393 (within a polyserine region). This phosphoserine is critical for EBNA1-induced PML degradation but does not affect EBNA1 functions in EBV replication or segregation. Using comparative proteomics of wild-type (WT) and KSSR mutant CK2β, we identified an uncharacterized cellular protein, C18orf25/ARKL1, that also binds CK2β through the KSSR motif and show that this involves a polyserine sequence resembling the CK2β binding sequence in EBNA1. Therefore, we have identified a new mechanism of CK2 interaction used by viral and cellular proteins.
Collapse
|
19
|
Hernández-Torres F, Rastrojo A, Aguado B. Intron retention and transcript chimerism conserved across mammals: Ly6g5b and Csnk2b-Ly6g5b as examples. BMC Genomics 2013; 14:199. [PMID: 23521802 PMCID: PMC3626593 DOI: 10.1186/1471-2164-14-199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 03/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing (AS) is a major mechanism for modulating gene expression of an organism, allowing the synthesis of several structurally and functionally distinct mRNAs and protein isoforms from a unique gene. Related to AS is the Transcription Induced Chimerism (TIC) or Tandem Chimerism, by which chimeric RNAs between adjacent genes can be found, increasing combinatorial complexity of the proteome. The Ly6g5b gene presents particular behaviours in its expression, involving an intron retention event and being capable to form RNA chimera transcripts with the upstream gene Csnk2b. We wanted to characterise these events more deeply in four tissues in six different mammals and analyse their protein products. Results While canonical Csnk2b isoform was widely expressed, Ly6g5b canonical isoform was less ubiquitous, although the Ly6g5b first intron retained transcript was present in all the tissues and species analysed. Csnk2b-Ly6g5b chimeras were present in all the samples analysed, but with restricted expression patterns. Some of these chimeric transcripts maintained correct structural domains from Csnk2b and Ly6g5b. Moreover, we found Csnk2b, Ly6g5b, and Csnk2b-Ly6g5b transcripts that present exon skipping, alternative 5' and 3' splice site and intron retention events. These would generate truncated or aberrant proteins whose role remains unknown. Some chimeric transcripts would encode CSNK2B proteins with an altered C-terminus, which could affect its biological function broadening its substrate specificity. Over-expression of human CSNK2B, LY6G5B, and CSNK2B-LY6G5B proteins, show different patterns of post-translational modifications and cell distribution. Conclusions Ly6g5b intron retention and Csnk2b-Ly6g5b transcript chimerism are broadly distributed in tissues of different mammals.
Collapse
Affiliation(s)
- Francisco Hernández-Torres
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | |
Collapse
|
20
|
Sawada H, Yamahama Y, Yamamoto T, Togawa T, Mase K. Developmental changes in the localization of protein kinase CK2 in non-diapause and diapause eggs of the silkworm, Bombyx mori. Zoolog Sci 2012; 29:6-10. [PMID: 22233490 DOI: 10.2108/zsj.29.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To analyze the role of protein kinase CK2 (CK2) during early embryogenesis in non-diapause and diapause of the silkworm, the distribution and localization of Bombyx mori CK2 (BmCK2) were investigated by an immunohistochemical technique using antibodies against the α- and β-subunits of BmCK2. Both were localized in blastoderm cells of non-diapause and diapause eggs until 24 h after oviposition. More than 24 h after oviposition, however, the distribution of BmCK2 was different in non-diapause and diapause eggs. In non-diapause eggs, BmCK2 was mainly localized in yolk cells. In contrast, in diapause eggs, the localization was mainly observed in germ-band cells. Furthermore, we confirmed that the RNA helicase-like protein that was localized together with BmCK2 in non-diapause eggs was phosphorylated by BmCK2 in vitro. These data suggest that the role of BmCK2 is different in non-diapause and diapause eggs.
Collapse
Affiliation(s)
- Hiroshi Sawada
- Laboratory of Biology, Department of General Studies, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan.
| | | | | | | | | |
Collapse
|
21
|
Landesman-Bollag E, Belkina A, Hovey B, Connors E, Cox C, Seldin DC. Developmental and growth defects in mice with combined deficiency of CK2 catalytic genes. Mol Cell Biochem 2011; 356:227-31. [PMID: 21769451 DOI: 10.1007/s11010-011-0967-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 11/28/2022]
Abstract
The CK2 α and α' catalytic gene products have overlapping biochemical activity, but in vivo, their functions are very different. Deletion of both alleles of CK2α leads to mid-gestational embryonic lethality, while deletion of both alleles of CK2α' does not interfere with viability or development of embryos; however, adult CK2α'-/-males are infertile. To further elucidate developmental roles of CK2, and analyze functional overlap between the two catalytic genes, mice with combined knockouts were bred. Mice bearing any two CK2 catalytic alleles were phenotypically normal. However, inheritance of a single CK2α allele, without either CK2α' allele, resulted in partial embryonic lethality. Such mice that survived through embryogenesis were smaller at birth than littermate controls, and weighed less throughout life. However, their cardiac function and lifespan were normal. Fibroblasts derived from CK2α+/-CK2α'-/- embryos grew poorly in culture. These experiments demonstrate that combined loss of one CK2α allele and both CK2α' alleles leads to unique abnormalities of growth and development.
Collapse
Affiliation(s)
- Esther Landesman-Bollag
- Section of Hematology-Oncology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
22
|
Riera M, Irar S, Vélez-Bermúdez IC, Carretero-Paulet L, Lumbreras V, Pagès M. Role of plant-specific N-terminal domain of maize CK2β1 subunit in CK2β functions and holoenzyme regulation. PLoS One 2011; 6:e21909. [PMID: 21789193 PMCID: PMC3137599 DOI: 10.1371/journal.pone.0021909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
Abstract
Protein kinase CK2 is a highly pleiotropic Ser/Thr kinase ubiquituous in eukaryotic organisms. CK2 is organized as a heterotetrameric enzyme composed of two types of subunits: the catalytic (CK2α) and the regulatory (CK2β). The CK2β subunits enhance the stability, activity and specificity of the holoenzyme, but they can also perform functions independently of the CK2 tetramer. CK2β regulatory subunits in plants differ from their animal or yeast counterparts, since they present an additional specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain. Sequence analysis of the N-terminal domain of land plant CK2β subunit sequences reveals its arrangement through short, conserved motifs, some of them including CK2 autophosphorylation sites. By using maize CK2β1 and a deleted version (ΔNCK2β1) lacking the N-terminal domain, we have demonstrated that CK2β1 is autophosphorylated within the N-terminal domain. Moreover, the holoenzyme composed with CK2α1/ΔNCK2β1 is able to phosphorylate different substrates more efficiently than CK2α1/CK2β1 or CK2α alone. Transient overexpression of CK2β1 and ΔNCK2β1 fused to GFP in different plant systems show that the presence of N-terminal domain enhances aggregation in nuclear speckles and stabilizes the protein against proteasome degradation. Finally, bimolecular fluorescence complementation (BiFC) assays show the nuclear and cytoplasmic location of the plant CK2 holoenzyme, in contrast to the individual CK2α/β subunits mainly observed in the nucleus. All together, our results support the hypothesis that the plant-specific N-terminal domain of CK2β subunits is involved in the down-regulation of the CK2 holoenzyme activity and in the stabilization of CK2β1 protein. In summary, the whole amount of data shown in this work suggests that this domain was acquired by plants for regulatory purposes.
Collapse
Affiliation(s)
- Marta Riera
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Sami Irar
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Isabel C. Vélez-Bermúdez
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Lorenzo Carretero-Paulet
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
- Department of Applied Biology (Area of Genetics). University of Almería, Spain
| | - Victoria Lumbreras
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| | - Montserrat Pagès
- Department of Molecular Genetics, Centre for Research on Agricultural Genomics CRAG (CSIC-IRTA-UAB), Barcelona, Spain
| |
Collapse
|
23
|
Dominguez I, Degano IR, Chea K, Cha J, Toselli P, Seldin DC. CK2α is essential for embryonic morphogenesis. Mol Cell Biochem 2011; 356:209-16. [PMID: 21761203 DOI: 10.1007/s11010-011-0961-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 12/11/2022]
Abstract
CK2 is a highly conserved serine-threonine kinase involved in biological processes such as embryonic development, circadian rhythms, inflammation, and cancer. Biochemical experiments have implicated CK2 in the control of several cellular processes and in the regulation of signal transduction pathways. Our laboratory is interested in characterizing the cellular, signaling, and molecular mechanisms regulated by CK2 during early embryonic development. For this purpose, animal models, including mice deficient in CK2 genes, are indispensable tools. Using CK2α gene-deficient mice, we have recently shown that CK2α is a critical regulator of mid-gestational morphogenetic processes, as CK2α deficiency results in defects in heart, brain, pharyngeal arch, tail bud, limb bud, and somite formation. Morphogenetic processes depend upon the precise coordination of essential cellular processes in which CK2 has been implicated, such as proliferation and survival. Here, we summarize the overall phenotype found in CK2α (-/- ) mice and describe our initial analysis aimed to identify the cellular processes affected in CK2α mutants.
Collapse
Affiliation(s)
- Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Velez-Bermudez IC, Irar S, Carretero-Paulet L, Pagès M, Riera M. Specific characteristics of CK2β regulatory subunits in plants. Mol Cell Biochem 2011; 356:255-60. [PMID: 21750977 DOI: 10.1007/s11010-011-0971-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 01/20/2023]
Abstract
In all eukaryotes, the typical CK2 holoenzyme is an heterotetramer composed of two catalytic (CK2α and CK2α') and two regulatory (CK2β) subunits. One of the distinctive traits of plant CK2 is that they present a greater number of genes encoding for CK2α/β subunits than animals or yeasts, for instance, in Arabidopsis and maize both CK2α/β subunits belong to multigenic families composed by up to four genes. Here, we conducted a genome-wide survey examining 34 different plant genomes in order to investigate if the multigenic property of CK2β genes is a common feature through the entire plant kingdom. Also, at the level of structure, the plant CK2β regulatory subunits present distinctive features as (i) they lack about 20 aminoacids in the C-terminal domain, (ii) they present a specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain, and (iii) the acidic loop region is poorly conserved at the aminoacid level. Since there is no data about CK2β or holoenzyme structure in plants, in this study, we use human CK2β as a template to predict a structure for Zea mays CK2β1 by homology modeling and we discuss about possible structural changes in the acidic loop region that could affect the enzyme regulation.
Collapse
Affiliation(s)
- Isabel Cristina Velez-Bermudez
- Molecular Genetics Department, Centre for Research on Agricultural Genomics CRAG, Campus UAB 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | | | |
Collapse
|
25
|
Ye ZY, Li DP, Li L, Pan HL. Protein kinase CK2 increases glutamatergic input in the hypothalamus and sympathetic vasomotor tone in hypertension. J Neurosci 2011; 31:8271-9. [PMID: 21632948 PMCID: PMC3123887 DOI: 10.1523/jneurosci.1147-11.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/06/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022] Open
Abstract
Increased glutamatergic input in the paraventricular nucleus (PVN) is important for high sympathetic outflow in hypertension, but the associated molecular mechanisms remain unclear. Here, we determined the role of protein kinase CK2 (formerly casein kinase II) in increased N-methyl-d-aspartate receptor (NMDAR) activity in spinally projecting PVN neurons and sympathetic vasomotor tone in spontaneously hypertensive rats (SHRs). The selective CK2 inhibitors 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) or 4,5,6,7-tetrabromobenzotriazole (TBB) significantly decreased the frequency of miniature EPSCs (mEPSCs) of labeled PVN neurons in SHRs but not in Wistar-Kyoto (WKY) normotensive rats. Also, DRB abolished the inhibitory effect of the NMDAR antagonist AP5 on the frequency of mEPSCs in SHRs. Treatment with DRB or TBB significantly reduced the amplitude of evoked NMDA-EPSCs but not AMPA-EPSCs in SHRs. Furthermore, DRB significantly decreased the firing activity of PVN neurons in SHRs but not in WKY rats. The membrane protein level of CK2α in the PVN, but not brainstem and prefrontal cortex, was significantly higher in SHRs than in WKY rats. Lowering blood pressure with celiac ganglionectomy in SHRs did not alter the increased CK2α level and the effects of DRB on mEPSCs and NMDA-EPSCs. In addition, intracerebroventricular injection of DRB not only significantly reduced blood pressure and lumbar sympathetic nerve discharges but also eliminated the inhibitory effect of AP5 microinjected into the PVN on sympathetic nerve activity in SHRs. Our findings suggest that augmented CK2 activity critically contributes to increased presynaptic and postsynaptic NMDAR activity in the PVN and elevated sympathetic vasomotor tone in essential hypertension.
Collapse
Affiliation(s)
- Zeng-You Ye
- Departments of Anesthesiology and Perioperative Medicine and
| | - De-Pei Li
- Critical Care, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, and
| | - Li Li
- Departments of Anesthesiology and Perioperative Medicine and
| | - Hui-Lin Pan
- Departments of Anesthesiology and Perioperative Medicine and
- Programs in Neuroscience and Experimental Therapeutics, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77225
| |
Collapse
|
26
|
Kolaiti RM, Baier A, Szyszka R, Kouyanou-Koutsoukou S. Isolation of a CK2α subunit and the holoenzyme from the mussel Mytilus galloprovincialis and construction of the CK2α and CK2β cDNAs. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:505-516. [PMID: 20922551 DOI: 10.1007/s10126-010-9321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/07/2010] [Indexed: 05/29/2023]
Abstract
Protein kinase CK2 is a ubiquitous, highly pleiotropic, and constitutively active phosphotransferase that phosphorylates mainly serine and threonine residues. CK2 has been studied and characterized in many organisms, from yeast to mammals. The holoenzyme is generally composed of two catalytic (α and/or α') and two regulatory (β) subunits, forming a differently assembled tetramer. The free and catalytically active α/α' subunits can be present in cells under some circumstances. We present here the isolation of a putative catalytic CK2α subunit and holoenzyme from gills of the mussel Mytilus galloprovincialis capable of phosphorylating the purified recombinant ribosomal protein rMgP1. For further analysis of M. galloprovincialis protein kinase CK2, the cDNA molecules of CK2α and CK2β subunits were constructed and cloned into expression vectors, and the recombinant proteins were purified after expression in Escherichia coli. The recombinant MgCK2β subunit and MgP1 were phosphorylated by the purified recombinant MgCK2α subunit. The mussel enzyme presented features typical for CK2: affinity for GTP, inhibition by both heparin and ATP competitive inhibitors (TBBt, TBBz), and sensitivity towards NaCl. Predicted amino acid sequence comparison showed that the M. galloprovincialis MgCK2α and MgCK2β subunits have similar features to their mammalian orthologs.
Collapse
Affiliation(s)
- Regina-Maria Kolaiti
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, Panepistimiopolis, Athens, 15701, Greece
| | | | | | | |
Collapse
|
27
|
Fernández‐Recio J. Prediction of protein binding sites and hot spots. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.45] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Pons C, Talavera D, de la Cruz X, Orozco M, Fernandez-Recio J. Scoring by intermolecular pairwise propensities of exposed residues (SIPPER): a new efficient potential for protein-protein docking. J Chem Inf Model 2011; 51:370-7. [PMID: 21214199 DOI: 10.1021/ci100353e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed and complete structural knowledge of the interactome is one of the grand challenges in Biology, and a variety of computational docking approaches have been developed to complement experimental efforts and help in the characterization of protein-protein interactions. Among the different docking scoring methods, those based on physicochemical considerations can give the maximum accuracy at the atomic level, but they are usually computationally demanding and necessarily noisy when implemented in rigid-body approaches. Coarser-grained knowledge-based potentials are less sensitive to details of atomic arrangements, thus providing an efficient alternative for scoring of rigid-body docking poses. In this study, we have extracted new statistical potentials from intermolecular pairs of exposed residues in known complex structures, which were then used to score protein-protein docking poses. The new method, called SIPPER (scoring by intermolecular pairwise propensities of exposed residues), combines the value of residue desolvation based on solvent-exposed area with the propensity-based contribution of intermolecular residue pairs. This new scoring function found a near-native orientation within the top 10 predictions in nearly one-third of the cases of a standard docking benchmark and proved to be also useful as a filtering step, drastically reducing the number of docking candidates needed by energy-based methods like pyDock.
Collapse
Affiliation(s)
- Carles Pons
- Life Sciences Department, Barcelona Supercomputing Center, National Institute of Bioinformatics, Barcelona, Spain
| | | | | | | | | |
Collapse
|
29
|
Perez DI, Gil C, Martinez A. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med Res Rev 2010; 31:924-54. [DOI: 10.1002/med.20207] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Lee NY, Haney JC, Sogani J, Blobe GC. Casein kinase 2beta as a novel enhancer of activin-like receptor-1 signaling. FASEB J 2009; 23:3712-21. [PMID: 19592636 DOI: 10.1096/fj.09-131607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
ALK-1 is a transforming growth factor beta (TGF-beta) superfamily receptor that is predominantly expressed in endothelial cells and is essential for angiogenesis, as demonstrated by the embryonic lethal phentoype when targeted for deletion in mice and its mutation in the human disease hereditary hemorrhagic telangiectasia. Although ALK-1 and the endothelial-specific TGF-beta superfamily coreceptor, endoglin, form a heteromeric complex and bind similar TGF-beta superfamily ligands, their signaling mechanisms remain poorly characterized. Here we report the identification of CK2beta, the regulatory subunit of protein kinase CK2, as a novel enhancer of ALK-1 signaling. The cytoplasmic domain of ALK-1 specifically binds to CK2beta in vitro and in vivo. NAAIRS mutagenesis studies define amino acid sequences 181-199 of CK2beta and 207-212 of ALK-1 as the interaction domains, respectively. The ALK-1/CK2beta interaction specifically enhanced Smad1/5/8 phosphorylation and ALK-1-mediated reporter activation in response to TGF-beta1 and BMP-9 treatment. In a reciprocal manner, siRNA-mediated silencing of endogenous CK2beta inhibited TGF-beta1 and BMP-9-stimulated Smad1/5/8 phosphorylation and ALK-1-mediated reporter activation. Functionally, CK2beta enhanced the ability of activated or ligand-stimulated ALK-1 to inhibit endothelial cell migration. Similarly, ALK-1 and CK2beta antagonized endothelial tubule formation in Matrigel. These studies support CK2beta as an important regulator of ALK-1 signaling and ALK-1-mediated functions in endothelial cells.
Collapse
Affiliation(s)
- Nam Y Lee
- Department of Medicine, Duke University, Durham, NC, USA
| | | | | | | |
Collapse
|
31
|
Bolanos-Garcia VM, Kiyomitsu T, D'Arcy S, Chirgadze DY, Grossmann JG, Matak-Vinkovic D, Venkitaraman AR, Yanagida M, Robinson CV, Blundell TL. The crystal structure of the N-terminal region of BUB1 provides insight into the mechanism of BUB1 recruitment to kinetochores. Structure 2009; 17:105-16. [PMID: 19141287 PMCID: PMC2683949 DOI: 10.1016/j.str.2008.10.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/13/2008] [Accepted: 10/17/2008] [Indexed: 01/02/2023]
Abstract
The interaction of the central mitotic checkpoint component BUB1 with the mitotic kinetochore protein Blinkin is required for the kinetochore localization and function of BUB1 in the mitotic spindle assembly checkpoint, the regulatory mechanism of the cell cycle that ensures the even distribution of chromosomes during the transition from metaphase to anaphase. Here, we report the 1.74 Å resolution crystal structure of the N-terminal region of BUB1. The structure is organized as a tandem arrangement of three divergent units of the tetratricopeptide motif. Functional assays in vivo of native and site-specific mutants identify the residues of human BUB1 important for the interaction with Blinkin and define one region of potential therapeutic interest. The structure provides insight into the molecular basis of Blinkin-specific recognition by BUB1 and, on a broader perspective, of the mechanism that mediates kinetochore localization of BUB1 in checkpoint-activated cells.
Collapse
|
32
|
|
33
|
Mentzel B, Jauch E, Raabe T. CK2beta interacts with and regulates p21-activated kinases in Drosophila. Biochem Biophys Res Commun 2009; 379:637-42. [PMID: 19121626 DOI: 10.1016/j.bbrc.2008.12.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 10/21/2022]
Abstract
The role of CK2beta has been defined as the regulatory subunit of protein kinase CK2, which is a heterotetrameric complex composed of two CK2beta and two catalytic active CK2alpha subunits. The identification of other serine/threonine kinases such as A-Raf, Chk1, and c-Mos that interact with and are regulated by CK2beta has challenged this view and provided evidence for functions of CK2beta outside the CK2 holoenzyme. In this report we describe the first interaction of Drosophila CK2beta outside the CK2 holoenzyme with p21-activated kinase (PAK) proteins. This interaction is seen for distinct PAK and CK2beta isoforms. In contrast to the CK2alpha-CK2beta interaction, dimer formation of the CK2beta subunits is not a prerequisite for binding of PAK proteins. Our results support the idea that CK2beta can bind to PAK proteins in a CK2alpha independent manner and negatively regulates PAK kinase activity.
Collapse
Affiliation(s)
- Benjamin Mentzel
- University of Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung, Versbacherstr. 5, D-97078 Würzburg, Germany
| | | | | |
Collapse
|
34
|
Raaf J, Brunstein E, Issinger OG, Niefind K. The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven. Protein Sci 2008; 17:2180-6. [PMID: 18824508 DOI: 10.1110/ps.037770.108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The protein kinase CK2 (former name: "casein kinase 2") predominantly occurs as a heterotetrameric holoenzyme composed of two catalytic chains (CK2alpha) and two noncatalytic subunits (CK2beta). The CK2beta subunits form a stable dimer to which the CK2alpha monomers are attached independently. In contrast to the cyclins in the case of the cyclin-dependent kinases CK2beta is no on-switch of CK2alpha; rather the formation of the CK2 holoenzyme is accompanied with an overall change of the enzyme's profile including a modulation of the substrate specificity, an increase of the thermostability, and an allocation of docking sites for membranes and other proteins. In this study we used C-terminal deletion variants of human CK2alpha and CK2beta that were enzymologically fully competent and in particular able to form a heterotetrameric holoenzyme. With differential scanning calorimetry (DSC) we confirmed the strong thermostabilization effect of CK2alpha on CK2beta with an upshift of the CK2alpha melting temperature of more than 9 degrees . Using isothermal titration calorimetry (ITC) we measured a dissociation constant of 12.6 nM. This high affinity between CK2alpha and CK2beta is mainly caused by enthalpic rather than entropic contributions. Finally, we determined a crystal structure of the CK2beta construct to 2.8 A resolution and revealed by structural comparisons with the CK2 holoenzyme structure that the CK2beta conformation is largely conserved upon association with CK2alpha, whereas the latter undergoes significant structural adaptations of its backbone.
Collapse
Affiliation(s)
- Jennifer Raaf
- Universität zu Köln, Department für Chemie, Institut fü r Biochemie, D-50674 Köln, Germany
| | | | | | | |
Collapse
|
35
|
Yamamoto T, Sawada H. In-vitro phosphorylation activity by recombinant alpha and beta subunits of Bombyx mori casein kinase 2. Zoolog Sci 2008; 25:799-805. [PMID: 18795813 DOI: 10.2108/zsj.25.799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 05/21/2008] [Indexed: 11/17/2022]
Abstract
To clarify the control mechanism of the catalytic activity of casein kinase 2 (CK2) during early embryonic development in the silkworm, Bombyx mori, we attempted an in-vitro functional analysis by using the recombinant alpha and beta subunits of B. mori CK2 (rBmCK2alpha and rBmCK2beta) produced in a bacterial system. The renatured rBmCK2alpha possessed protein kinase activity. When rBmCK2alpha and rBmCK2beta were reconstituted in an approximate 1:1 molar ratio, the catalytic activity was almost the same as that of rBmCK2alpha alone. The catalytic activity of rBmCK2alpha was inhibited by polylysine, which is one of the activators of CK2 activity. However, when using the reconstituted rBmCK2alpha and rBmCK2beta (rBmCK2), activation by polylysine was observed. We examined the influence of sorbitol and 3-hydroxykynurenine (3-OHK), which are contained mainly in diapause eggs, on the phosphorylation activity of rBmCK2. Three-OHK inhibited rBmCK2 activity, but sorbitol had no effect on it. Furthermore, a functional analysis using rBmCK2alpha and beta subunits of Drosophila melanogaster CK2 revealed that a difference in the C-terminal amino acid of the CK2beta subunit influenced the phosphorylation activity of rBmCK2alpha. These results may provide new insights for clarifying the control mechanism of B. mori casein kinase 2 in eggs.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Biological Laboratory, College Of Liberal Arts and Sciences, Kitasato University, Kitasato, Sagamihara, Japan
| | | |
Collapse
|
36
|
Sarker R, Grønborg M, Cha B, Mohan S, Chen Y, Pandey A, Litchfield D, Donowitz M, Li X. Casein kinase 2 binds to the C terminus of Na+/H+ exchanger 3 (NHE3) and stimulates NHE3 basal activity by phosphorylating a separate site in NHE3. Mol Biol Cell 2008; 19:3859-70. [PMID: 18614797 DOI: 10.1091/mbc.e08-01-0019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Na(+)/H(+) exchanger 3 (NHE3) is the epithelial-brush border isoform responsible for most intestinal and renal Na(+) absorption. Its activity is both up- and down-regulated under normal physiological conditions, and it is inhibited in most diarrheal diseases. NHE3 is phosphorylated under basal conditions and Ser/Thr phosphatase inhibitors stimulate basal exchange activity; however, the kinases involved are unknown. To identify kinases that regulate NHE3 under basal conditions, NHE3 was immunoprecipitated; LC-MS/MS of trypsinized NHE3 identified a novel phosphorylation site at S(719) of the C terminus, which was predicted to be a casein kinase 2 (CK2) phosphorylation site. This was confirmed by an in vitro kinase assay. The NHE3-S719A mutant but not NHE3-S719D had reduced NHE3 activity due to less plasma membrane NHE3. This was due to reduced exocytosis plus decreased plasma membrane delivery of newly synthesized NHE3. Also, NHE3 activity was inhibited by the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole DMAT when wild-type NHE3 was expressed in fibroblasts and Caco-2 cells, but the NHE3-S(719) mutant was fully resistant to DMAT. CK2 bound to the NHE3 C-terminal domain, between amino acids 590 and 667, a site different from the site it phosphorylates. CK2 binds to the NHE3 C terminus and stimulates basal NHE3 activity by phosphorylating a separate single site on the NHE3 C terminus (S(719)), which affects NHE3 trafficking.
Collapse
Affiliation(s)
- Rafiquel Sarker
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sarno S, Pinna LA. Protein kinase CK2 as a druggable target. MOLECULAR BIOSYSTEMS 2008; 4:889-94. [PMID: 18704226 DOI: 10.1039/b805534c] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CK2 is probably the most pleiotropic Ser/Thr protein kinase with hundreds of endogenous substrates already known, which are implicated in a variety of cellular functions. At variance with most protein kinases whose activity is turned on only in response to specific stimuli, and whose genetic alterations often underlie pathological situations, CK2 is not susceptible to tight regulation and there are no mutations known to affect its constitutive activity. Nevertheless an abnormally high level of CK2 is invariably found in tumours, and solid arguments have accumulated suggesting that CK2 plays a global pro-survival function, which under special circumstances creates a cellular environment particularly favourable to the development and potentiation of the tumour phenotype. Therefore any strategy aimed at attenuating CK2 activity may represent a "master key" for the treatment of different neoplastic diseases. Waiting for the clarification of the epigenetic mechanisms promoting the rise of CK2 in cells predisposed to develop a tumour phenotype, a useful pharmacological aid can come from the improvement of a number of fairly potent and selective CK2 inhibitors already available.
Collapse
Affiliation(s)
- Stefania Sarno
- Department of Biological Chemistry, University of Padua and Venetian Institute for Molecular Medicine (VIMM), Padua, Italy
| | | |
Collapse
|
38
|
Singh NN, Ramji DP. Protein kinase CK2, an important regulator of the inflammatory response? J Mol Med (Berl) 2008; 86:887-97. [PMID: 18437331 DOI: 10.1007/s00109-008-0352-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 01/01/2023]
Abstract
Casein kinase 2 (CK2) is a highly conserved serine-threonine kinase that uses both adenosine triphosphate and guanosine triphosphate as phosphate donors. This constitutively active and ubiquitously expressed enzyme is often present as a tetrameric holoenzyme complex of two catalytic subunits (alpha and/or alpha') and two regulatory beta subunits. The enzyme is known to phosphorylate more than 300 substrates and controls a wide range of processes, including the regulation of cell cycle, apoptosis, transformation, and circadian rhythm. Several lines of recent evidence also suggest a potentially important role for CK2 in the control of the inflammatory response. This review will give an overview of CK2 and its regulation and describe the evidence implicating its role in inflammation.
Collapse
Affiliation(s)
- Nishi N Singh
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
39
|
Protein kinase CK2 as an ectokinase: the role of the regulatory CK2beta subunit. Proc Natl Acad Sci U S A 2008; 105:5693-8. [PMID: 18391191 DOI: 10.1073/pnas.0802065105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein kinase CK2 (also known as casein kinase 2) is present in the cytoplasm, nuclei, and several other organelles. In addition, this enzyme has been found bound to the external side of the cell membrane where it acts as an ectokinase phosphorylating several extracellular proteins. Previous experiments with transfection of HEK-293T cells demonstrated that expression of both subunits, CK2alpha (catalytic) and CK2beta (regulatory), was necessary for the appearance of the ectopic enzyme as an ectokinase. In this work, using deletion and point mutations of CK2beta, it was possible to demonstrate that the region between amino acids 20 and 33 was necessary for the export of the enzyme as an ectokinase. Phenylalanines 21 and 22 and acidic residues in positions 26-28 are involved in the structural aspects that are required for export. However, the region encompassing amino acids 20-33 of CK2beta is not sufficient to make the carboxyl half of this subunit functional in bringing CK2 to the ectokinase locus. In cells transfected with only CK2beta, it was demonstrated that 3-4% of the subunit is exported to the cell medium, but the subunit is not bound to the external membrane.
Collapse
|
40
|
Niefind K, Yde CW, Ermakova I, Issinger OG. Evolved to Be Active: Sulfate Ions Define Substrate Recognition Sites of CK2α and Emphasise its Exceptional Role within the CMGC Family of Eukaryotic Protein Kinases. J Mol Biol 2007; 370:427-38. [PMID: 17524418 DOI: 10.1016/j.jmb.2007.04.068] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 04/18/2007] [Accepted: 04/25/2007] [Indexed: 11/22/2022]
Abstract
CK2alpha is the catalytic subunit of protein kinase CK2 and a member of the CMGC family of eukaryotic protein kinases like the cyclin-dependent kinases, the MAP kinases and glycogen-synthase kinase 3. We present here a 1.6 A resolution crystal structure of a fully active C-terminal deletion mutant of human CK2alpha liganded by two sulfate ions, and we compare this structure systematically with representative structures of related CMGC kinases. The two sulfate anions occupy binding pockets at the activation segment and provide the structural basis of the acidic consensus sequence S/T-D/E-X-D/E that governs substrate recognition by CK2. The anion binding sites are conserved among those CMGC kinases. In most cases they are neutralized by phosphorylation of a neighbouring threonine or tyrosine side-chain, which triggers conformational changes for regulatory purposes. CK2alpha, however, lacks both phosphorylation sites at the activation segment and structural plasticity. Here the anion binding sites are functionally changed from regulation to substrate recognition. These findings underline the exceptional role of CK2alpha as a constitutively active enzyme within a family of strictly controlled protein kinases.
Collapse
Affiliation(s)
- Karsten Niefind
- Universität zu Köln, Institut für Biochemie, Zülpicher Strasse 47, D-50674 Köln, Germany.
| | | | | | | |
Collapse
|