1
|
Chen CZ, Wang J, Wang YC, Fu HM, Xu XW, Yan P, Chen YP. Transcriptional and molecular simulation analysis of the response mechanism of anammox bacteria to 3,4-dimethylpyrazole phosphate stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136867. [PMID: 39675083 DOI: 10.1016/j.jhazmat.2024.136867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Anaerobic ammonium oxidation (anammox) and nitrification are two vital biological pathways for ammonium oxidation, pivotal in microbial nitrogen cycling. 3,4-Dimethylpyrazole phosphate (DMPP) is commonly used as inhibitors in agricultural soils to reduce nitrogen losses from farmland, while whether it affect anammox is an open question. Acute inhibition tests revealed that 53.5 mg·L-1 DMPP caused 50 % reduction in anammox bacteria. After 36 days of prolonged exposure to 5 mg·L-1 DMPP, the ammonium(nitrite) removal rate of endnote decreased from 78.39(94.78) to 13.57(15.28) mgN·gVSS-1·d-1. Additionally, the abundance of Ca. Kuenenia decreased from 36.5 % to 6.06 %. Transcriptomic analysis revealed that the mRNA levels of ammonium transport genes (amt_1 and amt_4), and hydrazine synthase (hzs) were significantly downregulated. Molecular docking simulations indicated that DMPP bound with ammonium transport and hydrazine synthesis. This interaction hindered the transcriptional levels of genes encoding ammonium transporters and hzs. The study has guiding value to reduce the nitrogen loss involved in anammox bacteria in agricultural soils under the application of DMPP.
Collapse
Affiliation(s)
- Cui-Zhong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China
| | - Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi-Cheng Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
2
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
4
|
Kaur B, Miglioranza Scavuzzi B, Yang M, Yao J, Jia L, Abcouwer SF, Zacks DN. ER Stress and Mitochondrial Perturbations Regulate Cell Death in Retinal Detachment: Exploring the Role of HIF1α. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 39325470 PMCID: PMC11437674 DOI: 10.1167/iovs.65.11.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Purpose Retinal detachment (RD) leads to photoreceptor (PR) hypoxia due to separation from the retinal pigment epithelium (RPE). Hypoxia stabilizes retinal hypoxia-inducible factor 1-alpha (HIF1α), crucial for PR survival during RD. This study explores the regulatory role of HIF1α in PR cell survival pathways during RD. Methods Experimental RD was created in C57BL/6J and HIF1αΔrod mice by injecting 1% hyaluronic acid into the subretinal space. The 661W photoreceptor cells were exposed to hypoxic conditions. Markers of endoplasmic reticulum stress (ERS), mitophagy, and accumulation of polyubiquinated proteins were evaluated using RT-PCR and western blot analyses. Cell death of PR cells was quantified using trypan blue exclusion assay and TUNEL staining. Retinal cell death was assessed using a DNA fragmentation assay. Results In C57BL/6J mice and 661W cells, there were increases in HIF1α protein levels: 2.2-fold after RD (P = 0.04) and threefold after hypoxia (P = 0.057). Both the in vivo and in vitro RD models showed increased protein expression of ERS markers (including BIP, CHOP, and IRE1α), mitophagy markers (Parkin, PINK, and FUNDC1), and polyubiquitinated proteins. In 661W cells, hypoxia resulted in a loss of mitochondrial membrane potential, an increase in mitochondrial reactive oxygen species, and a decrease in intracellular adenosine triphosphate levels. Lack of HIF1α in rods blocked the upregulation of mitophagy markers after RD. Conclusions RD results in the activation of ERS, mitophagy, mitochondrial dysfunction, and accumulation of polyubiquitinated proteins. Results suggest a role for HIF1α in activation of the mitophagy pathway after RD, which may serve to protect the PR cells.
Collapse
Affiliation(s)
- Bhavneet Kaur
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Bruna Miglioranza Scavuzzi
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Mengling Yang
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Jingyu Yao
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Lin Jia
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven F Abcouwer
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - David N Zacks
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
5
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Zhou N, Zheng W, Peng L, Gao S, Shi Y, Cao M, Xu Y, Sun B, Li X. HIF1α Elevations at Tissue and Serum Levels and Their Association With Metabolic Disorders in Children With Obesity. J Clin Endocrinol Metab 2024; 109:1241-1249. [PMID: 38051959 DOI: 10.1210/clinem/dgad710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
OBJECTIVE We aimed to examine the expression profile and circulating level of hypoxia-inducible factor 1 alpha (HIF1α) in children and the relationships with metabolic disorders. METHODS A total of 519 children were recruited, with paired subcutaneous and omental adipose tissues collected from 17 children and serum samples from the remaining children. All children underwent anthropometric and biochemical analyses. The mRNA, protein, and serum levels of HIF1α were determined by real-time PCR, immunohistochemistry, and enzyme-linked immunosorbent assay, respectively. RESULTS Both HIF1α mRNA and protein levels, especially in omental adipose tissue, were increased in overweight or obese (OV/OB) children (P < .05). Likewise, serum HIF1α level was remarkably higher in OV/OB children than in normal-weight children (P < .05). Serum HIF1α level was positively correlated with BMI z-score, fat mass percentage, waist to height ratio, systolic blood pressure, alanine aminotransferase, total triglycerides, uric acid, and homeostasis model assessment of insulin resistance (IR). Furthermore, a binary logistic regression analysis of serum HIF1α level indicated that the risks for IR, nonalcoholic fatty liver disease (NAFLD), and metabolic syndrome remained significant in the presence of all potential confounding variables. Finally, the area under the receiver operating characteristic curves for serum HIF1α level in children who were diagnosed with IR, NAFLD, and metabolic syndrome were 0.698 (95% CI, 0.646-0.750; P < .001), 0.679 (95% CI, 0.628-0.731; P < .001), and 0.900 (95% CI, 0.856-0.945; P < .001). CONCLUSION HIF1α expression is higher in the adipose tissue, especially omental, of children with obesity than in children with normal weight. Elevated serum HIF1α level is associated with adiposity and metabolic disorder, which may predict a higher risk of obesity complications.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Wen Zheng
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Luting Peng
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Shenghu Gao
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yanan Shi
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Mengyao Cao
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yao Xu
- Department of Pediatric General Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Bin Sun
- Department of Pediatric General Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
7
|
Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A Molecular Perspective on HIF-1α and Angiogenic Stimulator Networks and Their Role in Solid Tumors: An Update. Int J Mol Sci 2024; 25:3313. [PMID: 38542288 PMCID: PMC10970012 DOI: 10.3390/ijms25063313] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 01/02/2025] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional factor, which plays an important role in cellular reprogramming processes under hypoxic conditions, which facilitate solid tumors' progression. HIF-1α is directly involved in the regulation of the angiogenesis, metabolic reprogramming, and extracellular matrix remodeling of the tumor microenvironment. Therefore, an in-depth study on the role of HIF-1α in solid tumor malignancies is required to develop novel anti-cancer therapeutics. HIF-1α also plays a critical role in regulating growth factors, such as the vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, in a network manner. Additionally, it plays a significant role in tumor progression and chemotherapy resistance by regulating a variety of angiogenic factors, including angiopoietin 1 and angiopoietin 2, matrix metalloproteinase, and erythropoietin, along with energy pathways. Therefore, this review attempts to provide comprehensive insight into the role of HIF-1α in the energy and angiogenesis pathways of solid tumors.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
| | - Vivek Kumar Morya
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Mi Kyung Kwak
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Ji Ung Oh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| | - Kyu Cheol Noh
- Hallym University Dongtan Sacred Heart Hospital, Dongtan 18450, Republic of Korea
| |
Collapse
|
8
|
Ortmann BM. Hypoxia-inducible factor in cancer: from pathway regulation to therapeutic opportunity. BMJ ONCOLOGY 2024; 3:e000154. [PMID: 39886164 PMCID: PMC11203102 DOI: 10.1136/bmjonc-2023-000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the most formidable challenges in modern medicine, due to its complex and dynamic nature, which demands innovative therapeutic approaches. One major challenge to cancer treatment is the tumour microenvironment and in particular tumour hypoxia (low oxygen levels), which contributes to tumour progression and immune evasion. At the cellular level, this is primarily governed by hypoxia-inducible factor (HIF). HIF is a transcription factor that orchestrates cellular responses to low oxygen levels, driving angiogenesis, metabolic adaptation and immune regulation. HIF's dysregulation is frequently observed in various cancer types and correlates with increased aggressiveness, metastasis, resistance to therapy and poor patient prognosis. Consequently, understanding the cellular mechanisms underlying HIF activation and its downstream effects has become crucial to developing targeted cancer therapies for improving cancer patient outcomes and represents a key step towards precision medicine. Recent advancements in drug development have led to the emergence of HIF inhibitors, which aim to disrupt HIF-driven processes in cancer providing therapeutic benefit. Here, we provide a review of the molecular mechanisms through which HIF promotes tumour growth and resistance, emphasising the potential clinical benefits of HIF-targeted therapies. This review will discuss the challenges and opportunities associated with translating HIF inhibition into clinical practice, including ongoing clinical trials and future directions in the development of HIF-based cancer treatments.
Collapse
Affiliation(s)
- Brian M Ortmann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
9
|
Malkov MI, Flood D, Taylor CT. SUMOylation indirectly suppresses activity of the HIF-1α pathway in intestinal epithelial cells. J Biol Chem 2023; 299:105280. [PMID: 37742924 PMCID: PMC10616383 DOI: 10.1016/j.jbc.2023.105280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
The hypoxia-inducible factor (HIF) is a master regulator of the cellular transcriptional response to hypoxia. While the oxygen-sensitive regulation of HIF-1α subunit stability via the ubiquitin-proteasome pathway has been well described, less is known about how other oxygen-independent post-translational modifications impact the HIF pathway. SUMOylation, the attachment of SUMO (small ubiquitin-like modifier) proteins to a target protein, regulates the HIF pathway, although the impact of SUMO on HIF activity remains controversial. Here, we examined the effects of SUMOylation on the expression pattern of HIF-1α in response to pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) in intestinal epithelial cells. We evaluated the effects of SUMO-1, SUMO-2, and SUMO-3 overexpression and inhibition of SUMOylation using a novel selective inhibitor of the SUMO pathway, TAK-981, on the sensitivity of HIF-1α in Caco-2 intestinal epithelial cells. Our findings demonstrate that treatment with TAK-981 decreases global SUMO-1 and SUMO-2/3 modification and enhances HIF-1α protein levels, whereas SUMO-1 and SUMO-2/3 overexpression results in decreased HIF-1α protein levels in response to DMOG. Reporter assay analysis demonstrates reduced HIF-1α transcriptional activity in cells overexpressing SUMO-1 and SUMO-2/3, whereas pretreatment with TAK-981 increased HIF-1α transcriptional activity in response to DMOG. In addition, HIF-1α nuclear accumulation was decreased in cells overexpressing SUMO-1. Importantly, we showed that HIF-1α is not directly SUMOylated, but that SUMOylation affects HIF-1α stability and activity indirectly. Taken together, our results indicate that SUMOylation indirectly suppresses HIF-1α protein stability, transcriptional activity, and nuclear accumulation in intestinal epithelial cells.
Collapse
Affiliation(s)
- Mykyta I Malkov
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland
| | - Darragh Flood
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland.
| |
Collapse
|
10
|
Orsi JB, Araujo LS, Scariot PPM, Polisel EEC, Cardoso LO, Gobatto CA, Manchado-Gobatto FB. Critical Velocity, Maximal Lactate Steady State, and Muscle MCT1 and MCT4 after Exhaustive Running in Mice. Int J Mol Sci 2023; 24:15753. [PMID: 37958736 PMCID: PMC10648804 DOI: 10.3390/ijms242115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Although the critical velocity (CV) protocol has been used to determine the aerobic capacity in rodents, there is a lack of studies that compare CV with maximal lactate steady state intensity (iMLSS) in mice. As a consequence, their physiological and molecular responses after exercise until exhaustion at CV intensity remain unclear. Thus, we aimed to compare and correlate CV with iMLSS in running mice, following different mathematical models for CV estimation. We also evaluated their physiological responses and muscle MCT1 and MCT4 after running until exhaustion at CV. Thirty C57BL/6J mice were divided into two groups (exercised-E and control-C). Group E was submitted to a CV protocol (4 days), using linear (lin1 and lin2) and hyperbolic (hyp) mathematical models to determine the distance, velocity, and time to exhaustion (tlim) of each predictive CV trial, followed by an MLSS protocol. After a running effort until exhaustion at CV intensity, the mice were immediately euthanized, while group C was euthanized at rest. No differences were observed between iMLSS (21.1 ± 1.1 m.min-1) and CV estimated by lin1 (21.0 ± 0.9 m.min-1, p = 0.415), lin2 (21.3 ± 0.9 m.min-1, p = 0.209), and hyp (20.6 ± 0.9 m.min-1, p = 0.914). According to the results, CV was significantly correlated with iMLSS. After running until exhaustion at CV (tlim = 28.4 ± 8,29 min), group E showed lower concentrations of hepatic and gluteal glycogen than group C, but no difference in the content of MCT1 (p = 0.933) and MCT4 (p = 0.123) in soleus muscle. Significant correlations were not found between MCT1 and MCT4 and tlim at CV intensity. Our results reinforce that CV is a valid and non-invasive protocol to estimate the maximal aerobic capacity in mice and that the content of MCT1 and MCT4 was not decisive in determining the tlim at CV, at least when measured immediately after the running effort.
Collapse
Affiliation(s)
- Juan B Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Lara S Araujo
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Pedro P M Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Emanuel E C Polisel
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Luisa O Cardoso
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Claudio A Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| | - Fúlvia B Manchado-Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira 13484-350, São Paulo, Brazil
| |
Collapse
|
11
|
Chaltel-Lima L, Domínguez F, Domínguez-Ramírez L, Cortes-Hernandez P. The Role of the Estrogen-Related Receptor Alpha (ERRa) in Hypoxia and Its Implications for Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24097983. [PMID: 37175690 PMCID: PMC10178695 DOI: 10.3390/ijms24097983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Under low oxygen conditions (hypoxia), cells activate survival mechanisms including metabolic changes and angiogenesis, which are regulated by HIF-1. The estrogen-related receptor alpha (ERRα) is a transcription factor with important roles in the regulation of cellular metabolism that is overexpressed in hypoxia, suggesting that it plays a role in cell survival in this condition. This review enumerates and analyses the recent evidence that points to the role of ERRα as a regulator of hypoxic genes, both in cooperation with HIF-1 and through HIF-1- independent mechanisms, in invertebrate and vertebrate models and in physiological and pathological scenarios. ERRα's functions during hypoxia include two mechanisms: (1) direct ERRα/HIF-1 interaction, which enhances HIF-1's transcriptional activity; and (2) transcriptional activation by ERRα of genes that are classical HIF-1 targets, such as VEGF or glycolytic enzymes. ERRα is thus gaining recognition for its prominent role in the hypoxia response, both in the presence and absence of HIF-1. In some models, ERRα prepares cells for hypoxia, with important clinical/therapeutic implications.
Collapse
Affiliation(s)
- Leslie Chaltel-Lima
- Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fabiola Domínguez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| | - Lenin Domínguez-Ramírez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| | - Paulina Cortes-Hernandez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco 74360, Mexico
| |
Collapse
|
12
|
Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol 2023; 14:1098386. [PMID: 37051522 PMCID: PMC10083300 DOI: 10.3389/fmicb.2023.1098386] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host’s immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host’s immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Cerutti Muller
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Marques Stuart Campos
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Department of Nursing, Universidade Federal do Maranhão, Imperatriz, Brazil
| | - Juliano Peruzzo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Veit
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- *Correspondence: Fernanda Sales Luiz Vianna,
| |
Collapse
|
13
|
Sant’Ana PG, de Tomasi LC, Murata GM, Vileigas DF, Mota GAF, de Souza SLB, Silva VL, de Campos LP, Okoshi K, Padovani CR, Cicogna AC. Hypoxia-Inducible Factor 1-Alpha and Glucose Metabolism during Cardiac Remodeling Progression from Hypertrophy to Heart Failure. Int J Mol Sci 2023; 24:ijms24076201. [PMID: 37047174 PMCID: PMC10094437 DOI: 10.3390/ijms24076201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
In pathological cardiac hypertrophy, the heart is more dependent on glucose than fatty acids. This shift in energy metabolism occurs due to several factors, including the oxygen deficit, which activates hypoxia-inducible factor-1α (HIF-1α), a critical molecule related to glucose metabolism. However, there are gaps regarding the behavior of key proteins in the glycolytic pathway and HIF-1α during the transition from hypertrophy to heart failure (HF). This study assesses the hypothesis that there is an early change and enhancement of HIF-1α and the glycolytic pathway, as well as an association between them during cardiac remodeling. Sham and aortic stenosis Wistar rats were analyzed at 2, 6, and 18 weeks and in HF (n = 10–18). Cardiac structure and function were investigated by echocardiogram. Myocardial glycolysis, the aerobic and anaerobic pathways and glycogen were analyzed by enzymatic assay, Western blot, and enzyme-linked immunosorbent assay (ELISA). The following were observed: increased left ventricular hypertrophy; early diastolic function change and severe systolic and diastolic dysfunction in HF; increased HIF-1α in the 2nd week and in HF; precocious alteration and intensification of glycolysis with a shift to anaerobic metabolism from the 6th week onwards; association between HIF-1α, glycolysis, and the anaerobic pathway. Our hypothesis was confirmed as there was an early change and intensification in glucose metabolism, alteration in HIF-1α, and an association between data during the progression from hypertrophy to heart failure.
Collapse
Affiliation(s)
- Paula Grippa Sant’Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Loreta Casquel de Tomasi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Gilson Masahiro Murata
- Laboratory of Medical Investigation (LIM-29), Division of Nephrology, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Danielle Fernandes Vileigas
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Vitor Loureiro Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Livia Paschoalino de Campos
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
- Correspondence:
| |
Collapse
|
14
|
Xiao C, Liu S, Ge G, Jiang H, Wang L, Chen Q, Jin C, Mo J, Li J, Wang K, Zhang Q, Zhou J. Roles of hypoxia-inducible factor in hepatocellular carcinoma under local ablation therapies. Front Pharmacol 2023; 14:1086813. [PMID: 36814489 PMCID: PMC9939531 DOI: 10.3389/fphar.2023.1086813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common digestive malignancies. HCC It ranges as the fifth most common cause of cancer mortality worldwide. While The prognosis of metastatic or advanced HCC is still quite poor. Recently, locoregional treatment, especially local ablation therapies, plays an important role in the treatment of HCC. Radiofrequency ablation (RFA) and high-intensity focused ultrasound (HIFU) ablation are the most common-used methods effective and feasible for treating HCC. However, the molecular mechanisms underlying the actions of ablation in the treatments for HCC and the HCC recurrence after ablation still are poorly understood. Hypoxia-inducible factor (HIF), the key gene switch for adaptive responses to hypoxia, has been found to play an essential role in the rapid aggressive recurrence of HCC after ablation treatment. In this review, we summarized the current evidence of the roles of HIF in the treatment of HCC with ablation. Fifteen relevant studies were included and further analyzed. Among them, three clinical studies suggested that HIF-1α might serve as a crucial role in the RAF treatment of HCC or the local recurrence of HCC after RFA. The remainder included experimental studies demonstrated that HIF-1, 2α might target the different molecules (e.g., BNIP3, CA-IX, and arginase-1) and signaling cascades (e.g., VEGFA/EphA2 pathway), constituting a complex network that promoted HCC invasion and metastasis after ablation. Currently, the inhibitors of HIF have been developed, providing important proof of targeting HIF for the prevention of HCC recurrence after IRFA and HIFU ablation. Further confirmation by prospective clinical and in-depth experimental studies is still warranted to illustrate the effects of HIF in HCC recurrence followed ablation treatment in the future.
Collapse
Affiliation(s)
- Chunying Xiao
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Sheng Liu
- Department of Hepatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Ge
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Jin Li
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| | - Qianqian Zhang
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Zhou
- Department of Ultrasound, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, Zhejiang, China
| |
Collapse
|
15
|
Fan F, Du Y, Chen L, Chen Y, Zhong Z, Li P, Cheng Y. Metabolomic and Proteomic Identification of Serum Exosome for Hypoxic Preconditioning Participants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5509913. [PMID: 37089582 PMCID: PMC10118903 DOI: 10.1155/2023/5509913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 02/07/2023] [Indexed: 04/25/2023]
Abstract
Background In high-altitude areas, hypoxic stress can elicit a series of physiological responses in humans. Exosomes play important roles in both local and distal cellular communications. Methods We used ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) studies to analyze the differentially expressed metabolomics and proteomics in serum exosome of hypoxic preconditioning participants and control subjects in the hypoxic conditions. Results Fifty-seven military personnel were divided into hypoxic preconditioning group (n = 27) and control group (n = 30). One hundred thirty-six differentially expressed serum exosomal metabolites were found between the hypoxic preconditioning and control groups in the hypoxic conditions, and these differentially expressed metabolites were enriched in pathways related to lysine degradation, butanoate metabolism, GABAergic synapse, histidine metabolism, and linoleic acid metabolism. In addition, hypoxic preconditioning participants showed 102 excellent differential expressions of proteomics compared to controls, which involved actin cytoskeleton organization, hemostasis, complement and coagulation cascades, vesicle-medicated transport, wound healing, etc. Conclusions We revealed that the expression of exosomal metabolites and proteomics in hypoxic preconditioning participants was significantly different compared to controls in hypoxic conditions.
Collapse
Affiliation(s)
- Fangcheng Fan
- NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment (Hunan Provincial Maternal and Child Health-Care Hospital), Changsha, Hunan, China
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yong Cheng
- NHC Key Laboratory of Birth Defect Research, Prevention, and Treatment (Hunan Provincial Maternal and Child Health-Care Hospital), Changsha, Hunan, China
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
16
|
Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M, Kaithwas G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol 2023; 14:1108915. [PMID: 36891273 PMCID: PMC9986608 DOI: 10.3389/fphar.2023.1108915] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Moriondo G, Soccio P, Tondo P, Scioscia G, Sabato R, Foschino Barbaro MP, Lacedonia D. Obstructive Sleep Apnea: A Look towards Micro-RNAs as Biomarkers of the Future. BIOLOGY 2022; 12:biology12010066. [PMID: 36671757 PMCID: PMC9855563 DOI: 10.3390/biology12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Sleep-disordered breathing (SDB) includes a broad spectrum of diseases, of which obstructive sleep apnea syndrome (OSA) is the most clinically significant manifestation. OSA is a respiratory disorder characterized by episodes of complete or partial obstruction of the upper airways that disturb ventilation and sleep architecture. In recent years, interest in the clinical implications of OSA seems to have increased, probably due to the numerous studies that have shown the existence of an important correlation between OSA and cardiovascular, dysmetabolic, and neoplastic changes. The guidelines currently available highlight the importance of diagnosis and effective treatment for OSA, underlining the need for new biomarkers that are useful in clinical practice, feasible, and reproducible to guide medical decision making. In this review, we intend to provide an overview of the potential role of microRNAs as new indicators for OSA management. MicroRNAs (miRNAs) are small non-coding RNA molecules that play an important role in RNA silencing and regulation of gene expression at the post-transcriptional level. These can bind specifically to their target genes by forming silencing complexes, thus inducing degradation or altered gene expression. A wide range of miRNAs have been extensively studied in a variety of diseases including cancer, and recently, miRNAs have been shown to have enormous potential to function as diagnostic and clinical biomarkers of disease. This review includes recent studies that establish the inevitable role of miRNAs in the pathogenesis of OSA.
Collapse
Affiliation(s)
- Giorgia Moriondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
- Correspondence:
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
| | - Roberto Sabato
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Foggia University Hospital, 71122 Foggia, Italy
| |
Collapse
|
18
|
Kshitiz, Afzal J, Suhail Y, Chang H, Hubbi ME, Hamidzadeh A, Goyal R, Liu Y, Sun P, Nicoli S, Dang CV, Levchenko A. Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells. Cell Syst 2022; 13:1048-1064.e7. [PMID: 36462504 PMCID: PMC10012408 DOI: 10.1016/j.cels.2022.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/10/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
Response to hypoxia is a highly regulated process, but little is known about single-cell responses to hypoxic conditions. Using fluorescent reporters of hypoxia response factor-1α (HIF-1α) activity in various cancer cell lines and patient-derived cancer cells, we show that hypoxic responses in individual cancer cells can be highly dynamic and variable. These responses fall into three classes, including oscillatory activity. We identify a molecular mechanism that can account for all three response classes, implicating reactive-oxygen-species-dependent chaperone-mediated autophagy of HIF-1α in a subset of cells. Furthermore, we show that oscillatory response is modulated by the abundance of extracellular lactate in a quorum-sensing-like mechanism. We show that oscillatory HIF-1α activity rescues hypoxia-mediated inhibition of cell division and causes broad suppression of genes downregulated in cancers and activation of genes upregulated in many cancers, suggesting a mechanism for aggressive growth in a subset of hypoxic tumor cells.
Collapse
Affiliation(s)
- Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | - Junaid Afzal
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Hao Chang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA
| | - Maimon E Hubbi
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA; Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Archer Hamidzadeh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA
| | - Ruchi Goyal
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Peng Sun
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Stefania Nicoli
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Chi V Dang
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA; Ludwig Institute for Cancer Research, New York, NY 10016, USA; The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA.
| |
Collapse
|
19
|
Geaghan MP, Reay WR, Cairns MJ. MicroRNA binding site variation is enriched in psychiatric disorders. Hum Mutat 2022; 43:2153-2169. [PMID: 36217923 PMCID: PMC10947041 DOI: 10.1002/humu.24481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 01/25/2023]
Abstract
Psychiatric disorders have a polygenic architecture, often associated with dozens or hundreds of independent genomic loci. Most associated loci impact noncoding regions of the genome, suggesting that the majority of disease heritability originates from the disruption of regulatory sequences. While most research has focused on variants that modify regulatory DNA elements, those affecting cis-acting RNA sequences, such as miRNA binding sites, are also likely to have a significant impact. We intersected genome-wide association study (GWAS) summary statistics with the dbMTS database of predictions for miRNA binding site variants (MBSVs). We compared the distributions of MBSV association statistics to non-MBSVs within brain-expressed 3'UTR regions. We aggregated GWAS p values at the gene, pathway, and miRNA family levels to investigate cellular functions and miRNA families strongly associated with each trait. We performed these analyses in several psychiatric disorders as well as nonpsychiatric traits for comparison. We observed significant enrichment of MBSVs in schizophrenia, depression, bipolar disorder, and anorexia nervosa, particularly in genes targeted by several miRNA families, including miR-335-5p, miR-21-5p/590-5p, miR-361-5p, and miR-557, and a nominally significant association between miR-323b-3p MBSVs and schizophrenia risk. We identified evidence for the association between MBSVs in synaptic gene sets in schizophrenia and bipolar disorder. We also observed a significant association of MBSVs in other complex traits including type 2 diabetes. These observations support the role of miRNA in the pathophysiology of psychiatric disorders and suggest that MBSVs are an important class of regulatory variants that have functional implications for many disorders, as well as other complex human traits.
Collapse
Affiliation(s)
- Michael P. Geaghan
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
| | - William R. Reay
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Murray J. Cairns
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNew South WalesAustralia
- Precision Medicine Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
20
|
Shayan S, Arashkia A, Azadmanesh K. Modifying oncolytic virotherapy to overcome the barrier of the hypoxic tumor microenvironment. Where do we stand? Cancer Cell Int 2022; 22:370. [PMID: 36424577 PMCID: PMC9686061 DOI: 10.1186/s12935-022-02774-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Viruses are completely dependent on host cell machinery for their reproduction. As a result, factors that influence the state of cells, such as signaling pathways and gene expression, could determine the outcome of viral pathogenicity. One of the important factors influencing cells or the outcome of viral infection is the level of oxygen. Recently, oncolytic virotherapy has attracted attention as a promising approach to improving cancer treatment. However, it was shown that tumor cells are mostly less oxygenated compared with their normal counterparts, which might affect the outcome of oncolytic virotherapy. Therefore, knowing how oncolytic viruses could cope with stressful environments, particularly hypoxic environments, might be essential for improving oncolytic virotherapy.
Collapse
Affiliation(s)
- Sara Shayan
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| | - Arash Arashkia
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| | - Kayhan Azadmanesh
- grid.420169.80000 0000 9562 2611Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran
| |
Collapse
|
21
|
Yong L, Tang S, Yu H, Zhang H, Zhang Y, Wan Y, Cai F. The role of hypoxia-inducible factor-1 alpha in multidrug-resistant breast cancer. Front Oncol 2022; 12:964934. [PMID: 36003773 PMCID: PMC9393754 DOI: 10.3389/fonc.2022.964934] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide with increasing incidence. Significant therapeutics advances in the field of breast cancer have resulted in a growing number of treatment options, whereas de novo or acquired resistance is still a persistent clinical challenge. Drug resistance involves a variety of mechanisms, and hypoxia is one of the many causes. Hypoxia-inducible Factor-1 Alpha (HIF-1α) is a key transcription factor which can regulate the response of cells to hypoxia. HIF-1α can trigger anaerobic glycolysis of tumor cells, induce angiogenesis, promote the proliferation, invasion, and migration of tumor cells, and lead to multidrug resistance. This review mainly discusses the role of HIF-1α in the drug-resistant breast cancer and highlighted the potential of HIF-1α -targeted therapy.
Collapse
Affiliation(s)
- Liyun Yong
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shasha Tang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haixin Yu
- Department of Orthopedic Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongyi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, NY, United States
- *Correspondence: Fengfeng Cai, ; Yuan Wan,
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Fengfeng Cai, ; Yuan Wan,
| |
Collapse
|
22
|
Batie M, Frost J, Shakir D, Rocha S. Regulation of chromatin accessibility by hypoxia and HIF. Biochem J 2022; 479:767-786. [PMID: 35258521 PMCID: PMC9022986 DOI: 10.1042/bcj20220008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Reduced oxygen availability (hypoxia) can act as a signalling cue in physiological processes such as development, but also in pathological conditions such as cancer or ischaemic disease. As such, understanding how cells and organisms respond to hypoxia is of great importance. The family of transcription factors called Hypoxia Inducible Factors (HIFs) co-ordinate a transcriptional programme required for survival and adaptation to hypoxia. However, the effects of HIF on chromatin accessibility are currently unclear. Here, using genome wide mapping of chromatin accessibility via ATAC-seq, we find hypoxia induces loci specific changes in chromatin accessibility are enriched at a subset hypoxia transcriptionally responsive genes, agreeing with previous data using other models. We show for the first time that hypoxia inducible changes in chromatin accessibility across the genome are predominantly HIF dependent, rapidly reversible upon reoxygenation and partially mimicked by HIF-α stabilisation independent of molecular dioxygenase inhibition. This work demonstrates that HIF is central to chromatin accessibility alterations in hypoxia, and has implications for our understanding of gene expression regulation by hypoxia and HIF.
Collapse
Affiliation(s)
- Michael Batie
- Department of Molecular Physiology and Cell Signalling, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, U.K
| | - Julianty Frost
- Department of Molecular Physiology and Cell Signalling, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, U.K
| | - Dilem Shakir
- Department of Molecular Physiology and Cell Signalling, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, U.K
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L697ZB, U.K
| |
Collapse
|
23
|
Mirzaei Bavil F, Karimi-Sales E, Alihemmati A, Alipour MR. Effect of ghrelin on hypoxia-related cardiac angiogenesis: involvement of miR-210 signalling pathway. Arch Physiol Biochem 2022; 128:270-275. [PMID: 31596148 DOI: 10.1080/13813455.2019.1675712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hypoxia is the main stimulus for angiogenesis. Hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), and miR-210 are involved in the hypoxia-induced angiogenesis. This study examined the effects of hypoxia and/or ghrelin on miR-210, HIF-1α, and VEGF levels in the heart of rats. METHODS Wistar rats were randomly divided into 4 groups (n = 6): control; ghrelin, received daily intraperitoneal injections of ghrelin; hypoxia, was exposed to hypoxic condition; hypoxia + ghrelin, was exposed to hypoxic condition and received intraperitoneal injections of ghrelin, for 2 weeks. Myocardial angiogenesis, the expression level of miR-210, and protein levels of HIF-1α and VEGF were assayed in the heart samples. RESULTS Hypoxia increased myocardial angiogenesis and cardiac levels of miR-210, HIF-1α, and VEGF. However, ghrelin inhibited these hypoxia-induced changes. Interestingly, ghrelin had no significant effect on miR-210, HIF-1α, and VEGF levels in normoxic condition. CONCLUSION Ghrelin may be useful as an anti-angiogenic factor.
Collapse
Affiliation(s)
- Fariba Mirzaei Bavil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Karimi-Sales
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Muñiz-García A, Romero M, Falcόn-Perez JM, Murray P, Zorzano A, Mora S. Hypoxia-induced HIF1α activation regulates small extracellular vesicle release in human embryonic kidney cells. Sci Rep 2022; 12:1443. [PMID: 35087095 PMCID: PMC8795438 DOI: 10.1038/s41598-022-05161-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosures released by eukaryotic cells that carry bioactive molecules and serve to modulate biological responses in recipient cells. Both increased EV release and altered EV composition are associated with the development and progression of many pathologies including cancer. Hypoxia, a feature of rapidly growing solid tumours, increases the release of EVs. However, the molecular mechanisms remain unknown. The hypoxia inducible factors (HIFs) are transcription factors that act as major regulators of the cellular adaptations to hypoxia. Here, we investigated the requirement of HIF pathway activation for EV release in Human Embryonic Kidney Cells (HEK293). Time course experiments showed that EV release increased concomitantly with sustained HIF1α and HIF2α activation following the onset of hypoxia. shRNA mediated knock-down of HIF1α but not HIF2α abrogated the effect of hypoxia on EV release, suggesting HIF1α is involved in this process. However, stabilization of HIF proteins in normoxic conditions through: (i) heterologous expression of oxygen insensitive HIF1α or HIF2α mutants in normoxic cells or (ii) chemical inhibition of the prolyl hydroxylase 2 (PHD2) repressor protein, did not increase EV release, suggesting HIF activation alone is not sufficient for this process. Our findings suggest HIF1α plays an important role in the regulation of EV release during hypoxia in HEK293 cells, however other hypoxia triggered mechanisms likely contribute as stabilization of HIF1α alone in normoxia is not sufficient for EV release.
Collapse
Affiliation(s)
- Ana Muñiz-García
- Department of Molecular Physiology and Cell Signalling (Formerly Dpt. Cellular and Molecular Physiology), The University of Liverpool, Liverpool, L69 3BX, UK.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 13, 08028, Barcelona, Spain
| | - Montserrat Romero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 13, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Manuel Falcόn-Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Bizkaia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, 48015, Bilbao, Bizkaia, Spain
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling (Formerly Dpt. Cellular and Molecular Physiology), The University of Liverpool, Liverpool, L69 3BX, UK
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 13, 08028, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Mora
- Department of Molecular Physiology and Cell Signalling (Formerly Dpt. Cellular and Molecular Physiology), The University of Liverpool, Liverpool, L69 3BX, UK. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain. .,Institute of Biomedicine, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
25
|
Malkov MI, Lee CT, Taylor CT. Regulation of the Hypoxia-Inducible Factor (HIF) by Pro-Inflammatory Cytokines. Cells 2021; 10:cells10092340. [PMID: 34571989 PMCID: PMC8466990 DOI: 10.3390/cells10092340] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Hypoxia and inflammation are frequently co-incidental features of the tissue microenvironment in a wide range of inflammatory diseases. While the impact of hypoxia on inflammatory pathways in immune cells has been well characterized, less is known about how inflammatory stimuli such as cytokines impact upon the canonical hypoxia-inducible factor (HIF) pathway, the master regulator of the cellular response to hypoxia. In this review, we discuss what is known about the impact of two major pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), on the regulation of HIF-dependent signaling at sites of inflammation. We report extensive evidence for these cytokines directly impacting upon HIF signaling through the regulation of HIF at transcriptional and post-translational levels. We conclude that multi-level crosstalk between inflammatory and hypoxic signaling pathways plays an important role in shaping the nature and degree of inflammation occurring at hypoxic sites.
Collapse
Affiliation(s)
- Mykyta I. Malkov
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; (M.I.M.); (C.T.L.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chee Teik Lee
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; (M.I.M.); (C.T.L.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; (M.I.M.); (C.T.L.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
26
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
27
|
PBRM1 Cooperates with YTHDF2 to Control HIF-1α Protein Translation. Cells 2021; 10:cells10061425. [PMID: 34200988 PMCID: PMC8228889 DOI: 10.3390/cells10061425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
PBRM1, a component of the chromatin remodeller SWI/SNF, is often deleted or mutated in human cancers, most prominently in renal cancers. Core components of the SWI/SNF complex have been shown to be important for the cellular response to hypoxia. Here, we investigated how PBRM1 controls HIF-1α activity. We found that PBRM1 is required for HIF-1α transcriptional activity and protein levels. Mechanistically, PBRM1 is important for HIF-1α mRNA translation, as absence of PBRM1 results in reduced actively translating HIF-1α mRNA. Interestingly, we found that PBRM1, but not BRG1, interacts with the m6A reader protein YTHDF2. HIF-1α mRNA is m6A-modified, bound by PBRM1 and YTHDF2. PBRM1 is necessary for YTHDF2 binding to HIF-1α mRNA and reduction of YTHDF2 results in reduced HIF-1α protein expression in cells. Our results identify a SWI/SNF-independent function for PBRM1, interacting with HIF-1α mRNA and the epitranscriptome machinery. Furthermore, our results suggest that the epitranscriptome-associated proteins play a role in the control of hypoxia signalling pathways.
Collapse
|
28
|
Druker J, Wilson JW, Child F, Shakir D, Fasanya T, Rocha S. Role of Hypoxia in the Control of the Cell Cycle. Int J Mol Sci 2021; 22:ijms22094874. [PMID: 34062959 PMCID: PMC8124716 DOI: 10.3390/ijms22094874] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/22/2022] Open
Abstract
The cell cycle is an important cellular process whereby the cell attempts to replicate its genome in an error-free manner. As such, mechanisms must exist for the cell cycle to respond to stress signals such as those elicited by hypoxia or reduced oxygen availability. This review focuses on the role of transcriptional and post-transcriptional mechanisms initiated in hypoxia that interface with cell cycle control. In addition, we discuss how the cell cycle can alter the hypoxia response. Overall, the cellular response to hypoxia and the cell cycle are linked through a variety of mechanisms, allowing cells to respond to hypoxia in a manner that ensures survival and minimal errors throughout cell division.
Collapse
Affiliation(s)
- Jimena Druker
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
| | - James W. Wilson
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
| | - Fraser Child
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
| | - Dilem Shakir
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
| | - Temitope Fasanya
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (J.W.W.); (F.C.); (D.S.); (T.F.)
- Correspondence: ; Tel.: +44-(0)151-794-9084
| |
Collapse
|
29
|
Cultivation of human skin cells under physiological oxygen concentration modulates expression of skin significant genes and response to hydroxy acids. Biochem Biophys Res Commun 2021; 551:161-167. [PMID: 33740623 DOI: 10.1016/j.bbrc.2021.02.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022]
Abstract
Physiological oxygen concentration (physioxia) ranges from 1 to 8% in human tissues while many researchers cultivate mammalian cells under an atmospheric concentration of 21% (hyperoxia). Oxygen is one of the significant gases which functions in human cells including energy production in mitochondria, metabolism in peroxidase, and transcription of various genes in company with HIF (Hypoxia-inducible factors) in the nucleus. Thus, mammalian cell culture should be deliberated on the oxygen concentration to mimic in vivo physiology. Here, we studied if the cultivation of human skin cells under physiological conditions could affect skin significant genes in barrier functions and dermal matrix formation. We further examined that some representative active ingredients in dermatology such as glycolic acid, gluconolactone, and salicylic acid work in different ways depending on the oxygen concentration. Taken together, we present the importance of oxygen concentration in skin cell culture for proper screening of novel ingredients as well as the mechanistic study of skin cell regulation.
Collapse
|
30
|
Vinaiphat A, Low JK, Yeoh KW, Chng WJ, Sze SK. Application of Advanced Mass Spectrometry-Based Proteomics to Study Hypoxia Driven Cancer Progression. Front Oncol 2021; 11:559822. [PMID: 33708620 PMCID: PMC7940826 DOI: 10.3389/fonc.2021.559822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the largest contributors to the burden of chronic disease in the world and is the second leading cause of death globally. It is associated with episodes of low-oxygen stress (hypoxia or ischemia/reperfusion) that promotes cancer progression and therapeutic resistance. Efforts have been made in the past using traditional proteomic approaches to decipher oxygen deprivation stress-related mechanisms of the disease initiation and progression and to identify key proteins as a therapeutic target for the treatment and prevention. Despite the potential benefits of proteomic in translational research for the discovery of new drugs, the therapeutic outcome with this approach has not met expectations in clinical trials. This is mainly due to the disease complexity which possess a multifaceted molecular pathology. Therefore, novel strategies to identify and characterize clinically important sets of modulators and molecular events for multi-target drug discovery are needed. Here, we review important past and current studies on proteomics in cancer with an emphasis on recent pioneered labeling approaches in mass spectrometry (MS)-based systematic quantitative analysis to improve clinical success. We also discuss the results of the selected innovative publications that integrate advanced proteomic technologies (e.g. MALDI-MSI, pSILAC/SILAC/iTRAQ/TMT-LC-MS/MS, MRM-MS) for comprehensive analysis of proteome dynamics in different biosystems, including cell type, cell species, and subcellular proteome (i.e. secretome and chromatome). Finally, we discuss the future direction and challenges in the application of these technological advancements in mass spectrometry within the context of cancer and hypoxia.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jee Keem Low
- Department of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kheng Wei Yeoh
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
31
|
Gene transcription and chromatin regulation in hypoxia. Biochem Soc Trans 2021; 48:1121-1128. [PMID: 32369557 PMCID: PMC7329336 DOI: 10.1042/bst20191106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Oxygen sensing is an essential feature of metazoan biology and reductions in oxygen availability (hypoxia) have both physiological and pathophysiological implications. Co-ordinated mechanisms have evolved for sensing and responding to hypoxia, which involve diverse biological outputs, with the main aim of restoring oxygen homeostasis. This includes a dynamic gene transcriptional response, the central drivers of which are the hypoxia-inducible factor (HIF) family of transcription factors. HIFs are regulated in an oxygen-dependent manner and while their role in hypoxia is well established, it is apparent that other key players are required for gene expression control in hypoxia. In this review, we highlight the current understanding of the known and potential molecular mechanisms underpinning gene transcriptional responses to hypoxia in mammals, with a focus on oxygen-dependent effects on chromatin structure.
Collapse
|
32
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
33
|
Shakir D, Batie M, Rocha S. Use of ChIP-qPCR to Study the Crosstalk Between HIF and NF-κB Signaling in Hypoxia and Normoxia. Methods Mol Biol 2021; 2366:255-265. [PMID: 34236643 DOI: 10.1007/978-1-0716-1669-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Hypoxia and inflammation are intensely connected in a functional crosstalk. Within this crosstalk, two major transcription factors take center stage: HIF and NF-κB. To investigate transcription factor function, an important aspect is its ability to bind DNA. The most appropriate method to study this property in cells is the use of chromatin immunoprecipitation followed by qPCR and/or next generation sequencing. This allows identification of potentially directly regulated genes as well as enhancer regions. Here we describe the ChIP-qPCR method in detail, including key aspects important for the success of the technique.
Collapse
Affiliation(s)
- Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
34
|
Baloglu E, Nonnenmacher G, Seleninova A, Berg L, Velineni K, Ermis-Kaya E, Mairbäurl H. The role of hypoxia-induced modulation of alveolar epithelial Na +- transport in hypoxemia at high altitude. Pulm Circ 2020; 10:50-58. [PMID: 33110497 PMCID: PMC7557693 DOI: 10.1177/2045894020936662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Reabsorption of excess alveolar fluid is driven by vectorial Na+-transport across alveolar epithelium, which protects from alveolar flooding and facilitates gas exchange. Hypoxia inhibits Na+-reabsorption in cultured cells and in-vivo by decreasing activity of epithelial Na+-channels (ENaC), which impairs alveolar fluid clearance. Inhibition also occurs during in-vivo hypoxia in humans and laboratory animals. Signaling mechanisms that inhibit alveolar reabsorption are poorly understood. Because cellular adaptation to hypoxia is regulated by hypoxia-inducible transcription factors (HIF), we tested whether HIFs are involved in decreasing Na+-transport in hypoxic alveolar epithelium. Expression of HIFs was suppressed in cultured rat primary alveolar epithelial cells (AEC) with shRNAs. Hypoxia (1.5% O2, 24 h) decreased amiloride-sensitive transepithelial Na+-transport, decreased the mRNA expression of α-, β-, and γ-ENaC subunits, and reduced the amount of αβγ-ENaC subunits in the apical plasma membrane. Silencing HIF-2α partially prevented impaired fluid reabsorption in hypoxic rats and prevented the hypoxia-induced decrease in α- but not the βγ-subunits of ENaC protein expression resulting in a less active form of ENaC in hypoxic AEC. Inhibition of alveolar reabsorption also caused pulmonary vasoconstriction in ventilated rats. These results indicate that a HIF-2α-dependent decrease in Na+-transport in hypoxic alveolar epithelium decreases alveolar reabsorption. Because susceptibles to high-altitude pulmonary edema (HAPE) have decreased Na+-transport even in normoxia, inhibition of alveolar reabsorption by hypoxia at high altitude might further impair alveolar gas exchange. Thus, aggravated hypoxemia might further enhance hypoxic pulmonary vasoconstriction and might subsequently cause HAPE.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Pharmacology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey.,Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | | | - Anna Seleninova
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Lena Berg
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Kalpana Velineni
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Ezgi Ermis-Kaya
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Translational Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Nojosa Oliveira L, Aguiar Gonçales R, Garcia Silva M, Melo Lima R, Vieira Tomazett M, Santana de Curcio J, Domiraci Paccez J, Milhomem Cruz-Leite VR, Rodrigues F, de Sousa Lima P, Pereira M, de Almeida Soares CM. Characterization of a heme-protein responsive to hypoxia in Paracoccidioides brasiliensis. Fungal Genet Biol 2020; 144:103446. [PMID: 32822859 DOI: 10.1016/j.fgb.2020.103446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 01/13/2023]
Abstract
Oxygen is fundamental to the life of aerobic organisms and is not always available to Paracoccidioides cells. During the life cycle stages, reduced oxygen levels directly affect general metabolic processes and oxygen adaptation mechanisms may play a fundamental role on fungal ability to survive under such condition. Heme proteins can bind to oxygen and participate in important biological processes. Several fungi, including Paracoccidioides, express a heme-binding globin (fungoglobin - FglA) presumable to regulate fungal adaptation to hypoxia. However, the characterization of fungoglobin in Paracoccidioides spp. has not yet been performed. In this study, we predicted the structure of fungoglobin and determined its level of expression during hypoxic-mimetic conditions. Genomic screening revealed that the fungoglobin gene is conserved in all species of the Paracoccidioides genus. Molecular modeling showed biochemical and biophysical characteristics that support the hypothesis that FglA binds to the heme group and oxygen as well. The fungoglobin transcript and proteins are expressed at higher levels at the early treatment time, remaining elevated while oxygen is limited. A P. brasiliensis fglA knockdown strain depicted reduced growth in hypoxia indicating that this protein can be essential for growth at low oxygen. Biochemical analysis confirmed the binding of fungoglobin to heme. Initial analyzes were carried out to establish the relationship between FlglA and iron metabolism. The FglA transcript was up regulated in pulmonary infection, suggesting its potential role in the disease establishment. We believe that this study can contribute to the understanding of fungal biology and open new perspectives for scientific investigations.
Collapse
Affiliation(s)
- Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marielle Garcia Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Raisa Melo Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Mariana Vieira Tomazett
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana Santana de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Vanessa Rafaela Milhomem Cruz-Leite
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
36
|
Kamei H. Oxygen and embryonic growth: the role of insulin-like growth factor signaling. Gen Comp Endocrinol 2020; 294:113473. [PMID: 32247621 DOI: 10.1016/j.ygcen.2020.113473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
Oxygen is indispensable for the efficient release of chemical energy from nutrient molecules in cells. Therefore, the local oxygen tension is one of the most critical factors affecting physiological processes. In most viviparous species, many pathological conditions result in abnormal oxygen tension in the uterus, which modifies the growth and development of the fetus. Insulin-like growth factor (IGF/Igf) is one of the most important hormones for the regulation of somatic growth in animals. Changes in oxygen levels modulate the activity of the IGF/Igf signaling system, which in turn regulates the embryonic growth rate. In general, there are serious difficulties associated with monitoring and studying rodent embryos in utero. The zebrafish is a convenient experimental model to study the relationship between embryonic growth and environmental conditions. Most importantly, the fish model makes it possible to rapidly evaluate embryonic growth and development under entirely controlled environments without interfering with the mother organism. In this review, firstly an overview is given of the fluctuation of environmental oxygen, the IGF-system, and the advantages of the zebrafish model for studying embryonic growth. Then, the relationships of dynamic environmental oxygen and embryonic growth rate are outlined with a specific focus on the changes in the IGF/Igf-system in the zebrafish model. This review will shed light on the fine-tuning mechanisms of the embryonic IGF/Igf-system under different oxygen levels, including constant normoxia, hypoxia, and re-oxygenation.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, 11-4-1, Ossaka, Noto, Ishikawa 927-0552, Japan.
| |
Collapse
|
37
|
Cheng YJ, Liu CC, Chu FY, Yang CP, Hsiao CW, Chuang CW, Shiau MY, Lee HT, Tsai JN, Chang YH. Oxygenated Water Inhibits Adipogenesis and Attenuates Hepatic Steatosis in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2020; 21:ijms21155493. [PMID: 32752112 PMCID: PMC7432369 DOI: 10.3390/ijms21155493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
The expansion of adipose tissue mass is the primary characteristic of the process of becoming obesity, which causes chronic adipose inflammation and is closely associated with type 2 diabetes mellitus (T2DM). Adipocyte hypertrophy restricts oxygen availability, leading to microenvironmental hypoxia and adipose dysfunction. This study aimed at investigating the effects of oxygenated water (OW) on adipocyte differentiation (adipogenesis) and the metabolic function of mature adipocytes. The effects of OW on adipogenesis and the metabolic function of mature adipocytes were examined. Meanwhile, the in vivo metabolic effects of long-term OW consumption on diet-induced obesity (DIO) mice were investigated. OW inhibited adipogenesis and lipid accumulation through down-regulating critical adipogenic transcription factors and lipogenic enzymes. While body weight, blood and adipose parameters were not significantly improved by long-term OW consumption, transient circulatory triglyceride-lowering and glucose tolerance-improving effects were identified. Notably, hepatic lipid contents were significantly reduced, indicating that the DIO-induced hepatic steatosis was attenuated, despite no improvements in fibrosis and lipid contents in adipose tissue being observed in the OW-drinking DIO mice. The study provides evidence regarding OW’s effects on adipogenesis and mature adipocytes, and the corresponding molecular mechanisms. OW exhibits transient triglyceride-lowering and glucose tolerance-improving activity as well as hepatic steatosis-attenuating functions.
Collapse
Affiliation(s)
- Yuh-Jen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Chao-Chi Liu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.L.); (C.-P.Y.); (C.-W.C.)
| | - Fang-Yeh Chu
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu 300, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.L.); (C.-P.Y.); (C.-W.C.)
| | - Chiao-Wan Hsiao
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan;
| | - Cheng-Wei Chuang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.L.); (C.-P.Y.); (C.-W.C.)
| | - Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan;
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan;
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (C.-C.L.); (C.-P.Y.); (C.-W.C.)
- Correspondence: ; Tel.: +886-2-2826-7955; Fax: 886-2-2821-9240
| |
Collapse
|
38
|
Wilson JW, Shakir D, Batie M, Frost M, Rocha S. Oxygen-sensing mechanisms in cells. FEBS J 2020; 287:3888-3906. [PMID: 32446269 DOI: 10.1111/febs.15374] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022]
Abstract
The importance of oxygen for the survival of multicellular and aerobic organisms is well established and documented. Over the years, increased knowledge of its use for bioenergetics has placed oxygen at the centre of research on mitochondria and ATP-generating processes. Understanding the molecular mechanisms governing cellular oxygen sensing and response has allowed for the discovery of novel pathways oxygen is involved in, culminating with the award of the Nobel Prize for Medicine and Physiology in 2019 to the pioneers of this field, Greg Semenza, Peter Ratcliffe and William Kaelin. However, it is now beginning to be appreciated that oxygen can be a signalling molecule involved in a vast array of molecular processes, most of which impinge on gene expression control. This review will focus on the knowns and unknowns of oxygen as a signalling molecule, highlighting the role of 2-oxoglutarate-dependent dioxygenases as central players in the cellular response to deviations in oxygen tension.
Collapse
Affiliation(s)
- James W Wilson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Mark Frost
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, UK
| |
Collapse
|
39
|
Zhang J, Lei C, Deng Y, Ahmed JZ, Shi D, Lu F. Hypoxia Enhances Mesenchymal Characteristics Maintenance of Buffalo Bone Marrow-Derived Mesenchymal Stem Cells. Cell Reprogram 2020; 22:167-177. [PMID: 32453601 DOI: 10.1089/cell.2019.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) from livestock are valuable resources for veterinary therapeutics and animal reproduction. Previous studies have shown that hypoxic conditions were beneficial in maintaining the mesenchymal feature of BMSCs. However, the effects of hypoxia on buffalo BMSCs (bBMSCs) remain unclear. In this study, the effects of hypoxic conditions on cell morphology, migration, polarity, and karyotype of bBMSCs were examined. The results showed that hypoxia (5% oxygen) enhanced colony formation and stress fiber synthesis of bBMSCs. Under the hypoxic culture conditions, the migration capacity and normal karyotype rate of bBMSCs were significantly improved (p < 0.05), which resulted in weakened cell polarity and enhanced karyotype stability in bBMSCs. In addition, it was significantly (p < 0.05) upregulated in the expression levels of HIF-TWIST signaling pathway axis-related genes (Hif-1, Hif-2, Twist, Snail, Slug, Fn1, N-cadherin, Collal). The HIF-TWIST axis of bBMSCs was also activated in hypoxia. Finally, it was more effective and easier to maintain the mesenchymal feature of bBMSCs in hypoxic conditions. These findings not only provide theoretical guidance to elucidate the detailed regulation mechanism of hypoxia on mesenchymal nature maintenance of bBMSCs, but also provide positive support to further establish the stable in vitro culture system of bBMSCs.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, People's Republic of China
| | - Chuan Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, People's Republic of China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, People's Republic of China
| | - Jam Zaheer Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, People's Republic of China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, People's Republic of China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, People's Republic of China
| |
Collapse
|
40
|
Chen PS, Chiu WT, Hsu PL, Lin SC, Peng IC, Wang CY, Tsai SJ. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci 2020; 27:63. [PMID: 32389123 PMCID: PMC7212687 DOI: 10.1186/s12929-020-00658-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essentially required by most eukaryotic organisms as a scavenger to remove harmful electron and hydrogen ions or as a critical substrate to ensure the proper execution of enzymatic reactions. All nucleated cells can sense oxygen concentration and respond to reduced oxygen availability (hypoxia). When oxygen delivery is disrupted or reduced, the organisms will develop numerous adaptive mechanisms to facilitate cells survived in the hypoxic condition. Normally, such hypoxic response will cease when oxygen level is restored. However, the situation becomes complicated if hypoxic stress persists (chronic hypoxia) or cyclic normoxia-hypoxia phenomenon occurs (intermittent hypoxia). A series of chain reaction-like gene expression cascade, termed hypoxia-mediated gene regulatory network, will be initiated under such prolonged or intermittent hypoxic conditions and subsequently leads to alteration of cellular function and/or behaviors. As a result, irreversible processes occur that may cause physiological disorder or even pathological consequences. A growing body of evidence implicates that hypoxia plays critical roles in the pathogenesis of major causes of mortality including cancer, myocardial ischemia, metabolic diseases, and chronic heart and kidney diseases, and in reproductive diseases such as preeclampsia and endometriosis. This review article will summarize current understandings regarding the molecular mechanism of hypoxia in these common and important diseases.
Collapse
Affiliation(s)
- Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Pei-Ling Hsu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - I-Chen Peng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|
41
|
D’Ignazio L, Shakir D, Batie M, Muller HA, Rocha S. HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. Int J Mol Sci 2020; 21:ijms21083000. [PMID: 32344511 PMCID: PMC7216149 DOI: 10.3390/ijms21083000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB signalling is crucial for cellular responses to inflammation but is also associated with the hypoxia response. NF-κB and hypoxia inducible factor (HIF) transcription factors possess an intense molecular crosstalk. Although it is known that HIF-1α modulates NF-κB transcriptional response, very little is understood regarding how HIF-1β contributes to NF-κB signalling. Here, we demonstrate that HIF-1β is required for full NF-κB activation in cells following canonical and non-canonical stimuli. We found that HIF-1β specifically controls TRAF6 expression in human cells but also in Drosophila melanogaster. HIF-1β binds to the TRAF6 gene and controls its expression independently of HIF-1α. Furthermore, exogenous TRAF6 expression is able to rescue all of the cellular phenotypes observed in the absence of HIF-1β. These results indicate that HIF-1β is an important regulator of NF-κB with consequences for homeostasis and human disease.
Collapse
Affiliation(s)
- Laura D’Ignazio
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- The Lieber Institute for Brain Development, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - H. Arno Muller
- Developmental Genetics Unit, Institute of Biology, University of Kassel, 34132 Kassel, Germany;
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
- Correspondence: ; Tel.: +44-(0)151-794-9084
| |
Collapse
|
42
|
Akimoto R, Tanaka T, Nakano T, Hozumi Y, Kawamae K, Goto K. DGKζ depletion attenuates HIF-1α induction and SIRT1 expression, but enhances TAK1-mediated AMPKα phosphorylation under hypoxia. Cell Signal 2020; 71:109618. [PMID: 32224048 DOI: 10.1016/j.cellsig.2020.109618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
Abstract
Cells cope with environmental changes through various mechanisms. Pathways involving HIF-1, SIRT1, and AMPK play major roles in energy homeostasis under stress conditions. Diacylglycerol kinase (DGK) constitutes an enzyme family that catalyzes conversion of diacylglycerol to phosphatidic acid. We reported earlier that energy depletion such as ischemia induces proteasomal degradation of DGKζ before cell death, suggesting involvement of DGKζ in energy homeostasis. This study examines how DGKζ depletion affects the regulation of HIF-1α, SIRT1, and AMPKα. Under hypoxia DGKζ depletion attenuates HIF-1α induction and SIRT1 expression, which might render cells vulnerable to energy stress. However, DGKζ depletion engenders enhanced AMPKα phosphorylation by upstream kinase TAK1 and an increase in intracellular ATP levels. Results suggest that DGKζ exerts a suppressive effect on TAK1 activity in the AMPK activation mechanism, and that DGKζ depletion might engender dysregulation of the AMPK-mediated energy sensor system.
Collapse
Affiliation(s)
- Ryo Akimoto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan; Department of Anesthesiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Toshiaki Tanaka
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| | - Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Yasukazu Hozumi
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kaneyuki Kawamae
- Department of Anesthesiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.
| |
Collapse
|
43
|
Molecular Mechanisms of Adipose Tissue Survival during Severe Hypoxia: Implications for Autologous Fat Graft Performance. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2275. [PMID: 31624681 PMCID: PMC6635216 DOI: 10.1097/gox.0000000000002275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 04/08/2019] [Indexed: 02/04/2023]
Abstract
Background: Variable retention outcomes remain a significant issue in autologous fat grafting procedures. Among seemingly similar patients, using identical harvesting procedures, variability in graft retention is noted. Recent data suggest that the inherent characteristics of donor adipose tissue dictate graft healing outcomes. The goal of this study was to elucidate intrinsic qualities of human adipose tissue that confer resistance to ischemic stress to therapeutically target such mechanisms and improve overall results of fat grafts. Methods: Whole fat from 5 female patients was cultured in vitro under severe (1% O2) and mild (8% O2) hypoxic conditions. Microarray analysis of 44 hypoxia-related genes was performed. Perilipin was used to visualize viable adipocytes. Macrophage phenotypes were identified using PCR. Results: Analysis of adipocyte survival with perilipin suggested improved viability for tissue obtained from high BMI donors. Microarray data revealed a significant positive correlation for induced expression of ANGPTL4, a survival gene, and subject BMI (P = 0.0313) during hypoxic conditions whereas HIF1α and HIF2α genes were negatively correlated with donor BMI (P = 0.0003 and 0.0303). Interestingly, induced differentiation of proinflammatory M1 macrophages was negatively correlated with BMI under hypoxia (P = 0.0177). Conclusions: The innate resilience of adipocytes to hypoxia and relative macrophage activation play a crucial role in fat graft retention. This study suggests that adipose tissue from high BMI donors demonstrates greater resistance to hypoxia-induced apoptosis associated with an increased expression of ANGPTL4. Therefore, therapeutic interventions that target this factor may improve clinical adipose graft survival.
Collapse
|
44
|
Intermittent hypoxia induces beneficial cardiovascular remodeling in left ventricular function of type 1 diabetic rat. Anatol J Cardiol 2019; 19:259-266. [PMID: 29615543 PMCID: PMC5998850 DOI: 10.14744/anatoljcardiol.2018.00236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Depressed mechanical activity is a marked complication in diabetics. Hypoxia has properties for novel diagnostic and therapeutic strategies, while intermittent hypoxia (IH) provides early functional and histologic remodeling, including some cardio benefits in early hemodynamic alterations with histologic remodeling and delayed changes in peripheral vasoreactivity. Therefore, we aimed to examine whether IH application presents a cardioprotective effect, via stabilization of hypoxia-inducible factor (HIF) in streptozotocin (STZ)-induced diabetic rat heart. METHODS Male 10-week-old Wistar rats were randomly assigned as control group (C), IH group, (STZ)-induced diabetic group (DM) and IH applied DM group (DM+IH). Diabetes duration was kept 6 weeks and IH groups were exposed to hypobaric hypoxia at about 70 kPa (including ~14% PO2; 6 h/day for 6-weeks). RESULTS Depressed left ventricular developed pressure (LVDP) and prolonged contraction and relaxation of Langendorff-perfused hearts, as well as increased total oxidative status from streptozotocin (STZ)-induced diabetic rats were markedly prevented with IH application. IH application induced significant increase in protein expression levels of both HIF-1α and vascular endothelial growth factor (VEGF), in both control and diabetic rat hearts, whereas there were significant decreases in the protein levels of prolyl-4 hydroxylase domain enzymes, PHD2, and PHD3 in diabetic hearts. Furthermore, IH application induced marked increases in protein levels of matrix metalloproteinases, MMP-2 and MMP-9 and capillary density in left ventricle of diabetic rats. CONCLUSION Overall, we presented how IH application has a beneficial cardiovascular remodeling effect in left ventricular function of diabetic rats, at most, via affecting increased oxidative stress and HIF-VEGF related angiogenesis, providing information on hyperglycemia associated new targets and therapeutic strategies.
Collapse
|
45
|
Deng Y, Huang G, Chen F, Testroet ED, Li H, Li H, Nong T, Yang X, Cui J, Shi D, Yang S. Hypoxia enhances buffalo adipose‐derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells. J Cell Physiol 2019; 234:17254-17268. [DOI: 10.1002/jcp.28342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Guiting Huang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
- Reproductive Medicine Center Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region Nanning China
| | - Feng Chen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Eric David Testroet
- Department of Animal and Veterinary Sciences University of Vermont Burlington Vermont
| | - Hui Li
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Haiyang Li
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Tianying Nong
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Xiaoling Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Jiayu Cui
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Sufang Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| |
Collapse
|
46
|
Abstract
Gaseous oxygen is essential for all aerobic animals, without which mitochondrial respiration and oxidative phosphorylation cannot take place. It is not, however, regarded as a "nutrient" by nutritionists and does not feature as such within the discipline of nutritional science. This is primarily a consequence of the route by which O2 enters the body, which is via the nose and lungs in terrestrial animals as opposed to the mouth and gastrointestinal tract for what are customarily considered as nutrients. It is argued that the route of entry should not be the critical factor in defining whether a substance is, or is not, a nutrient. Indeed, O2 unambiguously meets the standard dictionary definitions of a nutrient, such as "a substance that provides nourishment for the maintenance of life and for growth" (Oxford English Dictionary). O2 is generally available in abundance, but deficiency occurs at high altitude and during deep sea dives, as well as in lung diseases. These impact on the provision at a whole-body level, but a low pO2 is characteristic of specific tissues includings the retina and brain, while deficiency, or overt hypoxia, is evident in certain conditions such as ischaemic disease and in tumours - and in white adipose tissue in obesity. Hypoxia results in a switch from oxidative metabolism to increased glucose utilisation through anaerobic glycolysis, and there are extensive changes in the expression of multiple genes in O2-deficient cells. These changes are driven by hypoxia-sensitive transcription factors, particularly hypoxia-inducible factor-1 (HIF-1). O2 deficiency at a whole-body level can be treated by therapy or supplementation, but O2 is also toxic through the generation of reactive oxygen species. It is concluded that O2 is a critical, but overlooked, nutrient which should be considered as part of the landscape of nutritional science.
Collapse
Affiliation(s)
- Paul Trayhurn
- Clore Laboratory, University of Buckingham, Buckingham, United Kingdom.,Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
47
|
Frost J, Ciulli A, Rocha S. RNA-seq analysis of PHD and VHL inhibitors reveals differences and similarities to the hypoxia response. Wellcome Open Res 2019; 4:17. [PMID: 30801039 PMCID: PMC6376255 DOI: 10.12688/wellcomeopenres.15044.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Hypoxia-inducible factor (HIF) transcription factors are well known to control the transcriptional response to hypoxia. Given the importance of cellular response to hypoxia, a number of pharmacological agents to interfere with this pathway have been developed and entered pre-clinical or clinical trial phases. However, how similar or divergent the transcriptional response elicited by different points of interference in cells is currently unknown. Methods: We performed RNA-sequencing to analyse the similarities and differences of transcriptional response in HeLa cells treated with hypoxia or chemical agents that stabilise HIF by inhibiting components of the hypoxia signalling pathway - prolyl hydroxylase (PHD) inhibitor or von Hippel-Lindau (VHL) inhibitor. Results: This analysis revealed that hypoxia produces the highest changes in gene transcription, with activation and repression of genes being in large numbers. Treatment with the PHD inhibitor IOX2 or the VHL inhibitor VH032 led mostly to gene activation, majorly via a HIF-dependent manner. These results were also confirmed by qRT-PCR using more specific and/or efficient inhibitors, FG-4592 (PHDs) and VH298 (VHL). Conclusion: PHD inhibition and VHL inhibition mimic gene activation promoted by hypoxia via a HIF-dependent manner. However, gene repression is mostly associated with the hypoxia response and not common to the response elicited by inhibitors of the pathway.
Collapse
Affiliation(s)
- Julianty Frost
- Biochemistry-Institute of Integrative Biology, University of Liverpool, Liverpool, L697ZB, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Sonia Rocha
- Biochemistry-Institute of Integrative Biology, University of Liverpool, Liverpool, L697ZB, UK
| |
Collapse
|
48
|
D'Ignazio L, Batie M, Rocha S. TNFSF14/LIGHT, a Non-Canonical NF-κB Stimulus, Induces the HIF Pathway. Cells 2018; 7:E102. [PMID: 30096845 PMCID: PMC6116154 DOI: 10.3390/cells7080102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
Abstract
Non-canonical NF-κB signalling plays important roles in the development and function of the immune system but it also is deregulated in a number of inflammatory diseases. Although, NF-κB and HIF crosstalk has been documented, this has only been described following canonical NF-κB stimulation, involving RelA/p50 and the HIF-1 dimer. Here, we report that the non-canonical inducer TNFSF14/LIGHT leads to HIF induction and activation in cancer cells. We demonstrate that only HIF-2α is induced at the transcriptional level following non-canonical NF-κB activation, via a mechanism that is dependent on the p52 subunit. Furthermore, we demonstrate that p52 can bind to the HIF-2α promoter in cells. These results indicate that non-canonical NF-κB can lead to HIF signalling implicating HIF-2α as one of the downstream effectors of this pathway in cells.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Center for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L697ZB, UK.
| | - Sonia Rocha
- Center for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD15EH, UK.
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L697ZB, UK.
| |
Collapse
|
49
|
Biddlestone J, Batie M, Bandarra D, Munoz I, Rocha S. SINHCAF/FAM60A and SIN3A specifically repress HIF-2α expression. Biochem J 2018; 475:2073-2090. [PMID: 29784889 PMCID: PMC6024822 DOI: 10.1042/bcj20170945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 01/09/2023]
Abstract
The SIN3A-HDAC (histone deacetylase) complex is a master transcriptional repressor, required for development but often deregulated in disease. Here, we report that the recently identified new component of this complex, SINHCAF (SIN3A and HDAC-associated factor)/FAM60A (family of homology 60A), links the SIN3A-HDAC co-repressor complex function to the hypoxia response. We show that SINHCAF specifically represses HIF-2α mRNA and protein expression, via its interaction with the transcription factor SP1 (specificity protein 1) and recruitment of HDAC1 to the HIF-2α promoter. SINHCAF control over HIF-2α results in functional cellular changes in in vitro angiogenesis and viability. Our analysis reveals an unexpected link between SINHCAF and the regulation of the hypoxia response.
Collapse
Affiliation(s)
- John Biddlestone
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- SCREDS Clinical Lecturer in Plastic and Reconstructive Surgery, Centre for Cell Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Michael Batie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- Department of Biochemistry, Institute for Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Daniel Bandarra
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ivan Munoz
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
- Department of Biochemistry, Institute for Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
50
|
Silakit R, Kitirat Y, Thongchot S, Loilome W, Techasen A, Ungarreevittaya P, Khuntikeo N, Yongvanit P, Yang JH, Kim NH, Yook JI, Namwat N. Potential role of HIF-1-responsive microRNA210/HIF3 axis on gemcitabine resistance in cholangiocarcinoma cells. PLoS One 2018; 13:e0199827. [PMID: 29953500 PMCID: PMC6023215 DOI: 10.1371/journal.pone.0199827] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2018] [Indexed: 01/07/2023] Open
Abstract
MicroRNA-210 (miR-210) is a robust target for hypoxia-inducible factor, and its overexpression has been detected in a variety of solid tumors. However, the role of miR-210 in the development, progression and response to therapy in cholangiocarcinoma (CCA) remains undefined. We report here that high miR-210 expression was significantly correlated with the shorter survival of CCA patients. Overexpression of miR-210 inhibited CCA cell proliferation at the G2/M phase and reduced the gemcitabine sensitivity in CCA cells under CoCl2-induced pseudohypoxia. Concomitantly, inhibition of endogenous miR-210 activity using miRNA sponges increased cell proliferation under CoCl2-induced pseudohypoxia, resulting in an increase in gemcitabine sensitivity in CCA cells. We showed that HIF-3α, a negative controller of HIF-1α, was a target of miR-210 constituting a feed-forward hypoxic regulatory loop. Our data suggest an important role of miR-210 in sustaining HIF-1α activity via the suppression of HIF-3α, regulating cell growth and chemotherapeutic drug resistance in CCA.
Collapse
Affiliation(s)
- Runglawan Silakit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Yingpinyapat Kitirat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Suyanee Thongchot
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Puangrat Yongvanit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ji Hye Yang
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
- * E-mail: (NN); (JIY)
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- * E-mail: (NN); (JIY)
| |
Collapse
|