1
|
Yun J, Kim JE. Broccoli Sprout Extract Suppresses Particulate-Matter-Induced Matrix-Metalloproteinase (MMP)-1 and Cyclooxygenase (COX)-2 Expression in Human Keratinocytes by Direct Targeting of p38 MAP Kinase. Nutrients 2024; 16:4156. [PMID: 39683550 DOI: 10.3390/nu16234156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Particulate matter (PM) is an environmental pollutant that negatively affects human health, particularly skin health. In this study, we investigated the inhibitory effects of broccoli sprout extract (BSE) on PM-induced skin aging and inflammation in human keratinocytes. METHODS HaCaT keratinocytes were pretreated with BSE before exposure to PM. Cell viability was assessed using the MTT assay. The expression of skin aging and inflammation markers (MMP-1, COX-2, IL-6) was measured using Western blot, ELISA, and qRT-PCR. Reactive oxygen species levels were determined using the DCF-DA assay. Kinase assays and pull-down assays were conducted to investigate the interaction between BSE and p38α MAPK. RESULTS Our findings demonstrate that BSE effectively suppressed the expression of MMP-1, COX-2, and IL-6-critical skin aging and inflammation markers-by inhibiting p38 MAPK activity. BSE binds directly to p38α without competing with ATP, thereby selectively inhibiting its activity and downstream signaling pathways, including MSK1/2, AP-1, and NF-κB. CONCLUSIONS These results suggest that BSE is a potential functional ingredient in skincare products to mitigate PM-induced skin damage.
Collapse
Affiliation(s)
- Jaehyeok Yun
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
| |
Collapse
|
2
|
Nakano N, Tashiro E, Shimada T, Ebisawa M, Kojima S, Ayabe K, Yamamoto Y, Maeda S, Itoh F, Itoh S. Involvement of mitogen- and stress-activated protein kinase 1 in BMP-6-induced chondrocyte differentiation. J Biol Chem 2024; 300:107806. [PMID: 39307301 PMCID: PMC11541777 DOI: 10.1016/j.jbc.2024.107806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 10/27/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are involved in several cellular responsive actions, such as development, cell differentiation, and apoptosis, via their specific transmembrane receptors. In particular, BMPs promote the differentiation and maturation of bone and cartilage from mesenchymal stem cells. Based on comprehensive analyses performed with a large number of antibodies, mitogen- and stress-activated protein kinase (MSK)1 was found to be immediately phosphorylated in the mouse chondrocyte precursor cell line, ATDC5, upon BMP-6 stimulation. The overexpression and knockdown of MSK1 in ATDC5 cells also enhanced and suppressed BMP-6-induced chondrocyte differentiation, respectively. Similar to ATDC5 cells, an ex vivo organ culture system using mouse embryonic metatarsal bones also demonstrated that BMP-6-mediated MSK1 activation might play a role in chondrocyte differentiation. Using several inhibitors, the p38 kinase pathway was confirmed to be implicated in BMP-6-induced phosphorylation of MSK1. Furthermore, MSK1 mutants lacking kinase activities and those lacking serine/threonine residues targeted by p38 kinase severely impaired their ability to potentiate BMP-6-induced chondrogenic differentiation of ATDC5 cells. Interestingly, a loss-of-function study for Smad4 perturbed BMP-6-induced phosphorylation of p38 kinase to inhibit BMP-6-mediated chondrocyte differentiation via MSK1 activation. Overall, both Smad-dependent and independent pathways require BMP-6-induced chondrocyte differentiation via MSK1 activation in ATDC5 cells.
Collapse
Affiliation(s)
- Naoko Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Etsu Tashiro
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Takayuki Shimada
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Masayasu Ebisawa
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Sayaka Kojima
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Kaho Ayabe
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yohei Yamamoto
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shingo Maeda
- Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Fumiko Itoh
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan.
| |
Collapse
|
3
|
Choi S, Lee Y, Park S, Jang SY, Park J, Oh DW, Kim SM, Kim TH, Lee GS, Cho C, Kim BS, Lee D, Kim EH, Cheong HK, Moon JH, Song JJ, Hwang J, Kim MH. Dissemination of pathogenic bacteria is reinforced by a MARTX toxin effector duet. Nat Commun 2024; 15:6218. [PMID: 39043696 PMCID: PMC11266601 DOI: 10.1038/s41467-024-50650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Multiple bacterial genera take advantage of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin to invade host cells. Secretion of the MARTX toxin by Vibrio vulnificus, a deadly opportunistic pathogen that causes primary septicemia, the precursor of sepsis, is a major driver of infection; however, the molecular mechanism via which the toxin contributes to septicemia remains unclear. Here, we report the crystal and cryo-electron microscopy (EM) structures of a toxin effector duet comprising the domain of unknown function in the first position (DUF1)/Rho inactivation domain (RID) complexed with human targets. These structures reveal how the duet is used by bacteria as a potent weapon. The data show that DUF1 acts as a RID-dependent transforming NADase domain (RDTND) that disrupts NAD+ homeostasis by hijacking calmodulin. The cryo-EM structure of the RDTND-RID duet complexed with calmodulin and Rac1, together with immunological analyses in vitro and in mice, provide mechanistic insight into how V. vulnificus uses the duet to suppress ROS generation by depleting NAD(P)+ and modifying Rac1 in a mutually-reinforcing manner that ultimately paralyzes first line immune responses, promotes dissemination of invaders, and induces sepsis. These data may allow development of tools or strategies to combat MARTX toxin-related human diseases.
Collapse
Affiliation(s)
- Sanghyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Youngjin Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Shinhye Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Song Yee Jang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Jongbin Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Do Won Oh
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Su-Man Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Biology Education, Chonnam National University, Gwangju, 61186, Korea
| | - Tae-Hwan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
| | - Changyi Cho
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760, Korea
| | - Donghan Lee
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Eun-Hee Kim
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Hae-Kap Cheong
- Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, KRIBB, Daejeon, 34141, Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jungwon Hwang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| | - Myung Hee Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
| |
Collapse
|
4
|
Treponema denticola Induces Interleukin-36γ Expression in Human Oral Gingival Keratinocytes via the Parallel Activation of NF-κB and Mitogen-Activated Protein Kinase Pathways. Infect Immun 2022; 90:e0024722. [PMID: 36040155 PMCID: PMC9584330 DOI: 10.1128/iai.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral epithelial barrier acts as both a physical barrier to the abundant oral microbiome and a sentry for the immune system that, in health, constrains the accumulation of the polymicrobial plaque biofilm. The immune homeostasis during gingivitis that is largely protective becomes dysregulated, unproductive, and destructive to gingival tissue as periodontal disease progresses to periodontitis. The progression to periodontitis is associated with the dysbiosis of the oral microbiome, with increasing prevalences and abundances of periodontal pathogens such as Treponema denticola. Despite the association of T. denticola with a chronic inflammatory disease, relatively little is known about gingival epithelial cell responses to T. denticola infection. Here, we characterized the transcriptome of gingival keratinocytes following T. denticola challenge and identified interleukin-36γ (IL-36γ) as the most differentially expressed cytokine. IL-36γ expression is regulated by p65 NF-κB and the activation of both the Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways downstream of Toll-like receptor 2 (TLR2). Finally, we demonstrate for the first time that mitogen- and stress-activated kinase 1 (MSK1) contributes to IL-36γ expression and may link the activation of MAPK and NF-κB signaling. These findings suggest that the interactions of T. denticola with the gingival epithelium lead to elevated IL-36γ expression, which may be a critical inducer and amplifier of gingival inflammation and subsequent alveolar bone loss.
Collapse
|
5
|
Yang L, Chen H, Hu Q, Liu L, Yuan Y, Zhang C, Tang J, Shen X. Eupalinolide B attenuates lipopolysaccharide-induced acute lung injury through inhibition of NF-κB and MAPKs signaling by targeting TAK1 protein. Int Immunopharmacol 2022; 111:109148. [PMID: 35988521 DOI: 10.1016/j.intimp.2022.109148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
Acute lung injury (ALI) is a life-threatening disease characterized by severe inflammatory response, which has no pharmacological therapy in clinic. In this study, we found that eupalinolide B (EB), a sesquiterpene lactone isolated from Eupatorium lindleyanum, significantly ameliorated lipopolysaccharide (LPS)-induced ALI in mice, which manifests as reduction in lung injury score, activity of myeloperoxidase, and release of cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1). In RAW264.7 murine macrophages, EB effectively inhibited LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) by down-regulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), respectively. Mechanistically, EB not only blocked LPS-induced phosphorylation of inhibitor of nuclear factor kappa B kinase-α/β (IKKα/β), phosphorylation and degradation of inhibitor of nuclear factor-kappa B alpha (IκBα), and phosphorylation and nuclear translocation of nuclear factor-kappa B (NF-κB) P65, but also suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in vitro or in vivo. Through cellular thermal shift assay and western blotting, EB was demonstrated to target and inactivate transforming growth factor β activated kinase-1 (TAK1), which is an important upstream kinase for the activation of NF-κB and MAPKs pathways. Additionally, EB-mediated actions were markedly abolished by dithiothreitol in LPS-exposed RAW264.7 cells, suggesting a crucial role of the α,γ-unsaturated lactone for the anti-inflammatory activity of EB. In conclusion, our findings showed that EB could effectively alleviate ALI in mice, and attenuate inflammatory response by inhibiting the activation of TAK1, and TAK1-mediated activation of NF-κB and MAPKs cascades.
Collapse
Affiliation(s)
- Luyao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongqing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137 Chengdu, China
| | - Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, 610072 Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
6
|
Zhang J, Wang C, An Q, Quan Q, Li M, Zhao D. Gene Expression Profile Analyses of the Skin Response of Balb/c-Nu Mice Model Injected by Staphylococcus aureus. Clin Cosmet Investig Dermatol 2022; 15:217-235. [PMID: 35210800 PMCID: PMC8857954 DOI: 10.2147/ccid.s348961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 01/20/2023]
Abstract
Background Pathogenesis and persistence of many skin diseases are related to Staphylococcus aureus (S. aureus) colonization. S. aureus infection can cause varying degrees of changes in cell gene expression, resulting in complex changes in cell phenotype and finally changes in cell life activities. Materials and Methods The transcriptomes of healthy and Staphylococcus aureus (S. aureus)-infected murine skin tissues were analyzed. We identified 638 differentially expressed genes (DEGs) in the infected tissues compared to the control samples, of which 324 were upregulated and 314 were downregulated, following the criteria of P < 0.01 and |log2FC| > 3. The DEGs were functionally annotated by Gene Ontology (GO), KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and the protein–protein interaction (PPI) network analyses. Results The upregulated DEGs were mainly enriched in GO terms, such as response to stimulus, immune system process and signal transduction, as well as in the complement and coagulation cascade pathway. Thus, S. aureus infection likely activates these pathways to limit the influx of neutrophils and prevent skin damage. Four clusters were identified in the PPI network, and the major hubs were mainly related to cell cycle and proliferation, and mostly downregulated. The expression levels of Nox4, Mmrn1, Mcm5, Msx1 and Fgf5 mRNAs were validated by qRT-PCR and found to be consistent with the RNA-Seq data, confirming a strong correlation between the two approaches. Conclusion The identified genes and pathways are potential drug targets for treating skin inflammation caused by S. aureus and should be investigated further.
Collapse
Affiliation(s)
- Jiachan Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Changtao Wang
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Qianghua Quan
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Meng Li
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Dan Zhao
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| |
Collapse
|
7
|
Choi SI, Han HS, Kim JM, Park G, Jang YP, Shin YK, Ahn HS, Lee SH, Lee KT. Eisenia bicyclis Extract Repairs UVB-Induced Skin Photoaging In Vitro and In Vivo: Photoprotective Effects. Mar Drugs 2021; 19:693. [PMID: 34940692 PMCID: PMC8709268 DOI: 10.3390/md19120693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic exposure to ultraviolet B (UVB) is a major cause of skin aging. The aim of the present study was to determine the photoprotective effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) against UVB-induced skin aging. By treating human dermal fibroblasts (Hs68) with EEB after UVB irradiation, we found that EEB had a cytoprotective effect. EEB treatment significantly decreased UVB-induced matrix metalloproteinase-1 (MMP-1) production by suppressing the activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling and enhancing the protein expression of tissue inhibitors of metalloproteinases (TIMPs). EEB was also found to recover the UVB-induced degradation of pro-collagen by upregulating Smad signaling. Moreover, EEB increased the mRNA expression of filaggrin, involucrin, and loricrin in UVB-irradiated human epidermal keratinocytes (HaCaT). EEB decreased UVB-induced reactive oxygen species (ROS) generation by upregulating glutathione peroxidase 1 (GPx1) and heme oxygenase-1 (HO-1) expression via nuclear factor erythroid-2-related factor 2 (Nrf2) activation in Hs68 cells. In a UVB-induced HR-1 hairless mouse model, the oral administration of EEB mitigated photoaging lesions including wrinkle formation, skin thickness, and skin dryness by downregulating MMP-1 production and upregulating the expression of pro-collagen type I alpha 1 chain (pro-COL1A1). Collectively, our findings revealed that EEB prevents UVB-induced skin damage by regulating MMP-1 and pro-collagen type I production through MAPK/AP-1 and Smad pathways.
Collapse
Affiliation(s)
- Se-In Choi
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.-P.J.)
| | - Jae-Min Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.-P.J.)
| | - Young-Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.-P.J.)
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (H.-S.A.); (S.-H.L.)
| | - Hye-Shin Ahn
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (H.-S.A.); (S.-H.L.)
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (H.-S.A.); (S.-H.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
8
|
Marques IJ, Gomes I, Pojo M, Pires C, Moura MM, Cabrera R, Santos C, van IJcken WFJ, Teixeira MR, Ramalho JS, Leite V, Cavaco BM. Identification of SPRY4 as a Novel Candidate Susceptibility Gene for Familial Nonmedullary Thyroid Cancer. Thyroid 2021; 31:1366-1375. [PMID: 33906393 DOI: 10.1089/thy.2020.0290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: The molecular basis of familial nonmedullary thyroid cancer (FNMTC) is still poorly understood, representing a limitation for molecular diagnosis and clinical management. In this study, we aimed to identify new susceptibility genes for FNMTC through whole-exome sequencing (WES) analysis of leukocyte DNA of patients from a highly informative FNMTC family. Methods: We selected six affected family members to conduct WES analysis. Bioinformatic analyses were undertaken to filter and select the genetic variants shared by the affected members, which were subsequently validated by Sanger sequencing. To select the most likely pathogenic variants, several studies were performed, including family segregation analysis, in silico impact characterization, and gene expression (messenger RNA and protein) depiction in databases. For the most promising variant identified, we performed in vitro studies to validate its pathogenicity. Results: Several potentially pathogenic variants were identified in different candidate genes. After filtering with appropriate criteria, the variant c.701C>T, p.Thr234Met in the SPRY4 gene was prioritized for in vitro functional characterization. This SPRY4 variant led to an increase in cell viability and colony formation, indicating that it confers a proliferative advantage and potentiates clonogenic capacity. Phosphokinase array and Western blot analyses suggested that the effects of the SPRY4 variant were mediated through the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway, which was further supported by a higher responsiveness of thyroid cancer cells with the SPRY4 variant to a MEK inhibitor. Conclusions: WES analysis in one family identified SPRY4 as a likely novel candidate susceptibility gene for FNMTC, allowing a better understanding of the cellular and molecular mechanisms underlying thyroid cancer development.
Collapse
Affiliation(s)
- Inês J Marques
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Chronic Diseases Research Centre, Universidade Nova de Lisboa, Lisboa, Portugal
- Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Inês Gomes
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Carolina Pires
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Margarida M Moura
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Rafael Cabrera
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Catarina Santos
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manuel R Teixeira
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José S Ramalho
- Chronic Diseases Research Centre, Universidade Nova de Lisboa, Lisboa, Portugal
- Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Valeriano Leite
- Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| |
Collapse
|
9
|
Sengupta S, Nayak B, Meuli M, Sander P, Mishra S, Sonawane A. Mycobacterium tuberculosis Phosphoribosyltransferase Promotes Bacterial Survival in Macrophages by Inducing Histone Hypermethylation in Autophagy-Related Genes. Front Cell Infect Microbiol 2021; 11:676456. [PMID: 34381738 PMCID: PMC8350138 DOI: 10.3389/fcimb.2021.676456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) inhibits autophagy to promote its survival in host cells. However, the molecular mechanisms by which Mtb inhibits autophagy are poorly understood. Here, we report a previously unknown mechanism in which Mtb phosphoribosyltransferase (MtbPRT) inhibits autophagy in an mTOR, negative regulator of autophagy, independent manner by inducing histone hypermethylation (H3K9me2/3) at the Atg5 and Atg7 promoters by activating p38-MAPK- and EHMT2 methyltransferase-dependent signaling pathways. Additionally, we find that MtbPRT induces EZH2 methyltransferase-dependent H3K27me3 hypermethylation and reduces histone acetylation modifications (H3K9ac and H3K27ac) by upregulating histone deacetylase 3 to inhibit autophagy. In summary, this is the first demonstration that Mtb inhibits autophagy by inducing histone hypermethylation in autophagy-related genes to promote intracellular bacterial survival.
Collapse
Affiliation(s)
- Srabasti Sengupta
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Barsa Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Michael Meuli
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
- Nationales Zentrum für Mykobakterien, Zürich, Switzerland
| | - Snehasish Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
10
|
Weinhouse C. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radic Biol Med 2021; 170:85-108. [PMID: 33789123 PMCID: PMC8382302 DOI: 10.1016/j.freeradbiomed.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
People are exposed to wide range of redox-active environmental pollutants. Air pollution, heavy metals, pesticides, and endocrine disrupting chemicals can disrupt cellular redox status. Redox-active pollutants in our environment all trigger their own sets of specific cellular responses, but they also activate a common set of general stress responses that buffer the cell against homeostatic insults. These cellular defense system (CDS) pathways include the heat shock response, the oxidative stress response, the hypoxia response, the unfolded protein response, the DNA damage response, and the general stress response mediated by the stress-activated p38 mitogen-activated protein kinase. Over the past two decades, the field of environmental epigenetics has investigated epigenetic responses to environmental pollutants, including redox-active pollutants. Studies of these responses highlight the role of chromatin modifications in controlling the transcriptional response to pollutants and the role of transcriptional memory, often referred to as "epigenetic reprogramming", in predisposing previously exposed individuals to more potent transcriptional responses on secondary challenge. My central thesis in this review is that high dose or chronic exposure to redox-active pollutants leads to transcriptional memories at CDS target genes that influence the cell's ability to mount protective responses. To support this thesis, I will: (1) summarize the known chromatin features required for inducible gene activation; (2) review the known forms of transcriptional memory; (3) discuss the roles of inducible chromatin and transcriptional memory in CDS responses that are activated by redox-active environmental pollutants; and (4) propose a conceptual framework for CDS pathway responsiveness as a readout of total cellular exposure to redox-active pollutants.
Collapse
Affiliation(s)
- Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97214, USA.
| |
Collapse
|
11
|
Morice E, Enderlin V, Gautron S, Laroche S. Contrasting Functions of Mitogen- and Stress-activated Protein Kinases 1 and 2 in Recognition Memory and In Vivo Hippocampal Synaptic Transmission. Neuroscience 2021; 463:70-85. [PMID: 33722673 DOI: 10.1016/j.neuroscience.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
The mitogen-activated protein kinases (MAPK) are major signaling components of intracellular pathways required for memory consolidation. Mitogen- and stress-activated protein kinases 1 and 2 (MSK1 and MSK2) mediate signal transduction downstream of MAPK. MSKs are activated by Extracellular-signal Regulated Kinase 1/2 (ERK1/2) and p38 MAPK. In turn, they can activate cyclic AMP-response-element-binding protein (CREB), thereby modulating the expression of immediate early genes crucial for the formation of long-term memories. While MSK1 has been previously implicated in certain forms of learning and memory, little is known concerning MSK2. Our goal was to explore the respective contribution of MSK1 and MSK2 in hippocampal synaptic transmission and plasticity and hippocampal-dependent recognition memory. In Msk1- and Msk2-knockout mice, we evaluated object and object-place recognition memory, basal synaptic transmission, paired-pulse facilitation (PPF) and inhibition (PPI), and the capacity to induce and sustain long-term potentiation (LTP) in vivo. We also assessed the level of two proteins downstream in the MAPK/ERK1/2 pathway crucial for long-term memory, CREB and the immediate early gene (IEG) Early growth response 1 (EGR1). Loss of Msk1, but not of Msk2, affected excitatory synaptic transmission at perforant path-to-dentate granule cell synapses, altered short-term presynaptic plasticity, impaired selectively long-term spatial recognition memory, and decreased basal levels of CREB and its activated form. LTP in vivo and LTP-induced CREB phosphorylation and EGR1 expression were unchanged after Msk1 or Msk2 deletion. Our findings demonstrate a dissimilar contribution of MSKs proteins in cognitive processes and suggest that Msk1 loss-of-function only has a deleterious impact on neuronal activity and hippocampal-dependent memory consolidation.
Collapse
Affiliation(s)
- Elise Morice
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France; University Paris-Saclay, CNRS, Paris-Saclay Neuroscience Institute, 91405 Orsay, France.
| | - Valérie Enderlin
- University Paris-Saclay, CNRS, Paris-Saclay Neuroscience Institute, 91405 Orsay, France.
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France.
| | - Serge Laroche
- University Paris-Saclay, CNRS, Paris-Saclay Neuroscience Institute, 91405 Orsay, France.
| |
Collapse
|
12
|
Luo W, Ige OO, Beacon TH, Su RC, Huang S, Davie JR, Lakowski TM. The treatment of SARS-CoV2 with antivirals and mitigation of the cytokine storm syndrome: the role of gene expression. Genome 2020; 64:400-415. [PMID: 33197212 DOI: 10.1139/gen-2020-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the absence of a vaccine, the treatment of SARS-CoV2 has focused on eliminating the virus with antivirals or mitigating the cytokine storm syndrome (CSS) that leads to the most common cause of death: respiratory failure. Herein we discuss the mechanisms of antiviral treatments for SARS-CoV2 and treatment strategies for the CSS. Antivirals that have shown in vitro activity against SARS-CoV2, or the closely related SARS-CoV1 and MERS-CoV, are compared on the enzymatic level and by potency in cells. For treatment of the CSS, we discuss medications that reduce the effects or expression of cytokines involved in the CSS with an emphasis on those that reduce IL-6 because of its central role in the development of the CSS. We show that some of the medications covered influence the activity or expression of enzymes involved in epigenetic processes and specifically those that add or remove modifications to histones or DNA. Where available, the latest clinical data showing the efficacy of the medications is presented. With respect to their mechanisms, we explain why some medications are successful, why others have failed, and why some untested medications may yet prove useful.
Collapse
Affiliation(s)
- Wenxia Luo
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Olufola O Ige
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ruey-Chyi Su
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Winnipeg, MB R3E 3R2, Canada
| | - Shujun Huang
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Ted M Lakowski
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
13
|
Dayer G, Masoom ML, Togtema M, Zehbe I. Virus-Host Protein-Protein Interactions between Human Papillomavirus 16 E6 A1 and D2/D3 Sub-Lineages: Variances and Similarities. Int J Mol Sci 2020; 21:E7980. [PMID: 33121134 PMCID: PMC7663357 DOI: 10.3390/ijms21217980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
High-risk strains of human papillomavirus are causative agents for cervical and other mucosal cancers, with type 16 being the most frequent. Compared to the European Prototype (EP; A1), the Asian-American (AA; D2/D3) sub-lineage seems to have increased abilities to promote carcinogenesis. Here, we studied protein-protein interactions (PPIs) between host proteins and sub-lineages of the key transforming E6 protein. We transduced human keratinocyte with EP or AA E6 genes and co-immunoprecipitated E6 proteins along with interacting cellular proteins to detect virus-host binding partners. AAE6 and EPE6 may have unique PPIs with host cellular proteins, conferring gain or loss of function and resulting in varied abilities to promote carcinogenesis. Using liquid chromatography-mass spectrometry and stringent interactor selection criteria based on the number of peptides, we identified 25 candidates: 6 unique to AAE6 and EPE6, along with 13 E6 targets common to both. A novel approach based on pathway selection discovered 171 target proteins: 90 unique AAE6 and 61 unique EPE6 along with 20 common E6 targets. Interpretations were made using databases, such as UniProt, BioGRID, and Reactome. Detected E6 targets were differentially implicated in important hallmarks of cancer: deregulating Notch signaling, energetics and hypoxia, DNA replication and repair, and immune response.
Collapse
Affiliation(s)
- Guillem Dayer
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Mehran L. Masoom
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Melissa Togtema
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
| | - Ingeborg Zehbe
- Biology Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
- Thunder Bay Regional Health Research Institute, Probe Development and Biomarker Exploration, Thunder Bay, ON P7B 6V4, Canada; (M.L.M.); (M.T.)
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
14
|
Xie Z, Peng M, Lu R, Meng X, Liang W, Li Z, Qiu M, Zhang B, Nie G, Xie N, Zhang H, Prasad PN. Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. LIGHT, SCIENCE & APPLICATIONS 2020; 9:161. [PMID: 33014356 PMCID: PMC7492464 DOI: 10.1038/s41377-020-00388-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 08/13/2020] [Indexed: 05/19/2023]
Abstract
Here, we describe a combination strategy of black phosphorus (BP)-based photothermal therapy together with anti-CD47 antibody (aCD47)-based immunotherapy to synergistically enhance cancer treatment. Tumour resistance to immune checkpoint blockades in most cancers due to immune escape from host surveillance, along with the initiation of metastasis through immunosuppressive cells in the tumour microenvironment, remains a significant challenge for cancer immunotherapy. aCD47, an agent for CD47/SIRPα axis blockade, induces modest phagocytic activity and a low response rate for monotherapy, resulting in failures in clinical trials. We showed that BP-mediated ablation of tumours through photothermal effects could serve as an effective strategy for specific immunological stimulation, improving the inherently poor immunogenicity of tumours, which is particularly useful for enhancing cancer immunotherapy. BP in combination with aCD47 blockade activates both innate and adaptive immunities and promotes local and systemic anticancer immune responses, thus offering a synergistically enhanced effect in suppression of tumour progression and in inducing abscopal effects for inhibition of metastatic cancers. Our combination strategy provides a promising platform in which photothermal agents could help to enhance the therapeutic efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116 Guangdong PR China
| | - Minhua Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116 Guangdong PR China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong PR China
| | - Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 Guangdong PR China
| | - Xiangying Meng
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116 Guangdong PR China
| | - Weiyuan Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Zhongjun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100 PR China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Ni Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Paras N. Prasad
- Department of Chemistry, Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, StateUniversity of New York, Buffalo, NY USA
| |
Collapse
|
15
|
Zhou Y, Gao G, Li Z, Jiang L. Protective Effect of Mitogen- and Stress-Activated Protein Kinase on the Rats with Focal Ischemia-Reperfusion Injury. Inflammation 2020; 42:2159-2169. [PMID: 31529230 DOI: 10.1007/s10753-019-01080-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitogen- and stress-activated protein kinase (MSK) is a recently identified nuclear cAMP-regulated enhancer B (CREB) and histone H3 kinase that responds to both mitogen- and stress-activated protein kinases. This study was designed to investigate the protective effect of MSK on the rats with focal ischemia-reperfusion injury. The rat model was established by inserting thread into the middle cerebral artery. The protein expression was measured by immunoblotting. The localization of MSK was measured by immunofluorescence assay. Highly-differentiated pheochromocytoma 12 (PC12) is used as a sympathetic neuron-like cell line and treated with glutamate to induce neurotoxicity. MSK was knocked down and overexpressed by siRNA and MSK over-expressing vector, respectively. The cell viability was measured by cell counting kit (CCK-8) assay. The coronal sections were isolated and stained with 2, 3, 5-triphenyltetrazolium chloride (TTC) to determine infarct volume. Finally, astrocytes were separated from cerebral cortexes of normal rats to analyze the effects of MSK on inflammatory response. In the rats with focal ischemia-reperfusion injury, the expression of MSK was reduced, reaching the lowest level at 3 d after ischemia-reperfusion, and then recovered gradually. MSK was found mainly localized in neurons and astrocytes. The expression levels of caspase-3, caspase-8, caspase-9, and INOS showed the opposite trend with respect to MSK. Further analysis showed that overexpression of MSK exerted a protective effect on glutamate-induced neurotoxicity through inhibiting apoptosis of PC12 cells, as well as decreased the infarct size in rat with focal ischemia-reperfusion injury. On the contrary, knockdown of MSK showed opposite results. Finally, MSK suppressed LPS-induced inflammatory response by decreasing the expression of inducible nitric oxide synthase (INOS) and increasing the expression of interleukin-10 (IL-10) in astrocytes from cerebral cortexes of normal rats. In conclusion, MSK exerted a protective effect on rat with focal ischemia-reperfusion injury through its anti-apoptotic effect on neurons and anti-inflammatory effect on astrocytes.
Collapse
Affiliation(s)
- Yanfeng Zhou
- Departments of Neurosurgery, The First Affiliated Hospital of Soochow University, Soochow, 215006, China.,Departments of Neurosurgery, The First People's Hospital of Taizhou, Taizhou, 225300, China
| | - Guangzhong Gao
- Departments of Neurosurgery, The First People's Hospital of Taizhou, Taizhou, 225300, China
| | - Zhen Li
- Departments of Neurosurgery, The First People's Hospital of Taizhou, Taizhou, 225300, China
| | - Lin Jiang
- Departments of Neurosurgery, The First People's Hospital of Taizhou, Taizhou, 225300, China.
| |
Collapse
|
16
|
Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis 2019; 6:jcdd6030027. [PMID: 31394846 PMCID: PMC6787752 DOI: 10.3390/jcdd6030027] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
The cardiac fibroblast is a remarkably versatile cell type that coordinates inflammatory, fibrotic and hypertrophic responses in the heart through a complex array of intracellular and intercellular signaling mechanisms. One important signaling node that has been identified involves p38 MAPK; a family of kinases activated in response to stress and inflammatory stimuli that modulates multiple aspects of cardiac fibroblast function, including inflammatory responses, myofibroblast differentiation, extracellular matrix turnover and the paracrine induction of cardiomyocyte hypertrophy. This review explores the emerging importance of the p38 MAPK pathway in cardiac fibroblasts, describes the molecular mechanisms by which it regulates the expression of key genes, and highlights its potential as a therapeutic target for reducing adverse myocardial remodeling.
Collapse
|
17
|
Inhibition of MSK1 Promotes Inflammation and Apoptosis and Inhibits Functional Recovery After Spinal Cord Injury. J Mol Neurosci 2019; 68:191-203. [PMID: 30919247 PMCID: PMC6511344 DOI: 10.1007/s12031-019-01298-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Mitogen- and stress-activated kinase (MSK) 1 is a nuclear serine/threonine kinase. In the central nervous system, it plays an important role in regulating cell proliferation and neuronal survival; it is also involved in astrocyte inflammation and the inhibition of inflammatory cytokine production. However, its specific role in spinal cord injury is not clear. Here, we aimed to elucidate this role using an in vivo animal model. In this study, we found that MSK1 is gradually decreased, starting 1 day after spinal cord injury and to its lowest level 3 days post-injury, after which it gradually increased. To further investigate the possible function of MSK1 in spinal cord injury, we interfered with its expression by utilizing a small interfering RNA (siRNA)-encoding lentivirus, which was injected into the injured spinal cord to inhibit local expression. After MSK1 inhibition, we found that the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were increased. Moreover, the expression of IL-10 was decreased. In addition, neuronal apoptotic cells were increased significantly and expression of the apoptosis-related protein caspase-3 was also increased. Ultrastructural analysis of nerve cells also revealed typical neuronal apoptosis and severe neuronal damage. Finally, we found that hindlimb motor function decreased significantly with MSK1 knockdown. Therefore, our findings suggest that the inhibition of this protein promotes inflammatory responses and apoptosis and suppresses functional recovery after spinal cord injury. MSK1 might thus play an important role in repair after spinal cord injury by regulating inflammation and apoptosis.
Collapse
|
18
|
Adewumi I, López C, Davie JR. Mitogen and stress- activated protein kinase regulated gene expression in cancer cells. Adv Biol Regul 2019; 71:147-155. [PMID: 30243985 DOI: 10.1016/j.jbior.2018.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
The mitogen- and stress-activated protein kinases activated by the extracellular-signal-regulated kinase 1/2 and/or stress-activated protein kinase 2/p38 mitogen-activated protein kinase pathways are recruited to the regulatory region of a subset of genes termed immediate-early genes, often leading to their induction. These genes, many of which code for transcription factors, have been directly linked to the phenotypic events in carcinogenesis. In this paper, we focus on the mitogen- and stress-activated protein kinases; their discovery, activation, H3 phosphorylation and recent discoveries in their roles in cancer.
Collapse
Affiliation(s)
- Ifeoluwa Adewumi
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Camila López
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada.
| |
Collapse
|
19
|
Zhang H, Ren QC, Ren Y, Zhao L, Yang F, Zhang Y, Zhao WJ, Tan YZ, Shen XF. Ajudecumin A from Ajuga ovalifolia var. calantha exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW264.7 murine macrophages and animal models of acute inflammation. PHARMACEUTICAL BIOLOGY 2018; 56:649-657. [PMID: 31070535 PMCID: PMC7011979 DOI: 10.1080/13880209.2018.1543331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/16/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Ajuga ovalifolia Bur. et Franch. var. calantha (Diels) C. Y. Wu et C. Chen (Labiatae), a traditional Chinese medicine, has been used to treat several inflammatory diseases. OBJECTIVE To assess the anti-inflammatory activity of ajudecumin A isolated from Ajuga ovalifolia var. calantha, and its possible mechanisms. MATERIALS AND METHODS Lipopolysaccharide (LPS, 0.5 μg/mL)-stimulated RAW264.7 macrophages were used to assess the anti-inflammatory activity of ajudecumin A (1-40 μM) in vitro. Nitric oxide levels were evaluated by Griess reagent. The mRNA levels of iNOS, COX-2, TNF-α, IL-1β and IL-6 were determined using qRT-PCR. Phosphorylation of ERK, JNK, p38 MAPK and IκBα were detected by western Blot. To further assess the anti-inflammatory of ajudecumin A in vivo, mice were oral treated with ajudecumin A (10 mg/kg) or dexamethasone (0.25 mg/kg, positive control) for 5 days before administration of carrageenan or xylene. Paw and ear edema were then measured, respectively. RESULTS Ajudecumin A (10-40 μM) decreased LPS-induced nitric oxide production with an IC50 value of 16.19 μM. Ajudecumin A (20 and 40 μM) also attenuated cell spreading and formation of pseudopodia-like structures, and decreased the mRNA levels of iNOS (55.23-67.04%, p < 0.001), COX-2 (57.58-70.25%, p < 0.001), TNF-α (53.75-58.94%, p < 0.01-0.001), IL-1β (79.41-87.85%, p < 0.001) and IL-6 (54.26-80.52%, p < 0.01-0.001) in LPS-activated RAW264.7 cells. Furthermore, ajudecumin A suppressed LPS-induced phosphorylation of ERK, p38 MAPK, and IκBα, as well as IκBα degradation (p < 0.05-0.001). Finally, ajudecumin A (10 mg/kg) attenuated carrageenan- and xylene-induced inflammation in mice by about 28 and 24%, respectively. DISCUSSION AND CONCLUSIONS Ajudecumin A exhibited a potent anti-inflammatory activity in vitro and in vivo through inhibition on NF-κB and ERK/p38 MAPK pathways, suggesting that ajudecumin A may be potentially developed as a lead compound in anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Hai Zhang
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, College of Pharmacy and College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Cuo Ren
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, College of Pharmacy and College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Ren
- Department of Traditional Chinese Medicine, College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital Sichuan University, Chengdu, China
| | - Fan Yang
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, College of Pharmacy and College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, College of Pharmacy and College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Ji Zhao
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Yu-Zhu Tan
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, Sichuan Province and Ministry of Science and Technology, College of Pharmacy and College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Madrigal‐Martínez A, Constâncio V, Lucio‐Cazaña FJ, Fernández‐Martínez AB. PROSTAGLANDIN E
2
stimulates cancer‐related phenotypes in prostate cancer PC3 cells through cyclooxygenase‐2. J Cell Physiol 2018; 234:7548-7559. [DOI: 10.1002/jcp.27515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Vera Constâncio
- Departamento de Biología de Sistemas Universidad de Alcalá Madrid Spain
| | | | | |
Collapse
|
21
|
Ahn J, Lee JG, Chin C, In S, Yang A, Park HS, Kim J, Park JH. MSK1 functions as a transcriptional coactivator of p53 in the regulation of p21 gene expression. Exp Mol Med 2018; 50:1-12. [PMID: 30305627 PMCID: PMC6180136 DOI: 10.1038/s12276-018-0160-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022] Open
Abstract
Mitogen- and stress-activated kinase 1 (MSK1) is a chromatin kinase that facilitates activator-dependent transcription by altering chromatin structure through histone H3 phosphorylation. The kinase activity of MSK1 is activated by intramolecular autophosphorylation, which is initially triggered by the activation of upstream mitogen-activated protein kinases (MAPKs), such as p38 and ERK1/2. MSK1 has been implicated in the expression of p21, a p53 target gene; however, the precise connection between MSK1 and p53 has not been clearly elucidated. Here, using in vitro and cell-based transcription assays, we show that MSK1 functions as a transcriptional coactivator of p53 in p21 expression, an action associated with MAPK-dependent phosphorylation of MSK1 and elevated kinase activity. Of special significance, we show that MSK1 directly interacts with p53 and is recruited to the p21 promoter, where it phosphorylates histone H3 in a p53-dependent manner. In addition, phosphomimetic mutant analysis demonstrated that negative charges in the hydrophobic motif are critical for serine 212 phosphorylation in the N-terminal kinase domain, which renders MSK1 competent for histone kinase activity. These studies suggest that MSK1 acts through a direct interaction with p53 to function as a transcriptional coactivator and that MSK1 activation by upstream MAPK signaling is important for efficient p21 gene expression.
Collapse
Affiliation(s)
- Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jin Gyeong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Chuevin Chin
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Suna In
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Aerin Yang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| | - Jeong Hyeon Park
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand.
| |
Collapse
|
22
|
Zhang J, Guo L, Zhang Q, Liu K, Dong Z. Aloe emodin suppresses EGF‑induced neoplastic cell transformation by inhibiting the ERK/MSK1 and AKT/GSK3β signaling pathways. Mol Med Rep 2018; 18:5215-5220. [PMID: 30272294 DOI: 10.3892/mmr.2018.9517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/06/2017] [Indexed: 11/06/2022] Open
Abstract
Natural compounds which can block cell transformation due to potential for chemoprevention have received increased attention. The present study aimed to investigate whether aloe emodin, which is present in aloe latex or the roots of the Rheum palmatum L. are able to block epidermal growth factor (EGF)‑ and tissue plasminogen activator‑induced JB6 C141 cell transformation. The aloe emodin treatment was applied to the JB6 C141 cell neoplastic model. The toxicity of aloe emodin was determined. The present study detected the expression level of AKT serine/threonine kinase 1 (AKT), lysine‑tRNA ligase MSK1 (MSK1) and cyclin D1 using western blotting. The cell proliferation and cell cycle distribution were also monitored. And when 95‑maximal effective dose ranged between 1 and 15 µM, the cell death was evident. Aloe emodin‑treated cells had an impaired anchorage‑independent growth capability, leading to a dose‑dependent reduction of colony formation. Western blotting revealed that aloe emodin had a significant effect on phosphorylation of pyruvate dehydrogenase kinase 1 and glycogen synthase kinase 3β (GSK3β) and AKT was inhibited. The present study determined that the proliferation of JB6 C141 cells was reduced in a dose‑dependent manner and the effect may be associated with its inhibition of the G1/S cell cycle transition. Cyclin D1 transcriptional activity was reduced to 25%, 24 h following aloe emodin treatment. The protein expression of cyclin D1 was inhibited. The findings of the present study indicated that aloe emodin may be able to suppress neoplastic cell transformation by inhibiting the extracellular‑signal regulated kinase/MSK1 and AKT/GSK3β signaling pathways. It may be a potential natural compound for chemoprevention.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lihua Guo
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kangdong Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ziming Dong
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
23
|
Zhao L, Wang L, Di SN, Xu Q, Ren QC, Chen SZ, Huang N, Jia D, Shen XF. Steroidal alkaloid solanine A from Solanum nigrum Linn. exhibits anti-inflammatory activity in lipopolysaccharide/interferon γ-activated murine macrophages and animal models of inflammation. Biomed Pharmacother 2018; 105:606-615. [PMID: 29890469 DOI: 10.1016/j.biopha.2018.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Solanine A is a novel steroidal alkaloid isolated from Solanum nigrum Linn., a medicinal and edible plant which is widely used for treating various inflammatory diseases. In this study, we found that solanine A markedly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide/interferon-γ (LPS/IFNγ)-stimulated RAW264.7 cells, and attenuated xylene, carrageenan and agar-induced inflammation in mice. The mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), as well as C-X-C motif chemokine ligand-9 (CXCL9), were significantly decreased by solanine A. Furthermore, solanine A also suppressed LPS/IFNγ-induced protein expression of iNOS and COX2. Mechanistically, solanine A inhibited the nuclear translocation of nuclear factor-κB (NF-κB) through the prevention of NF-κB p65 and inhibitory κB-α (IκBα) phosphorylation and IκBα degradation, and it also suppressed activation of extracellular regulated protein kinases (ERK), signal transducers and activators of transcription-1 (STAT1) and serine/threonine protein kinase Akt in LPS/IFNγ-stimulated RAW264.7 macrophages and agar-induced granuloma model in mice. Taken together, solanine A exhibits a potent anti-inflammatory activity in LPS/IFNγ- activated macrophages and animal models of inflammation through inhibition of NF-κB, ERK1/2, Akt and STAT1 signaling pathways, suggesting that solanine A may be a valuable leading compound in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Suo-Ni Di
- Institute of Traditional Chinese Medicine, The 451st Hospital of People's Liberation Army, Xi'an, China
| | - Qian Xu
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qing-Cuo Ren
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shan-Ze Chen
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-Fei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Choi YS, Horning P, Aten S, Karelina K, Alzate-Correa D, Arthur JSC, Hoyt KR, Obrietan K. Mitogen- and Stress-Activated Protein Kinase 1 Regulates Status Epilepticus-Evoked Cell Death in the Hippocampus. ASN Neuro 2018; 9:1759091417726607. [PMID: 28870089 PMCID: PMC5588809 DOI: 10.1177/1759091417726607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling has been implicated in a wide range of neuronal processes, including development, plasticity, and viability. One of the principal downstream targets of both the extracellular signal-regulated kinase/MAPK pathway and the p38 MAPK pathway is Mitogen- and Stress-activated protein Kinase 1 (MSK1). Here, we sought to understand the role that MSK1 plays in neuroprotection against excitotoxic stimulation in the hippocampus. To this end, we utilized immunohistochemical labeling, a MSK1 null mouse line, cell viability assays, and array-based profiling approaches. Initially, we show that MSK1 is broadly expressed within the major neuronal cell layers of the hippocampus and that status epilepticus drives acute induction of MSK1 activation. In response to the status epilepticus paradigm, MSK1 KO mice exhibited a striking increase in vulnerability to pilocarpine-evoked cell death within the CA1 and CA3 cell layers. Further, cultured MSK1 null neurons exhibited a heighted level of N-methyl-D-aspartate-evoked excitotoxicity relative to wild-type neurons, as assessed using the lactate dehydrogenase assay. Given these findings, we examined the hippocampal transcriptional profile of MSK1 null mice. Affymetrix array profiling revealed that MSK1 deletion led to the significant (>1.25-fold) downregulation of 130 genes and an upregulation of 145 genes. Notably, functional analysis indicated that a subset of these genes contribute to neuroprotective signaling networks. Together, these data provide important new insights into the mechanism by which the MAPK/MSK1 signaling cassette confers neuroprotection against excitotoxic insults. Approaches designed to upregulate or mimic the functional effects of MSK1 may prove beneficial against an array of degenerative processes resulting from excitotoxic insults.
Collapse
Affiliation(s)
- Yun-Sik Choi
- 1 Department of Pharmaceutical Science and Technology, Catholic University of Daegu, Gyeongbuk, Republic of Korea
| | - Paul Horning
- 2 Department of Neuroscience, 2647 Ohio State University , Columbus, OH, USA
| | - Sydney Aten
- 2 Department of Neuroscience, 2647 Ohio State University , Columbus, OH, USA
| | - Kate Karelina
- 2 Department of Neuroscience, 2647 Ohio State University , Columbus, OH, USA
| | | | - J Simon C Arthur
- 4 College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Kari R Hoyt
- 3 Division of Pharmacology, 2647 Ohio State University , Columbus, OH, USA
| | - Karl Obrietan
- 2 Department of Neuroscience, 2647 Ohio State University , Columbus, OH, USA
| |
Collapse
|
25
|
Pu X, Storr SJ, Ahmad NS, Rakha EA, Green AR, Ellis IO, Martin SG. High nuclear MSK1 is associated with longer survival in breast cancer patients. J Cancer Res Clin Oncol 2018; 144:509-517. [PMID: 29327245 PMCID: PMC5816103 DOI: 10.1007/s00432-018-2579-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/06/2018] [Indexed: 12/29/2022]
Abstract
Purpose Mitogen- and stress-activated kinases (MSKs) are important substrates of the mitogen-activated protein kinase (MAPK)-activated protein kinase family. MSK1 and MSK2 are both nuclear serine/threonine protein kinases, with MSK1 being suggested to potentially play a role in breast cancer cell proliferation, cell cycle progression, cell migration, invasion and tumour growth. The aim of the current study was to assess MSK1 protein expression in breast cancer tumour specimens, evaluating its prognostic significance. Methods A large cohort of 1902 early stage invasive breast cancer patients was used to explore the expression of MSK1. Protein expression was examined using standard immunohistochemistry on tissue microarrays. Results Low MSK1 protein expression was associated with younger age (P = 0.004), higher tumour grade (P < 0.001), higher Nottingham Prognostic Index scores (P = 0.007), negative ER (P < 0.001) and PR (P < 0.001) status, and with triple-negative (P < 0.001) and basal-like (P < 0.001) phenotypes. Low MSK1 protein expression was significantly associated with shorter time to distant metastasis (P < 0.001), and recurrence (P = 0.013) and early death due to breast cancer (P = 0.01). This association between high MSK1 expression and improved breast cancer-specific survival was observed in the whole cohort (P = 0.009) and in the HER2-negative and non-basal like tumours (P = 0.006 and P = 0.024, respectively). Multivariate analysis including other prognostic variables indicated that MSK1 is not an independent marker of outcome. Conclusions High MSK1 is associated with improved breast cancer-specific survival in early stage invasive breast cancer patients, and has additional prognostic value in HER2-negative and non-basal like disease. Although not an independent marker of outcome, we believe such findings and significant associations with well-established negative prognostic factors (age, grade, Nottingham Prognostic Index, hormone receptor status, time to distant metastasis, recurrence and triple-negative/basal-like status) warrant further examination and validation in independent patient cohorts.
Collapse
Affiliation(s)
- Xuan Pu
- University of Nottingham, Division of Cancer and Stem Cells, Department of Clinical Oncology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Sarah J Storr
- University of Nottingham, Division of Cancer and Stem Cells, Department of Clinical Oncology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Narmeen S Ahmad
- University of Nottingham, Division of Cancer and Stem Cells, Department of Clinical Oncology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Emad A Rakha
- University of Nottingham, Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Andrew R Green
- University of Nottingham, Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Ian O Ellis
- University of Nottingham, Division of Cancer and Stem Cells, Department of Histopathology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK
| | - Stewart G Martin
- University of Nottingham, Division of Cancer and Stem Cells, Department of Clinical Oncology, School of Medicine, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK.
| |
Collapse
|
26
|
Del Barco Barrantes I, Stephan-Otto Attolini C, Slobodnyuk K, Igea A, Gregorio S, Gawrzak S, Gomis RR, Nebreda AR. Regulation of Mammary Luminal Cell Fate and Tumorigenesis by p38α. Stem Cell Reports 2017; 10:257-271. [PMID: 29290625 PMCID: PMC5768988 DOI: 10.1016/j.stemcr.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022] Open
Abstract
Mammary stem and progenitor cells are essential for mammary gland homeostasis and are also candidates for cells of origin of mammary tumors. Here, we have investigated the function of the protein kinase p38α in the mammary gland using mice that delete this protein in the luminal epithelial cells. We show that p38α regulates the fate of luminal progenitor cells through modulation of the transcription factor RUNX1, an important controller of the estrogen receptor-positive cell lineage. We also provide evidence that the regulation of RUNX1 by p38α probably involves the kinase MSK1, which phosphorylates histone H3 at the RUNX1 promoter. Moreover, using a mouse model for breast cancer initiated by luminal cells, we show that p38α downregulation in mammary epithelial cells reduces tumor burden, which correlates with decreased numbers of tumor-initiating cells. Collectively, our results define a key role for p38α in luminal progenitor cell fate that affects mammary tumor formation. Luminal progenitor cell fate in the mammary gland is regulated by p38α p38α controls the ER transcriptional program by modulating RUNX1 p38α regulates H3 phosphorylation at the RUNX1 promoter through the kinase MSK1 p38α promotes mammary tumorigenesis by maintaining luminal tumor-initiating cells
Collapse
Affiliation(s)
- Ivan Del Barco Barrantes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Konstantin Slobodnyuk
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Ana Igea
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Sara Gregorio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Sylwia Gawrzak
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Roger R Gomis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; ICREA, Passeig de Lluís Companys 23, 08010 Barcelona, Spain; CIBERONC, 08028 Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; ICREA, Passeig de Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
27
|
Hui W, Zhao C, Bourgoin SG. Differential Effects of Inhibitor Combinations on Lysophosphatidic Acid-Mediated Chemokine Secretion in Unprimed and Tumor Necrosis Factor-α-Primed Synovial Fibroblasts. Front Pharmacol 2017; 8:848. [PMID: 29209219 PMCID: PMC5702485 DOI: 10.3389/fphar.2017.00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic bioactive lysophospholipid involved in inflammatory mediator synthesis. Signaling through p38MAPK, ERK, Rho kinase, and MSK-CREB contributes to LPA-mediated IL-8 production in fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients. The study was undertaken to investigate how LPA activates MSKs and how signaling crosstalk between TNFα and LPA contributes to the super-production of cytokines/chemokines. RAFLS pretreated or not with TNFα were stimulated with LPA. Immunoblotting with phospho-antibodies monitored MSK activation. Cytokine/chemokine production was measured using ELISA and multiplex immunoassays. LPA induced MSK activation by signaling through ERK whereas p38MAPK, Rho kinase, NF-κB or PI3K contribute to IL-8 synthesis mainly via MSK-independent pathways. Priming with TNFα enhanced LPA-mediated MSK phosphorylation and cytokine/chemokine production. After priming with TNFα, inhibition of ERK or MSK failed to attenuate LPA-mediated IL-8 synthesis even if the MSK-CREB signaling axis was completely or partially inhibited. In TNFα-primed cells, inhibition of LPA-mediated cytokine/chemokine synthesis required a specific combination of inhibitors such as p38MAPK and ERK for IL-8 and IL-6, and Rho kinase and NF-κB for MCP-1. The ability of the signaling inhibitors to block LPA induced cytokine/chemokine synthesis is dependent on the inflammatory cytokinic environment. In TNFα-primed RAFLS the super-production of IL-8 and IL-6 induced by LPA occurs mainly via MSK-independent pathways, and simultaneous inhibition of at least two MAPK signaling pathways was required to block their synthesis. Since simultaneous inhibition of both the p38MAPK and ERK-MSK-CREB pathways are required to significantly reduce LPA-mediated IL-8 and IL-6 production in TNFα-preconditioned RAFLS, drug combinations targeting these two pathways are potential new strategies to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Weili Hui
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, QC, Canada.,Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Chenqi Zhao
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, QC, Canada
| | - Sylvain G Bourgoin
- Division of Infectious Disease and Immunity, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, QC, Canada.,Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
28
|
Deng X, Zhou X, Deng Y, Liu F, Feng X, Yin Q, Gu Y, Shi S, Xu M. Thrombin Induces CCL2 Expression in Human Lung Fibroblasts via p300 Mediated Histone Acetylation and NF-KappaB Activation. J Cell Biochem 2017; 118:4012-4019. [PMID: 28407300 DOI: 10.1002/jcb.26057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/11/2017] [Indexed: 02/05/2023]
Abstract
Thrombin has been shown to play a key role in lung diseases such as pulmonary fibrosis via the induction of fibrotic cytokine- chemokine (CC motif) ligand-2 (CCL2) expression. We previously reported that transcription factor nuclear factor-κB (NF-κB) is responsible for thrombin-induced CCL2 expression in human lung fibroblasts (HLFs). Here, we extended our study to investigate the epigenetic regulation mechanism for thrombin-induced CCL2 expression in HLFs. HLFs were cultured in F-12 medium. CCL2 protein and mRNA levels were detected by ELISA and quantitative real-time PCR, respectively. Histone, histone acetyltransferases, and NF-κB binding to CCL2 promoter were detected by ChIP assay. NF-κB activation was detected by Western blotting. We revealed that increased binding of histone acetyltransferase p300 and acetylated histone H3 and H4 to CCL2 promoter are responsible for thrombin induced CCL2 expression in HLF cells. In addition, p300 inhibition attenuates both thrombin induced-CCL2 expression and histone H3 and H4 acetylation in HLFs, suggesting that p300 is involved in thrombin-induced CCL2 expression via hyperacetylating histone H3 and H4. Our data further showed that p300 also regulates CCL2 expression via interaction with NF-κB p65, as depletion of p300 inhibits both NF-κB p65 activation and its binding to CCL2 promoter. The findings strongly suggest that epigenetic dysregulation and the interaction between histone acetyltransferase and transcription factor may be responsible for thrombin induced-CCL2 expression in HLFs. Increased understanding of the epigenetic mechanisms of CCL2 regulation may provide opportunities for identifying novel molecular targets for therapeutic purposes. J. Cell. Biochem. 118: 4012-4019, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoling Deng
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Xiaoqiong Zhou
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Yan Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Fan Liu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Xiaofan Feng
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Qi Yin
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Yinzhen Gu
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Songlin Shi
- Department of Basic Medical Science, Xiamen University Medical College, Xiamen, 361102, Fujian Province, People's Republic of China
| | - Mingyan Xu
- Department of Oral Biology and Biomaterial, Xiamen Stomatological Research Institute, Xiamen Medical College, Xiamen, 361000, Fujian Province, People's Republic of China
| |
Collapse
|
29
|
Haj M, Wijeweera A, Rudnizky S, Taunton J, Pnueli L, Melamed P. Mitogen- and stress-activated protein kinase 1 is required for gonadotropin-releasing hormone-mediated activation of gonadotropin α-subunit expression. J Biol Chem 2017; 292:20720-20731. [PMID: 29054929 DOI: 10.1074/jbc.m117.797845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
Pituitary gonadotropin hormones are regulated by gonadotropin-releasing hormone (GnRH) via MAPK signaling pathways that stimulate gene transcription of the common α-subunit (Cga) and the hormone-specific β-subunits of gonadotropin. We have reported previously that GnRH-induced activities at these genes include various histone modifications, but we did not examine histone phosphorylation. This modification adds a negative charge to residues of the histone tails that interact with the negatively charged DNA, is associated with closed chromatin during mitosis, but is increased at certain genes for transcriptional activation. Thus, the functions of this modification are unclear. We initially hypothesized that GnRH might induce phosphorylation of Ser-10 in histone 3 (H3S10p) as part of its regulation of gonadotropin gene expression, possibly involving cross-talk with H3K9 acetylation. We found that GnRH increases the levels of both modifications around the Cga gene transcriptional start site and that JNK inhibition dramatically reduces H3S10p levels. However, this modification had only a minor effect on Cga expression and no effect on H3K9ac. GnRH also increased H3S28p and H3K27ac levels and also those of activated mitogen- and stress-activated protein kinase 1 (MSK1). MSK1 inhibition dramatically reduced H3S28p levels in untreated and GnRH-treated cells and also affected H3K27ac levels. Although not affecting basal Cga expression, MSK1/2 inhibition repressed GnRH activation of Cga expression. Moreover, ChIP analysis revealed that GnRH-activated MSK1 targets the first nucleosome just downstream from the TSS. Given that the elongating RNA polymerase II (RNAPII) stalls at this well positioned nucleosome, GnRH-induced H3S28p, possibly in association with H3K27ac, would facilitate the progression of RNAPII.
Collapse
Affiliation(s)
- Majd Haj
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Andrea Wijeweera
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Sergei Rudnizky
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Jack Taunton
- the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Lilach Pnueli
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| | - Philippa Melamed
- From the Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel and
| |
Collapse
|
30
|
Reciprocal regulation of β 2-adrenoceptor-activated cAMP response-element binding protein signalling by arrestin2 and arrestin3. Cell Signal 2017; 38:182-191. [PMID: 28733084 DOI: 10.1016/j.cellsig.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
Abstract
Activation of Gs coupled receptors (e.g. β2-adrenoreceptor (β2AR)) expressed within the uterine muscle layer (myometrium), promotes intracellular cAMP generation, inducing muscle relaxation through short-term inhibition of contractile proteins, and longer-term modulation of cellular phenotype to promote quiescence. In the myometrium cAMP-driven modulation of cell phenotype is facilitated by CREB activity, however despite the importance of CREB signalling in the promotion of myometrial quiescence during pregnancy, little is currently known regarding the molecular mechanisms involved. Thus, we have characterised β-adrenoceptor-stimulated CREB signalling in the immortalised ULTR human myometrial cell line. The non-selective β-adrenoceptor agonist isoprenaline induced time- and concentration-dependent CREB phosphorylation, which was abolished by the β2AR selective antagonist ICI118,551. β2AR-stimulated CREB phosphorylation was mediated through a short-term PKA-dependent phase, and longer-term Src/p38 MAPK-dependent/PKA-independent phase. Since in model cells, arrestin2 can facilitate β2AR-mediated Src/p38 recruitment, we examined whether CREB signalling was activated through a similar process in myometrial cells. Depletion of arrestin2 attenuated p38 phosphorylation, whilst arrestin3 depletion enhanced and prolonged isoprenaline-stimulated p38 signals, which was reversed following inhibition of Src. Knockdown of arrestin2 led to enhanced short-term (up to 10min), and attenuated longer-term (>10min) isoprenaline-stimulated CREB phosphorylation. Contrastingly, removal of arrestin3 enhanced and prolonged isoprenaline-stimulated CREB phosphorylation, whilst depletion of both arrestins abolished CREB signals at time points >5min. In summary, we have delineated the molecular mechanisms coupling β2AR activity to CREB signalling in ULTR myometrial cells, revealing a biphasic activation process encompassing short-term PKA-dependent, and prolonged Src/arrestin2/p38-dependent components. Indeed, our data highlight a novel arrestin-mediated modulation of CREB signalling, suggesting a reciprocal relationship between arrestin2 and arrestin3, wherein recruitment of arrestin3 restricts the ability of β2AR to activate prolonged CREB phosphorylation by precluding recruitment of an arrestin2/Src/p38 complex.
Collapse
|
31
|
Matou-Nasri S, Sharaf H, Wang Q, Almobadel N, Rabhan Z, Al-Eidi H, Yahya WB, Trivilegio T, Ali R, Al-Shanti N, Ahmed N. Biological impact of advanced glycation endproducts on estrogen receptor-positive MCF-7 breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2808-2820. [PMID: 28712835 DOI: 10.1016/j.bbadis.2017.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Diabetes mellitus potentiates the risk of breast cancer. We have previously described the pro-tumorigenic effects of advanced glycation endproducts (AGEs) on estrogen receptor (ER)-negative MDA-MB-231 breast cancer cell line mediated through the receptor for AGEs (RAGE). However, a predominant association between women with ER-positive breast cancer and type 2 diabetes mellitus has been reported. Therefore, we have investigated the biological impact of AGEs on ER-positive human breast cancer cell line MCF-7 using in vitro cell-based assays including cell count, migration, and invasion assays. Western blot, FACS analyses and quantitative real time-PCR were also performed. We found that AGEs at 50-100μg/mL increased MCF-7 cell proliferation and cell migration associated with an enhancement of pro-matrix metalloproteinase (MMP)-9 activity, without affecting their poor invasiveness. However, 200μg/mL AGEs inhibited MCF-7 cell proliferation through induction of apoptosis indicated by caspase-3 cleavage detected using Western blotting. A phospho-protein array analysis revealed that AGEs mainly induce the phosphorylation of extracellular-signal regulated kinase (ERK)1/2 and cAMP response element binding protein-1 (CREB1), both signaling molecules considered as key regulators of AGEs pro-tumorigenic effects. We also showed that AGEs up-regulate RAGE and ER expression at the protein and transcript levels in MCF-7 cells, in a RAGE-dependent manner after blockade of AGEs/RAGE interaction using neutralizing anti-RAGE antibody. Throughout the study, BSA had no effect on cellular processes. These findings pave the way for future studies investigating whether the exposure of AGEs-treated ER-positive breast cancer cells to estrogen could lead to a potentiation of breast cancer development and progression.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia.
| | - Hana Sharaf
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Qiuyu Wang
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Nasser Almobadel
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Zaki Rabhan
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Wesam Bin Yahya
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Thadeo Trivilegio
- Core Facility, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Rizwan Ali
- Core Facility, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Nasser Al-Shanti
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Nessar Ahmed
- School of Healthcare Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom..
| |
Collapse
|
32
|
Fu X, Fan X, Hu J, Zou H, Chen Z, Liu Q, Ni B, Tan X, Su Q, Wang J, Wang L, Wang J. Overexpression of MSK1 is associated with tumor aggressiveness and poor prognosis in colorectal cancer. Dig Liver Dis 2017; 49:683-691. [PMID: 28314603 DOI: 10.1016/j.dld.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Mitogen- and stress-activated protein kinase 1 (MSK1) has recently been implicated in cell proliferation and neoplastic transformation. However, the involvement of MSK1 in colorectal cancer (CRC) has not been addressed. This study aimed to evaluate the expression and potential functions of MSK1 in CRC. METHODS The MSK1 expression was investigated by immunohistochemistry, western blot and reverse transcription-polymerase chain reaction. The associations between clinicopathological characteristics and MSK1 expression were assessed. Kaplan-Meier analysis and Cox regression models were carried out. CRC cells with MSK1 knockdown or overexpression were generated. A range of experiments were performed to demonstrate MSK1's role in CRC. RESULTS MSK1 was overexpressed in 148 out of 329 CRC patients. CRC patients with high MSK1 expression had shorter overall survival than those with low MSK1 (P=0.033), especially among patients with stage III tumors (P=0.005). Knockdown of MSK1 in CRC cells suppressed cell proliferation, anchorage-independent growth, migration and invasion, and promoted 5-fluorouracil chemosensitivity and intracellular NADP+/NADPH ratio. However, overexpression of MSK1 had the opposite effects. CONCLUSIONS Overexpression of MSK1 is associated with poor prognosis in CRC and is connected to tumor aggressiveness. MSK1 is a potential target for new therapies and a candidate of biomarker for prognosis.
Collapse
Affiliation(s)
- Xinhui Fu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Hu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongzhi Zou
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zhiting Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qi Liu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Beibei Ni
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoli Tan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingxuan Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Wang
- Department of GI Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jianping Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
33
|
Sengupta S, Naz S, Das I, Ahad A, Padhi A, Naik SK, Ganguli G, Pattanaik KP, Raghav SK, Nandicoori VK, Sonawane A. Mycobacterium tuberculosis EsxL inhibits MHC-II expression by promoting hypermethylation in class-II transactivator loci in macrophages. J Biol Chem 2017; 292:6855-6868. [PMID: 28209712 DOI: 10.1074/jbc.m117.775205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis is known to modulate the host immune responses to facilitate its persistence inside the host cells. One of the key mechanisms includes repression of class-II transactivator (CIITA) and MHC-II expression in infected macrophages. However, the precise mechanism of CIITA and MHC-II down-regulation is not well studied. M. tuberculosis 6-kDa early secretory antigenic target (ESAT-6) is a known potent virulence and antigenic determinant. The M. tuberculosis genome encodes 23 such ESAT-6 family proteins. We herein report that M. tuberculosis and M. bovis bacillus Calmette-Guérin infection down-regulated the expression of CIITA/MHC-II by inducing hypermethylation in histone H3 lysine 9 (H3K9me2/3). Further, we showed that M. tuberculosis ESAT-6 family protein EsxL, encoded by Rv1198, is responsible for the down-regulation of CIITA/MHC-II by inducing H3K9me2/3. We further report that M. tuberculosis esxL induced the expression of nitric-oxide synthase, NO production, and p38 MAPK pathway, which in turn was responsible for the increased H3K9me2/3 in CIITA via up-regulation of euchromatic histone-lysine N-methyltransferase 2 (G9a). In contrast, inhibition of nitric-oxide synthase, p38 MAPK, and G9a abrogated H3K9me2/3, resulting in increased CIITA expression. A chromatin immunoprecipitation assay confirmed that hypermethylation at the promoter IV region of CIITA is mainly responsible for CIITA down-regulation and subsequent antigen presentation. We found that co-culture of macrophages infected with esxL-expressing M. smegmatis and mouse splenocytes led to down-regulation of IL-2, a key cytokine involved in T-cell proliferation. In summary, we demonstrate that M. tuberculosis EsxL inhibits antigen presentation by enhancing H3K9me2/3 at the CIITA promoter, thereby repressing its expression through NO and p38 MAPK activation.
Collapse
Affiliation(s)
- Srabasti Sengupta
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Saba Naz
- the National Institute of Immunology, New Delhi, Delhi 110067, India, and
| | - Ishani Das
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Abdul Ahad
- the Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751023, India
| | - Avinash Padhi
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Sumanta Kumar Naik
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Geetanjali Ganguli
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Kali Prasad Pattanaik
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Sunil Kumar Raghav
- the Institute of Life Science, Nalco Square, Bhubaneswar, Orissa 751023, India
| | | | - Avinash Sonawane
- From the School of Biotechnology, KIIT University, Bhubaneswar, Orissa 751024, India,
| |
Collapse
|
34
|
Wankhede DP, Singh P, Jaggi M, Rao KP, Raina SK, Sinha AK. UV‐B activates a ‘group A’ mitogen activated protein kinase in Oryza sativa. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2016; 25:392-399. [DOI: 10.1007/s13562-016-0351-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Swepson C, Ranjan A, Balasubramaniam M, Pandhare J, Dash C. Cocaine Enhances HIV-1 Transcription in Macrophages by Inducing p38 MAPK Phosphorylation. Front Microbiol 2016; 7:823. [PMID: 27375565 PMCID: PMC4899462 DOI: 10.3389/fmicb.2016.00823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
Cocaine is a commonly used illicit drug among HIV-1 infected individuals and is known to increase HIV-1 replication in permissive cells including PBMCs, CD4(+) T cells, and macrophages. Cocaine's potentiating effects on HIV-1 replication in macrophages- the primary targets of the virus in the central nervous system, has been suggested to play an important role in HIV-1 neuro-pathogenesis. However, the mechanism by which cocaine enhances HIV-1 replication in macrophages remain poorly understood. Here, we report the identification of cocaine-induced signaling events that lead to enhanced HIV-1 transcription in macrophages. Treatment of physiologically relevant concentrations of cocaine enhanced HIV-1 transcription in a dose-dependent manner in infected THP-1 monocyte-derived macrophages (THP-1macs) and primary monocyte-derived macrophages (MDMs). Toward decoding the underlying mechanism, results presented in this report demonstrate that cocaine induces the phosphorylation of p38 mitogen activated protein kinase (p38 MAPK), a known activator of HIV-1 transcription. We also present data suggesting that the p38 MAPK-driven HIV-1 transcription is dependent on the induction of mitogen- and stress-activated protein kinase 1 (MSK1). Consequently, MSK1 mediates the phosphorylation of serine 10 residue of histone 3 (H3 Ser10), which is known to activate transcription of genes including that of HIV-1 in macrophages. Importantly, our results show that inhibition of p38 MAPK/MSK1 signaling by specific pharmacological inhibitors abrogated the positive effect of cocaine on HIV-1 transcription. These results validate the functional link between cocaine and p38 MAPK/MSK1 pathways. Together, our results demonstrate for the first time that the p38 MAPK/MSK1 signaling pathway plays a critical role in the cocaine-induced potentiating effects on HIV-1 infection, thus providing new insights into the interplay between cocaine abuse and HIV-1 neuro-pathogenesis.
Collapse
Affiliation(s)
- Chelsie Swepson
- Center for AIDS Health Disparities Research, Meharry Medical College, NashvilleTN, USA; Department of Biochemistry and Cancer Biology, Meharry Medical College, NashvilleTN, USA
| | - Alok Ranjan
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville TN, USA
| | | | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, NashvilleTN, USA; School of Graduate Studies and Research, Meharry Medical College, NashvilleTN, USA; Department of Microbiology and Immunology, Meharry Medical College, NashvilleTN, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, NashvilleTN, USA; Department of Biochemistry and Cancer Biology, Meharry Medical College, NashvilleTN, USA; School of Graduate Studies and Research, Meharry Medical College, NashvilleTN, USA
| |
Collapse
|
36
|
Unraveling the Mechanism of Dyskinesia One Transcription Factor at a Time. Biol Psychiatry 2016; 79:338-340. [PMID: 26847658 DOI: 10.1016/j.biopsych.2015.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 11/20/2022]
|
37
|
Bourgoin SG, Hui W. Role of mitogen- and stress-activated kinases in inflammatory arthritis. World J Pharmacol 2015; 4:265-273. [DOI: 10.5497/wjp.v4.i4.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid mediator that promotes motility, survival, and the synthesis of chemokines/cytokines in human fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis. LPA activates several proteins within the mitogen activated protein (MAP) kinase signaling network, including extracellular signal-regulated kinases (ERK) 1/2 and p38 MAP kinase (MAPK). Upon docking to mitogen- and stress-activated kinases (MSKs), ERK1/2 and p38 MAPK phosphorylate serine and threonine residues within its C-terminal domain and cause autophosphorylation of MSKs. Activated MSKs can then directly phosphorylate cAMP response element-binding protein (CREB) at Ser133 in FLS. Phosphorylation of CREB by MSKs is essential for the production of pro-inflammatory and anti-inflammatory cytokines. However, other downstream effectors of MSK1/2 such as nuclear factor-kappa B, histone H3, and high mobility group nucleosome binding domain 1 may also regulate gene expression in immune cells involved in disease pathogenesis. MSKs are master regulators of cell function that integrate signals induced by growth factors, pro-inflammatory cytokines, and cellular stresses, as well as those induced by LPA.
Collapse
|
38
|
Cell-free extracts of Propionibacterium acnes stimulate cytokine production through activation of p38 MAPK and Toll-like receptor in SZ95 sebocytes. Life Sci 2015; 139:123-31. [PMID: 26341693 DOI: 10.1016/j.lfs.2015.07.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/30/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022]
Abstract
AIMS Propionibacterium acnes has been considered to influence the acne lesions. The present study intended to elucidate the underlying signaling pathways of P. acnes in human sebaceous gland cells relative to the generation of proinflammatory cytokines. MAIN METHODS Cell-free extracts of P. acnes under stationary growth phase were co-incubated with human immortalized SZ95 sebocytes. Then, cell-free P. acnes extracts-induced cytokine expression was evaluated by measuring mRNA and protein levels using quantitative RT-PCR and ELISA. Changes of phosphorylated cell signaling proteins and transcription factors were measured by Western blots and Milliplex assay. The interactive molecular mechanisms of P. acnes and sebocytes were examined through use of shRNA and the specific inhibitors of signaling pathways. KEY FINDINGS Cell-free extracts of P. acnes significantly stimulated secretion of interleukin (IL)-8 and IL-6 in SZ95 sebocytes. The degradation of IκB-α and increased phosphorylation of IκB-α, p38 mitogen activated protein kinase (MAPK), CREB, and STAT3 were demonstrated. Quantitative RT-PCR measurements revealed that gene expression of IL-8 and Toll-like receptor 2 (TLR2) was enhanced by cell-free extracts of P. acnes. In addition, the NF-κB inhibitor BMS345541, p38 MAPK inhibitor SB203580, or anti-TLR2 neutralizing antibody prevented cell-free P. acnes extracts-induced secretion of IL-8. Knockdown of TLR2 using shRNA exerted similar inhibitory effects on IL-8 expression. Moreover, inhibition of STAT3 activity by STA-21 enhanced P. acnes-mediated secretion of IL-8. SIGNIFICANCE Cell-free extracts of P. acnes are capable to activate NF-κB and p38 MAPK pathways and up-regulate secretion of IL-8 through TLR2-dependent signaling in human SZ95 sebocytes.
Collapse
|
39
|
Vettorazzi S, Bode C, Dejager L, Frappart L, Shelest E, Klaßen C, Tasdogan A, Reichardt HM, Libert C, Schneider M, Weih F, Henriette Uhlenhaut N, David JP, Gräler M, Kleiman A, Tuckermann JP. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat Commun 2015; 6:7796. [PMID: 26183376 PMCID: PMC4518295 DOI: 10.1038/ncomms8796] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/11/2015] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is a severe inflammatory disease for which no specific treatment exists. As glucocorticoids have potent immunosuppressive effects, their application in ALI is currently being tested in clinical trials. However, the benefits of this type of regimen remain unclear. Here we identify a mechanism of glucocorticoid action that challenges the long-standing dogma of cytokine repression by the glucocorticoid receptor. Contrarily, synergistic gene induction of sphingosine kinase 1 (SphK1) by glucocorticoids and pro-inflammatory stimuli via the glucocorticoid receptor in macrophages increases circulating sphingosine 1-phosphate levels, which proves essential for the inhibition of inflammation. Chemical or genetic inhibition of SphK1 abrogates the therapeutic effects of glucocorticoids. Inflammatory p38 MAPK- and mitogen- and stress-activated protein kinase 1 (MSK1)-dependent pathways cooperate with glucocorticoids to upregulate SphK1 expression. Our findings support a critical role for SphK1 induction in the suppression of lung inflammation by glucocorticoids, and therefore provide rationales for effective anti-inflammatory therapies. Endothelial damage is a major component of acute lung injury pathogenesis. Here the authors show that in a mouse model of acute lung injury, glucocorticoids induce sphingosine kinase 1 production in macrophages, promoting endothelial barrier function and ameliorating the disease.
Collapse
Affiliation(s)
- Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany.,Leibniz Institute for Age Research - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Constantin Bode
- Molecular Cancer Research Centre (MKFZ), Charité - University Medical School (CVK), 13353 Berlin, Germany
| | - Lien Dejager
- Inflammation Research Center, Mouse Genetics in Inflammation group, VIB and University Ghent, B9052 Ghent, Belgium
| | - Lucien Frappart
- Department of Pathology, Bat 10, HCL-Edouard Herriot Hospital, INSERM U590, 69437 Lyon, France
| | - Ekaterina Shelest
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Carina Klaßen
- Institute for Cellular and Molecular Immunology, University of Göttingen Medical School, 37073 Göttingen, Germany
| | | | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University of Göttingen Medical School, 37073 Göttingen, Germany
| | - Claude Libert
- Inflammation Research Center, Mouse Genetics in Inflammation group, VIB and University Ghent, B9052 Ghent, Belgium
| | - Marion Schneider
- Section of Experimental Anesthesiology, University Clinic Ulm, 89081 Ulm, Germany
| | - Falk Weih
- Leibniz Institute for Age Research - Fritz Lipmann Institute, 07745 Jena, Germany
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85748 Garching, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Gräler
- Molecular Cancer Research Centre (MKFZ), Charité - University Medical School (CVK), 13353 Berlin, Germany.,Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC) and Center for Molecular Biomedicine (CMB), University Hospital Jena, 07740 Jena, Germany
| | - Anna Kleiman
- Leibniz Institute for Age Research - Fritz Lipmann Institute, 07745 Jena, Germany.,Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC) and Center for Molecular Biomedicine (CMB), University Hospital Jena, 07740 Jena, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany.,Leibniz Institute for Age Research - Fritz Lipmann Institute, 07745 Jena, Germany
| |
Collapse
|
40
|
Li B, Wan Z, Huang G, Huang Z, Zhang X, Liao D, Luo S, He Z. Mitogen- and stress-activated Kinase 1 mediates Epstein-Barr virus latent membrane protein 1-promoted cell transformation in nasopharyngeal carcinoma through its induction of Fra-1 and c-Jun genes. BMC Cancer 2015; 15:390. [PMID: 25958199 PMCID: PMC4434874 DOI: 10.1186/s12885-015-1398-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/29/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mitogen- and Stress-Activated Kinase 1 (MSK1) is a nuclear kinase that serves as active link between extracellular signals and the primary response of gene expression. However, the involvement of MSK1 in malignant transformation and cancer development is not well understood. In this study, we aimed to explore the role of MSK1 in Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1)-promoted carcinogenesis of nasopharyngeal carcinoma (NPC). METHODS The level of MSK1 phosphorylation at Thr581 was detected by the immunohistochemical analysis in NPC tissues and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using MSK1 inhibitor H89 or small interfering RNA (siRNA)-MSK1, the effects of MSK1 on LMP1-promoted CNE1 cell proliferation and transformation were evaluated by CCK-8 assay, flow cytometry and focus-forming assay respectively. Furthermore, the regulatory role of MSK1-mediated histone H3 phosphorylation at Ser10 on the promoter activity and expression of Fra-1 or c-Jun was determined by reporter gene assay and western blotting analysis. RESULTS Immunohistochemical analysis revealed that the level of MSK1 phosphorylation at Thr581 was significantly higher in the poorly differentiated NPC tissues than that in normal nasopharynx tissues (P < 0.001). Moreover, high level of phosphorylated MSK1 was positively correlated with the expression of LMP1 in NPC tissues (r = 0.393, P = 0.002) and cell lines. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA dramatically suppressed LMP1-promoted CNE1 cell proliferation, which was associated with the induction of cell cycle arrest at G0/G1 phase. In addition, the anchorage-independent growth promoted by LMP1 was blocked in MSK1 knockdown cells. When the activity or expression of MSK1 was inhibited, LMP1-induced promoter activities of Fra-1 and c-Jun as well as their protein levels were greatly reduced. It was found that only H3 WT, but not mutant H3 S10A, dramatically increased LMP1 induction of Fra-1 and c-Jun genes compared with mock cells. CONCLUSION Increased MSK1 activity is critically important for LMP1-promoted cell proliferation and transformation in NPC, which may be correlated with its induction of Fra-1 and c-Jun through phosphorylation of histone H3 at Ser10.
Collapse
Affiliation(s)
- Binbin Li
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
- Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Zheng Wan
- Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Guoliang Huang
- Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Zunnan Huang
- Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Xiangning Zhang
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Dan Liao
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Shengqun Luo
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| | - Zhiwei He
- Department of Pathophysiology, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
- Key Laboratory for Medical Diagnostics of Guangdong Province, Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
41
|
Lee HW, Choi HY, Joo KM, Nam DH. Tumor progression locus 2 (Tpl2) kinase as a novel therapeutic target for cancer: double-sided effects of Tpl2 on cancer. Int J Mol Sci 2015; 16:4471-91. [PMID: 25723737 PMCID: PMC4394431 DOI: 10.3390/ijms16034471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/15/2015] [Accepted: 02/15/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor progression locus 2 (Tpl2) is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| | - Han Yong Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| |
Collapse
|
42
|
Katsori AM, Palagani A, Bougarne N, Hadjipavlou-Litina D, Haegeman G, Vanden Berghe W. Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules 2015; 20:863-78. [PMID: 25580684 PMCID: PMC6272537 DOI: 10.3390/molecules20010863] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/16/2014] [Indexed: 01/24/2023] Open
Abstract
In this study a series of curcumin analogues were evaluated for their ability to inhibit the activation of NF-κΒ, a transcription factor at the crossroads of cancer-inflammation. Our novel curcumin analogue BAT3 was identified to be the most potent NF-κB inhibitor and EMSA assays clearly showed inhibition of NF-κB/DNA-binding in the presence of BAT3, in agreement with reporter gene results. Immunofluorescence experiments demonstrated that BAT3 did not seem to prevent nuclear p65 translocation, so our novel analogue may interfere with NF-κB/DNA-binding or transactivation, independently of IKK2 regulation and NF-κB-translocation. Gene expression studies on endogenous NF-κB target genes revealed that BAT3 significantly inhibited TNF-dependent transcription of IL6, MCP1 and A20 genes, whereas an NF-κB independent target gene heme oxygenase-1 remained unaffected. In conclusion, we demonstrate that BAT3 seems to inhibit different cancer-related inflammatory targets in the NF-κB signaling pathway through a different mechanism in comparison to similar analogues, previously reported.
Collapse
Affiliation(s)
- Anna-Maria Katsori
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Ajay Palagani
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk 2610, Belgium.
| | - Nadia Bougarne
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, University of Ghent, Ghent 9000, Belgium.
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, University of Ghent, Ghent 9000, Belgium.
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk 2610, Belgium.
| |
Collapse
|
43
|
Cheng MB, Zhang Y, Cao CY, Zhang WL, Zhang Y, Shen YF. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock. PLoS Biol 2014; 12:e1002026. [PMID: 25535969 PMCID: PMC4275180 DOI: 10.1371/journal.pbio.1002026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation of histone demethylase KDM3A in response to thermal stress enables its specific recruitment to target genes by Stat1. Histone lysine (K) residues, which are modified by methyl- and acetyl-transferases, diversely regulate RNA synthesis. Unlike the ubiquitously activating effect of histone K acetylation, the effects of histone K methylation vary with the number of methyl groups added and with the position of these groups in the histone tails. Histone K demethylases (KDMs) counteract the activity of methyl-transferases and remove methyl group(s) from specific K residues in histones. KDM3A (also known as JHDM2A or JMJD1A) is an H3K9me2/1 demethylase. KDM3A performs diverse functions via the regulation of its associated genes, which are involved in spermatogenesis, metabolism, and cell differentiation. However, the mechanism by which the activity of KDM3A is regulated is largely unknown. Here, we demonstrated that mitogen- and stress-activated protein kinase 1 (MSK1) specifically phosphorylates KDM3A at Ser264 (p-KDM3A), which is enriched in the regulatory regions of gene loci in the human genome. p-KDM3A directly interacts with and is recruited by the transcription factor Stat1 to activate p-KDM3A target genes under heat shock conditions. The demethylation of H3K9me2 at the Stat1 binding site specifically depends on the co-expression of p-KDM3A in the heat-shocked cells. In contrast to heat shock, IFN-γ treatment does not phosphorylate KDM3A via MSK1, thereby abrogating its downstream effects. To our knowledge, this is the first evidence that a KDM can be modified via phosphorylation to determine its specific binding to target genes in response to thermal stress. Histone methylation regulates gene expression and can have drastic consequences for health if the process is defective. Histone lysine demethylases (KDMs) counteract the activity of methyl-transferases and remove methyl group(s) from histones. KDM3A is a H3K9me2/1 demethylase that performs diverse functions via the regulation of its target genes, which are involved in spermatogenesis, metabolism, and cell differentiation. However, the mechanisms underlying KDM3A regulation of specific genes at specific times are largely unknown. Here we found that a physiological stress—elevated temperature—induces KDM3A phosphorylation in human cells via the MSK1 kinase. This phosphorylated form of KDM3A directly interacts with the transcription factor Stat1, which enables Stat1 to recruit KDM3A to Stat1-binding sequences at the promoters of specific target genes. KDM3A then acts to demethylate H3K9me2/1 at these targets, thereby causing specific gene expression in response to the thermal stress. We conclude that heat shock can affect the expression of many genes in human cells via a novel activation mechanism that is centered around the phosphorylation of KDM3A.
Collapse
Affiliation(s)
- Mo-bin Cheng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chun-yu Cao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei-long Zhang
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- * E-mail: (YeZ); (YS)
| | - Yu-fei Shen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- * E-mail: (YeZ); (YS)
| |
Collapse
|
44
|
Šmerdová L, Svobodová J, Kabátková M, Kohoutek J, Blažek D, Machala M, Vondráček J. Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway. Carcinogenesis 2014; 35:2534-43. [DOI: 10.1093/carcin/bgu190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
45
|
T-cell co-stimulation through the CD2 and CD28 co-receptors induces distinct signalling responses. Biochem J 2014; 460:399-410. [PMID: 24665965 DOI: 10.1042/bj20140040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Full T-cell activation critically depends on the engagement of the TCR (T-cell receptor) in conjunction with a second signal by co-stimulatory receptors that boost the immune response. In the present study we have compared signalling patterns induced by the two co-receptors CD2 and CD28 in human peripheral blood T-cells. These co-receptors were previously suggested to be redundant in function. By a combination of multi-parameter phosphoflow cytometry, phosphokinase arrays and Western blot analyses, we demonstrate that CD2 co-stimulation induces phosphorylation of the TCR-proximal signalling complex, whereas CD28 activates distal signalling molecules, including the transcription factors NF-κB (nuclear factor κB), ATF (activating transcription factor)-2, STAT3/5 (signal transducer and activator of transcription 3/5), p53 and c-Jun. These signalling patterns were conserved in both naïve and effector/memory T-cell subsets. We show that free intracellular Ca(2+) and signalling through the PI3K (phosphoinositide 3-kinase)/Akt pathway are required for proper CD28-induced NF-κB activation. The signalling patterns induced by CD2 and CD28 co-stimulation lead to distinct functional immune responses in T-cell proliferation and cytokine production. In conclusion, CD2 and CD28 co-stimulation induces distinct signalling responses and functional outcomes in T-cells.
Collapse
|
46
|
Min Z, Wang L, Jin J, Wang X, Zhu B, Chen H, Cheng Y. Pyrroloquinoline Quinone Induces Cancer Cell Apoptosis via Mitochondrial-Dependent Pathway and Down-Regulating Cellular Bcl-2 Protein Expression. J Cancer 2014; 5:609-24. [PMID: 25161699 PMCID: PMC4143536 DOI: 10.7150/jca.9002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023] Open
Abstract
Pyrroloquinoline quinone (PQQ) has been reported as a promising agent that might contribute to tumor cell apoptosis and death, yet little is known on its mechanisms. In current study, the effect of PQQ on cell proliferation and mitochondrial-dependent apoptosis were examined in 3 solid tumor cell lines (A549, Neuro-2A and HCC-LM3). PQQ treatment at low to medium dosage exhibited potent anti-tumor activity on A549 and Neuro-2A cells, while had comparably minimal impact on the viabilities of 2 human normal cell lines (HRPTEpiC and HUVEC). The apoptosis of the 3 tumor cell lines induced by PQQ were increased in a concentration-dependent manner, which might be attributed to the accumulation of intracellular reactive oxygen species (ROS), decline in ATP levels and dissipation of mitochondrial membrane potential (MMP), in conjunction with down-regulation of Bcl-2 protein expression, up-regulation of activated caspase-3, and disturbed phosphorylated MAPK protein levels. PQQ induced tumor cells apoptosis was significantly alleviated by pan-caspase inhibitor Z-VAD-FMK. The present work highlights the potential capability of PQQ as an anti-tumor agent with low toxicity towards normal cells through activating mitochondrial-dependent apoptosis pathways, and warrants its development for cancer therapy.
Collapse
Affiliation(s)
- Zhihui Min
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 2. Biomedical Research Center, Zhongshan Hospital Qingpu Branch, Shanghai, 201700 China; ; 3. Shanghai key laboratory of organ transplantation, Shanghai, 200032, China
| | - Lingyan Wang
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianjun Jin
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 2. Biomedical Research Center, Zhongshan Hospital Qingpu Branch, Shanghai, 201700 China
| | - Xiangdong Wang
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 2. Biomedical Research Center, Zhongshan Hospital Qingpu Branch, Shanghai, 201700 China; ; 3. Shanghai key laboratory of organ transplantation, Shanghai, 200032, China
| | - Bijun Zhu
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Chen
- 4. Department of Cardiothoracic Surgery, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Yunfeng Cheng
- 1. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 3. Shanghai key laboratory of organ transplantation, Shanghai, 200032, China; ; 5. Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; ; 6. Department of Hematology, Zhongshan Hospital Qingpu Branch, Shanghai, 201700 China
| |
Collapse
|
47
|
Fernández-Martínez AB, Lucio Cazaña FJ. Prostaglandin E2 induces retinoic acid receptor-β up-regulation through MSK1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1997-2004. [PMID: 24953041 DOI: 10.1016/j.bbamcr.2014.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/05/2014] [Accepted: 05/23/2014] [Indexed: 01/30/2023]
Abstract
The pharmacological modulation of putative renoprotective factors hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-regulated vascular endothelial growth factor-A (VEGF-A) in the kidney has therapeutic interest. In human renal proximal tubular HK2 cells, prostaglandin E2 (PGE2) up-regulates HIF-1α and VEGF-A through epidermal growth factor receptor (EGFR)-dependent up-regulation of retinoic acid receptor-β (RARβ). Here we studied the role of mitogen-activated protein kinases (MAPKs) ERK1/2 and p38 and their target kinase, mitogen- and stress activated kinase-1 (MSK1), in the signaling cascade. Treatment of HK2 cells with PGE2 resulted in increased phosphorylation of EGFR, the three studied kinases and the histone H3 (Ser10) at the RARβ gene promoter (the latter has been proposed as a molecular signature of the activated RARβ gene promoter). Prevention of the phosphorylation of EGFR, ERK1/2, p38 MAPK or MSK1 is by incubating, respectively, with AG1478, PD98059, SB203580 or H89 allowed to elucidate the precise phosphorylation order in the signaling cascade triggered by PGE2: first, EGFR; then, ERK1/2 and p38 MAPK and, finally, MSK1. Phosphorylation of MSK1 led to that of Ser10 in histone H3 and to activation of RARβ gene transcription (and the consequent increase in the expression of HIF-1α and VEGF-A), which was suppressed by H89 or by transfecting cells with a vector encoding for a dominant-negative mutant of MSK1. These results highlight the relevance of MSK1 in the up-regulation of RARβ by PGE2. They also may contribute to new therapeutic approaches based upon the pharmacological control of HIF-1α/VEGF-A in the proximal tubule through the modulation of the PGE2/EGFR/MAPK/MSK1/RARβ pathway.
Collapse
|
48
|
Kew VG, Yuan J, Meier J, Reeves MB. Mitogen and stress activated kinases act co-operatively with CREB during the induction of human cytomegalovirus immediate-early gene expression from latency. PLoS Pathog 2014; 10:e1004195. [PMID: 24945302 PMCID: PMC4055774 DOI: 10.1371/journal.ppat.1004195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 05/06/2014] [Indexed: 11/19/2022] Open
Abstract
The devastating clinical consequences associated with human cytomegalovirus (HCMV) infection and reactivation underscores the importance of understanding triggers of HCMV reactivation in dendritic cells (DC). Here we show that ERK-mediated reactivation is dependent on the mitogen and stress activated kinase (MSK) family. Furthermore, this MSK mediated response is dependent on CREB binding to the viral major immediate early promoter (MIEP). Specifically, CREB binding to the MIEP provides the target for MSK recruitment. Importantly, MSK mediated phosphorylation of histone H3 is required to promote histone de-methylation and the subsequent exit of HCMV from latency. Taken together, these data suggest that CREB binding to the MIEP is necessary for the recruitment of the kinase activity of MSKs to initiate the chromatin remodelling at the MIEP required for reactivation. Thus the importance of CREB during HCMV reactivation is to promote chromatin modifications conducive for viral gene expression as well as acting as a classical transcription factor. Clearly, specific inhibition of this interaction between CREB and MSKs could provide a strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Verity G. Kew
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Jinxiang Yuan
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffery Meier
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Matthew B. Reeves
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Institute of Immunity & Transplantation, Division of Infection & Immunity, Royal Free Hospital, University College London, London, United Kingdom
| |
Collapse
|
49
|
Lysophosphatidic acid-induced IL-8 secretion involves MSK1 and MSK2 mediated activation of CREB1 in human fibroblast-like synoviocytes. Biochem Pharmacol 2014; 90:62-72. [PMID: 24792438 DOI: 10.1016/j.bcp.2014.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/23/2022]
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic lipid mediator that promotes motility, survival, and the synthesis of chemokines/cytokines such as interleukin-8 (IL-8) and interleukin-6 by human fibroblast-like synoviocytes from patients with rheumatoid arthritis (RAFLS). In those cells LPA was reported to induce IL-8 secretion through activation of various signaling pathways including p38 mitogen-activated protein kinase (p38 MAPK), p42/44 MAPK, and Rho kinase. In addition to those pathways we report that mitogen- and stress-activated protein kinases (MSKs) known to be activated downstream of the ERK1/2 and p38 MAPK cascades and CREB are phosphorylated in response to LPA. The silencing of MSKs with small-interfering RNAs and the pharmacological inhibitor of MSKs SB747651A shows a role for both MSK1 and MSK2 in LPA-mediated phosphorylation of CREB at Ser-133 and secretion of IL-8 and MCP-1. Whereas CREB inhibitors have off target effects and increased LPA-mediated IL-8 secretion, the silencing of CREB1 with short hairpin RNA significantly reduced LPA-induced chemokine production in RAFLS. Taken together the data clearly suggest that MSK1 and MSK2 are the major CREB kinases in RAFLS stimulated with LPA and that phosphorylation of CREB1 at Ser-133 downstream of MSKs plays a significant role in chemokine production.
Collapse
|
50
|
Kolybaba A, Classen AK. Sensing cellular states--signaling to chromatin pathways targeting Polycomb and Trithorax group function. Cell Tissue Res 2014; 356:477-93. [PMID: 24728925 DOI: 10.1007/s00441-014-1824-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
Cells respond to extra- and intra-cellular signals by dynamically changing their gene expression patterns. After termination of the original signal, new expression patterns are maintained by epigenetic DNA and histone modifications. This represents a powerful mechanism that enables long-term phenotypic adaptation to transient signals. Adaptation of epigenetic landscapes is important for mediating cellular differentiation during development and allows adjustment to altered environmental conditions throughout life. Work over the last decade has begun to elucidate the way that extra- and intra-cellular signals lead to changes in gene expression patterns by directly modulating the function of chromatin-associated proteins. Here, we review key signaling-to-chromatin pathways that are specifically thought to target Polycomb and Trithorax group complexes, a classic example of epigenetically acting gene silencers and activators important in development, stem cell differentiation and cancer. We discuss the influence that signals triggered by kinase cascades, metabolic fluctuations and cell-cycle dynamics have on the function of these protein complexes. Further investigation into these pathways will be important for understanding the mechanisms that maintain epigenetic stability and those that promote epigenetic plasticity.
Collapse
Affiliation(s)
- Addie Kolybaba
- Ludwig Maximilians University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany
| | | |
Collapse
|