1
|
Deng X, Sun L, Zhang M, Basavaraj R, Wang J, Weng YL, Gao Y. Biochemical profiling and structural basis of ADAR1-mediated RNA editing. Mol Cell 2025; 85:1381-1394.e6. [PMID: 40101712 PMCID: PMC11972152 DOI: 10.1016/j.molcel.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/27/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
ADAR1 regulates RNA-induced immune responses by converting adenosine to inosine in double-stranded RNA. Mutations in ADAR1 are associated with human autoimmune disease, and targeting ADAR1 has been proposed for cancer immunotherapy. However, the molecular mechanisms underlying ADAR1-mediated editing remain unclear. Here, we provide detailed biochemical and structural characterizations of human ADAR1. Our biochemical profiling reveals that ADAR1 editing is both sequence and RNA-duplex-length dependent but can well tolerate mismatches near the editing site. High-resolution ADAR1-RNA complex structures, combined with mutagenesis, elucidate RNA binding, substrate selection, dimerization, and the essential role of RNA-binding domain 3. The ADAR1 structures also help explain the potential defects of disease-associated mutations, where biochemical and RNA sequencing analysis further indicate some of the mutations preferentially impact the editing of RNAs with short duplexes. These findings unveil the molecular basis of ADAR1 editing and provide insights into its immune-regulatory functions and therapeutic potential.
Collapse
Affiliation(s)
- Xiangyu Deng
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Lina Sun
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Min Zhang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rashmi Basavaraj
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Lan Weng
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX 77030, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
2
|
Tamizkar KH, Jantsch MF. RNA editing in disease: mechanisms and therapeutic potential. RNA (NEW YORK, N.Y.) 2025; 31:359-368. [PMID: 39746751 PMCID: PMC11874977 DOI: 10.1261/rna.080331.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Adenosine to inosine conversion by adenosine deaminases acting on RNA (ADARs) was first identified in the late 1980s of the previous century. As the conversion of adenosines to inosines can be easily detected by sequencing of cDNAs, where the presence of an inosine reads out as a guanosine, the analysis of this type of RNA editing has become widespread. Consequently, several pipelines for detecting inosines in transcriptomes have become available. Still, how to interpret the consequences and alterations of RNA-editing events in whole transciptome editomes is a matter of debate. In particular, the cause or consequence of altered editomes on disease development is poorly understood. Similarly, absolute frequencies of editing events in single molecules, their longitudinal distribution, and naturally occurring changes during development, in different tissues, or in response to physiological changes need to be explored. Lastly, while the use of site-directed RNA editing as a treatment of certain genetic diseases is rapidly evolving, the applicability of this technology still faces several technical obstacles. In this review, we describe the current state of knowledge on adenosine deamination-type RNA editing, its involvement in disease development, and its potential as a therapeutic. Lastly, we highlight open challenges and questions that need to be addressed.
Collapse
Affiliation(s)
- Kasra Honarmand Tamizkar
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
3
|
Fishman A, Lamm AT. Obstacles in quantifying A-to-I RNA editing by Sanger sequencing. Methods Enzymol 2025; 710:285-302. [PMID: 39870450 DOI: 10.1016/bs.mie.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent type of RNA editing, in which adenosine within a completely or largely double-stranded RNA (dsRNA) is converted to inosine by deamination. RNA editing was shown to be involved in many neurological diseases and cancer; therefore, detection of A-to-I RNA editing and quantitation of editing levels are necessary for both basic and clinical biomedical research. While high-throughput sequencing (HTS) is widely used for global detection of editing events, Sanger sequencing is the method of choice for precise characterization of editing site clusters (hyper-editing) and for comparing levels of editing at a particular site under different environmental conditions, developmental stages, genetic backgrounds, or disease states. To detect A-to-I editing events and quantify them using Sanger sequencing, RNA samples are reverse transcribed, cDNA is amplified using gene-specific primers, and then sequenced. The chromatogram outputs are then compared to the genomic DNA sequence. As editing occurs in the context of dsRNA, the reverse transcription step is performed at a temperature as high as 65 °C, using thermostable reverse transcriptase to open double-stranded structures. However, this measure alone is insufficient for transcripts possessing long stems comprised of hundreds of nucleotide pairs. Consequently, the editing levels detected by Sanger sequencing are significantly lower than those obtained by HTS, and the amplification yield is low. We suggest that the reverse transcription is biased towards unedited transcripts, and the severity of the bias is dependent on the transcript's secondary structure. Here, we show how this bias can be significantly reduced to allow reliable detection of editing levels and sufficient product yield.
Collapse
Affiliation(s)
- Alla Fishman
- Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel.
| | - Ayelet T Lamm
- Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
4
|
Salvador PJ, Dugan NM, Ouye R, Beal PA. En masse evaluation of RNA guides (EMERGe) for ADARs. Methods Enzymol 2025; 710:131-152. [PMID: 39870442 PMCID: PMC12014283 DOI: 10.1016/bs.mie.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine Deaminases Acting on RNA (ADARs) convert adenosine to inosine in duplex RNA, and through the delivery of guide RNAs, can be directed to edit specific adenosine sites. As ADARs are endogenously expressed in humans, their editing capacities hold therapeutic potential and allow us to target disease-relevant sequences in RNA through the rationale design of guide RNAs. However, current design principles are not suitable for difficult-to-edit target sites, posing challenges to unlocking the full therapeutic potential of this approach. This chapter discusses how we circumvent this barrier through an in vitro screening method, En Masse Evaluation of RNA Guides (EMERGe), which enables comprehensive screening of ADAR substrate libraries and facilitates the identification of editing-enabling guide strands for specific adenosines. From library generation and screening to next generation sequencing (NGS) data analysis to verification experiments, we describe how a sequence of interest can be identified through this high-throughput screening method. Furthermore, we discuss downstream applications of selected guide sequences, challenges in maximizing library coverage, and potential to couple the screen with machine learning or deep learning models.
Collapse
Affiliation(s)
- Prince J Salvador
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States
| | - Natalie M Dugan
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States
| | - Randall Ouye
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States.
| |
Collapse
|
5
|
Vesely C, Jantsch MF. Editing specificity of ADAR isoforms. Methods Enzymol 2024; 710:77-98. [PMID: 39870452 DOI: 10.1016/bs.mie.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine to inosine deaminases acting on RNA (ADARs) enzymes are found in all metazoa. Their sequence and protein organization is conserved but also shows distinct differences. Moreover, the number of ADAR genes differs between organisms, ranging from one in flies to three in mammals. The distinct isoforms of ADARs and their specific roles determine the complexity of A-to-I RNA editing, its regulation and the versatility of these enzymes. Understanding the different isoform-specific functions and targets will provide a deeper understanding of the diverse biological processes influenced by ADARs, either through ADAR editing of dsRNAs or the interaction with RNAs and proteins. The detailed identification and assigning of isoform-specific targets is a crucial step towards our understanding of functional differences amongst ADAR isoforms and will help us to understand their individual implications for health and disease. This chapter delves into unique characteristics and functional implications of ADAR isoforms. We describe the ectopic overexpression in editing free cells and the use of RNA immunoprecipitation coupled with sequencing to determine isoform-specific interactions with RNAs and their editing sites. Additionally, we discuss new challenges in editing detection by different ADARs in the context of other modifications and provide ideas for potentially better methods to determine the "true editome".
Collapse
Affiliation(s)
- Cornelia Vesely
- Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria.
| | - Michael F Jantsch
- Medical University of Vienna, Center of Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanier Strasse, Vienna, Austria.
| |
Collapse
|
6
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
7
|
Fierro-Monti I. RBPs: an RNA editor's choice. Front Mol Biosci 2024; 11:1454241. [PMID: 39165644 PMCID: PMC11333368 DOI: 10.3389/fmolb.2024.1454241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
RNA-binding proteins (RBPs) play a key role in gene expression and post-transcriptional RNA regulation. As integral components of ribonucleoprotein complexes, RBPs are susceptible to genomic and RNA Editing derived amino acid substitutions, impacting functional interactions. This article explores the prevalent RNA Editing of RBPs, unravelling the complex interplay between RBPs and RNA Editing events. Emphasis is placed on their influence on single amino acid variants (SAAVs) and implications for disease development. The role of Proteogenomics in identifying SAAVs is briefly discussed, offering insights into the RBP landscape. RNA Editing within RBPs emerges as a promising target for precision medicine, reshaping our understanding of genetic and epigenetic variations in health and disease.
Collapse
|
8
|
Huang WC, Hsu CH, Albu TV, Yang CN. Structural impacts of two disease-linked ADAR1 mutants: a molecular dynamics study. J Comput Aided Mol Des 2024; 38:25. [PMID: 39014124 DOI: 10.1007/s10822-024-00565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain. In this computational study, we utilized homology modeling and the AlphaFold2 to construct structural models of the ADAR1 deaminase domain in wild-type and two pathogenic variants, R892H and Y1112F, to decipher the structural impact on the reduced deaminase activity. Our findings illuminate the critical role of structural complementarity between the ADAR1 deaminase domain and dsRNA in enzyme-substrate recognition. That is, the relative position of E1008 and K1120 must be maintained so that they can insert into the minor and major grooves of the substrate dsRNA, respectively, facilitating the flipping-out of adenosine to be accommodated within a cavity surrounding E912. Both amino acid replacements studied, R892H at the orthosteric site and Y1112F at the allosteric site, alter K1120 position and ultimately hinder substrate RNA binding.
Collapse
Affiliation(s)
- Wen-Chieh Huang
- Institute of Precision Medicine, National Sun Yat-sen University, No. 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Chia-Hung Hsu
- Department of Internal Medicine, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Titus V Albu
- Department of Chemistry and Physics, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Chia-Ning Yang
- Institute of Precision Medicine, National Sun Yat-sen University, No. 70 Lien-Hai Road, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
9
|
Mercer HM, Nair AM, Ridgel A, Piontkivska H. Alterations in RNA editing in skeletal muscle following exercise training in individuals with Parkinson's disease. PLoS One 2023; 18:e0287078. [PMID: 38134032 PMCID: PMC10745226 DOI: 10.1371/journal.pone.0287078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease behind Alzheimer's Disease, currently affecting more than 10 million people worldwide and 1.5 times more males than females. The progression of PD results in the loss of function due to neurodegeneration and neuroinflammation. The etiology of PD is multifactorial, including both genetic and environmental origins. Here we explored changes in RNA editing, specifically editing through the actions of the Adenosine Deaminases Acting on RNA (ADARs), in the progression of PD. Analysis of ADAR editing of skeletal muscle transcriptomes from PD patients and controls, including those that engaged in a rehabilitative exercise training program revealed significant differences in ADAR editing patterns based on age, disease status, and following rehabilitative exercise. Further, deleterious editing events in protein coding regions were identified in multiple genes with known associations to PD pathogenesis. Our findings of differential ADAR editing complement findings of changes in transcriptional networks identified by a recent study and offer insights into dynamic ADAR editing changes associated with PD pathogenesis.
Collapse
Affiliation(s)
- Heather Milliken Mercer
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Aiswarya Mukundan Nair
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Angela Ridgel
- School of Health Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| |
Collapse
|
10
|
Zambrano-Mila MS, Witzenberger M, Rosenwasser Z, Uzonyi A, Nir R, Ben-Aroya S, Levanon EY, Schwartz S. Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2. Nat Commun 2023; 14:8212. [PMID: 38081817 PMCID: PMC10713624 DOI: 10.1038/s41467-023-43633-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Millions of adenosines are deaminated throughout the transcriptome by ADAR1 and/or ADAR2 at varying levels, raising the question of what are the determinants guiding substrate specificity and how these differ between the two enzymes. We monitor how secondary structure modulates ADAR2 vs ADAR1 substrate selectivity, on the basis of systematic probing of thousands of synthetic sequences transfected into cell lines expressing exclusively ADAR1 or ADAR2. Both enzymes induce symmetric, strand-specific editing, yet with distinct offsets with respect to structural disruptions: -26 nt for ADAR2 and -35 nt for ADAR1. We unravel the basis for these differences in offsets through mutants, domain-swaps, and ADAR homologs, and find it to be encoded by the differential RNA binding domain (RBD) architecture. Finally, we demonstrate that this offset-enhanced editing can allow an improved design of ADAR2-recruiting therapeutics, with proof-of-concept experiments demonstrating increased on-target and potentially decreased off-target editing.
Collapse
Affiliation(s)
- Marlon S Zambrano-Mila
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Monika Witzenberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Zohar Rosenwasser
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Erez Y Levanon
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel.
| |
Collapse
|
11
|
Frezza V, Chellini L, Del Verme A, Paronetto MP. RNA Editing in Cancer Progression. Cancers (Basel) 2023; 15:5277. [PMID: 37958449 PMCID: PMC10648226 DOI: 10.3390/cancers15215277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Coding and noncoding RNA molecules play their roles in ensuring cell function and tissue homeostasis in an ordered and systematic fashion. RNA chemical modifications can occur both at bases and ribose sugar, and, similarly to DNA and histone modifications, can be written, erased, and recognized by the corresponding enzymes, thus modulating RNA activities and fine-tuning gene expression programs. RNA editing is one of the most prevalent and abundant forms of post-transcriptional RNA modification in normal physiological processes. By altering the sequences of mRNAs, it makes them different from the corresponding genomic template. Hence, edited mRNAs can produce protein isoforms that are functionally different from the corresponding genome-encoded variants. Abnormalities in regulatory enzymes and changes in RNA-modification patterns are closely associated with the occurrence and development of various human diseases, including cancer. To date, the roles played by RNA modifications in cancer are gathering increasing interest. In this review, we focus on the role of RNA editing in cancer transformation and provide a new perspective on its impact on tumorigenesis, by regulating cell proliferation, differentiation, invasion, migration, stemness, metabolism, and drug resistance.
Collapse
Affiliation(s)
- Valentina Frezza
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
| | - Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
| | - Arianna Del Verme
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; (V.F.); (L.C.); (A.D.V.)
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| |
Collapse
|
12
|
Abstract
Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.
Collapse
|
13
|
Cai D, Sun C, Murashita T, Que X, Chen SY. ADAR1 Non-Editing Function in Macrophage Activation and Abdominal Aortic Aneurysm. Circ Res 2023; 132:e78-e93. [PMID: 36688311 PMCID: PMC10316962 DOI: 10.1161/circresaha.122.321722] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Macrophage activation plays a critical role in abdominal aortic aneurysm (AAA) development. However, molecular mechanisms controlling macrophage activation and vascular inflammation in AAA remain largely unknown. The objective of the study was to identify novel mechanisms underlying adenosine deaminase acting on RNA (ADAR1) function in macrophage activation and AAA formation. METHODS Aortic transplantation was conducted to determine the importance of nonvascular ADAR1 in AAA development/dissection. Ang II (Angiotensin II) infusion of ApoE-/- mouse model combined with macrophage-specific knockout of ADAR1 was used to study ADAR1 macrophage-specific role in AAA formation/dissection. The relevance of macrophage ADAR1 to human AAA was examined using human aneurysm specimens. Moreover, a novel humanized AAA model was established to test the role of human macrophages in aneurysm formation in human arteries. RESULTS Allograft transplantation of wild-type abdominal aortas to ADAR1+/- recipient mice significantly attenuated AAA formation, suggesting that nonvascular ADAR1 is essential for AAA development. ADAR1 deficiency in hematopoietic cells decreased the prevalence and severity of AAA while inhibited macrophage infiltration and aorta wall inflammation. ADAR1 deletion blocked the classic macrophage activation, diminished NF-κB (nuclear factor kappa B) signaling, and enhanced the expression of a number of anti-inflammatory microRNAs. Mechanistically, ADAR1 interacted with Drosha to promote its degradation, which attenuated Drosha-DGCR8 (DiGeorge syndrome critical region 8) interaction, and consequently inhibited pri- to pre-microRNA processing of microRNAs targeting IKKβ, resulting in an increased IKKβ (inhibitor of nuclear factor kappa-B) expression and enhanced NF-κB signaling. Significantly, ADAR1 was induced in macrophages and interacted with Drosha in human AAA lesions. Reconstitution of ADAR1-deficient, but not the wild type, human monocytes to immunodeficient mice blocked the aneurysm formation in transplanted human arteries. CONCLUSIONS Macrophage ADAR1 promotes aneurysm formation in both mouse and human arteries through a novel mechanism, that is, Drosha protein degradation, which inhibits the processing of microRNAs targeting NF-kB signaling and thus elicits macrophage-mediated vascular inflammation in AAA.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Takashi Murashita
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
14
|
Course MM, Gudsnuk K, Keene CD, Bird TD, Jayadev S, Valdmanis PN. Aberrant splicing of PSEN2, but not PSEN1, in individuals with sporadic Alzheimer's disease. Brain 2023; 146:507-518. [PMID: 35949106 PMCID: PMC10169283 DOI: 10.1093/brain/awac294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/08/2022] [Accepted: 07/24/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease is the most common neurodegenerative disease, characterized by dementia and premature death. Early-onset familial Alzheimer's disease is caused in part by pathogenic variants in presenilin 1 (PSEN1) and presenilin 2 (PSEN2), and alternative splicing of these two genes has been implicated in both familial and sporadic Alzheimer's disease. Here, we leveraged targeted isoform-sequencing to characterize thousands of complete PSEN1 and PSEN2 transcripts in the prefrontal cortex of individuals with sporadic Alzheimer's disease, familial Alzheimer's disease (carrying PSEN1 and PSEN2 variants), and controls. Our results reveal alternative splicing patterns of PSEN2 specific to sporadic Alzheimer's disease, including a human-specific cryptic exon present in intron 9 of PSEN2 as well as a 77 bp intron retention product before exon 6 that are both significantly elevated in sporadic Alzheimer's disease samples, alongside a significantly lower percentage of canonical full-length PSEN2 transcripts versus familial Alzheimer's disease samples and controls. Both alternatively spliced products are predicted to generate a prematurely truncated PSEN2 protein and were corroborated in an independent cerebellum RNA-sequencing dataset. In addition, our data in PSEN variant carriers is consistent with the hypothesis that PSEN1 and PSEN2 variants need to produce full-length but variant proteins to contribute to the onset of Alzheimer's disease, although intriguingly there were far fewer full-length transcripts carrying pathogenic alleles versus wild-type alleles in PSEN2 variant carriers. Finally, we identify frequent RNA editing at Alu elements present in an extended 3' untranslated region in PSEN2. Overall, this work expands the understanding of PSEN1 and PSEN2 variants in Alzheimer's disease, shows that transcript differences in PSEN2 may play a role in sporadic Alzheimer's disease, and suggests novel mechanisms of Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Meredith M Course
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, USA
| | - Kathryn Gudsnuk
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Thomas D Bird
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Northwest Mental Illness Research, Education and Clinical Centers, VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Geriatrics Research Education and Clinical Center, Puget Sound VA Medical Center, Seattle, WA 98108, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Suman Jayadev
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Lyu K, Chen SB, Chow EYC, Zhao H, Yuan JH, Cai M, Shi J, Chan TF, Tan JH, Kwok CK. An RNA G-Quadruplex Structure within the ADAR 5'UTR Interacts with DHX36 Helicase to Regulate Translation. Angew Chem Int Ed Engl 2022; 61:e202203553. [PMID: 36300875 DOI: 10.1002/anie.202203553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/25/2022]
Abstract
RNA G-quadruplex (rG4) structures in the 5' untranslated region (5'UTR) play crucial roles in fundamental cellular processes. ADAR is an important enzyme that binds to double-strand RNA and accounts for the conversion of Adenosine to Inosine in RNA editing. However, so far there is no report on the formation and regulatory role of rG4 on ADAR expression. Here, we identify and characterize a thermostable rG4 structure within the 5'UTR of the ADAR1 mRNA and demonstrate its formation and inhibitory role on translation in reporter gene and native gene constructs. We reveal rG4-specific helicase DHX36 interacts with this rG4 in vitro and in cells under knockdown and knockout conditions by GTFH (G-quadruplex-triggered fluorogenic hybridization) probes and modulates translation in an rG4-dependent manner. Our results further substantiate the rG4 structure-DHX36 protein interaction in cells and highlight rG4 to be a key player in controlling ADAR1 translation.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haizhou Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Jia-Hao Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meng Cai
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong SAR, China
| | - Jiahai Shi
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong SAR, China.,Department of Biochemistry, Synthetic Biology Translational Research Programmes, Yong Loo Lin School of Medicine, National University of, Singapore, Singapore
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
16
|
Arzumanian VA, Dolgalev GV, Kurbatov IY, Kiseleva OI, Poverennaya EV. Epitranscriptome: Review of Top 25 Most-Studied RNA Modifications. Int J Mol Sci 2022; 23:13851. [PMID: 36430347 PMCID: PMC9695239 DOI: 10.3390/ijms232213851] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The alphabet of building blocks for RNA molecules is much larger than the standard four nucleotides. The diversity is achieved by the post-transcriptional biochemical modification of these nucleotides into distinct chemical entities that are structurally and functionally different from their unmodified counterparts. Some of these modifications are constituent and critical for RNA functions, while others serve as dynamic markings to regulate the fate of specific RNA molecules. Together, these modifications form the epitranscriptome, an essential layer of cellular biochemistry. As of the time of writing this review, more than 300 distinct RNA modifications from all three life domains have been identified. However, only a few of the most well-established modifications are included in most reviews on this topic. To provide a complete overview of the current state of research on the epitranscriptome, we analyzed the extent of the available information for all known RNA modifications. We selected 25 modifications to describe in detail. Summarizing our findings, we describe the current status of research on most RNA modifications and identify further developments in this field.
Collapse
Affiliation(s)
- Viktoriia A. Arzumanian
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | - Georgii V. Dolgalev
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | | | | | | |
Collapse
|
17
|
Hu X, Zou Q, Yao L, Yang X. Survey of the binding preferences of RNA-binding proteins to RNA editing events. Genome Biol 2022; 23:169. [PMID: 35927743 PMCID: PMC9351184 DOI: 10.1186/s13059-022-02741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) editing is an important RNA posttranscriptional process related to a multitude of cellular and molecular activities. However, systematic characterizations of whether and how the events of RNA editing are associated with the binding preferences of RNA sequences to RNA-binding proteins (RBPs) are still lacking. RESULTS With the RNA-seq and RBP eCLIP-seq datasets from the ENCODE project, we quantitatively survey the binding preferences of 150 RBPs to RNA editing events, followed by experimental validations. Such analyses of the RBP-associated RNA editing at nucleotide resolution and genome-wide scale shed light on the involvement of RBPs specifically in RNA editing-related processes, such as RNA splicing, RNA secondary structures, RNA decay, and other posttranscriptional processes. CONCLUSIONS These results highlight the relevance of RNA editing in the functions of many RBPs and therefore serve as a resource for further characterization of the functional associations between various RNA editing events and RBPs.
Collapse
Affiliation(s)
- Xiaolin Hu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Qin Zou
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Li Yao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Woudenberg T, Kruyt ND, Quax PHA, Nossent AY. Change of Heart: the Epitranscriptome of Small Non-coding RNAs in Heart Failure. Curr Heart Fail Rep 2022; 19:255-266. [PMID: 35876969 PMCID: PMC9534797 DOI: 10.1007/s11897-022-00561-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Purpose of Review Small non-coding RNAs regulate gene expression and are highly implicated in heart failure. Recently, an additional level of post-transcriptional regulation has been identified, referred to as the epitranscriptome, which encompasses the body of post-transcriptional modifications that are placed on RNA molecules. In this review, we summarize the current knowledge on the small non-coding RNA epitranscriptome in heart failure. Recent Findings With the rise of new methods to study RNA modifications, epitranscriptome research has begun to take flight. Over the past 3 years, the number of publications on the epitranscriptome in heart failure has significantly increased, and we expect many more highly relevant publications to come out over the next few years. Summary Currently, at least six modifications on small non-coding RNAs have been investigated in heart failure-relevant studies, namely N6-adenosine, N5-cytosine and N7-guanosine methylation, 2’-O-ribose-methylation, adenosine-to-inosine editing, and isomiRs. Their potential role in heart failure is discussed.
Collapse
Affiliation(s)
- Tamar Woudenberg
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Nyika D Kruyt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - A Yaël Nossent
- Department of Surgery, Leiden University Medical Center, D6-P, PO Box 9600, 2300 RC, Leiden, the Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
19
|
Franco MK, Koutmou KS. Chemical modifications to mRNA nucleobases impact translation elongation and termination. Biophys Chem 2022; 285:106780. [PMID: 35313212 PMCID: PMC9373004 DOI: 10.1016/j.bpc.2022.106780] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
Messenger RNAs (mRNAs) serve as blueprints for protein synthesis by the molecular machine the ribosome. The ribosome relies on hydrogen bonding interactions between adaptor aminoacyl-transfer RNA molecules and mRNAs to ensure the rapid and faithful translation of the genetic code into protein. There is a growing body of evidence suggesting that chemical modifications to mRNA nucleosides impact the speed and accuracy of protein synthesis by the ribosome. Modulations in translation rates have downstream effects beyond protein production, influencing protein folding and mRNA stability. Given the prevalence of such modifications in mRNA coding regions, it is imperative to understand the consequences of individual modifications on translation. In this review we present the current state of our knowledge regarding how individual mRNA modifications influence ribosome function. Our comprehensive comparison of the impacts of 16 different mRNA modifications on translation reveals that most modifications can alter the elongation step in the protein synthesis pathway. Additionally, we discuss the context dependence of these effects, highlighting the necessity of further study to uncover the rules that govern how any given chemical modification in an mRNA codon is read by the ribosome.
Collapse
Affiliation(s)
| | - Kristin S Koutmou
- Program in Chemical Biology, University of Michigan, USA; Department of Chemistry, University of Michigan, USA.
| |
Collapse
|
20
|
Rajendren S, Karijolich J. The Impact of RNA modifications on the Biology of DNA Virus Infection. Eur J Cell Biol 2022; 101:151239. [PMID: 35623231 PMCID: PMC9549750 DOI: 10.1016/j.ejcb.2022.151239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Approximately 170 RNA modifications have been identified and these are critical for determining the fate and function of cellular RNAs. Similar to human transcripts, viral RNAs possess an extensive RNA modification landscape. While initial efforts largely focused on investigating the RNA modification landscape in the context of RNA virus infection, a growing body of work has explored the impact of RNA modifications on DNA virus biology. These studies have revealed roles for RNA modifications in DNA virus infection, including gene regulation and viral pathogenesis. In this review, we will discuss the current knowledge on how RNA modifications impact DNA virus biology.
Collapse
|
21
|
Nakano M, Nakajima M. Adenosine-to-Inosine RNA Editing and N 6-Methyladenosine Modification Modulating Expression of Drug Metabolizing Enzymes. Drug Metab Dispos 2022; 50:624-633. [PMID: 35152204 DOI: 10.1124/dmd.121.000390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/02/2022] [Indexed: 02/13/2025] Open
Abstract
Interindividual differences in the expression and activity of drug metabolizing enzymes including cytochrome P450, UDP-glucuronosyltransferase, and esterases cause variable therapeutic efficacy or adverse events of drugs. As the major mechanisms causing the variability in the expression of drug metabolizing enzymes, transcriptional regulation by transcription factors, epigenetic regulation including DNA methylation, and posttranscriptional regulation by microRNA are well known. Recently, adenosine-to-inosine RNA editing and methylation of adenosine at the N 6 position on RNA have emerged as novel regulators of drug metabolism potency. In this review article, the current knowledge of these two prevalent types of posttranscriptional modification mediated modulation of drug metabolism involved genes is introduced. SIGNIFICANCE STATEMENT: Elucidation of the significance of adenosine-to-inosine RNA editing and N 6-methyladenosine in the regulation of drug metabolizing enzymes is expected to lead to a deeper understanding of interindividual variability in the therapeutic efficacy or adverse effects of medicines.
Collapse
Affiliation(s)
- Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (Ma.N., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., Mi.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (Ma.N., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., Mi.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
22
|
Li X, Zhu R, Yuan Y, Cai Z, Liang S, Bian J, Xu G. Double-stranded RNA-specific adenosine deaminase-knockdown inhibits the proliferation and induces apoptosis of DU145 and PC3 cells by promoting the phosphorylation of H2A.X variant histone. Oncol Lett 2021; 22:764. [PMID: 34589143 PMCID: PMC8442165 DOI: 10.3892/ol.2021.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Double-stranded RNA-specific adenosine deaminase (ADAR1) is a member of the adenosine deaminases acting on RNA family that catalyze the adenosine-to-inosine editing of double-stranded RNA substrates. Several studies have reported that ADAR1 is closely associated with numerous malignancies. However, the functional roles of ADAR1 in prostate cancer (PCa) have not been fully elucidated. Thus, the present study aimed to investigate the effects of ADAR1 on PCa. The results demonstrated that ADAR1 was highly expressed in PCa tissues compared with normal tissues. Furthermore, the protein expression level of ADAR1 was significantly increased in castration-resistant PCa (CRPCa) tissues and CRPCa cell lines. Thus, these findings indicated that ADAR1 may act as a tumor promoter for PCa development. Next, the potential effects of ADAR1-knockdown on the proliferation of DU145 and PC3 cells were investigated. ADAR1 was knocked down via small interfering RNA transfection, which was found to exert antitumor effects on DU145 and PC3 cells at 24 and 48 h post transfection. Furthermore, a significant positive association was observed between ADAR1-knockdown and the apoptosis of DU145 and PC3 cells, which increased the phosphorylation of H2A.X variant histone. The results of the present study indicated a positive association between ADAR1 expression and PCa, which may promote the development of CRPCa. Moreover, ADAR1-knockdown may serve as a tumor suppressor and represent a potential target for the treatment of PCa.
Collapse
Affiliation(s)
- Xiezhao Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Rui Zhu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Yaoji Yuan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhiduan Cai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Siyang Liang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Jun Bian
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Guibin Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
23
|
Alluri RK, Li Z, McCrae KR. Stress Granule-Mediated Oxidized RNA Decay in P-Body: Hypothetical Role of ADAR1, Tudor-SN, and STAU1. Front Mol Biosci 2021; 8:672988. [PMID: 34150849 PMCID: PMC8211916 DOI: 10.3389/fmolb.2021.672988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.
Collapse
Affiliation(s)
- Ravi Kumar Alluri
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Zhongwei Li
- Biomedical Science Department, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Keith R McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
24
|
Srinivasan S, Torres AG, Ribas de Pouplana L. Inosine in Biology and Disease. Genes (Basel) 2021; 12:600. [PMID: 33921764 PMCID: PMC8072771 DOI: 10.3390/genes12040600] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; (S.S.); (A.G.T.)
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
25
|
Abstract
The brain is one of the organs that are preferentially targeted by adenosine-to-inosine (A-to-I) RNA editing, a posttranscriptional modification. This chemical modification affects neuronal development and functions at multiple levels, leading to normal brain homeostasis by increasing the complexity of the transcriptome. This includes modulation of the properties of ion channel and neurotransmitter receptors by recoding, redirection of miRNA targets by changing sequence complementarity, and suppression of immune response by altering RNA structure. Therefore, from another perspective, it appears that the brain is highly vulnerable to dysregulation of A-to-I RNA editing. Here, we focus on how aberrant A-to-I RNA editing is involved in neurological and neurodegenerative diseases of humans including epilepsy, amyotrophic lateral sclerosis, psychiatric disorders, developmental disorders, brain tumors, and encephalopathy caused by autoimmunity. In addition, we provide information regarding animal models to better understand the mechanisms behind disease phenotype.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
26
|
Sadeq S, Al-Hashimi S, Cusack CM, Werner A. Endogenous Double-Stranded RNA. Noncoding RNA 2021; 7:15. [PMID: 33669629 PMCID: PMC7930956 DOI: 10.3390/ncrna7010015] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
The birth of long non-coding RNAs (lncRNAs) is closely associated with the presence and activation of repetitive elements in the genome. The transcription of endogenous retroviruses as well as long and short interspersed elements is not only essential for evolving lncRNAs but is also a significant source of double-stranded RNA (dsRNA). From an lncRNA-centric point of view, the latter is a minor source of bother in the context of the entire cell; however, dsRNA is an essential threat. A viral infection is associated with cytoplasmic dsRNA, and endogenous RNA hybrids only differ from viral dsRNA by the 5' cap structure. Hence, a multi-layered defense network is in place to protect cells from viral infections but tolerates endogenous dsRNA structures. A first line of defense is established with compartmentalization; whereas endogenous dsRNA is found predominantly confined to the nucleus and the mitochondria, exogenous dsRNA reaches the cytoplasm. Here, various sensor proteins recognize features of dsRNA including the 5' phosphate group of viral RNAs or hybrids with a particular length but not specific nucleotide sequences. The sensors trigger cellular stress pathways and innate immunity via interferon signaling but also induce apoptosis via caspase activation. Because of its central role in viral recognition and immune activation, dsRNA sensing is implicated in autoimmune diseases and used to treat cancer.
Collapse
Affiliation(s)
| | | | | | - Andreas Werner
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (S.A.-H.); (C.M.C.)
| |
Collapse
|
27
|
Liao Y, Jung SH, Kim T. A-to-I RNA editing as a tuner of noncoding RNAs in cancer. Cancer Lett 2020; 494:88-93. [PMID: 32822814 DOI: 10.1016/j.canlet.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/11/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Recent advancement in RNA technology and computation biology shows the abundance and impact of RNA editing at the genome-wide level. Of RNA editing events, Adenosine-to-inosine (A-to-I) RNA editing is one of the most frequent types of RNA editing catalyzed by ADAR proteins. Indeed, A-to-I RNA editing occurs at the various coding and noncoding regions, triggering abnormal signaling pathways involved in cancer pathogenesis. Noncoding RNAs such as microRNA and long noncoding RNA have emerged as key regulators of pathways in cancer. The RNA editing including A-to-I editing is enriched in noncoding regions because of the abundance of noncoding RNAs accounting for 99% of total transcripts in the human genome. The effects of A-to-I editing in coding genes have been investigated and reported. However, those in noncoding RNAs have been less known in spite of the high frequency of editing events in noncoding regions. In this review, we will briefly discuss current findings and potential directions of A-to-I RNA editing research of noncoding RNAs and cancer. We will also introduce the concept of A-to-I editing, ADAR proteins, RNA editing technologies and databases.
Collapse
Affiliation(s)
- Yuanfan Liao
- Department of Anatomy, Histology and Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University, Health Science Center, Shenzhen, 518055, China
| | - Seung Ho Jung
- Applied Neuroscience, Warfighter Interface Division, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA; ORISE, Oak Ridge, TN, 37830, USA.
| | - Taewan Kim
- Department of Anatomy, Histology and Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University, Health Science Center, Shenzhen, 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
28
|
ADAD1 and ADAD2, testis-specific adenosine deaminase domain-containing proteins, are required for male fertility. Sci Rep 2020; 10:11536. [PMID: 32665638 PMCID: PMC7360552 DOI: 10.1038/s41598-020-67834-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Adenosine-to-inosine RNA editing, a fundamental RNA modification, is regulated by adenosine deaminase (AD) domain containing proteins. Within the testis, RNA editing is catalyzed by ADARB1 and is regulated in a cell-type dependent manner. This study examined the role of two testis-specific AD domain proteins, ADAD1 and ADAD2, on testis RNA editing and male germ cell differentiation. ADAD1, previously shown to localize to round spermatids, and ADAD2 had distinct localization patterns with ADAD2 expressed predominantly in mid- to late-pachytene spermatocytes suggesting a role for both in meiotic and post-meiotic germ cell RNA editing. AD domain analysis showed the AD domain of both ADADs was likely catalytically inactive, similar to known negative regulators of RNA editing. To assess the impact of Adad mutation on male germ cell RNA editing, CRISPR-induced alleles of each were generated in mouse. Mutation of either Adad resulted in complete male sterility with Adad1 mutants displaying severe teratospermia and Adad2 mutant germ cells unable to progress beyond round spermatid. However, mutation of neither Adad1 nor Adad2 impacted RNA editing efficiency or site selection. Taken together, these results demonstrate ADAD1 and ADAD2 are essential regulators of male germ cell differentiation with molecular functions unrelated to A-to-I RNA editing.
Collapse
|
29
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
30
|
Gu T, Fu AQ, Bolt MJ, White KP. Clinical Relevance of Noncoding Adenosine-to-Inosine RNA Editing in Multiple Human Cancers. JCO Clin Cancer Inform 2020; 3:1-8. [PMID: 31162949 DOI: 10.1200/cci.18.00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE RNA editing is a post-transcriptional process that alters the nucleotide sequences of certain transcripts, in vertebrate most often converting adenosines to inosines. Multiple studies have recently implicated RNA editing in cancer development; however, most studies have focused on recoding RNA editing events. The function and clinical relevance of noncoding RNA (ncRNA) editing events in cancers have not been systematically examined. PATIENTS AND METHODS We improved our previously published pipeline to identify ncRNA editing sites from four human cancers: liver hepatocellular carcinoma, lung adenocarcinoma, kidney renal clear-cell carcinoma, and thyroid carcinoma. We then developed multiple advanced statistical models to identify significantly differential edited (DE) sites between tumor and normal samples and clinical relevance ncRNA editing sites, as well as to investigate the association between gene expression, ncRNA editing, and microRNAs. Finally, we validated computational results with experiments. RESULTS We identified 3,788 ncRNA editing sites of high confidence from the four cancers. We found thousands of DE sites which had distinct profiles across the four cancers. In kidney cancer, which had the largest uncensored survival data among the four cancers, 80 DE sites were significantly associated with patient survival. We identified 3' untranslated region (UTR) RNA editing sites that can affect gene expression, either independent of or by working with microRNAs. We validated that the 3'UTR RNA editing sites in CWF19L1 and F11R genes resulted in increased protein levels and that alterations of the expression of the two genes affected the proliferation of human embryonic kidney cells. CONCLUSION On the basis of our computational and experimental results, we hypothesize that 3'UTR editing sites may affect their host gene expression, thereby affecting cell proliferation.
Collapse
Affiliation(s)
| | | | | | - Kevin P White
- The University of Chicago, Chicago, IL.,Tempus Labs, Chicago, IL
| |
Collapse
|
31
|
Costa Cruz PH, Kato Y, Nakahama T, Shibuya T, Kawahara Y. A comparative analysis of ADAR mutant mice reveals site-specific regulation of RNA editing. RNA (NEW YORK, N.Y.) 2020; 26:454-469. [PMID: 31941663 PMCID: PMC7075269 DOI: 10.1261/rna.072728.119] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/09/2020] [Indexed: 05/03/2023]
Abstract
Adenosine-to-inosine RNA editing is an essential post-transcriptional modification catalyzed by adenosine deaminase acting on RNA (ADAR)1 and ADAR2 in mammals. For numerous sites in coding sequences (CDS) and microRNAs, editing is highly conserved and has significant biological consequences, for example, by altering amino acid residues and target recognition. However, no comprehensive and quantitative studies have been undertaken to determine how specific ADARs contribute to conserved sites in vivo. Here, we amplified each RNA region with editing site(s) separately and combined these for deep sequencing. Then, we compared the editing ratios of all sites that were conserved in CDS and microRNAs in the cerebral cortex and spleen of wild-type mice, Adar1E861A/E861AIfih-/- mice expressing inactive ADAR1 (Adar1 KI) and Adar2-/-Gria2R/R (Adar2 KO) mice. We found that most of the sites showed a preference for one ADAR. In contrast, some sites, such as miR-3099-3p, showed no ADAR preference. In addition, we found that the editing ratio for several sites, such as DACT3 R/G, was up-regulated in either Adar mutant mouse strain, whereas a coordinated interplay between ADAR1 and ADAR2 was required for the efficient editing of specific sites, such as the 5-HT2CR B site. We further created double mutant Adar1 KI Adar2 KO mice and observed viable and fertile animals with the complete absence of editing, demonstrating that ADAR1 and ADAR2 are the sole enzymes responsible for all editing sites in vivo. Collectively, these findings indicate that editing is regulated in a site-specific manner by the different interplay between ADAR1 and ADAR2.
Collapse
Affiliation(s)
- Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Chen J, Wang L, Wang F, Liu J, Bai Z. Genomic Identification of RNA Editing Through Integrating Omics Datasets and the Clinical Relevance in Hepatocellular Carcinoma. Front Oncol 2020; 10:37. [PMID: 32117713 PMCID: PMC7033493 DOI: 10.3389/fonc.2020.00037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
RNA editing is a widespread post-transcriptional mechanism to introduce single nucleotide changes to RNA in human cancers. Here, we characterized the global RNA editing profiles of 373 hepatocellular carcinoma (HCC) and 50 adjacent normal liver samples from The Cancer Genome Atlas (TCGA) and revealed that most editing events tend to occur in minor percentage of samples with moderate editing degrees (20–30%). Moreover, these RNA editing prefer to be A-to-I RNA editing in protein coding genes, especially in 3′UTR regions. Considering the association between DNA mutation and RNA editing, our analysis found that RNA editing maybe a complementary event for DNA mutation of HCC risk genes in HCC patients. We next identified 454 HCC-related editing sites, and many locate on the same genes with the same editing patterns. The functional consequences of editing revealed 2,086 functional editing sites and demonstrated that most editing in coding regions are non-synonymous variations. Furthermore, our results showed that editing in the 3′UTR regions tend to influence miRNA–target binding, and the editing degree seems to be negatively correlated with gene expression. Finally, we found that 46 HCC-related editing sites with consequence are able to distinguish the prognosis differences of HCC patients, suggesting their clinical relevance. Together, our results highlight RNA editing as a valuable molecular resource for investigating HCC mechanisms and clinical treatments.
Collapse
Affiliation(s)
- Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Zhenyu Bai
- Department of Laboratory, General Hospital of Pingmei Shenma Medical Group, Pingdingshan, China
| |
Collapse
|
33
|
RNA editing enzyme ADAR1 is required for early T cell development. BLOOD SCIENCE 2020; 2:27-32. [PMID: 35399867 PMCID: PMC8974940 DOI: 10.1097/bs9.0000000000000039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/10/2019] [Indexed: 11/25/2022] Open
|
34
|
Rits S, Olsen BR, Volloch V. Protein-Encoding RNA to RNA Information Transfer in Mammalian Cells: RNA-dependent mRNA Amplification. Identification of Chimeric RNA Intermediates and Putative RNA End Products. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2019; 1:23-47. [PMID: 31656957 PMCID: PMC6814175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our initial unidirectional understanding of the flow of protein-encoding genetic information, DNA to RNA to protein, a process defined as the "Central Dogma of Molecular Biology" and usually depicted as a downward arrow, was eventually amended to account for the "vertical" information back-flow from RNA to DNA, reverse transcription, and for its "horizontal" side-flow from RNA to RNA, RNA-dependent RNA synthesis, RdRs. These processes, both potentially leading to protein production, were assumed to be strictly virus-specific. However, whereas this presumption might be true for the former, it became apparent that the cellular enzymatic machinery for the later, a conventional RNA-dependent RNA polymerase activity, RdRp, is ubiquitously present and RdRs regularly occurs in eukaryotes. The strongest evidence for the occurrence and functionality of RdRp activity in mammalian cells comes from viruses, such as hepatitis delta virus, HDV, that do not encode RdRp yet undergo a robust RNA replication once inside the host. Eventually, it became clear that RdRp activity, apparently in a non-conventional form, is constitutively present in most, if not in all, mammalian cells. Because such activity was shown to produce short transcripts, because of its apparent involvement in RNA interference phenomena, and because double-stranded RNA is known to trigger cellular responses leading to its degradation, it was generally assumed that its role in mammalian cells is restricted to a regulatory function. However, at the same time, an enzymatic activity capable of generating complete antisense RNA complements of mRNAs was discovered in mammalian cells undergoing terminal differentiation. Moreover, observations of widespread synthesis of antisense RNA initiating at the 3'poly(A) of mRNAs in human cells suggested an extensive cellular utilization of mammalian RdRp. These results led to the development of a model of RdRp-facilitated and antisense RNA-mediated amplification of mammalian mRNA. Here, we report the in vivo detection in cells undergoing terminal erythroid differentiation of the major model-predicted identifiers of such a process, a chimeric double-stranded/pinhead-structured intermediates containing both sense and antisense RNA strands covalently joined in a rigorously predicted and uniquely defined manner. We also report the identification of the putative chimeric RNA end product of mRNA amplification. It is heavily modified, uniformly truncated, yet retains the intact coding region, and terminates with the OH group at both ends; its massive cellular amount is unprecedented for a conventional mRNA transcription product and it translates into polypeptides indistinguishable from the translation product of conventional mRNA. Moreover, we describe the occurrence of the second Tier of mammalian RNA-dependent mRNA amplification, a physiologically occurring, RdRp-driven intracellular PCR process, "iPCR", and report the detection of its distinct RNA end products. Whether mammalian mRNA amplification is a specialized occurrence limited to extreme circumstances of terminal differentiation in cells programmed for only a short survival span or a general physiological phenomenon was answered in the companion article Volloch et al. Ann Integr Mol Med. 2019;1(1):1004. by the detection of major identifiers of this process for mRNA encoding α1, β1, and γ1 chains of laminin, a major extracellular matrix protein abundantly produced throughout the tissue and organ development and homeostasis and an exceptionally revealing indicator of the range and scope of this phenomenon. The results obtained introduce the occurrence of RNA-dependent mRNA amplification as a new mode of genomic protein-encoding information transfer in mammalian cells and establish it as a general physiological phenomenon.
Collapse
Affiliation(s)
- Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Deptartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| |
Collapse
|
35
|
Warner AD, Gevirtzman L, Hillier LW, Ewing B, Waterston RH. The C. elegans embryonic transcriptome with tissue, time, and alternative splicing resolution. Genome Res 2019; 29:1036-1045. [PMID: 31123079 PMCID: PMC6581053 DOI: 10.1101/gr.243394.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
We have used RNA-seq in Caenorhabditis elegans to produce transcription profiles for seven specific embryonic cell populations from gastrulation to the onset of terminal differentiation. The expression data for these seven cell populations, covering major cell lineages and tissues in the worm, reveal the complex and dynamic changes in gene expression, both spatially and temporally. Also, within genes, start sites and exon usage can be highly differential, producing transcripts that are specific to developmental periods or cell lineages. We have also found evidence of novel exons and introns, as well as differential usage of SL1 and SL2 splice leaders. By combining this data set with the modERN ChIP-seq resource, we are able to support and predict gene regulatory relationships. The detailed information on differences and similarities between gene expression in cell lineages and tissues should be of great value to the community and provides a framework for the investigation of expression in individual cells.
Collapse
Affiliation(s)
- Adam D Warner
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - LaDeana W Hillier
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Brent Ewing
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Robert H Waterston
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
36
|
Abstract
Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.
Collapse
Affiliation(s)
- Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Volloch V. Protein-Encoding RNA-to-RNA Information Transfer in Mammalian Cells: Principles of RNA-Dependent mRNA Amplification. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2019; 1:1002. [PMID: 31535092 PMCID: PMC6750253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transfer of protein-encoding genetic information from DNA to RNA to protein, a process formalized as the "Central Dogma of Molecular Biology", has undergone a significant evolution since its inception. It was amended to account for the information flow from RNA to DNA, the reverse transcription, and for the information transfer from RNA to RNA, the RNA-dependent RNA synthesis. These processes, both potentially leading to protein production, were initially described only in viral systems, and although RNA-dependent RNA polymerase activity was shown to be present, and RNA-dependent RNA synthesis found to occur, in mammalian cells, its function was presumed to be restricted to regulatory. However, recent results, obtained with multiple mRNA species in several mammalian systems, strongly indicate the occurrence of protein-encoding RNA to RNA information transfer in mammalian cells. It can result in the rapid production of the extraordinary quantities of specific proteins as was seen in cases of terminal cellular differentiation and during cellular deposition of extracellular matrix molecules. A malfunction of this process may be involved in pathologies associated either with the deficiency of a protein normally produced by this mechanism or with the abnormal abundance of a protein or of its C-terminal fragment. It seems to be responsible for some types of familial thalassemia and may underlie the overproduction of beta amyloid in sporadic Alzheimer's disease. The aim of the present article is to systematize the current knowledge and understanding of this pathway. The outlined framework introduces unexpected features of the mRNA amplification such as its ability to generate polypeptides non-contiguously encoded in the genome, its second Tier, a physiologically occurring intracellular polymerase chain reaction, iPCR, a "Two-Tier Paradox" and RNA "Dark Matter". RNA-dependent mRNA amplification represents a new mode of genomic protein-encoding information transfer in mammalian cells. Its potential physiological impact is substantial, it appears relevant to multiple pathologies and its understanding opens new venues of therapeutic interference, it suggests powerful novel bioengineering approaches and its further rigorous investigations are highly warranted.
Collapse
|
38
|
Zhao Y, Ye X, Dunker W, Song Y, Karijolich J. RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection. Nat Commun 2018; 9:4841. [PMID: 30451863 PMCID: PMC6242832 DOI: 10.1038/s41467-018-07314-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023] Open
Abstract
The RIG-I like receptors (RLRs) RIG-I and MDA5 are cytosolic RNA helicases best characterized as restriction factors for RNA viruses. However, evidence suggests RLRs participate in innate immune recognition of other pathogens, including DNA viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus and the etiological agent of Kaposi's sarcoma and primary effusion lymphoma (PEL). Here, we demonstrate that RLRs restrict KSHV lytic reactivation and we demonstrate that restriction is facilitated by the recognition of host-derived RNAs. Misprocessed noncoding RNAs represent an abundant class of RIG-I substrates, and biochemical characterizations reveal that an infection-dependent reduction in the cellular triphosphatase DUSP11 results in an accumulation of select triphosphorylated noncoding RNAs, enabling their recognition by RIG-I. These findings reveal an intricate relationship between RNA processing and innate immunity, and demonstrate that an antiviral innate immune response can be elicited by the sensing of misprocessed cellular RNAs.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- DEAD Box Protein 58/antagonists & inhibitors
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- Dual-Specificity Phosphatases/genetics
- Dual-Specificity Phosphatases/immunology
- Gene Expression Profiling
- HEK293 Cells
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/immunology
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- Interferon-Induced Helicase, IFIH1/antagonists & inhibitors
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Lymphocytes/immunology
- Lymphocytes/virology
- Nucleic Acid Conformation
- Phosphorylation
- RNA Processing, Post-Transcriptional
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/immunology
- Receptors, Immunologic
- Signal Transduction
- Virus Activation
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232-2363, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232-2363, USA
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232-2363, USA
| | - Yu Song
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232-2363, USA
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan Province, 453000, China
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232-2363, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232-2363, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232-2363, USA.
| |
Collapse
|
39
|
Radetskyy R, Daher A, Gatignol A. ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication. Cytokine Growth Factor Rev 2018; 40:48-58. [PMID: 29625900 DOI: 10.1016/j.cytogfr.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
The induction of hundreds of Interferon Stimulated Genes (ISGs) subsequent to virus infection generates an antiviral state that functions to restrict virus growth at multiple steps of their replication cycles. In the context of Human Immunodeficiency Virus-1 (HIV-1), ISGs also possess antiviral functions, but some ISGs show proapoptotic or proviral activity. One of the most studied ISGs, the RNA activated Protein Kinase (PKR), shuts down the viral protein synthesis upon activation. HIV-1 has evolved to evade its inhibition by PKR through viral and cellular mechanisms. One of the cellular mechanisms is the induction of another ISG, the Adenosine Deaminase acting on RNA 1 (ADAR1). ADAR1 promotes viral replication by acting as an RNA sensing inhibitor, by editing viral RNA and by inhibiting PKR. This review challenges the orthodox dogma of ISGs as antiviral proteins, by demonstrating that two ISGs have opposing and clashing effects on viral replication.
Collapse
Affiliation(s)
- Roman Radetskyy
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada
| | - Aïcha Daher
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada
| | - Anne Gatignol
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada; Department of Medicine, Division of Infectious Diseases, Canada; Department of Microbiology-Immunology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
40
|
Saldi T, Fong N, Bentley DL. Transcription elongation rate affects nascent histone pre-mRNA folding and 3' end processing. Genes Dev 2018; 32:297-308. [PMID: 29483154 PMCID: PMC5859970 DOI: 10.1101/gad.310896.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
In this study, Saldi et al. investigated how transcription elongation rate influences cotranscriptional pre-mRNA maturation. Their findings show that regulation of transcription speed can modulate pre-mRNA processing by changing nascent RNA structure and suggest a mechanism by which alternative processing could be controlled. Transcription elongation rate influences cotranscriptional pre-mRNA maturation, but how such kinetic coupling works is poorly understood. The formation of nonadenylated histone mRNA 3′ ends requires recognition of an RNA structure by stem–loop-binding protein (SLBP). We report that slow transcription by mutant RNA polymerase II (Pol II) caused accumulation of polyadenylated histone mRNAs that extend past the stem–loop processing site. UV irradiation, which decelerates Pol II elongation, also induced long poly(A)+ histone transcripts. Inhibition of 3′ processing by slow Pol II correlates with failure to recruit SLBP to histone genes. Chemical probing of nascent RNA structure showed that the stem–loop fails to fold in transcripts made by slow Pol II, thereby explaining the absence of SLBP and failure to process 3′ ends. These results show that regulation of transcription speed can modulate pre-mRNA processing by changing nascent RNA structure and suggest a mechanism by which alternative processing could be controlled.
Collapse
Affiliation(s)
- Tassa Saldi
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Nova Fong
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
41
|
Reich DP, Tyc KM, Bass BL. C. elegans ADARs antagonize silencing of cellular dsRNAs by the antiviral RNAi pathway. Genes Dev 2018; 32:271-282. [PMID: 29483152 PMCID: PMC5859968 DOI: 10.1101/gad.310672.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/26/2018] [Indexed: 12/03/2022]
Abstract
In this study, Reich et al. researched the functions of Caenorhabditis elegans adenosine deaminases that act on RNA (ADARs), which catalyze A-to-I RNA editing in dsRNA. Using dsRNA immunoprecipitation (dsRIP) and RNA-seq, they identified 1523 regions of clustered A-to-I editing, termed editing-enriched regions (EERs), in four stages of C. elegans development, often with highest expression in embryos. Cellular dsRNAs are edited by adenosine deaminases that act on RNA (ADARs). While editing can alter mRNA-coding potential, most editing occurs in noncoding sequences, the function of which is poorly understood. Using dsRNA immunoprecipitation (dsRIP) and RNA sequencing (RNA-seq), we identified 1523 regions of clustered A-to-I editing, termed editing-enriched regions (EERs), in four stages of Caenorhabditis elegans development, often with highest expression in embryos. Analyses of small RNA-seq data revealed 22- to 23-nucleotide (nt) siRNAs, reminiscent of viral siRNAs, that mapped to EERs and were abundant in adr-1;adr-2 mutant animals. Consistent with roles for these siRNAs in silencing, EER-associated genes (EAGs) were down-regulated in adr-1;adr-2 embryos, and this was dependent on associated EERs and the RNAi factor RDE-4. We observed that ADARs genetically interact with the 26G endogenous siRNA (endo-siRNA) pathway, which likely competes for RNAi components; deletion of factors required for this pathway (rrf-3 or ergo-1) in adr-1;adr-2 mutant strains caused a synthetic phenotype that was rescued by deleting antiviral RNAi factors. Poly(A)+ RNA-seq revealed EAG down-regulation and antiviral gene induction in adr-1;adr-2;rrf-3 embryos, and these expression changes were dependent on rde-1 and rde-4. Our data suggest that ADARs restrict antiviral silencing of cellular dsRNAs.
Collapse
Affiliation(s)
- Daniel P Reich
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Katarzyna M Tyc
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
42
|
RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nat Commun 2017; 8:1440. [PMID: 29129909 PMCID: PMC5682290 DOI: 10.1038/s41467-017-01458-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 09/19/2017] [Indexed: 11/09/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is the master RNA editor, catalyzing the deamination of adenosine to inosine. RNA editing is vital for preventing abnormal activation of cytosolic nucleic acid sensing pathways by self-double-stranded RNAs. Here we determine, by parallel analysis of RNA secondary structure sequencing (PARS-seq), the global RNA secondary structure changes in ADAR1 deficient cells. Surprisingly, ADAR1 silencing resulted in a lower global double-stranded to single-stranded RNA ratio, suggesting that A-to-I editing can stabilize a large subset of imperfect RNA duplexes. The duplexes destabilized by editing are composed of vastly complementary inverted Alus found in untranslated regions of genes performing vital biological processes, including housekeeping functions and type-I interferon responses. They are predominantly cytoplasmic and generally demonstrate higher ribosomal occupancy. Our findings imply that the editing effect on RNA secondary structure is context dependent and underline the intricate regulatory role of ADAR1 on global RNA secondary structure.
Collapse
|
43
|
Brümmer A, Yang Y, Chan TW, Xiao X. Structure-mediated modulation of mRNA abundance by A-to-I editing. Nat Commun 2017; 8:1255. [PMID: 29093448 PMCID: PMC5665907 DOI: 10.1038/s41467-017-01459-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
RNA editing introduces single nucleotide changes to RNA, thus potentially diversifying gene expression. Recent studies have reported significant changes in RNA editing profiles in disease and development. The functional consequences of these widespread alterations remain elusive because of the unknown function of most RNA editing sites. Here, we carry out a comprehensive analysis of A-to-I editomes in human populations. Surprisingly, we observe highly similar editing profiles across populations despite striking differences in the expression levels of ADAR genes. Striving to explain this discrepancy, we uncover a functional mechanism of A-to-I editing in regulating mRNA abundance. We show that A-to-I editing stabilizes RNA secondary structures and reduces the accessibility of AGO2-miRNA to target sites in mRNAs. The editing-dependent stabilization of mRNAs in turn alters the observed editing levels in the stable RNA repertoire. Our study provides valuable insights into the functional impact of RNA editing in human cells.
Collapse
Affiliation(s)
- Anneke Brümmer
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Yun Yang
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Tracey W Chan
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA.
| |
Collapse
|
44
|
Wen W, Lin CY, Niu L. R/G editing in GluA2R flop modulates the functional difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. Sci Rep 2017; 7:13654. [PMID: 29057893 PMCID: PMC5651858 DOI: 10.1038/s41598-017-13233-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
In α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors, RNA editing and alternative splicing generate sequence variants, and those variants, as in GluA2-4 AMPA receptor subunits, generally show different properties. Yet, earlier studies have shown that the alternatively spliced, flip and flop variants of GluA1 AMPA receptor subunit exhibit no functional difference in homomeric channel form. Using a laser-pulse photolysis technique, combined with whole-cell recording, we measured the rate of channel opening, among other kinetic properties, for a series of AMPA channels with different arginine/glycine (R/G) editing and flip/flop status. We find that R/G editing in the GluA2 subunit modulates the channel properties in both homomeric (GluA2Q) and complex (GluA2Q/2R and GluA1/2R) channel forms. However, R/G editing is only effective in flop channels. Specifically, editing at the R/G site on the GluA2R flop isoform accelerates the rate of channel opening and desensitization for GluA1/2R channels more pronouncedly with the GluA1 being in the flop form than in the flip form; yet R/G editing has no effect on either channel-closing rate or EC50. Our results suggest R/G editing via GluA2R serve as a regulatory mechanism to modulate the function of GluA2R-containing, native receptors involved in fast excitatory synaptic transmission.
Collapse
Affiliation(s)
- Wei Wen
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States
| | - Chi-Yen Lin
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States
| | - Li Niu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States.
| |
Collapse
|
45
|
Abstract
Adenosine-to-inosine RNA editing is a conserved process, which is performed by ADAR enzymes. By changing nucleotides in coding regions of genes and altering codons, ADARs expand the cell's protein repertoire. This function of the ADAR enzymes is essential for human brain development. However, most of the known editing sites are in non-coding repetitive regions in the transcriptome and the purpose of editing in these regions is unclear. Recent studies, which have shown that editing levels of transcripts vary between tissues and developmental stages in many organisms, suggest that the targeted RNA and ADAR editing are both regulated. We discuss the implications of these findings, and the possible role of RNA editing in innate immunity.
Collapse
Affiliation(s)
- Nabeel S Ganem
- a Faculty of Biology , Technion- Israel Institute of Technology , Technion City , Haifa , Israel
| | - Ayelet T Lamm
- a Faculty of Biology , Technion- Israel Institute of Technology , Technion City , Haifa , Israel
| |
Collapse
|
46
|
Hochberg H, Shav-Tal Y. Visualizing Nuclear RNA Editing. Trends Biochem Sci 2017; 42:845-847. [PMID: 28965669 DOI: 10.1016/j.tibs.2017.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
RNA editing results in the site-specific conversion of adenosine to inosine in mRNAs. Genomics has revealed millions of editing sites in metazoans, but examining the spatial aspects of editing in cells has been challenging. A new method, inosineFISH (inoFISH), provides the ability to detect edited and unedited mRNAs within intact cells.
Collapse
Affiliation(s)
- Hodaya Hochberg
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
47
|
Porath HT, Knisbacher BA, Eisenberg E, Levanon EY. Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol 2017; 18:185. [PMID: 28969707 PMCID: PMC5625713 DOI: 10.1186/s13059-017-1315-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/07/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Adenosine to inosine (A-to-I) RNA editing is a post-transcriptional modification catalyzed by the ADAR (adenosine deaminase that acts on RNA) enzymes, which are ubiquitously expressed among metazoans. Technical requirements have limited systematic mapping of editing sites to a small number of organisms. Thus, the extent of editing across the metazoan lineage is largely unknown. RESULTS Here, we apply a computational procedure to search for RNA-sequencing reads containing clusters of editing sites in 21 diverse organisms. Clusters of editing sites are abundant in repetitive genomic regions that putatively form double-stranded RNA (dsRNA) structures and are rarely seen in coding regions. The method reveals a considerable variation in hyper-editing levels across species, which is partly explained by differences in the potential of sequences to form dsRNA structures and the variability of ADAR proteins. Several commonly used model animals exhibit low editing levels and editing levels in primates is not exceptionally high, as previously suggested. CONCLUSIONS Editing by ADARs is highly prevalent across the Metazoa, mostly targeting dsRNA structures formed by genomic repeats. The degree to which the transcriptome of a given species undergoes hyper-editing is governed by the repertoire of repeats in the underlying genome. The strong association of RNA editing with the long dsRNA regions originating from non-coding repetitive elements is contrasted by the almost non-existing signal seen in coding regions. Hyper-edited regions are rarely expressed in a non-edited form. These results support the notion that the main role of ADAR is to suppress the cellular response to endogenous dsRNA structures.
Collapse
Affiliation(s)
- Hagit T Porath
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Binyamin A Knisbacher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
48
|
Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis. Genome Biol 2017; 18:166. [PMID: 28874170 PMCID: PMC5585977 DOI: 10.1186/s13059-017-1301-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Background Adenosine-to-inosine (A-to-I) editing of dsRNA by ADAR proteins is a pervasive epitranscriptome feature. Tens of thousands of A-to-I editing events are defined in the mouse, yet the functional impact of most is unknown. Editing causing protein recoding is the essential function of ADAR2, but an essential role for recoding by ADAR1 has not been demonstrated. ADAR1 has been proposed to have editing-dependent and editing-independent functions. The relative contribution of these in vivo has not been clearly defined. A critical function of ADAR1 is editing of endogenous RNA to prevent activation of the dsRNA sensor MDA5 (Ifih1). Outside of this, how ADAR1 editing contributes to normal development and homeostasis is uncertain. Results We describe the consequences of ADAR1 editing deficiency on murine homeostasis. Adar1E861A/E861AIfih1-/- mice are strikingly normal, including their lifespan. There is a mild, non-pathogenic innate immune activation signature in the Adar1E861A/E861AIfih1-/- mice. Assessing A-to-I editing across adult tissues demonstrates that outside of the brain, ADAR1 performs the majority of editing and that ADAR2 cannot compensate in its absence. Direct comparison of the Adar1-/- and Adar1E861A/E861A alleles demonstrates a high degree of concordance on both Ifih1+/+ and Ifih1-/- backgrounds, suggesting no substantial contribution from ADAR1 editing-independent functions. Conclusions These analyses demonstrate that the lifetime absence of ADAR1-editing is well tolerated in the absence of MDA5. We conclude that protein recoding arising from ADAR1-mediated editing is not essential for organismal homeostasis. Additionally, the phenotypes associated with loss of ADAR1 are the result of RNA editing and MDA5-dependent functions. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1301-4) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Anantharaman A, Gholamalamdari O, Khan A, Yoon JH, Jantsch MF, Hartner JC, Gorospe M, Prasanth SG, Prasanth KV. RNA-editing enzymes ADAR1 and ADAR2 coordinately regulate the editing and expression of Ctn RNA. FEBS Lett 2017; 591:2890-2904. [PMID: 28833069 DOI: 10.1002/1873-3468.12795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 11/09/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) are proteins that catalyse widespread A-to-I editing within RNA sequences. We recently reported that ADAR2 edits and stabilizes nuclear-retained Cat2 transcribed nuclear RNA (Ctn RNA). Here, we report that ADAR1 coordinates with ADAR2 to regulate editing and stability of Ctn RNA. We observe an RNA-dependent interaction between ADAR1 and ADAR2. Furthermore, ADAR1 negatively regulates interaction of Ctn RNA with RNA-destabilizing proteins. We also show that breast cancer (BC) cells display elevated ADAR1 but not ADAR2 levels, compared to nontumourigenic cells. Additionally, BC patients with elevated levels of ADAR1 show low survival. Our findings provide insights into overlapping substrate preferences of ADARs and potential involvement of ADAR1 in BC.
Collapse
Affiliation(s)
- Aparna Anantharaman
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Abid Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research Program, NIH, Baltimore, MD, USA
| | - Michael F Jantsch
- Department for Medical Biochemistry, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | | | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute of Aging-Intramural Research Program, NIH, Baltimore, MD, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
50
|
Anantharaman A, Tripathi V, Khan A, Yoon JH, Singh DK, Gholamalamdari O, Guang S, Ohlson J, Wahlstedt H, Öhman M, Jantsch MF, Conrad NK, Ma J, Gorospe M, Prasanth SG, Prasanth KV. ADAR2 regulates RNA stability by modifying access of decay-promoting RNA-binding proteins. Nucleic Acids Res 2017; 45:4189-4201. [PMID: 28053121 PMCID: PMC5397167 DOI: 10.1093/nar/gkw1304] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze the editing of adenosine residues to inosine (A-to-I) within RNA sequences, mostly in the introns and UTRs (un-translated regions). The significance of editing within non-coding regions of RNA is poorly understood. Here, we demonstrate that association of ADAR2 with RNA stabilizes a subset of transcripts. ADAR2 interacts with and edits the 3΄UTR of nuclear-retained Cat2 transcribed nuclear RNA (Ctn RNA). In absence of ADAR2, the abundance and half-life of Ctn RNA are significantly reduced. Furthermore, ADAR2-mediated stabilization of Ctn RNA occurred in an editing-independent manner. Unedited Ctn RNA shows enhanced interaction with the RNA-binding proteins HuR and PARN [Poly(A) specific ribonuclease deadenylase]. HuR and PARN destabilize Ctn RNA in absence of ADAR2, indicating that ADAR2 stabilizes Ctn RNA by antagonizing its degradation by PARN and HuR. Transcriptomic analysis identified other RNAs that are regulated by a similar mechanism. In summary, we identify a regulatory mechanism whereby ADAR2 enhances target RNA stability by limiting the interaction of RNA-destabilizing proteins with their cognate substrates.
Collapse
Affiliation(s)
- Aparna Anantharaman
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Abid Khan
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Omid Gholamalamdari
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Shuomeng Guang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Johan Ohlson
- Department of Molecular Biosciences, the WennerGren Institute, Stockholm University, SE-10691, Svante Arrheniusväg 20C, Stockholm, Sweden
| | - Helene Wahlstedt
- Department of Molecular Biosciences, the WennerGren Institute, Stockholm University, SE-10691, Svante Arrheniusväg 20C, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, the WennerGren Institute, Stockholm University, SE-10691, Svante Arrheniusväg 20C, Stockholm, Sweden
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology and Department for Medical Biochemistry, Medical University of Vienna, A-1090, Vienna, Austria
| | - Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Ma
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute of Aging-Intramural Research program, NIH, Baltimore, MD 21224, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|