1
|
Pascal C, Zonszain J, Hameiri O, Gargi-Levi C, Lev-Maor G, Tammer L, Levy T, Tarabeih A, Roy VR, Ben-Salmon S, Elbaz L, Eid M, Hakim T, Abu Rabe'a S, Shalev N, Jordan A, Meshorer E, Ast G. Human histone H1 variants impact splicing outcome by controlling RNA polymerase II elongation. Mol Cell 2023; 83:3801-3817.e8. [PMID: 37922872 DOI: 10.1016/j.molcel.2023.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.
Collapse
Affiliation(s)
- Corina Pascal
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Gargi-Levi
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luna Tammer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Levy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anan Tarabeih
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vanessa Rachel Roy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Ben-Salmon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liraz Elbaz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mireille Eid
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Hakim
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Salima Abu Rabe'a
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nana Shalev
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Albert Jordan
- Instituto de Biologia Molecular de Barcelona (IBMB-CSIC), Carrer de Baldiri Reixac, 15, 08028 Barcelona, Spain
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Jerusalem 91904, Israel; Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
2
|
Padonou F, Gonzalez V, Provin N, Yayilkan S, Jmari N, Maslovskaja J, Kisand K, Peterson P, Irla M, Giraud M. Aire-dependent transcripts escape Raver2-induced splice-event inclusion in the thymic epithelium. EMBO Rep 2022; 23:e53576. [PMID: 35037357 PMCID: PMC8892270 DOI: 10.15252/embr.202153576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Aire allows medullary thymic epithelial cells (mTECs) to express and present a large number of self-antigens for central tolerance. Although mTECs express a high diversity of self-antigen splice isoforms, the extent and regulation of alternative splicing events (ASEs) in their transcripts, notably in those induced by Aire, is unknown. In contrast to Aire-neutral genes, we find that transcripts of Aire-sensitive genes show only a low number of ASEs in mTECs, with about a quarter present in peripheral tissues excluded from the thymus. We identify Raver2, as a splicing-related factor overexpressed in mTECs and dependent on H3K36me3 marks, that promotes ASEs in transcripts of Aire-neutral genes, leaving Aire-sensitive ones unaffected. H3K36me3 profiling reveals its depletion at Aire-sensitive genes and supports a mechanism that is preceding Aire expression leading to transcripts of Aire-sensitive genes with low ASEs that escape Raver2-induced alternative splicing. The lack of ASEs in Aire-induced transcripts would result in an incomplete Aire-dependent negative selection of autoreactive T cells, thus highlighting the need of complementary tolerance mechanisms to prevent activation of these cells in the periphery.
Collapse
Affiliation(s)
- Francine Padonou
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,Institut CochinINSERMCNRSParis UniversitéParisFrance
| | | | - Nathan Provin
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance
| | - Sümeyye Yayilkan
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance
| | - Nada Jmari
- Institut CochinINSERMCNRSParis UniversitéParisFrance
| | | | - Kai Kisand
- Molecular Pathology Research GroupUniversity of TartuTartuEstonia
| | - Pärt Peterson
- Molecular Pathology Research GroupUniversity of TartuTartuEstonia
| | - Magali Irla
- Aix‐Marseille UniversitéCNRSINSERMCIML, Centre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Matthieu Giraud
- Nantes UniversitéINSERMCenter for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,Institut CochinINSERMCNRSParis UniversitéParisFrance
| |
Collapse
|
3
|
Song J, Liu J, Lv D, Meng X, Li X. Analysis of Genome-Wide Alternative Splicing Profiling and Development of Potential Drugs in Lung Adenocarcinoma. Front Genet 2021; 12:767259. [PMID: 34737768 PMCID: PMC8560713 DOI: 10.3389/fgene.2021.767259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Abstract
Alternative splicing (AS) is significantly related to tumor development as well as a patient’s clinical characteristics. This study was designed to systematically analyze the survival-associated AS signatures in Lung adenocarcinoma (LUAD). Among 30,735 AS events in 9,635 genes, we found that there were 1,429 AS in 1,125 genes which were conspicuously related to the overall survival of LUAD patients. Then, according to the seven types of AS events, we established AS signatures and constructed a new combined prognostic model. The Kaplan-Meier curve results showed that seven types of AS signatures and the combined prognostic model could divide patients into distinct prognoses. The ROC curve shows that all eight AS signatures had powerful predictive properties with different AUCs ranging from 0.708 to 0.849. Additionally, the elevated risk scores were positively related to higher TNM stage and metastasis. Interestingly, AS events and splicing factors (SFs) network shed light on a meaningful connection between prognostic AS genes and corresponding SFs. Moreover, we found that the combined prognostic model signature has a higher predictive ability than the mRNA signature. Furthermore, tumors at high risk might evade immune recognition by decreasing the expression of antigen presentation genes. Finally, we predicted the three most significant small molecule drugs to inhibit LUAD. Among them, NVP-AUY922 had the lowest IC50 value and might become a potential drug to prolong a patient’s survival. In conclusion, our study established a potential prognostic signature for LUAD patients, revealed a splicing network between AS and SFs and possible immune escape mechanism, and provided several small-molecule drugs to inhibit tumorigenesis.
Collapse
Affiliation(s)
- Jing Song
- Department of Respiratory Medicine, Qinzhou First People's Hospital, The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Jia Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Dalian, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuan Meng
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Liu Z, Rabadan R. Computing the Role of Alternative Splicing in Cancer. Trends Cancer 2021; 7:347-358. [PMID: 33500226 PMCID: PMC7969404 DOI: 10.1016/j.trecan.2020.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022]
Abstract
Most human genes undergo alternative splicing (AS), and dysregulation of alternative splicing contributes to tumor initiation and progression. Computational analysis of genomic and transcriptomic data enables the systematic characterization of alternative splicing and its functional role in cancer. In this review, we summarize the latest computational approaches to studying alternative splicing in cancer and the current limitations of the most popular tools in this field. Finally, we describe some of the current computational challenges in the characterization of the role of alternative splicing in cancer.
Collapse
Affiliation(s)
- Zhaoqi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China.
| | - Raul Rabadan
- Program for Mathematical Genomics, Columbia University, New York, NY 10032, USA; Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
5
|
Nail AN, Spear BT, Peterson ML. Highly homologous mouse Cyp2a4 and Cyp2a5 genes are differentially expressed in the liver and both express long non-coding antisense RNAs. Gene 2020; 767:145162. [PMID: 32987105 DOI: 10.1016/j.gene.2020.145162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
The mammalian Cytochrome P450 (Cyp) gene superfamily encodes enzymes involved in numerous metabolic pathways and are frequently expressed in the liver. Despite the remarkably high sequence similarity of Cyp2a4 and Cyp2a5 genes and their surrounding genomic regions, they exhibit differences in expression in the adult mouse liver. For example, Cyp2a4 is highly female-biased whereas Cyp2a5 is only moderately female-biased and Cyp2a4, but not Cyp2a5, is activated in liver cancer. We hypothesized that the limited sequence differences may help us identify the basis for this differential expression. An antisense expressed sequence tag had been uniquely annotated to the Cyp2a4 gene which led us to investigate this transcript as a possible regulator of this gene. We characterized the full-length antisense transcript and also discovered a similar transcript in the Cyp2a5 gene. These transcripts are nuclear long noncoding RNAs that are expressed similarly to their sense mRNA counterparts. This includes the sex-biased and liver tumor differences seen between the Cyp2a4 and Cyp2a5 genes, but we also find that these two genes and their antisense transcripts are expressed within different zones of the liver structure. Interestingly, while the differences in sex-biased expression of the mRNAs are established 1-2 months after birth, the antisense transcripts exhibit these expression differences earlier, at 3-4 weeks after birth. By analyzing published genomic data, we have identified candidate transcription factor binding sites that could account for differences in Cyp2a4/Cyp2a5 expression. Taken together, these studies characterize the first antisense RNAs within the Cyp supergene family and identify potential transcriptional and post-transcriptional mechanisms governing different Cyp2a4 and Cyp2a5 expression patterns in mouse liver.
Collapse
Affiliation(s)
- Alexandra N Nail
- Department of Microbiology, Immunology and Molecular Genetics, USA
| | - Brett T Spear
- Department of Microbiology, Immunology and Molecular Genetics, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Martha L Peterson
- Department of Microbiology, Immunology and Molecular Genetics, USA; Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
6
|
Chen H, Luo J, Guo J. Identification of an alternative splicing signature as an independent factor in colon cancer. BMC Cancer 2020; 20:904. [PMID: 32962686 PMCID: PMC7510085 DOI: 10.1186/s12885-020-07419-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colon cancer is a common malignant tumor with a poor prognosis. Abnormal alternative splicing (AS) events played a part in the occurrence and metastasis of the tumor. We aimed to develop a survival-associated AS signature in colon cancer. METHODS The Percent Spliced In values of AS events were available in The Cancer Genome Atlas (TCGA) SpliceSeq database. Univariate Cox analysis was carried out to detect the prognosis-related AS events. We created a predictive model on account of the survival-associated AS events, which was further validated with a training-testing group design. Kaplan-Meier analysis was applied to assess patient survival. The area under curve (AUC) of receiver operating characteristic (ROC) was performed to evaluate the predictive values of this model. Meanwhile, the clinical relevance of the signature and its regulatory relationship with splicing factors (SFs) were also evaluated. RESULTS In total, 2132 survival-related AS events were identified from colon cancer samples. We developed an eleven-AS signature, in which the 5-year AUC value was 0.911. Meanwhile, the AUC values at five years were 0.782 and 0.855 in the testing and entire cohort, respectively. Multivariate Cox regression displayed that the T category and the risk score of the signature were independent risk factors of colon cancer survival. Also, we constructed an SFs-AS network based on 11 SFs and 48 AS events. CONCLUSIONS We identified an eleven-AS signature of colon cancer. This signature could be treated as an independent prognostic factor.
Collapse
Affiliation(s)
- Haitao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Jun Luo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, 430071 China
| | - Jianchun Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan, 430071 China
| |
Collapse
|
7
|
Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity. Nat Commun 2020; 11:1388. [PMID: 32170121 PMCID: PMC7069958 DOI: 10.1038/s41467-020-15223-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors (TFs) control cell fates by precisely orchestrating gene expression. However, how individual TFs promote transcriptional diversity remains unclear. Here, we use the Hox TF Ultrabithorax (Ubx) as a model to explore how a single TF specifies multiple cell types. Using proximity-dependent Biotin IDentification in Drosophila, we identify Ubx interactomes in three embryonic tissues. We find that Ubx interacts with largely non-overlapping sets of proteins with few having tissue-specific RNA expression. Instead most interactors are active in many cell types, controlling gene expression from chromatin regulation to the initiation of translation. Genetic interaction assays in vivo confirm that they act strictly lineage- and process-specific. Thus, functional specificity of Ubx seems to play out at several regulatory levels and to result from the controlled restriction of the interaction potential by the cellular environment. Thereby, it challenges long-standing assumptions such as differential RNA expression as determinant for protein complexes. Many transcription factors regulate gene expression in a lineage- and process-specific manner, despite being expressed in several cell types. Here, the authors show that the Hox transcription factor Ubx has lineage-specific interactomes, which contribute to its cell context-dependent functions.
Collapse
|
8
|
DNA methylation directs microRNA biogenesis in mammalian cells. Nat Commun 2019; 10:5657. [PMID: 31827083 PMCID: PMC6906426 DOI: 10.1038/s41467-019-13527-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/28/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) biogenesis initiates co-transcriptionally, but how the Microprocessor machinery pinpoints the locations of short precursor miRNA sequences within long flanking regions of the transcript is not known. Here we show that miRNA biogenesis depends on DNA methylation. When the regions flanking the miRNA coding sequence are highly methylated, the miRNAs are more highly expressed, have greater sequence conservation, and are more likely to drive cancer-related phenotypes than miRNAs encoded by unmethylated loci. We show that the removal of DNA methylation from miRNA loci leads to their downregulation. Further, we found that MeCP2 binding to methylated miRNA loci halts RNA polymerase II elongation, leading to enhanced processing of the primary miRNA by Drosha. Taken together, our data reveal that DNA methylation directly affects miRNA biogenesis.
Collapse
|
9
|
Ahmed I, Karedath T, Al-Dasim FM, Malek JA. Identification of human genetic variants controlling circular RNA expression. RNA (NEW YORK, N.Y.) 2019; 25:1765-1778. [PMID: 31519742 PMCID: PMC6859849 DOI: 10.1261/rna.071654.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/11/2019] [Indexed: 06/01/2023]
Abstract
Circular RNAs (circRNAs) are abundant in eukaryotic transcriptomes and have been linked to various human disorders. However, understanding genetic control of circular RNA expression is in the early stages. Here we present the first integrated analysis of circRNAs and genome sequence variation from lymphoblastoid cell lines of the 1000 Genomes Project. We identified thousands of circRNAs in the RNA-seq data and show their association with local single-nucleotide polymorphic sites, referred to as circQTLs, which influence the circRNA transcript abundance. Strikingly, we found that circQTLs exist independently of eQTLs with most circQTLs having no effect on mRNA expression. Only a fraction of the polymorphic sites are shared and linked to both circRNA and mRNA expression with mostly similar effects on circular and linear RNA. A shared intronic QTL, rs55928920, of HMSD gene drives the circular and linear expression in opposite directions, potentially modulating circRNA levels at the expense of mRNA. Finally, circQTLs and eQTLs are largely independent and exist in separate linkage disequilibrium (LD) blocks with circQTLs highly enriched for functional genomic elements and regulatory regions. This study reveals a previously uncharacterized role of DNA sequence variation in human circular RNA regulation.
Collapse
Affiliation(s)
- Ikhlak Ahmed
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Biomedical Informatics, Sidra Medicine, Doha, Qatar
| | - Thasni Karedath
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Fatima M Al-Dasim
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Joel A Malek
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- Genomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
10
|
Huang X, Liu J, Mo X, Liu H, Wei C, Huang L, Chen J, Tian C, Meng Y, Wu G, Xie W, P.C. FJ, Liu Z, Tang W. Systematic profiling of alternative splicing events and splicing factors in left- and right-sided colon cancer. Aging (Albany NY) 2019; 11:8270-8293. [PMID: 31586988 PMCID: PMC6814588 DOI: 10.18632/aging.102319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023]
Abstract
Left- and right-sided colon cancer (LC and RC) differ substantially in their molecular characteristics and prognoses, and are thus treated using different strategies. We systematically analyzed alternative splicing (AS) events and splicing factors in LC and RC. RNA-seq data were used for genome-wide profiling of AS events that could distinguish LC from RC. The Exon Skip splicing pattern was more common in RC, while the Retained Intron pattern was more common in LC. The AS events that were upregulated in RC were enriched for genes in the axon guidance pathway, while those that were upregulated in LC were enriched for genes in immune-related pathways. Prognostic models based on differentially expressed AS events were built, and a prognostic signature based on these AS events performed well for risk stratification in colon cancer patients. A correlation network of differentially expressed AS events and differentially expressed splicing factors was constructed, and RBM25 was identified as the hub gene in the network. In conclusion, large differences in AS events may contribute to the phenotypic differences between LC and RC. The differentially expressed AS events reported herein could be used as biomarkers and treatment targets for colon cancer.
Collapse
Affiliation(s)
- Xiaoliang Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jungang Liu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Xianwei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Haizhou Liu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Chunyin Wei
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Lingxu Huang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jianhong Chen
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Chao Tian
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Yongsheng Meng
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Guo Wu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Weishun Xie
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Franco Jeen P.C.
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Zujun Liu
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| |
Collapse
|
11
|
Hong W, Zhang W, Guan R, Liang Y, Hu S, Ji Y, Liu M, Lu H, Yu M, Ma L. Genome-wide profiling of prognosis-related alternative splicing signatures in sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:557. [PMID: 31807538 PMCID: PMC6861818 DOI: 10.21037/atm.2019.09.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sarcomas (SARCs) are rare malignant tumors with poor prognosis. Increasing evidence has suggested that aberrant alternative splicing (AS) is strongly associated with tumor initiation and progression. We considered whether survival-related AS events might serve as prognosis predictors and underlying targeted molecules in SARC treatment. METHODS RNA-Seq data of the SARC cohort were downloaded from The Cancer Genome Atlas (TCGA) database. Survival-related AS events were selected by univariate and multivariate Cox regression analyses. Metascape was used for constructing a gene interaction network and performing functional enrichment analysis. Then, prognosis predictors were established based on statistically significant survival-related AS events and evaluated by receiver operator characteristic (ROC) curve analysis. Finally, the potential regulatory network was analyzed via Pearson's correlation between survival-related AS events and splicing factors (SFs). RESULTS A total of 3,610 AS events and 2,291 genes were found to be prognosis-related in 261 SARC samples. The focal adhesion pathway was identified as the most critical molecular mechanism corresponding to poor prognosis. Notably, several prognosis predictors based on survival-related AS events showed excellent performance in prognosis prediction. The area under the curve of the ROC of the risk score was 0.85 in the integrated predictor. The splicing network proved complicated regulation between prognosis-related SFs and AS events. Also, driver gene mutations were significantly associated with AS in SARC patients. CONCLUSIONS Survival-related AS events may become ideal indictors for the prognosis prediction of SARCs. Corresponding splicing regulatory mechanisms are worth further exploration.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Weicong Zhang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Renguo Guan
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yuying Liang
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Shixiong Hu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Yayun Ji
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Mouyuan Liu
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Hai Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
12
|
Glaich O, Leader Y, Lev Maor G, Ast G. Histone H1.5 binds over splice sites in chromatin and regulates alternative splicing. Nucleic Acids Res 2019; 47:6145-6159. [PMID: 31076740 PMCID: PMC6614845 DOI: 10.1093/nar/gkz338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/17/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chromatin organization and epigenetic markers influence splicing, though the magnitudes of these effects and the mechanisms are largely unknown. Here, we demonstrate that linker histone H1.5 influences mRNA splicing. We observed that linker histone H1.5 binds DNA over splice sites of short exons in human lung fibroblasts (IMR90 cells). We found that association of H1.5 with these splice sites correlated with the level of inclusion of alternatively spliced exons. Exons marked by H1.5 had more RNA polymerase II (RNAP II) stalling near the 3' splice site than did exons not associated with H1.5. In cells depleted of H1.5, we showed that the inclusion of five exons evaluated decreased and that RNAP II levels over these exons were also reduced. Our findings indicate that H1.5 is involved in regulation of splice site selection and alternative splicing, a function not previously demonstrated for linker histones.
Collapse
Affiliation(s)
- Ohad Glaich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yodfat Leader
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Galit Lev Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
13
|
Pacini C, Koziol MJ. Bioinformatics challenges and perspectives when studying the effect of epigenetic modifications on alternative splicing. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0073. [PMID: 29685977 PMCID: PMC5915717 DOI: 10.1098/rstb.2017.0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
It is widely known that epigenetic modifications are important in regulating transcription, but several have also been reported in alternative splicing. The regulation of pre-mRNA splicing is important to explain proteomic diversity and the misregulation of splicing has been implicated in many diseases. Here, we give a brief overview of the role of epigenetics in alternative splicing and disease. We then discuss the bioinformatics methods that can be used to model interactions between epigenetic marks and regulators of splicing. These models can be used to identify alternative splicing and epigenetic changes across different phenotypes. This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.
Collapse
Affiliation(s)
- Clare Pacini
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Magdalena J Koziol
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK .,Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
14
|
Lin P, He RQ, Ma FC, Liang L, He Y, Yang H, Dang YW, Chen G. Systematic Analysis of Survival-Associated Alternative Splicing Signatures in Gastrointestinal Pan-Adenocarcinomas. EBioMedicine 2018; 34:46-60. [PMID: 30131306 PMCID: PMC6116578 DOI: 10.1016/j.ebiom.2018.07.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Gastrointestinal pan-adenocarcinomas, which mainly include adenocarcinomas of the esophagus, stomach, colon, and rectum, place a heavy burden on society owing to their poor prognoses. Since aberrant alternative splicing (AS) are starting to be considered as efficacious signatures for tumor prognosis predicting and therapeutic targets, systematic analysis of AS events is urgent. METHODS Prognosis-related AS events were selected by using univariate COX regression analysis. Gene functional enrichment analysis revealed the pathways enriched by prognosis-related AS. Then, prognostic signatures based on AS events were developed for prognosis prediction. Potential mechanism to regulate splicing events by splicing factors was analyzed via Pearson correlation and regulatory networks were constructed. FINDINGS A total of 967, 918, 674, and 406 AS events were identified as prognosis-related AS events in esophagus, stomach, colon, and rectum adenocarcinomas, respectively. Survival-associated AS events were distinguishing in the four subtypes of adenocarcinoma. Furthermore, computational algorithm results indicated that perturbation of ribosome and ubiquitin-mediated proteolysis pathways were the potential molecular mechanisms corresponding to inferior prognoses. Most notably, several prognostic signatures based on AS events displayed moderate performance in prognosis predicting. The area under curve values of the time-dependent receiver operating characteristic were 0.961, 0.871, 0.870, and 0.890 in esophagus, stomach, colon, and rectum adenocarcinomas. Survival-associated splicing factors were submitted to construct the AS regulatory network, which could be an underlying mechanism of AS events. INTERPRETATION AS may could be ideal indiactors in the prognosis of gastrointestinal pan-adenocarcinomas. Exploring interesting splicing regulatory networks is conducive to solve the puzzles of AS.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
15
|
Griffiths PE. Genetic, epigenetic and exogenetic information in development and evolution. Interface Focus 2017; 7:20160152. [PMID: 28839922 DOI: 10.1098/rsfs.2016.0152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The idea that development is the expression of information accumulated during evolution and that heredity is the transmission of this information is surprisingly hard to cash out in strict, scientific terms. This paper seeks to do so using the sense of information introduced by Francis Crick in his sequence hypothesis and central dogma of molecular biology. It focuses on Crick's idea of precise determination. This is analysed using an information-theoretic measure of causal specificity. This allows us to reconstruct some of Crick's claims about information in transcription and translation. Crick's approach to information has natural extensions to non-coding regions of DNA, to epigenetic marks, and to the genetic or environmental upstream causes of those epigenetic marks. Epigenetic information cannot be reduced to genetic information. The existence of biological information in epigenetic and exogenetic factors is relevant to evolution as well as to development.
Collapse
Affiliation(s)
- Paul E Griffiths
- Department of Philosophy and Charles Perkins Centre, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
16
|
Dlamini Z, Mokoena F, Hull R. Abnormalities in alternative splicing in diabetes: therapeutic targets. J Mol Endocrinol 2017; 59:R93-R107. [PMID: 28716821 DOI: 10.1530/jme-17-0049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) is a non-communicable, metabolic disorder that affects 416 million individuals worldwide. Type 2 diabetes contributes to a vast 85-90% of the diabetes incidences while 10-15% of patients suffer from type 1 diabetes. These two predominant forms of DM cause a significant loss of functional pancreatic β-cell mass causing different degrees of insulin deficiency, most likely, due to increased β-cell apoptosis. Treatment options involve the use of insulin sensitisers, α-glucosidase inhibitors, and β-cell secretagogues which are often expensive, limited in efficacy and carry detrimental adverse effects. Cost-effective options for treatment exists in the form of herbal drugs, however, scientific validations of these widely used medicinal plants are still underway. Alternative splicing (AS) is a co-ordinated post-transcriptional process in which a single gene generates multiple mRNA transcripts which results in increased amounts of functionally different protein isoforms and in some cases aberrant splicing leads to metabolic disease. In this review, we explore the association of AS with metabolic alterations in DM and the biological significance of the abnormal splicing of some pathogenic diabetes-related genes. An understanding of the molecular mechanism behind abnormally spliced transcripts will aid in the development of new diagnostic, prognostic and therapeutic tools.
Collapse
Affiliation(s)
- Zodwa Dlamini
- ResearchInnovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa
| | - Fortunate Mokoena
- ResearchInnovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa
| | - Rodney Hull
- ResearchInnovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa
| |
Collapse
|
17
|
Molitor J, Mallm JP, Rippe K, Erdel F. Retrieving Chromatin Patterns from Deep Sequencing Data Using Correlation Functions. Biophys J 2017; 112:473-490. [PMID: 28131315 DOI: 10.1016/j.bpj.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/30/2016] [Accepted: 01/04/2017] [Indexed: 01/31/2023] Open
Abstract
Epigenetic modifications and other chromatin features partition the genome on multiple length scales. They define chromatin domains with distinct biological functions that come in sizes ranging from single modified DNA bases to several megabases in the case of heterochromatic histone modifications. Due to chromatin folding, domains that are well separated along the linear nucleosome chain can form long-range interactions in three-dimensional space. It has now become a routine task to map epigenetic marks and chromatin structure by deep sequencing methods. However, assessing and comparing the properties of chromatin domains and their positional relationships across data sets without a priori assumptions remains challenging. Here, we introduce multiscale correlation evaluation (MCORE), which uses the fluctuation spectrum of mapped sequencing reads to quantify and compare chromatin patterns over a broad range of length scales in a model-independent manner. We applied MCORE to map the chromatin landscape in mouse embryonic stem cells and differentiated neural cells. We integrated sequencing data from chromatin immunoprecipitation, RNA expression, DNA methylation, and chromosome conformation capture experiments into network models that reflect the positional relationships among these features on different genomic scales. Furthermore, we used MCORE to compare our experimental data to models for heterochromatin reorganization during differentiation. The application of correlation functions to deep sequencing data complements current evaluation schemes and will support the development of quantitative descriptions of chromatin networks.
Collapse
Affiliation(s)
- Jana Molitor
- German Cancer Research Center (DKFZ) and Bioquant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Jan-Philipp Mallm
- German Cancer Research Center (DKFZ) and Bioquant, Research Group Genome Organization & Function, Heidelberg, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) and Bioquant, Research Group Genome Organization & Function, Heidelberg, Germany.
| | - Fabian Erdel
- German Cancer Research Center (DKFZ) and Bioquant, Research Group Genome Organization & Function, Heidelberg, Germany.
| |
Collapse
|
18
|
Burgute BD, Peche VS, Müller R, Matthias J, Gaßen B, Eichinger L, Glöckner G, Noegel AA. The C-Terminal SynMuv/DdDUF926 Domain Regulates the Function of the N-Terminal Domain of DdNKAP. PLoS One 2016; 11:e0168617. [PMID: 27997579 PMCID: PMC5173251 DOI: 10.1371/journal.pone.0168617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
NKAP (NF-κB activating protein) is a highly conserved SR (serine/arginine-rich) protein involved in transcriptional control and splicing in mammals. We identified DdNKAP, the Dictyostelium discoideum ortholog of mammalian NKAP, as interacting partner of the nuclear envelope protein SUN-1. DdNKAP harbors a number of basic RDR/RDRS repeats in its N-terminal domain and the SynMuv/DUF926 domain at its C-terminus. We describe a novel and direct interaction between DdNKAP and Prp19 (Pre mRNA processing factor 19) which might be relevant for the observed DdNKAP ubiquitination. Genome wide analysis using cross-linking immunoprecipitation-high-throughput sequencing (CLIP-seq) revealed DdNKAP association with intergenic regions, exons, introns and non-coding RNAs. Ectopic expression of DdNKAP and its domains affects several developmental aspects like stream formation, aggregation, and chemotaxis. We conclude that DdNKAP is a multifunctional protein, which might influence Dictyostelium development through its interaction with RNA and RNA binding proteins. Mutants overexpressing full length DdNKAP and the N-terminal domain alone (DdN-NKAP) showed opposite phenotypes in development and opposite expression profiles of several genes and rRNAs. The observed interaction between DdN-NKAP and the DdDUF926 domain indicates that the DdDUF926 domain acts as negative regulator of the N-terminus.
Collapse
Affiliation(s)
- Bhagyashri D. Burgute
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Vivek S. Peche
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Rolf Müller
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jan Matthias
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Berthold Gaßen
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ludwig Eichinger
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Gernot Glöckner
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Berlin, Germany
| | - Angelika A. Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Stegeman R, Spreacker PJ, Swanson SK, Stephenson R, Florens L, Washburn MP, Weake VM. The Spliceosomal Protein SF3B5 is a Novel Component of Drosophila SAGA that Functions in Gene Expression Independent of Splicing. J Mol Biol 2016; 428:3632-49. [PMID: 27185460 PMCID: PMC5011000 DOI: 10.1016/j.jmb.2016.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/19/2016] [Accepted: 05/08/2016] [Indexed: 12/16/2022]
Abstract
The interaction between splicing factors and the transcriptional machinery provides an intriguing link between the coupled processes of transcription and splicing. Here, we show that the two components of the SF3B complex, SF3B3 and SF3B5, that form part of the U2 small nuclear ribonucleoprotein particle (snRNP) are also subunits of the Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator complex in Drosophila melanogaster. Whereas SF3B3 had previously been identified as a human SAGA subunit, SF3B5 had not been identified as a component of SAGA in any species. We show that SF3B3 and SF3B5 bind to SAGA independent of RNA and interact with multiple SAGA subunits including Sgf29 and Spt7 in a yeast two-hybrid assay. Through analysis of sf3b5 mutant flies, we show that SF3B5 is necessary for proper development and cell viability but not for histone acetylation. Although SF3B5 does not appear to function in SAGA's histone-modifying activities, SF3B5 is still required for expression of a subset of SAGA-regulated genes independent of splicing. Thus, our data support an independent function of SF3B5 in SAGA's transcription coactivator activity that is separate from its role in splicing.
Collapse
Affiliation(s)
- Rachel Stegeman
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Peyton J Spreacker
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Robert Stephenson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
20
|
Zhang Z, Shen M, Gresch PJ, Ghamari-Langroudi M, Rabchevsky AG, Emeson RB, Stamm S. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake. EMBO Mol Med 2016; 8:878-94. [PMID: 27406820 PMCID: PMC4967942 DOI: 10.15252/emmm.201506030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.
Collapse
Affiliation(s)
- Zhaiyi Zhang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Manli Shen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Paul J Gresch
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Ronald B Emeson
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Lee H, Goodarzi H, Tavazoie SF, Alarcón CR. TMEM2 Is a SOX4-Regulated Gene That Mediates Metastatic Migration and Invasion in Breast Cancer. Cancer Res 2016; 76:4994-5005. [PMID: 27328729 DOI: 10.1158/0008-5472.can-15-2322] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 06/14/2016] [Indexed: 12/20/2022]
Abstract
The developmental transcription factor SOX4 contributes to the metastatic spread of multiple solid cancer types, but its direct target genes that mediate cancer progression are not well defined. Using a systematic molecular and genomic approach, we identified the TMEM2 transmembrane protein gene as a direct transcriptional target of SOX4. TMEM2 was transcriptionally activated by SOX4 in breast cancer cells where, like SOX4, TMEM2 was found to mediate proinvasive and promigratory effects. Similarly, TMEM2 was sufficient to promote metastatic colonization of breast cancer cells and its expression in primary breast tumors associated with a higher likelihood of metastatic relapse. Given earlier evidence that genetic inactivation of SOX4 or TMEM2 yield similar defects in cardiac development, our findings lead us to propose that TMEM2 may not only mediate the pathologic effects of SOX4 on cancer progression but also potentially its contributions to embryonic development. Cancer Res; 76(17); 4994-5005. ©2016 AACR.
Collapse
Affiliation(s)
- Hyeseung Lee
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York
| | - Hani Goodarzi
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York.
| | - Claudio R Alarcón
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, New York.
| |
Collapse
|
22
|
Agirre E, Bellora N, Alló M, Pagès A, Bertucci P, Kornblihtt AR, Eyras E. A chromatin code for alternative splicing involving a putative association between CTCF and HP1α proteins. BMC Biol 2015; 13:31. [PMID: 25934638 PMCID: PMC4446157 DOI: 10.1186/s12915-015-0141-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022] Open
Abstract
Background Alternative splicing is primarily controlled by the activity of splicing factors and by the elongation of the RNA polymerase II (RNAPII). Recent experiments have suggested a new complex network of splicing regulation involving chromatin, transcription and multiple protein factors. In particular, the CCCTC-binding factor (CTCF), the Argonaute protein AGO1, and members of the heterochromatin protein 1 (HP1) family have been implicated in the regulation of splicing associated with chromatin and the elongation of RNAPII. These results raise the question of whether these proteins may associate at the chromatin level to modulate alternative splicing. Results Using chromatin immunoprecipitation sequencing (ChIP-Seq) data for CTCF, AGO1, HP1α, H3K27me3, H3K9me2, H3K36me3, RNAPII, total H3 and 5metC and alternative splicing arrays from two cell lines, we have analyzed the combinatorial code of their binding to chromatin in relation to the alternative splicing patterns between two cell lines, MCF7 and MCF10. Using Machine Learning techniques, we identified the changes in chromatin signals that are most significantly associated with splicing regulation between these two cell lines. Moreover, we have built a map of the chromatin signals on the pre-mRNA, that is, a chromatin-based RNA-map, which can explain 606 (68.55%) of the regulated events between MCF7 and MCF10. This chromatin code involves the presence of HP1α, CTCF, AGO1, RNAPII and histone marks around regulated exons and can differentiate patterns of skipping and inclusion. Additionally, we found a significant association of HP1α and CTCF activities around the regulated exons and a putative DNA binding site for HP1α. Conclusions Our results show that a considerable number of alternative splicing events could have a chromatin-dependent regulation involving the association of HP1α and CTCF near regulated exons. Additionally, we find further evidence for the involvement of HP1α and AGO1 in chromatin-related splicing regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0141-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eneritz Agirre
- Universitat Pompeu Fabra, E08003, Barcelona, Spain. .,Present address: Institute of Human Genetics, CNRS UPR 1142, Montpellier, France.
| | - Nicolás Bellora
- Universitat Pompeu Fabra, E08003, Barcelona, Spain. .,Present address: INIBIOMA, CONICET-UNComahue, Bariloche, Río Negro, Argentina.
| | - Mariano Alló
- IFIBYNE-UBA-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EHA), Buenos Aires, Argentina. .,Present address: European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | - Amadís Pagès
- Universitat Pompeu Fabra, E08003, Barcelona, Spain. .,Centre for Genomic Regulation, E08003, Barcelona, Spain.
| | - Paola Bertucci
- IFIBYNE-UBA-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EHA), Buenos Aires, Argentina. .,Present address: European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | - Alberto R Kornblihtt
- IFIBYNE-UBA-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EHA), Buenos Aires, Argentina.
| | - Eduardo Eyras
- Universitat Pompeu Fabra, E08003, Barcelona, Spain. .,Catalan Institution of Research and Advanced Studies (ICREA), E08010, Barcelona, Spain.
| |
Collapse
|
23
|
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA-protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA-RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions.
Collapse
Affiliation(s)
- Yeon Lee
- Center for RNA Systems Biology; Division of Biochemistry, Biophysics, and Structural Biology; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204;
| | | |
Collapse
|
24
|
Siala O, Rebai A, Fakhfakh F. Slight variations in the SC35 ESE sequence motif among human chromosomes: a computational approach. Gene 2014; 545:102-10. [PMID: 24792892 DOI: 10.1016/j.gene.2014.04.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022]
Abstract
Gene expression is initiated by the binding of transcription factors to cis-regulatory modules such as enhancer elements binding to the Serine/Arginine proteins. Recently, we noticed an increased ability to identify the location as well as the motifs of enhancers using genome-wide information on spliceosomal factor occupancy, cofactor recruitment and chromatin modifications. In this study, we have undertaken a large-scale genomic analysis in an attempt to uncover if the exonic splicing enhancer motif binding to the SC35 and the SRp40 SR proteins is conserved among several groups of human genes. For the SRp40, the results showed that the ESE consensus is conserved among human genes. Concerning the SC35 SR protein, results showed an ESE motif conserved among human tissues and between different levels of muscular cell differentiation and within the same chromosome. However, this motif displays subtle discrepancies between genes localized in different chromosomes. These results emphasize the presence of different translational isoforms of the SFRS2 gene encoding for the SC35, or different post-translational protein maturations in different chromosomes, confirming that chromatin structure is another layer of gene regulation. These links between chromatin pattern and splicing give further mechanistic support to functional interconnections between splicing, transcription and chromatin structure, and raise the intriguing possibility of the existence of a memory for splicing patterns to be inherited through epigenetic modifications.
Collapse
Affiliation(s)
- Olfa Siala
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Avenue Majida Boulila, 3029 Sfax, Tunisia.
| | - Ahmed Rebai
- Unit of Bioinformatics and Biostatistics, Centre of Biotechnology of Sfax, Sfax 3038, Tunisia.
| | - Faiza Fakhfakh
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Avenue Majida Boulila, 3029 Sfax, Tunisia.
| |
Collapse
|
25
|
Molecular basis of mast cell disease. Mol Immunol 2014; 63:55-60. [PMID: 24768320 DOI: 10.1016/j.molimm.2014.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/18/2014] [Accepted: 03/18/2014] [Indexed: 01/19/2023]
Abstract
Mastocytosis is an incurable and sometimes fatal haematological disorder grossly described as the accumulation of abnormal mast cells in the bone marrow and other organs causing tissue and organ damage. The clinical manifestations of this disease are extremely variable; disease phenotypes range from indolent to aggressive, and often present with associated non-mast cell haematological disorders (AHNMD), mainly myeloproliferative neoplasm and myelodysplastic syndromes. Recent efforts to genetically dissect the mechanisms that define aggressive and non-aggressive mastocytosis have generated a list of recurrent somatic mutations in mastocytosis patients that are associated with and may predict the evolution towards aggressive disease phenotypes. Here we review these mutations and discuss the molecular mechanisms associated with these mutations in an effort to better understand the biology of this disease and to predict its onset and evolution, with the ultimate goal of devising new and improved treatment strategies.
Collapse
|
26
|
de Almeida SF, Carmo-Fonseca M. Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin Cell Dev Biol 2014; 32:2-10. [PMID: 24657193 DOI: 10.1016/j.semcdb.2014.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Here we review recent findings showing that chromatin organization adds another layer of complexity to the already intricate network of splicing regulatory mechanisms. Chromatin structure can impact splicing by either affecting the elongation rate of RNA polymerase II or by signaling the recruitment of splicing regulatory proteins. The C-terminal domain of the RNA polymerase II largest subunit serves as a coordination platform that binds factors required for adapting chromatin structure to both efficient transcription and processing of the newly synthesized RNA. Reciprocal interconnectivity of steps required for gene activation plays a critical role ensuring efficiency and fidelity of gene expression.
Collapse
Affiliation(s)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
27
|
Yu S, Waldholm J, Böhm S, Visa N. Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster. RNA Biol 2014; 11:134-45. [PMID: 24526065 DOI: 10.4161/rna.27866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mod(mdg4) locus of Drosophila melanogaster contains several transcription units encoded on both DNA strands. The mod(mdg4) pre-mRNAs are alternatively spliced, and a very significant fraction of the mature mod(mdg4) mRNAs are formed by trans-splicing. We have studied the transcripts derived from one of the anti-sense regions within the mod(mdg4) locus in order to shed light on the expression of this complex locus. We have characterized the expression of anti-sense mod(mdg4) transcripts in S2 cells, mapped their transcription start sites and cleavage sites, identified and quantified alternatively spliced transcripts, and obtained insight into the regulation of the mod(mdg4) trans-splicing. In a previous study, we had shown that the alternative splicing of some mod(mdg4) transcripts was regulated by Brahma (BRM), the ATPase subunit of the SWI/SNF chromatin-remodeling complex. Here we show, using RNA interference and overexpression of recombinant BRM proteins, that the levels of BRM affect specifically the abundance of a trans-spliced mod(mdg4) mRNA isoform in both S2 cells and larvae. This specific effect on trans-splicing is accompanied by a local increase in the density of RNA polymerase II and by a change in the phosphorylation state of the C-terminal domain of the large subunit of RNA polymerase II. Interestingly, the regulation of the mod(mdg4) splicing by BRM is independent of the ATPase activity of BRM, which suggests that the mechanism by which BRM modulates trans-splicing is independent of its chromatin-remodeling activity.
Collapse
Affiliation(s)
- Simei Yu
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Johan Waldholm
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Stefanie Böhm
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm, Sweden
| |
Collapse
|
28
|
Identification of a new isoform of the murine Sh2d1a gene and its functional implications. SCIENCE CHINA-LIFE SCIENCES 2013; 57:81-7. [PMID: 24369347 DOI: 10.1007/s11427-013-4584-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/18/2013] [Indexed: 01/09/2023]
Abstract
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is a Src homology (SH) domain 2-containing intracellular adaptor protein that is predominantly expressed in the hematopoietic system by T lymphocytes and NK cells. SAP protein is encoded by the SH2D1A gene located on the X chromosome. Loss-of-function mutations in SAP cause the X-linked lymphoproliferative disease (XLP), a severe immunodeficiency characterized by heightened susceptibility to Epstein-Barr virus and impaired humoral immunity. Normal individuals express several functional and non-functional isoforms of SAP as a result of alternative splicing. In this study, we identify a cryptic exon in the murine Sh2d1a gene. At the mRNA level, the new isoform of SAP (SAP-2) that includes this new exon is widely expressed in lymphoid tissues by C57BL/6 and 129 strains of inbred mice. SAP-2 accounts for approximately 1%-3% of total SAP transcripts, and it is dynamically regulated during lymphocyte activation. At the protein level, the SAP-2 isoform is a 144 amino-acid protein. Compared to the dominant 126 aminoacid SAP-1 isoform, the additional 18 amino acids are inserted into a structural region that is critical for phosphotyrosine binding. Our functional analysis in vitro indicates that SAP-2 is a non-functional isoform due to decreased protein stability. Thus, both human and mouse have multiple SAP splice isoforms that may or may not function. Modulation of relative proportions of these isoforms is potentially a mechanism whereby cells can regulate SAP-mediated biological activities.
Collapse
|
29
|
Abstract
Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy-referring to the multiple pathways that a system recruits to achieve functional plasticity-is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability.
Collapse
|
30
|
Volanakis A, Passoni M, Hector RD, Shah S, Kilchert C, Granneman S, Vasiljeva L. Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast. Genes Dev 2013; 27:2025-38. [PMID: 24065768 PMCID: PMC3792478 DOI: 10.1101/gad.221960.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We uncovered a novel role for the spliceosome in regulating mRNA expression levels that involves splicing coupled to RNA decay, which we refer to as spliceosome-mediated decay (SMD). Our transcriptome-wide studies identified numerous transcripts that are not known to have introns but are spliced by the spliceosome at canonical splice sites in Saccharomyces cerevisiae. Products of SMD are primarily degraded by the nuclear RNA surveillance machinery. We demonstrate that SMD can significantly down-regulate mRNA levels; splicing at canonical splice sites in the bromodomain factor 2 (BDF2) transcript reduced transcript levels roughly threefold by generating unstable products that are rapidly degraded by the nuclear surveillance machinery. Regulation of BDF2 mRNA levels by SMD requires Bdf1, a functionally redundant Bdf2 paralog that plays a role in recruiting the spliceosome to the BDF2 mRNA. Interestingly, mutating BDF2 5' splice site and branch point consensus sequences partially suppresses the bdf1Δ temperature-sensitive phenotype, suggesting that maintaining proper levels of Bdf2 via SMD is biologically important. We propose that the spliceosome can also repress protein-coding gene expression by promoting nuclear turnover of spliced RNA products and provide an insight for coordinated regulation of Bdf1 and Bdf2 levels in the cell.
Collapse
Affiliation(s)
- Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Lalonde ME, Avvakumov N, Glass KC, Joncas FH, Saksouk N, Holliday M, Paquet E, Yan K, Tong Q, Klein BJ, Tan S, Yang XJ, Kutateladze TG, Côté J. Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity. Genes Dev 2013; 27:2009-24. [PMID: 24065767 PMCID: PMC3792477 DOI: 10.1101/gad.223396.113] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022]
Abstract
Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1-BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit.
Collapse
Affiliation(s)
- Marie-Eve Lalonde
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Nikita Avvakumov
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | | | - France-Hélène Joncas
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Nehmé Saksouk
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Michael Holliday
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Eric Paquet
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| | - Kezhi Yan
- The Rosalind and Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Québec H3A 1A1, Canada
| | | | | | - Song Tan
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania University, University Park, Pennsylvania 16802, USA
| | - Xiang-Jiao Yang
- The Rosalind and Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Québec H3A 1A1, Canada
- Department of Medicine, McGill University Health Center, Montreal, Québec H3A 1A1, Canada
| | - Tatiana G. Kutateladze
- Department of Pharmacology
- Molecular Biology Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Jacques Côté
- Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Québec G1R 2J6, Canada
| |
Collapse
|
32
|
Iannone C, Valcárcel J. Chromatin's thread to alternative splicing regulation. Chromosoma 2013; 122:465-74. [PMID: 23912688 DOI: 10.1007/s00412-013-0425-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Intron removal (pre-mRNA splicing) is a necessary step for expression of most genes in higher eukaryotes. Alternative splice site selection is a prevalent mechanism that diversifies genome outputs and offers ample opportunities for gene regulation in these organisms. Pre-mRNA splicing occurs co-transcriptionally and is influenced by features in chromatin structure, including nucleosome density and epigenetic modifications. We review here the molecular mechanisms by which the reciprocal interplay between chromatin and RNA processing can contribute to alternative splicing regulation.
Collapse
|
33
|
Fontrodona L, Porta-de-la-Riva M, Morán T, Niu W, Díaz M, Aristizábal-Corrales D, Villanueva A, Schwartz S, Reinke V, Cerón J. RSR-2, the Caenorhabditis elegans ortholog of human spliceosomal component SRm300/SRRM2, regulates development by influencing the transcriptional machinery. PLoS Genet 2013; 9:e1003543. [PMID: 23754964 PMCID: PMC3675011 DOI: 10.1371/journal.pgen.1003543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/20/2013] [Indexed: 02/04/2023] Open
Abstract
Protein components of the spliceosome are highly conserved in eukaryotes and can influence several steps of the gene expression process. RSR-2, the Caenorhabditis elegans ortholog of the human spliceosomal protein SRm300/SRRM2, is essential for viability, in contrast to the yeast ortholog Cwc21p. We took advantage of mutants and RNA interference (RNAi) to study rsr-2 functions in C. elegans, and through genetic epistasis analysis found that rsr-2 is within the germline sex determination pathway. Intriguingly, transcriptome analyses of rsr-2(RNAi) animals did not reveal appreciable splicing defects but instead a slight global decrease in transcript levels. We further investigated this effect in transcription and observed that RSR-2 colocalizes with DNA in germline nuclei and coprecipitates with chromatin, displaying a ChIP-Seq profile similar to that obtained for the RNA Polymerase II (RNAPII). Consistent with a novel transcription function we demonstrate that the recruitment of RSR-2 to chromatin is splicing-independent and that RSR-2 interacts with RNAPII and affects RNAPII phosphorylation states. Proteomic analyses identified proteins associated with RSR-2 that are involved in different gene expression steps, including RNA metabolism and transcription with PRP-8 and PRP-19 being the strongest interacting partners. PRP-8 is a core component of the spliceosome and PRP-19 is the core component of the PRP19 complex, which interacts with RNAPII and is necessary for full transcriptional activity. Taken together, our study proposes that RSR-2 is a multifunctional protein whose role in transcription influences C. elegans development.
Collapse
Affiliation(s)
- Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Porta-de-la-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- C. elegans Core Facility, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Tomás Morán
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Molecular Biology of Barcelona, IBMB - CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Wei Niu
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mònica Díaz
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
- Omnia Molecular, Parc Científic de Barcelona – UB, Barcelona, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Alberto Villanueva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- C. elegans Core Facility, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Simó Schwartz
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Valerie Reinke
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- C. elegans Core Facility, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
34
|
Abstract
Precursor mRNA splicing is one of the most highly regulated processes in metazoan species. In addition to generating vast repertoires of RNAs and proteins, splicing has a profound impact on other gene regulatory layers, including mRNA transcription, turnover, transport, and translation. Conversely, factors regulating chromatin and transcription complexes impact the splicing process. This extensive crosstalk between gene regulatory layers takes advantage of dynamic spatial, physical, and temporal organizational properties of the cell nucleus, and further emphasizes the importance of developing a multidimensional understanding of splicing control.
Collapse
|
35
|
Keren-Shaul H, Lev-Maor G, Ast G. Pre-mRNA splicing is a determinant of nucleosome organization. Epigenetics Chromatin 2013. [PMCID: PMC3600766 DOI: 10.1186/1756-8935-6-s1-p46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J, Carmo-Fonseca M, de Almeida SF. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Res 2013; 41:2881-93. [PMID: 23325844 PMCID: PMC3597667 DOI: 10.1093/nar/gks1472] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Histone H3 of nucleosomes positioned on active genes is trimethylated at Lys36 (H3K36me3) by the SETD2 (also termed KMT3A/SET2 or HYPB) methyltransferase. Previous studies in yeast indicated that H3K36me3 prevents spurious intragenic transcription initiation through recruitment of a histone deacetylase complex, a mechanism that is not conserved in mammals. Here, we report that downregulation of SETD2 in human cells leads to intragenic transcription initiation in at least 11% of active genes. Reduction of SETD2 prevents normal loading of the FACT (FAcilitates Chromatin Transcription) complex subunits SPT16 and SSRP1, and decreases nucleosome occupancy in active genes. Moreover, co-immunoprecipitation experiments suggest that SPT16 is recruited to active chromatin templates, which contain H3K36me3-modified nucleosomes. Our results further show that within minutes after transcriptional activation, there is a SETD2-dependent reduction in gene body occupancy of histone H2B, but not of histone H3, suggesting that SETD2 coordinates FACT-mediated exchange of histone H2B during transcription-coupled nucleosome displacement. After inhibition of transcription, we observe a SETD2-dependent recruitment of FACT and increased histone H2B occupancy. These data suggest that SETD2 activity modulates FACT recruitment and nucleosome dynamics, thereby repressing cryptic transcription initiation.
Collapse
Affiliation(s)
- Sílvia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 2013; 151:671-83. [PMID: 23101633 PMCID: PMC3482660 DOI: 10.1016/j.cell.2012.09.019] [Citation(s) in RCA: 433] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/11/2012] [Accepted: 07/26/2012] [Indexed: 01/17/2023]
Abstract
Data on absolute molecule numbers will empower the modeling, understanding, and comparison of cellular functions and biological systems. We quantified transcriptomes and proteomes in fission yeast during cellular proliferation and quiescence. This rich resource provides the first comprehensive reference for all RNA and most protein concentrations in a eukaryote under two key physiological conditions. The integrated data set supports quantitative biology and affords unique insights into cell regulation. Although mRNAs are typically expressed in a narrow range above 1 copy/cell, most long, noncoding RNAs, except for a distinct subset, are tightly repressed below 1 copy/cell. Cell-cycle-regulated transcription tunes mRNA numbers to phase-specific requirements but can also bring about more switch-like expression. Proteins greatly exceed mRNAs in abundance and dynamic range, and concentrations are regulated to functional demands. Upon transition to quiescence, the proteome changes substantially, but, in stark contrast to mRNAs, proteins do not uniformly decrease but scale with cell volume.
Collapse
Affiliation(s)
- Samuel Marguerat
- University College London, Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
38
|
Keren-Shaul H, Lev-Maor G, Ast G. Pre-mRNA splicing is a determinant of nucleosome organization. PLoS One 2013; 8:e53506. [PMID: 23326444 PMCID: PMC3542351 DOI: 10.1371/journal.pone.0053506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
Chromatin organization affects alternative splicing and previous studies have shown that exons have increased nucleosome occupancy compared with their flanking introns. To determine whether alternative splicing affects chromatin organization we developed a system in which the alternative splicing pattern switched from inclusion to skipping as a function of time. Changes in nucleosome occupancy were correlated with the change in the splicing pattern. Surprisingly, strengthening of the 5' splice site or strengthening the base pairing of U1 snRNA with an internal exon abrogated the skipping of the internal exons and also affected chromatin organization. Over-expression of splicing regulatory proteins also affected the splicing pattern and changed nucleosome occupancy. A specific splicing inhibitor was used to show that splicing impacts nucleosome organization endogenously. The effect of splicing on the chromatin required a functional U1 snRNA base pairing with the 5' splice site, but U1 pairing was not essential for U1 snRNA enhancement of transcription. Overall, these results suggest that splicing can affect chromatin organization.
Collapse
Affiliation(s)
- Hadas Keren-Shaul
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
39
|
Gui YX, Xu ZP, Lv W, Liu HM, Zhao JJ, Hu XY. Association of mitochondrial DNA polymerase γ gene POLG1 polymorphisms with parkinsonism in Chinese populations. PLoS One 2012; 7:e50086. [PMID: 23251356 PMCID: PMC3519471 DOI: 10.1371/journal.pone.0050086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
Background Mitochondrial DNA polymerase gamma (POLG1) mutations were associated with levodopa-responsive Parkinsonism. POLG1 gene contains a number of common nonsynonymous SNPs and intronic regulatory SNPs which may have functional consequences. It is of great interest to discover polymorphisms variants associated with Parkinson's disease (PD), both in isolation and in combination with specific SNPs. Materials and Methods We conducted a case-control study and genotyped twenty SNPs and poly-Q polymorphisms of POLG1 gene including in 344 Chinese sporadic PD patients and 154 healthy controls. All the polymorphisms of POLG1 we found in this study were sequenced by PCR products with dye terminator methods using an ABI-3100 sequencer. Hardy-Weinberg equilibrium and linkage disequilibrium (LD) for association between twenty POLG1 SNPs and PD were calculated using the program Haploview. Principal Results We provided evidence for strong association of four intronic SNPs of the POLG1 gene (new report: c.2070-12T>A and rs2307439: c.2070-64G>A in intron 11, P = 0.00011, OR = 1.727; rs2302084: c.3105-11T>C and rs2246900: c.3105-36A>G in intron 19, P = 0.00031, OR = 1.648) with PD. However, we did not identify any significant association between ten exonic SNPs of POLG1 and PD. Linkage disequilibrium analysis indicated that c.2070-12T>A and c.2070-64G>A could be parsed into one block as Haplotype 1 as well as c.3105-11T>C and c.3105-36A>G in Haplotype 2. In addition, case and control study on association of POLG1 CAG repeat (poly-Q) alleles with PD showed a significant association (P = 0.03, OR = 2.16) of the non-10/11Q variants with PD. Although intronic SNPs associated with PD didn't influence POLG1 mRNA alternative splicing, there was a strong association of c.2070-12T>A and c.2070-64G>A with decreased POLG1 mRNA level and protein levels. Conclusions Our findings indicate that POLG1 may play a role in the pathogenesis of PD in Chinese populations.
Collapse
Affiliation(s)
- Ya-xing Gui
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
40
|
Lenasi T, Barboric M. Mutual relationships between transcription and pre-mRNA processing in the synthesis of mRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012. [PMID: 23184646 DOI: 10.1002/wrna.1148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The generation of messenger RNA (mRNA) in eukaryotes is achieved by transcription from the DNA template and pre-mRNA processing reactions of capping, splicing, and polyadenylation. Although RNA polymerase II (RNAPII) catalyzes the synthesis of pre-mRNA, it also serves as a principal coordinator of the processing reactions in the course of transcription. In this review, we focus on the interplay between transcription and cotranscriptional pre-mRNA maturation events, mediated by the recruitment of RNA processing factors to differentially phosphorylated C-terminal domain of Rbp1, the largest subunit of RNAPII. Furthermore, we highlight the bidirectional nature of the interplay by discussing the impact of RNAPII kinetics on pre-mRNA processing as well as how the processing events reach back to different phases of gene transcription.
Collapse
Affiliation(s)
- Tina Lenasi
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
41
|
Miura K, Fujibuchi W, Unno M. Splice isoforms as therapeutic targets for colorectal cancer. Carcinogenesis 2012; 33:2311-9. [PMID: 23118106 DOI: 10.1093/carcin/bgs347] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alternative pre-mRNA splicing allows exons of pre-mRNA to be spliced in different arrangements to produce functionally distinct mRNAs. More than 95% of human genes encode splice isoforms, some of which exert antagonistic functions. Recent studies revealed that alterations of the splicing machinery can cause the development of neoplasms, and understanding the splicing machinery is crucial for developing novel therapeutic strategies for malignancies. Colorectal cancer patients need novel strategies not only to enhance the efficacy of the currently available agents but also to utilize newly identified therapeutic targets. This review summarizes the current knowledge about the splice isoforms of VEGFA, UGT1A, PXR, cyclin D1, BIRC5 (survivin), DPD, K-RAS, SOX9, SLC39A14 and other genes, which may be possible therapeutic targets for colorectal cancer. Among them, the VEGFA splice isoforms are classified into VEGFAxxx and VEGFAxxxb, which have proangiogenic and antiangiogenic properties, respectively; UGT1A is alternatively spliced into UGT1A1 and other isoforms, which are regulated by pregnane X receptor isoforms and undergo further splicing modifications. Recently, the splicing machinery has been extensively investigated and novel discoveries in this research field are being reported at a rapid pace. The information contained in this review also provides suggestions for how therapeutic strategies targeting alternative splicing can be further developed.
Collapse
Affiliation(s)
- Koh Miura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | |
Collapse
|
42
|
Dujardin G, Lafaille C, Petrillo E, Buggiano V, Gómez Acuña LI, Fiszbein A, Godoy Herz MA, Nieto Moreno N, Muñoz MJ, Alló M, Schor IE, Kornblihtt AR. Transcriptional elongation and alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:134-40. [PMID: 22975042 DOI: 10.1016/j.bbagrm.2012.08.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/23/2012] [Accepted: 08/29/2012] [Indexed: 12/29/2022]
Abstract
Alternative splicing has emerged as a key contributor to proteome diversity, highlighting the importance of understanding its regulation. In recent years it became apparent that splicing is predominantly cotranscriptional, allowing for crosstalk between these two nuclear processes. We discuss some of the links between transcription and splicing, with special emphasis on the role played by transcription elongation in the regulation of alternative splicing events and in particular the kinetic model of alternative splicing regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Gwendal Dujardin
- Departamento de Fisiología, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Isbel L, Whitelaw E. Endogenous retroviruses in mammals: an emerging picture of how ERVs modify expression of adjacent genes. Bioessays 2012; 34:734-8. [PMID: 22736292 DOI: 10.1002/bies.201200056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endogenous retrovirsuses (ERVs) have long been known to influence gene expression in plants in important ways, but what of their roles in mammals? Our relatively sparse knowledge in that area was recently increased with the finding that ERVs can influence the expression of mammalian resident genes by disrupting transcriptional termination. For many mammalian biologists, retrotransposition is considered unimportant except when it disrupts the reading frame of a gene, but this view continues to be challenged. It has been known for some time that integration into an intron can create novel transcripts and integration upstream of a gene can alter the expression of the transcript, in many cases producing phenotypic consequences and disease. The new findings on transcriptional termination extend the opportunities for retrotransposons to play a role in human disease.
Collapse
Affiliation(s)
- Luke Isbel
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | | |
Collapse
|