1
|
Shao X, Meng C, Song W, Zhang T, Chen Q. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv Drug Deliv Rev 2023; 199:114977. [PMID: 37391014 DOI: 10.1016/j.addr.2023.114977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Organelles perform critical biological functions due to their distinct molecular composition and internal environment. Disorders in organelles or their interacting networks have been linked to the incidence of numerous diseases, and the research of pharmacological actions at the organelle level has sparked pharmacists' interest. Currently, cell imaging has evolved into a critical tool for drug delivery, drug discovery, and pharmacological research. The introduction of advanced imaging techniques in recent years has provided researchers with richer biological information for viewing and studying the ultrastructure of organelles, protein interactions, and gene transcription activities, leading to the design and delivery of precision-targeted drugs. Therefore, this reviews the research on organelles-targeted drugs based upon imaging technologies and development of fluorescent molecules for medicinal purposes. We also give a thorough analysis of a number of subcellular-level elements of drug development, including subcellular research instruments and methods, organelle biological event investigation, subcellular target and drug identification, and design of subcellular delivery systems. This review will make it possible to promote drug research from the individual/cellular level to the subcellular level, as well as give a new focus based on newly found organelle activities.
Collapse
Affiliation(s)
- Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Wenjing Song
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Tao Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250014, PR China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
2
|
Nucleosome assembly and disassembly pathways in vitro. PLoS One 2022; 17:e0267382. [PMID: 35830437 PMCID: PMC9278766 DOI: 10.1371/journal.pone.0267382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Structural fluctuations of nucleosomes modulate the access to internal DNA in eukaryotic cells; clearly characterisation of this fundamental process is crucial to understanding gene regulation. Here we apply PhAST (Photochemical Analysis of Structural Transitions) to monitor at a base pair level, structural alterations induced all along the DNA upon histone binding or release. By offering the first reliable, detailed comparison of nucleosome assembly and disassembly in vitro, we reveal similarities and differences between the two processes. We identify multiple, sequential intermediate states characterised by specific PhAST signals whose localisation and amplitude reflect asymmetries of DNA/histone interactions with respect to the nucleosome pseudo dyad. These asymmetries involve not only the DNA extremities but also regions close to the pseudo dyad. Localisations of asymmetries develop in a consistent manner during both assembly and disassembly processes; they primarily reflect the DNA sequence effect on the efficiency of DNA-histone binding. More unexpectedly, the amplitude component of PhAST signals not only evolves as a function of intermediate states but does so differently between assembly and disassembly pathways. Our observation of differences between assembly and disassembly opens up new avenues to define the role of the DNA sequence in processes underlying the regulation of gene expression. Overall, we provide new insights into how the intrinsic properties of DNA are integrated into a holistic mechanism that controls chromatin structure.
Collapse
|
3
|
Abstract
The compaction of linear DNA into micrometer-sized nuclear boundaries involves the establishment of specific three-dimensional (3D) DNA structures complexed with histone proteins that form chromatin. The resulting structures modulate essential nuclear processes such as transcription, replication, and repair to facilitate or impede their multi-step progression and these contribute to dynamic modification of the 3D-genome organization. It is generally accepted that protein–protein and protein–DNA interactions form the basis of 3D-genome organization. However, the constant generation of mechanical forces, torques, and other stresses produced by various proteins translocating along DNA could be playing a larger role in genome organization than currently appreciated. Clearly, a thorough understanding of the mechanical determinants imposed by DNA transactions on the 3D organization of the genome is required. We provide here an overview of our current knowledge and highlight the importance of DNA and chromatin mechanics in gene expression.
Collapse
Affiliation(s)
- Rajiv Kumar Jha
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - David Levens
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| | - Fedor Kouzine
- Gene Regulation Section, Laboratory of Pathology, Nci/nih, Bethesda, MD USA
| |
Collapse
|
4
|
Zhang M, Seitz C, Chang G, Iqbal F, Lin H, Liu J. A guide for single-particle chromatin tracking in live cell nuclei. Cell Biol Int 2022; 46:683-700. [PMID: 35032142 PMCID: PMC9035067 DOI: 10.1002/cbin.11762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Abstract
The emergence of labeling strategies and live cell imaging methods enables the imaging of chromatin in living cells at single digit nanometer resolution as well as milliseconds temporal resolution. These technical breakthroughs revolutionize our understanding of chromatin structure, dynamics and functions. Single molecule tracking algorithms are usually preferred to quantify the movement of these intranucleus elements to interpret the spatiotemporal evolution of the chromatin. In this review, we will first summarize the fluorescent labeling strategy of chromatin in live cells which will be followed by a sys-tematic comparison of live cell imaging instrumentation. With the proper microscope, we will discuss the image analysis pipelines to extract the biophysical properties of the chromatin. Finally, we expect to give practical suggestions to broad biologists on how to select methods and link to the model properly according to different investigation pur-poses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Clayton Seitz
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fadil Iqbal
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hua Lin
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Röder K. Is the H4 histone tail intrinsically disordered or intrinsically multifunctional? Phys Chem Chem Phys 2021; 23:5134-5142. [PMID: 33624669 DOI: 10.1039/d0cp05405d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structural versatility of histone tails is one of the key elements in the organisation of chromatin, which allows for the compact storage of genomic information. However, this structural diversity also complicates experimental and computational studies. Here, the potential and free energy landscape for the isolated and bound H4 histone tail are explored. The landscapes exhibit a set of distinct structural ensembles separated by high energy barriers, with little difference between isolated and bound tails. This consistency is a desirable feature that facilitates the formation of transient interactions, which are required for the liquid-like chromatin organisation. The existence of multiple, distinct structures on a multifunnel energy landscape is likely to be associated with multifunctionality, i.e. a set of evolved, distinct functions. Contrasting it with previously reported results for other disordered peptides, this type of landscape may be associated with a conformational selection based binding mechanism. Given the similarity to other systems exhibiting similar multifunnel energy landscapes, the disorder in histone tails might be better described in context of multifunctionality.
Collapse
Affiliation(s)
- Konstantin Röder
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
6
|
Lee TH. Physical Chemistry of Epigenetics: Single-Molecule Investigations. J Phys Chem B 2019; 123:8351-8362. [PMID: 31404497 PMCID: PMC6790939 DOI: 10.1021/acs.jpcb.9b06214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Indexed: 02/06/2023]
Abstract
The nucleosome is the fundamental building block of the eukaryotic genome, composed of an ∼147 base-pair DNA fragment wrapping around an octameric histone protein core. DNA and histone proteins are targets of enzymatic chemical modifications that serve as signals for gene regulation. These modifications are often referred to as epigenetic modifications that govern gene activities without altering the DNA sequence. Although the term epigenetics initially required inheritability, it now frequently includes noninherited histone modifications associated with gene regulation. Important epigenetic modifications for healthy cell growth and proliferation include DNA methylation, histone acetylation, methylation, phosphorylation, ubiquitination, and SUMOylation (SUMO = Small Ubiquitin-like Modifier). Our research focuses on the biophysical roles of these modifications in altering the structure and structural dynamics of the nucleosome and their implications in gene regulation mechanisms. As the changes are subtle and complex, we employ various single-molecule fluorescence approaches for their investigations. Our investigations revealed that these modifications induce changes in the structure and structural dynamics of the nucleosome and their thermodynamic and kinetic stabilities. We also suggested the implications of these changes in gene regulation mechanisms that are the foci of our current and future research.
Collapse
Affiliation(s)
- Tae-Hee Lee
- Department of Chemistry, The
Pennsylvania State University, University Park 16803, Pennsylvania, United States
| |
Collapse
|
7
|
Lee J, Crickard JB, Reese JC, Lee TH. Single-molecule FRET method to investigate the dynamics of transcription elongation through the nucleosome by RNA polymerase II. Methods 2019; 159-160:51-58. [PMID: 30660864 PMCID: PMC6589119 DOI: 10.1016/j.ymeth.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Transcription elongation through the nucleosome is a precisely coordinated activity to ensure timely production of RNA and accurate regulation of co-transcriptional histone modifications. Nucleosomes actively participate in transcription regulation at various levels and impose physical barriers to RNA polymerase II (RNAPII) during transcription elongation. Despite its high significance, the detailed dynamics of how RNAPII translocates along nucleosomal DNA during transcription elongation and how the nucleosome structure dynamically conforms to the changes necessary for RNAPII progression remain poorly understood. Transcription elongation through the nucleosome is a complex process and investigating the changes of the nucleosome structure during this process by ensemble measurements is daunting. This is because it is nearly impossible to synchronize elongation complexes within a nucleosome or a sub-nucleosome to a designated location at a high enough efficiency for desired sample homogeneity. Here we review our recently developed single-molecule FRET experimental system and method that has fulfilled this deficiency. With our method, one can follow the changes in the structure of individual nucleosomes during transcription elongation. We demonstrated that this method enables the detailed measurements of the kinetics of transcription elongation through the nucleosome and its regulation by a transcription factor, which can be easily extended to investigations of the roles of environmental variables and histone post-translational modifications in regulating transcription elongation.
Collapse
Affiliation(s)
- Jaehyoun Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - J Brooks Crickard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Tae-Hee Lee
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
8
|
Cuvier O, Fierz B. Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat Rev Genet 2017; 18:457-472. [DOI: 10.1038/nrg.2017.28] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Ordu O, Lusser A, Dekker NH. Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys Rev 2016; 8:33-49. [PMID: 28058066 PMCID: PMC5167136 DOI: 10.1007/s12551-016-0212-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 01/04/2023] Open
Abstract
Eukaryotic DNA is tightly packed into a hierarchically ordered structure called chromatin in order to fit into the micron-scaled nucleus. The basic unit of chromatin is the nucleosome, which consists of a short piece of DNA wrapped around a core of eight histone proteins. In addition to their role in packaging DNA, nucleosomes impact the regulation of essential nuclear processes such as replication, transcription, and repair by controlling the accessibility of DNA. Thus, knowledge of this fundamental DNA-protein complex is crucial for understanding the mechanisms of gene control. While structural and biochemical studies over the past few decades have provided key insights into both the molecular composition and functional aspects of nucleosomes, these approaches necessarily average over large populations and times. In contrast, single-molecule methods are capable of revealing features of subpopulations and dynamic changes in the structure or function of biomolecules, rendering them a powerful complementary tool for probing mechanistic aspects of DNA-protein interactions. In this review, we highlight how these single-molecule approaches have recently yielded new insights into nucleosomal and subnucleosomal structures and dynamics.
Collapse
Affiliation(s)
- Orkide Ordu
- Bionanoscience Department, Kavli Institute of Nanoscience,, Delft University of Technology, Van der Maasweg 9,, 2629 HZ Delft, The Netherlands
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nynke H. Dekker
- Bionanoscience Department, Kavli Institute of Nanoscience,, Delft University of Technology, Van der Maasweg 9,, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Stearns NA, Zhou S, Petri M, Binder SR, Pisetsky DS. The Use of Poly-L-Lysine as a Capture Agent to Enhance the Detection of Antinuclear Antibodies by ELISA. PLoS One 2016; 11:e0161818. [PMID: 27611194 PMCID: PMC5017613 DOI: 10.1371/journal.pone.0161818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/13/2016] [Indexed: 01/23/2023] Open
Abstract
Antibodies to nuclear antigens (antinuclear antibodies or ANAs) are the serological hallmark of systemic lupus erythematosus (SLE). These antibodies bind diverse nuclear antigens that include DNA, histones and non-histone proteins as well as complexes of proteins with DNA and RNA. Because of the frequency of ANA expression in SLE, testing is an important component of clinical evaluation as well as determination of eligibility for clinical trials or utilization of certain therapies. Immunofluorescence assays have been commonly used for this purpose although this approach can be limited by issues of throughput, variability and difficulty in determining positivity. ELISA and multiplex assays are also useful approaches although these assays may give an incomplete picture of antibodies present. To develop a sensitive and quantitative ANA assay, we have explored an ELISA platform in which plates are pre-coated with a positively charged nucleic acid binding polymer (NABP) to increase adherence of antigens containing DNA or RNA. As a source of antigens, we have used supernatants of Jurkat cells undergoing apoptosis in vitro. As results presented show, a poly-L-lysine (PLL) pre-coat significantly enhances detection of antibodies to DNA as well as antigens such as histones, SSA, SSB and RNP. Comparison of the ELISA assay with the PLL pre-coat with a multiplex assay using the BioPlex® 2200 system indicated good agreement in results for a panel of lupus sera. Together, these studies indicate that a pre-coat with a positively charged polymer can increase the sensitivity of an ANA ELISA using as antigens molecules released from dead and dying cells. This assay platform may facilitate ANA testing by providing an ensemble of antigens more similar in composition and structure with antigens present in vivo, with a NABP promoting adherence via charge-charge interactions.
Collapse
Affiliation(s)
- Nancy A. Stearns
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shuxia Zhou
- Bio-Rad Laboratories Clinical Diagnostic Group, 400 Alfred Nobel Drive, Hercules, California, United States of America
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 7500, Baltimore, Maryland, United States of America
| | - Steven R. Binder
- Bio-Rad Laboratories Clinical Diagnostic Group, 400 Alfred Nobel Drive, Hercules, California, United States of America
| | - David S. Pisetsky
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Medical Research Service, VA Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
12
|
Fatemi H, Khodabandeh F, Mohammad-Rafiee F. Elastic model for dinucleosome structure and energy. Phys Rev E 2016; 93:042409. [PMID: 27176331 DOI: 10.1103/physreve.93.042409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/07/2022]
Abstract
The equilibrium structure of a dinucleosome is studied using an elastic model that takes into account the force and torque balance conditions. Using the proper boundary conditions, it is found that the conformational energy of the problem does not depend on the length of the linker DNA. In addition it is shown that the two histone octamers are almost perpendicular to each other, and the linker DNA in short lengths is almost straight. These findings could shed some light on the role of DNA elasticity in the chromatin structure.
Collapse
Affiliation(s)
- Hashem Fatemi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Fatemeh Khodabandeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Farshid Mohammad-Rafiee
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
13
|
Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, Torigoe SE, Tjian R, Weissman JS. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 2016; 5:e12677. [PMID: 26987018 PMCID: PMC4861601 DOI: 10.7554/elife.12677] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties.
Collapse
Affiliation(s)
- Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, United States
| | - Lea B Witkowsky
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Benjamin Guglielmi
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Joseph M Replogle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, United States
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, United States
| | - Jacqueline E Villalta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, United States
| | - Sharon E Torigoe
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
- California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
- Center for RNA Systems Biology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
14
|
Tesoro S, Ali I, Morozov AN, Sulaiman N, Marenduzzo D. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA. Phys Biol 2016; 13:016004. [DOI: 10.1088/1478-3975/13/1/016004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Shaytan AK, Armeev GA, Goncearenco A, Zhurkin VB, Landsman D, Panchenko AR. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions. J Mol Biol 2015; 428:221-237. [PMID: 26699921 DOI: 10.1016/j.jmb.2015.12.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Grigoriy A Armeev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
16
|
Abstract
Antibodies that recognize and bind to DNA (anti-DNA antibodies) are serological hallmarks of systemic lupus erythematosus (SLE) and key markers for diagnosis and disease activity. In addition to common use in the clinic, anti-DNA antibody testing now also determines eligibility for clinical trials, raising important questions about the nature of the antibody-antigen interaction. At present, no 'gold standard' for serological assessment exists, and anti-DNA antibody binding can be measured with a variety of assay formats, which differ in the nature of the DNA substrates and in the conditions for binding and detection of antibodies. A mechanism called monogamous bivalency--in which high avidity results from simultaneous interaction of IgG Fab sites with a single polynucleotide chain--determines anti-DNA antibody binding; this mechanism might affect antibody detection in different assay formats. Although anti-DNA antibodies can promote pathogenesis by depositing in the kidney or driving cytokine production, they are not all alike, pathologically, and anti-DNA antibody expression does not necessarily correlate with active disease. Levels of anti-DNA antibodies in patients with SLE can vary over time, distinguishing anti-DNA antibodies from other pathogenic antinuclear antibodies. Elucidation of the binding specificities and the pathogenic roles of anti-DNA antibodies in SLE should enable improvements in the design of informative assays for both clinical and research purposes.
Collapse
Affiliation(s)
- David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Box 151G, 508 Fulton Street, Durham, North Carolina 27705, USA
| |
Collapse
|
17
|
Kenzaki H, Takada S. Partial Unwrapping and Histone Tail Dynamics in Nucleosome Revealed by Coarse-Grained Molecular Simulations. PLoS Comput Biol 2015; 11:e1004443. [PMID: 26262925 PMCID: PMC4532510 DOI: 10.1371/journal.pcbi.1004443] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 06/01/2015] [Indexed: 01/18/2023] Open
Abstract
Nucleosomes, basic units of chromatin, are known to show spontaneous DNA unwrapping dynamics that are crucial for transcriptional activation, but its structural details are yet to be elucidated. Here, employing a coarse-grained molecular model that captures residue-level structural details up to histone tails, we simulated equilibrium fluctuations and forced unwrapping of single nucleosomes at various conditions. The equilibrium simulations showed spontaneous unwrapping from outer DNA and subsequent rewrapping dynamics, which are in good agreement with experiments. We found several distinct partially unwrapped states of nucleosomes, as well as reversible transitions among these states. At a low salt concentration, histone tails tend to sit in the concave cleft between the histone octamer and DNA, tightening the nucleosome. At a higher salt concentration, the tails tend to bound to the outer side of DNA or be expanded outwards, which led to higher degree of unwrapping. Of the four types of histone tails, H3 and H2B tail dynamics are markedly correlated with partial unwrapping of DNA, and, moreover, their contributions were distinct. Acetylation in histone tails was simply mimicked by changing their charges, which enhanced the unwrapping, especially markedly for H3 and H2B tails. Nucleosomes, folding units of chromatin, wrap DNA about 1.75 turns and provide bottlenecks for transcription. Recent experiments showed that nucleosomes are not rigid but dynamic, showing spontaneous and partial unwrapping which is thus important for transcriptional activation. Experimentally, however, one cannot directly watch DNA unwrapping at high resolution. On the other hand, molecular dynamics simulations have high spatio-temporal resolution and thus can be powerful and complementary to experiments. Here, we put forward coarse-grained modeling of protein-DNA interactions at residue-level resolution, which is rather generic and thus can be applied to any protein-DNA complexes. By this method, we could reveal spontaneous and salt-concentration dependent partial unwrapping of DNA from nucleosomes. In addition to consistency with single molecule experiments, the simulation showed multiple and distinct intermediate states of unwrapping. Interestingly, partial unwrapping of DNA is correlated with certain parts of histone tail dynamics. Deleting positive charges in histone tails that mimics histone acetylation facilitated partial unwrapping, most significantly for H3 and H2B.
Collapse
Affiliation(s)
- Hiroo Kenzaki
- Advanced Center for Computing and Communication, RIKEN, Hirosawa, Wako, Saitama, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Kitashirakawa Sakyo, Kyoto, Japan
| | - Shoji Takada
- Advanced Center for Computing and Communication, RIKEN, Hirosawa, Wako, Saitama, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Kitashirakawa Sakyo, Kyoto, Japan
- * E-mail:
| |
Collapse
|
18
|
Kudryashova KS, Chertkov OV, Nikitin DV, Pestov NA, Kulaeva OI, Efremenko AV, Solonin AS, Kirpichnikov MP, Studitsky VM, Feofanov AV. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET. Methods Mol Biol 2015; 1288:395-412. [PMID: 25827893 DOI: 10.1007/978-1-4939-2474-5_23] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Single positioned nucleosomes have been extensively employed as simple model experimental systems for analysis of various intranuclear processes. Here we describe an experimental system containing positioned mononucleosomes allowing transcription by various RNA polymerases. Each DNA template contains a pair of fluorescent labels (Cy3 and Cy5) allowing measuring relative distances between the neighboring coils of nucleosomal DNA using Forster resonance energy transfer (FRET). The single-particle FRET (spFRET) approach for analysis of DNA uncoiling from the histone octamer during transcription through chromatin is described in detail.
Collapse
Affiliation(s)
- Kseniya S Kudryashova
- Biology Faculty, Lomonosov, Moscow State University, Leninskie Gory 1, Moscow, 119992, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nucleosome Assembly Dynamics Involve Spontaneous Fluctuations in the Handedness of Tetrasomes. Cell Rep 2015; 10:216-25. [DOI: 10.1016/j.celrep.2014.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/04/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022] Open
|
20
|
Single molecule FRET data analysis procedures for FRET efficiency determination: Probing the conformations of nucleic acid structures. Methods 2013; 64:36-42. [DOI: 10.1016/j.ymeth.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/23/2022] Open
|