1
|
Tai E, Henglein A, Alfieri A, Saxena G, Forth S. Insights into the role of phosphorylation on microtubule cross-linking by PRC1. Mol Biol Cell 2025; 36:ar34. [PMID: 39841558 PMCID: PMC11974947 DOI: 10.1091/mbc.e24-12-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025] Open
Abstract
The mitotic spindle is composed of distinct networks of microtubules, including interpolar bundles that can bridge sister kinetochore fibers and bundles that organize the spindle midzone in anaphase. The cross-linking protein PRC1 can mediate such bundling interactions between antiparallel microtubules. PRC1 is a substrate of mitotic kinases including CDK/cyclin-B, suggesting that it can be phosphorylated in metaphase and dephosphorylated in anaphase. How these biochemical changes to specific residues regulate its function and ability to organize bundles has been unclear. Here, we perform biophysical analyses on microtubule networks cross-linked by two PRC1 constructs, one a wild-type reflecting a dephosphorylated state, and one phosphomimetic construct with two threonine to glutamic acid substitutions near PRC1's microtubule binding domain. We find that the wild-type construct builds longer and larger bundles that form more rapidly and are much more resistant to mechanical disruption than the phosphomimetic PRC1. Interestingly, microtubule pairs organized by both constructs behave similarly within the same assays. Our results suggest that phosphorylation of PRC1 in metaphase could tune the protein to stabilize smaller and more flexible bundles, while removal of these post-translational modifications in anaphase would promote the assembly of larger, more mechanically robust bundles to resist chromosome and pole separation forces at the spindle midzone.
Collapse
Affiliation(s)
- Ellinor Tai
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Austin Henglein
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Angus Alfieri
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Gauri Saxena
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Scott Forth
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
2
|
Wang G, Zhao P, Yin C, Zheng X, Xie Y, Li X, Shang D, Shao S, Chen H, Wei L, Song Z. KIF11 promotes vascular smooth muscle cell proliferation by regulating cell cycle progression and accelerates neointimal formation after arterial injury in mice. Front Pharmacol 2024; 15:1392352. [PMID: 39166113 PMCID: PMC11333341 DOI: 10.3389/fphar.2024.1392352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Background and aims: One of the primary causes of lumen narrowing is vascular injury induced during medical procedures. Vascular injury disrupts the integrity of the endothelium, triggering platelet deposition, leukocyte recruitment, and the release of inflammatory factors. This, in turn, induces the proliferation of vascular smooth muscle cells (VSMCs), leading to neointima formation. However, the molecular mechanism underlying VSMC proliferation following injury remains unknown. KIF11 is critical in regulating the cell cycle by forming bipolar spindles during mitotic metaphase. This process may contribute to VSMCs proliferation and neointima formation following vascular injury. Yet, the function of KIF11 in VSMCs has not been elucidated. This study aims to investigate the role and mechanisms of KIF11 in regulating VSMCs cycle progression and proliferation. Methods: After conducting biological analysis of the transcriptome sequencing data from the mouse carotid artery injury model and the cell transcriptome data of PDGF-BB-induced VSMCs, we identified a potential target gene, KIF11, which may play a crucial role in vascular injury. Then we established a vascular injury model to investigate how changes in KIF11 expression and activity influence in vivo VSMCs proliferation and neointimal formation. In addition, we employed siRNA and specific inhibitors to suppress KIF11 expression and activity in VSMCs cultured in vitro to study the mechanisms underlying VSMCs cycle progression and proliferation. Results: The results of immunohistochemistry and immunofluorescence indicate a significant upregulation of KIF11 expression in the injured vascular. The intraperitoneal injection of the KIF11 specific inhibitor, K858, partially inhibits intimal hyperplasia in the vascular injury model. In vitro experiments further demonstrate that PDGF-BB upregulates KIF11 expression through the PI3K/AKT pathway, and enhances KIF11 activity. Inhibition of both KIF11 expression and activity partially reverses the pro-cycle progression and pro-proliferation effects of PDGF-BB on VSMCs. Additionally, KIF11 overexpression partially counteracts the proliferation arrest and cell cycle arrest induced by inhibiting the PI3K/AKT pathway in VSMCs. Conclusion: Our study highlights the crucial role of KIF11 in regulating the cycle progression and proliferation of VSMCs after vascular injury. A comprehensive understanding of these mechanisms could pave the way for potential therapeutic interventions in treating vascular stenosis.
Collapse
Affiliation(s)
- Gengqiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xichuan Zheng
- Department of Vascular Surgery, The Southwest Hospital of AMU, Chongqing, China
| | - Yuhang Xie
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Shang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuyu Shao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Wei
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
LaFountain JR, Seaman CE, Cohan CS, Oldenbourg R. Sliding of antiparallel microtubules drives bipolarization of monoastral spindles. Cytoskeleton (Hoboken) 2024; 81:167-183. [PMID: 37812128 PMCID: PMC11172411 DOI: 10.1002/cm.21800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
Time-lapse imaging with liquid crystal polarized light (LC-PolScope) and fluorescent speckle microscopy (FSM) enabled this study of spindle microtubules in monoastral spindles that were produced in crane-fly spermatocytes through flattening-induced centrosome displacement. Monoastral spindles are found in several other contexts: after laser ablation of one of a cell's two centrosomes (in the work of Khodjakov et al.), in Drosophila "urchin" mutants (in the works of Heck et al. and of Wilson et al.), in Sciara males (in the works of Fuge and of Metz), and in RNAi variants of Drosophila S2 cells (in the work of Goshima et al.). In all cases, just one pole has a centrosome (the astral pole); the other lacks a centrosome (the anastral pole). Thus, the question: How is the anastral half-spindle, lacking a centrosome, constructed? We learned that monoastral spindles are assembled in two phases: Phase I assembles the astral half-spindle composed of centrosomal microtubules, and Phase II assembles microtubules of the anastral half through extension of new microtubule polymerization outward from the spindle's equatorial mid-zone. That process uses plus ends of existing centrosomal microtubules as guiding templates to assemble anastral microtubules of opposite polarity. Anastral microtubules slide outward with their minus ends leading, thereby establishing proper bipolarity just like in normal biastral spindles that have two centrosomes.
Collapse
Affiliation(s)
- James R LaFountain
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Catherine E Seaman
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Christopher S Cohan
- Department of Pathology and Anatomy, University at Buffalo, Buffalo, New York, USA
| | - Rudolf Oldenbourg
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
4
|
Shi S, Guo D, Ye L, Li T, Fei Q, Lin M, Yu X, Jin K, Wu W. Knockdown of TACC3 inhibits tumor cell proliferation and increases chemosensitivity in pancreatic cancer. Cell Death Dis 2023; 14:778. [PMID: 38012214 PMCID: PMC10682013 DOI: 10.1038/s41419-023-06313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant digestive tract tumor with limited clinical treatments. Transforming acidic coiled-coil-containing protein 3 (TACC3) is a component of the centrosome axis and a member of the TACC family, which affect mitosis and regulate chromosome stability and are involved in tumor development and progression. However, the role of TACC3 in PDAC remains elusive. In this study, by exploiting the TCGA database, we found that high TACC3 expression in PDAC is associated with poor prognosis. shRNA-mediated TACC3 knockdown caused S phase arrest of the cell cycle and inhibited proliferation in PDAC cell lines. Through RNA sequencing and protein co-immunoprecipitation combined with mass spectrometry, KIF11 was identified as a protein that interacts with TACC3. TACC3 stabilizes and regulates KIF11 protein expression levels in PDAC cells through physical interaction. Knockdown of TACC3 or KIF11 resulted in abnormal spindle formation during cell division both in vitro and in vivo. Pharmacological inhibition of TACC3 or KIF11 can suppress tumor cell proliferation and promote apoptosis. Our studies further demonstrated that high expression of TACC3 and KIF11 mediated the resistance of PDAC to gemcitabine, and deficiency of TACC3 or KIF11 increased the sensitivity of PDAC cells to chemotherapy. In conclusion, our study reveals the fundamental role of TACC3 expression in PDAC cell proliferation and chemoresistance, suggesting that TACC3 can be used as a molecular marker to evaluate the prognosis of PDAC.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Duancheng Guo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qinglin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Mengxiong Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Abstract
In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of California, Davis, California, USA; ,
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
6
|
McKim KS. Highway to hell-thy meiotic divisions: Chromosome passenger complex functions driven by microtubules: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function: CPC interactions with both the chromosomes and microtubules are important for spindle assembly and function. Bioessays 2022; 44:e2100202. [PMID: 34821405 PMCID: PMC8688318 DOI: 10.1002/bies.202100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
The chromosome passenger complex (CPC) localizes to chromosomes and microtubules, sometimes simultaneously. The CPC also has multiple domains for interacting with chromatin and microtubules. Interactions between the CPC and both the chromatin and microtubules is important for spindle assembly and error correction. Such dual chromatin-microtubule interactions may increase the concentration of the CPC necessary for efficient kinase activity while also making it responsive to specific conditions or structures in the cell. CPC-microtubule dependent functions are considered in the context of the first meiotic division. Acentrosomal spindle assembly is a process that depends on transfer of the CPC from the chromosomes to the microtubules. Furthermore, transfer to the microtubules is not only to position the CPC for a later role in cytokinesis; metaphase I error correction and subsequent bi-orientation of bivalents may depend on microtubule associated CPC interacting with the kinetochores.
Collapse
Affiliation(s)
- Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
7
|
Wang LI, DeFosse T, Jang JK, Battaglia RA, Wagner VF, McKim KS. Borealin directs recruitment of the CPC to oocyte chromosomes and movement to the microtubules. J Cell Biol 2021; 220:211972. [PMID: 33836043 PMCID: PMC8185691 DOI: 10.1083/jcb.202006018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
The chromosomes in the oocytes of many animals appear to promote bipolar spindle assembly. In Drosophila oocytes, spindle assembly requires the chromosome passenger complex (CPC), which consists of INCENP, Borealin, Survivin, and Aurora B. To determine what recruits the CPC to the chromosomes and its role in spindle assembly, we developed a strategy to manipulate the function and localization of INCENP, which is critical for recruiting the Aurora B kinase. We found that an interaction between Borealin and the chromatin is crucial for the recruitment of the CPC to the chromosomes and is sufficient to build kinetochores and recruit spindle microtubules. HP1 colocalizes with the CPC on the chromosomes and together they move to the spindle microtubules. We propose that the Borealin interaction with HP1 promotes the movement of the CPC from the chromosomes to the microtubules. In addition, within the central spindle, rather than at the centromeres, the CPC and HP1 are required for homologous chromosome bi-orientation.
Collapse
Affiliation(s)
- Lin-Ing Wang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Tyler DeFosse
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Rachel A Battaglia
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Victoria F Wagner
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, NJ
| |
Collapse
|
8
|
Jiang Z, Zhang S, Lee YM, Teng X, Yang Q, Toyama Y, Liou YC. Hyaluronan-Mediated Motility Receptor Governs Chromosome Segregation by Regulating Microtubules Sliding Within the Bridging Fiber. Adv Biol (Weinh) 2021; 5:e2000493. [PMID: 33788418 DOI: 10.1002/adbi.202000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/20/2021] [Indexed: 11/06/2022]
Abstract
Accurate segregation of chromosomes during anaphase relies on the central spindle and its regulators. A newly raised concept of the central spindle, the bridging fiber, shows that sliding of antiparallel microtubules (MTs) within the bridging fiber promotes chromosome segregation. However, the regulators of the bridging fiber and its regulatory mechanism on MTs sliding remain largely unknown. In this study, the non-motor microtubule-associated protein, hyaluronan-mediated motility receptor (HMMR), is identified as a novel regulator of the bridging fiber. It then identifies that HMMR regulates MTs sliding within the bridging fiber by cooperating with its binding partner HSET. By utilizing a laser-based cell ablation system and photoactivation approach, the study's results reveal that depletion of HMMR causes an inhibitory effect on MTs sliding within the bridging fiber and disrupts the forced uniformity on the kinetochore-attached microtubules-formed fibers (k-fibers). These are created by suppressing the dynamics of HSET, which functions in transiting the force from sliding of bridging MTs to the k-fiber. This study sheds new light on the novel regulatory mechanism of MTs sliding within the bridging fiber by HMMR and HSET and uncovers the role of HMMR in chromosome segregation during anaphase.
Collapse
Affiliation(s)
- Zemin Jiang
- Laboratory of Precision Cancer Medicine, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shiyu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yusuke Toyama
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117573, Singapore
| |
Collapse
|
9
|
Pavin N, Tolić IM. Mechanobiology of the Mitotic Spindle. Dev Cell 2020; 56:192-201. [PMID: 33238148 DOI: 10.1016/j.devcel.2020.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
The mitotic spindle is a microtubule-based assembly that separates the chromosomes during cell division. As the spindle is basically a mechanical micro machine, the understanding of its functioning is constantly motivating the development of experimental approaches based on mechanical perturbations, which are complementary to and work together with the classical genetics and biochemistry methods. Recent data emerging from these approaches in combination with theoretical modeling led to novel ideas and significant revisions of the basic concepts in the field. In this Perspective, we discuss the advances in the understanding of spindle mechanics, focusing on microtubule forces that control chromosome movements.
Collapse
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
10
|
Gwon D, Hong J, Jang CY. c-Cbl Acts as an E3 Ligase Against DDA3 for Spindle Dynamics and Centriole Duplication during Mitosis. Mol Cells 2019; 42:840-849. [PMID: 31722512 PMCID: PMC6939656 DOI: 10.14348/molcells.2019.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022] Open
Abstract
The spatiotemporal mitotic processes are controlled qualitatively by phosphorylation and qualitatively by ubiquitination. Although the SKP1-CUL1-F-box protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) mainly mediate ubiquitin-dependent proteolysis of mitotic regulators, the E3 ligase for a large portion of mitotic proteins has yet to be identified. Here, we report c-Cbl as an E3 ligase that degrades DDA3, a protein involved in spindle dynamics. Depletion of c-Cbl led to increased DDA3 protein levels, resulting in increased recruitment of Kif2a to the mitotic spindle, a concomitant reduction in spindle formation, and chromosome alignment defects. Furthermore, c-Cbl depletion induced centrosome over-duplication and centriole amplification. Therefore, we concluded that c-Cbl controls spindle dynamics and centriole duplication through its E3 ligase activity against DDA3.
Collapse
Affiliation(s)
- Dasom Gwon
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Jihee Hong
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Chang-Young Jang
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|
11
|
Helical Twist and Rotational Forces in the Mitotic Spindle. Biomolecules 2019; 9:biom9040132. [PMID: 30939864 PMCID: PMC6523234 DOI: 10.3390/biom9040132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/24/2019] [Accepted: 03/28/2019] [Indexed: 01/14/2023] Open
Abstract
The mitotic spindle segregates chromosomes into two daughter cells during cell division. This process relies on the precise regulation of forces acting on chromosomes as the cell progresses through mitosis. The forces in the spindle are difficult to directly measure using the available experimental techniques. Here, we review the ideas and recent advances of how forces can be determined from the spindle shape. By using these approaches, it has been shown that tension and compression coexist along a single kinetochore fiber, which are balanced by a bridging fiber between sister kinetochore fibers. An extension of this approach to three dimensions revealed that microtubule bundles have rich shapes, and extend not simply like meridians on the Earth’s surface but, rather, twisted in a helical manner. Such complex shapes are due to rotational forces, which, in addition to linear forces, act in the spindle and may be generated by motor proteins such as kinesin-5. These findings open new questions for future studies, to understand the mechanisms of rotational forces and reveal their biological roles in cells.
Collapse
|
12
|
Ughy B, Schmidthoffer I, Szilak L. Heparan sulfate proteoglycan (HSPG) can take part in cell division: inside and outside. Cell Mol Life Sci 2019; 76:865-871. [PMID: 30465083 PMCID: PMC11105504 DOI: 10.1007/s00018-018-2964-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022]
Abstract
Prior to the cytokinesis, the cell-matrix interactions should be disrupted, and the mitotic cells round up. Prerequisite of mitosis, the centrosomes duplicate, spindle fibers are generated and move away from each other to opposite sides of the cells marking the cell poles. Later, an invagination in the plasma membrane is formed a few minutes after anaphase. This furrow ingression is driven by a contractile actomyosin ring, whose assembly is regulated by RhoA GTPase. At the completion of cytokinesis, the two daughter cells are still connected by a thin intercellular bridge, which is subjected to abscission, as the terminal step of cytokinesis. Here, it is overviewed, how syndecan-4, a transmembrane, heparan sulfate proteoglycan, can contribute to these processes in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Bettina Ughy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Ildiko Schmidthoffer
- Antal Wittmann Crop, Animal and Food Sciences Multidisciplinary Doctoral School, Mosonmagyaróvár, 9200, Hungary
| | - Laszlo Szilak
- Szilak Laboratories Bioinformatics and Molecule-Design Ltd., Szeged, 6723, Hungary.
- Cereal Research Non-profit Ltd., Szeged, 6726, Hungary.
| |
Collapse
|
13
|
Mann BJ, Wadsworth P. Distribution of Eg5 and TPX2 in mitosis: Insight from CRISPR tagged cells. Cytoskeleton (Hoboken) 2018; 75:508-521. [DOI: 10.1002/cm.21486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- B. J. Mann
- Department of Biology, Program in Molecular and Cellular Biology University of Massachusetts Amherst Massachusetts
| | - P. Wadsworth
- Department of Biology, Program in Molecular and Cellular Biology University of Massachusetts Amherst Massachusetts
| |
Collapse
|
14
|
Elting MW, Suresh P, Dumont S. The Spindle: Integrating Architecture and Mechanics across Scales. Trends Cell Biol 2018; 28:896-910. [PMID: 30093097 PMCID: PMC6197898 DOI: 10.1016/j.tcb.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/28/2023]
Abstract
The spindle segregates chromosomes at cell division, and its task is a mechanical one. While we have a nearly complete list of spindle components, how their molecular-scale mechanics give rise to cellular-scale spindle architecture, mechanics, and function is not yet clear. Recent in vitro and in vivo measurements bring new levels of molecular and physical control and shed light on this question. Highlighting recent findings and open questions, we introduce the molecular force generators of the spindle, and discuss how they organize microtubules into diverse architectural modules and give rise to the emergent mechanics of the mammalian spindle. Throughout, we emphasize the breadth of space and time scales at play, and the feedback between spindle architecture, dynamics, and mechanics that drives robust function.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Physics, Riddick Hall 258A, Box 8202, North Carolina State University, Raleigh, NC 27695, USA; These authors contributed equally
| | - Pooja Suresh
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; These authors contributed equally
| | - Sophie Dumont
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Cellular & Molecular Pharmacology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Novak M, Polak B, Simunić J, Boban Z, Kuzmić B, Thomae AW, Tolić IM, Pavin N. The mitotic spindle is chiral due to torques within microtubule bundles. Nat Commun 2018; 9:3571. [PMID: 30177685 PMCID: PMC6120957 DOI: 10.1038/s41467-018-06005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/06/2018] [Indexed: 11/08/2022] Open
Abstract
Mitosis relies on forces generated in the spindle, a micro-machine composed of microtubules and associated proteins. Forces are required for the congression of chromosomes to the metaphase plate and their separation in anaphase. However, besides forces, torques may exist in the spindle, yet they have not been investigated. Here we show that the spindle is chiral. Chirality is evident from the finding that microtubule bundles in human spindles follow a left-handed helical path, which cannot be explained by forces but rather by torques. Kinesin-5 (Kif11/Eg5) inactivation abolishes spindle chirality. Our theoretical model predicts that bending and twisting moments may generate curved shapes of bundles. We found that bundles turn by about -2 deg µm-1 around the spindle axis, which we explain by a twisting moment of roughly -10 pNµm. We conclude that torques, in addition to forces, exist in the spindle and determine its chiral architecture.
Collapse
Grants
- This work was funded by the European Research Council (ERC Consolidator Grant, GA number 647077, granted to I.M.T.), Unity through Knowledge Fund (UKF, project 18/15, granted to N.P. and I.M.T.), and the European Social Fund (HR.3.2.01-0022, co-leader I.M.T.). We also acknowledge support from the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004, element leader N.P.), and the Croatian Science Foundation (HRZZ, project IP-2014-09- 4753, granted to I.M.T.).
Collapse
Affiliation(s)
- Maja Novak
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Bruno Polak
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Juraj Simunić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Zvonimir Boban
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia
| | - Barbara Kuzmić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Andreas W Thomae
- Walter Brendel Centre of Experimental Medicine and Core Facility Bioimaging at the Biomedical Center, University of Munich, 82152, Planegg-Martinsried, Germany
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000, Zagreb, Croatia.
| |
Collapse
|
16
|
Tolić IM. Mitotic spindle: kinetochore fibers hold on tight to interpolar bundles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2018; 47:191-203. [PMID: 28725997 PMCID: PMC5845649 DOI: 10.1007/s00249-017-1244-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/24/2022]
Abstract
When a cell starts to divide, it forms a spindle, a micro-machine made of microtubules, which separates the duplicated chromosomes. The attachment of microtubules to chromosomes is mediated by kinetochores, protein complexes on the chromosome. Spindle microtubules can be divided into three major classes: kinetochore microtubules, which form k-fibers ending at the kinetochore; interpolar microtubules, which extend from the opposite sides of the spindle and interact in the middle; and astral microtubules, which extend towards the cell cortex. Recent work in human cells has shown a close relationship between interpolar and kinetochore microtubules, where interpolar bundles are attached laterally to kinetochore fibers almost all along their length, acting as a bridge between sister k-fibers. Most of the interpolar bundles are attached to a pair of sister kinetochore fibers and vice versa. Thus, the spindle is made of modules consisting of a pair of sister kinetochore fibers and a bundle of interpolar microtubules that connects them. These interpolar bundles, termed bridging fibers, balance the forces acting at kinetochores and support the rounded shape of the spindle during metaphase. This review discusses the structure, function, and formation of kinetochore fibers and interpolar bundles, with an emphasis on how they interact. Their connections have an impact on the force balance in the spindle and on chromosome movement during mitosis because the forces in interpolar bundles are transmitted to kinetochore fibers and hence to kinetochores through these connections.
Collapse
Affiliation(s)
- Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
17
|
Milas A, Jagrić M, Martinčić J, Tolić IM. Optogenetic reversible knocksideways, laser ablation, and photoactivation on the mitotic spindle in human cells. Methods Cell Biol 2018; 145:191-215. [DOI: 10.1016/bs.mcb.2018.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Buđa R, Vukušić K, Tolić IM. Dissection and characterization of microtubule bundles in the mitotic spindle using femtosecond laser ablation. Methods Cell Biol 2017; 139:81-101. [PMID: 28215341 DOI: 10.1016/bs.mcb.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mitotic spindle is a highly organized and dynamic structure required for segregation of the genetic material into two daughter cells. Although most of the individual players involved in building the spindle have been characterized in vitro, a general understanding of how all of the spindle players act together in vivo is still missing. Hence, in recent years, experiments have focused on introducing mechanical perturbations of the spindle on a micron scale, thereby providing insight into its function and organization, as well as into forces acting in the spindle. Among different types of mechanical perturbations, optical ones are more flexible, less invasive, and more precise than other approaches. In this chapter, we describe a detailed protocol for cutting the microtubule bundles in human cells using a near-infrared femtosecond laser. This type of laser microsurgery provides the ability to precisely sever a single microtubule bundle while preserving spindle integrity and dynamics. Furthermore, we describe quantitative measurements obtained from the response of a severed microtubule bundle to laser ablation, which reveal the structure and function of individual parts of the spindle, such as the bridging fiber connecting sister k-fibers. Finally, the method described here can be easily combined with other quantitative techniques to address the complexity of the spindle.
Collapse
Affiliation(s)
- R Buđa
- Ruđer Bošković Institute, Zagreb, Croatia
| | - K Vukušić
- Ruđer Bošković Institute, Zagreb, Croatia
| | - I M Tolić
- Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
19
|
Polak B, Risteski P, Lesjak S, Tolić IM. PRC1-labeled microtubule bundles and kinetochore pairs show one-to-one association in metaphase. EMBO Rep 2016; 18:217-230. [PMID: 28028032 PMCID: PMC5286359 DOI: 10.15252/embr.201642650] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 02/04/2023] Open
Abstract
In the mitotic spindle, kinetochore microtubules form k‐fibers, whereas overlap or interpolar microtubules form antiparallel arrays containing the cross‐linker protein regulator of cytokinesis 1 (PRC1). We have recently shown that an overlap bundle, termed bridging fiber, links outermost sister k‐fibers. However, the relationship between overlap bundles and k‐fibers throughout the spindle remained unknown. Here, we show that in a metaphase spindle more than 90% of overlap bundles act as a bridge between sister k‐fibers. We found that the number of PRC1‐GFP‐labeled bundles per spindle is nearly the same as the number of kinetochore pairs. Live‐cell imaging revealed that kinetochore movement in the equatorial plane of the spindle is highly correlated with the movement of the coupled PRC1‐GFP‐labeled fiber, whereas the correlation with other fibers decreases with increasing distance. Analysis of endogenous PRC1 localization confirmed the results obtained with PRC1‐GFP. PRC1 knockdown reduced the bridging fiber thickness and interkinetochore distance throughout the spindle, suggesting a function of PRC1 in bridging microtubule organization and force balance in the metaphase spindle.
Collapse
Affiliation(s)
- Bruno Polak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sonja Lesjak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|