1
|
Hwang HJ, Sheard KM, Cox RT. Drosophila Clu ribonucleoprotein particle dynamics rely on the availability of functional Clu and translating ribosomes. J Cell Sci 2025; 138:jcs263730. [PMID: 40302698 DOI: 10.1242/jcs.263730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Drosophila Clu is a conserved multi-domain ribonucleoprotein essential for mitochondrial function that forms dynamic particles within the cytoplasm. Unlike stress granules and processing bodies (P-bodies), Clu particles disassemble under nutritional or oxidative stress. However, it is unclear how disrupting protein synthesis affects Clu particle dynamics, especially given that Clu binds mRNA and ribosomes. Here, we capitalize on ex vivo and in vivo imaging of Drosophila female germ cells to determine what domains of Clu are necessary for Clu particle assembly and how manipulating translation affects particle dynamics. Using domain deletion analysis, we identified three domains of Clu essential for particle assembly. We also demonstrated that overexpressing functional Clu led to disassembly of particles. In addition, we inhibited translation using cycloheximide and puromycin. In contrast to P-bodies, cycloheximide treatment did not disassemble Clu particles yet puromycin treatment did. Surprisingly, cycloheximide stabilized particles under oxidative and nutritional stress. These findings demonstrate that Clu particles display novel dynamics in response to altered ribosome activity and support a model where they function as translation hubs whose assembly heavily depends on the dynamic availability of translating ribosomes.
Collapse
Affiliation(s)
- Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Kelsey M Sheard
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Rachel T Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Li J, Cui C, Han F, Liu J. Genome-wide identification and analysis of the UBA2 gene family in wheat (Triticum aestivum L.). BMC Genomics 2025; 26:180. [PMID: 39987033 PMCID: PMC11847341 DOI: 10.1186/s12864-025-11352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) participate in multiple aspects of RNA metabolism, which in turn regulates gene expression, thereby involving in organism growth and development. The UBA2 family, one of the subfamilies of RBPs, has been identified in several plant species. However, few researches have been performed to investigate the role of UBA2 in wheat (Triticum aestivum). RESULTS In this study, we identified eleven TaUBA2s and divided them into three groups according to their domain characteristics. Phylogenetic analysis was conducted to forecast functional similarities among Arabidopsis, rice, maize and wheat UBA2 genes. Members within the same subfamily of TaUBA2 are relatively conserved in terms of protein structure, motifs, and gene structure. Chromosomal location and synteny analysis suggested that the segmental duplication events played important roles during TaUBA2s evolution. The cis-acting element analysis showed that TaUBA2s were involved in hormone response, development, light response, metabolism, and response to environmental stress. Furthermore, TaUBA2C contains two RNA recognition motifs (RRMs), and the first RRM is responsible for the nuclear speckle formation of TaUBA2C, whereas the two RRMs are necessary for its biological function. CONCLUSIONS Taken together, our study provides a comprehensive analysis of the TaUBA2 family in wheat and lays the foundation for the future functional investigations of TaUBA2s in wheat growth, development and stress responses.
Collapse
Affiliation(s)
- Juan Li
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China
| | - Chunge Cui
- Shanxi Medical University, Taiyuan, 030000, China
| | - Fengying Han
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China.
| | - Jin Liu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China.
| |
Collapse
|
3
|
Molnar N, Capik A, Ishak A, Maglakelidze N, Pasick LJ, Reneker B, Volino A, O'Connell ML. The temporal control and activity of maternal zsquildlike-A/ hnrnpaba during zebrafish embryogenesis indicate a role in early pattern formation. ZYGOTE 2025; 33:45-55. [PMID: 39995299 DOI: 10.1017/s0967199425000024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
During embryogenesis in Danio rerio (zebrafish), the earliest morphological patterning events are dependent on the precise temporal translation and/or localization of specific maternal mRNAs/proteins. Dorsoventral patterning in particular requires the translocation of maternal factors that are present in the Balbiani Body from the vegetal region of the unfertilized egg to the future dorsal side of the embryo (Fuentes et al., 2020), leading to the localized activation of the β-catenin pathway in the cells in that region. Since zebrafish are chordates, this dorsoventral patterning then leads to the formation of neural tissue on the dorsal side of the embryo. What is not yet clear is the identity of all maternal and zygotic factors that first establish dorsoventral patterning, and which factors lead to the establishment of neural versus non-neural tissue. Taking an evolutionary approach to this question, we investigated a gene in zebrafish, zsquidlike-A (hnrnpaba), that is homologous to a key dorsoventral patterning gene in fruit flies (Drosophila melanogaster) called squid (Kelley, 1993). While dorsoventral patterning in flies and fish looks quite different both morphologically and at the molecular level, we demonstrate that not only has a key dorsoventral patterning gene in flies been conserved in fish, maternal fish zsquidlike-A protein is synthesized precisely as dorsoventral patterning is unfolding in fish embryos, and in its absence, dorsoventral patterning is severely disrupted.
Collapse
Affiliation(s)
- Nicole Molnar
- The Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - Allie Capik
- The Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - Amgad Ishak
- The Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | | | - Luke J Pasick
- The Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - Billie Reneker
- The Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alyse Volino
- The Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | | |
Collapse
|
4
|
Elhajjajy SI, Weng Z. A novel NLP-based method and algorithm to discover RNA-binding protein (RBP) motifs, contexts, binding preferences, and interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.631609. [PMID: 39896518 PMCID: PMC11785142 DOI: 10.1101/2025.01.20.631609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
RNA-binding proteins (RBPs) are essential modulators in the regulation of mRNA processing. The binding patterns, interactions, and functions of most RBPs are not well-characterized. Previous studies have shown that motif context is an important contributor to RBP binding specificity, but its precise role remains unclear. Despite recent computational advances to predict RBP binding, existing methods are challenging to interpret and largely lack a categorical focus on RBP motif contexts and RBP-RBP interactions. There remains a need for interpretable predictive models to disambiguate the contextual determinants of RBP binding specificity in vivo . Here, we present a novel and comprehensive pipeline to address these knowledge gaps. We devise a Natural Language Processing-based decomposition method to deconstruct sequences into entities consisting of a central target k -mer and its flanking regions, then use this representation to formulate the RBP binding prediction task as a weakly supervised Multiple Instance Learning problem. To interpret our predictions, we introduce a deterministic motif discovery algorithm designed to handle our data structure, recapitulating the established motifs of numerous RBPs as validation. Importantly, we characterize the binding motifs and binding contexts for 71 RBPs, with many of them being novel. Finally, through feature integration, transitive inference, and a new cross-prediction approach, we propose novel cooperative and competitive RBP-RBP interaction partners and hypothesize their potential regulatory functions. In summary, we present a complete computational strategy for investigating the contextual determinants of specific RBP binding, and we demonstrate the significance of our findings in delineating RBP binding patterns, interactions, and functions.
Collapse
|
5
|
Maldonado RJK, Parent LJ. Dynamic interactions of retroviral Gag condensates with nascent viral RNA at transcriptional burst sites: implications for genomic RNA packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632546. [PMID: 39829876 PMCID: PMC11741468 DOI: 10.1101/2025.01.11.632546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Retroviruses are responsible for significant pathology in humans and animals, including the acquired immunodeficiency syndrome and a wide range of malignancies. A crucial yet poorly understood step in the replication cycle is the recognition and selection of unspliced viral RNA (USvRNA) by the retroviral Gag protein, which binds to the psi (Ψ) packaging sequence in the 5' leader, to package it as genomic RNA (gRNA) into nascent virions. It was previously thought that Gag initially bound gRNA in the cytoplasm. However, previous studies demonstrated that the Rous sarcoma virus (RSV) Gag protein traffics transiently through the nucleus, which is necessary for efficient gRNA packaging. These data formed a strong premise for the hypothesis that Gag selects nascent gRNA at transcription sites in the nucleus, the location of the highest concentration of USvRNA molecules in the cell. In support of this model, previous studies using fixed cells infected with RSV revealed that Gag co-localizes with large USvRNA nuclear foci representing viral transcriptional burst sites. To test this idea, we used single molecule labeling and imaging techniques to visualize fluorescently-tagged, actively transcribing viral genomes, and Gag proteins in living cells. Gag condensates were observed in the nucleus, transiently co-localized with USvRNA at transcriptional burst sites, forming co-localized viral ribonucleoprotein complexes (vRNPs). These results support a novel paradigm for retroviral assembly in which Gag traffics to transcriptional burst sites and interacts through a dynamic kissing interaction to capture nascent gRNA for incorporation into virions.
Collapse
Affiliation(s)
- Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
- Department of Microbiology & Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
- Department of Microbiology & Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033
| |
Collapse
|
6
|
Courel M. Using the Tether Function Assay to Identify Potential Regulators of mRNA Translation and mRNA Decay. Methods Mol Biol 2025; 2863:265-280. [PMID: 39535715 DOI: 10.1007/978-1-0716-4176-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
RNA binding proteins (RBPs) and their associated partners are key factors of posttranscriptional control of gene expression. To study and manipulate the functional consequences of binding of these regulators to their targets, several tethering assays have been developed, in which a protein of interest is brought to a reporter mRNA through heterologous RNA-protein interaction motifs. The effect of such constrained binding is then monitored by measuring the accumulation of the reporter protein and mRNA. This chapter describes a protocol for the λN-BoxB tether system in transiently transfected mammalian cells. Combining the luciferase reporter technology to quantify protein amounts by light measurement and RNA amounts by RT-qPCR, this assay provides a simple and robust way to analyze the consequences of any protein binding in a controlled and defined manner.
Collapse
Affiliation(s)
- Maïté Courel
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Paris, France.
| |
Collapse
|
7
|
Seidler JF, Sträßer K. Understanding nuclear mRNA export: Survival under stress. Mol Cell 2024; 84:3681-3691. [PMID: 39366354 DOI: 10.1016/j.molcel.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Nuclear messenger RNA (mRNA) export is vital for cell survival under both physiological and stress conditions. To cope with stress, cells block bulk mRNA export while selectively exporting stress-specific mRNAs. Under physiological conditions, nuclear adaptor proteins recruit the mRNA exporter to the mRNA for export. By contrast, during stress conditions, the mRNA exporter is likely directly recruited to stress-specific mRNAs at their transcription sites to facilitate selective mRNA export. In this review, we summarize our current understanding of nuclear mRNA export. Importantly, we explore insights into the mechanisms that block bulk mRNA export and facilitate transcript-specific mRNA export under stress, highlighting the gaps that still need to be filled.
Collapse
Affiliation(s)
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany.
| |
Collapse
|
8
|
Hwang HJ, Sheard KM, Cox RT. Drosophila Clueless ribonucleoprotein particles display novel dynamics that rely on the availability of functional protein and polysome equilibrium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609023. [PMID: 39229069 PMCID: PMC11370489 DOI: 10.1101/2024.08.21.609023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The cytoplasm is populated with many ribonucleoprotein (RNP) particles that post-transcriptionally regulate mRNAs. These membraneless organelles assemble and disassemble in response to stress, performing functions such as sequestering stalled translation pre-initiation complexes or mRNA storage, repression and decay. Drosophila Clueless (Clu) is a conserved multi-domain ribonucleoprotein essential for mitochondrial function that forms dynamic particles within the cytoplasm. Unlike well-known RNP particles, stress granules and Processing bodies, Clu particles completely disassemble under nutritional or oxidative stress. However, it is poorly understood how disrupting protein synthesis affects Clu particle dynamics, especially since Clu binds mRNA and ribosomes. Here, we capitalize on ex vivo and in vivo imaging of Drosophila female germ cells to determine what domains of Clu are necessary for Clu particle assembly, how manipulating translation using translation inhibitors affects particle dynamics, and how Clu particle movement relates to mitochondrial association. Using Clu deletion analysis and live and fixed imaging, we identified three protein domains in Clu, which are essential for particle assembly. In addition, we demonstrated that overexpressing functional Clu disassembled particles, while overexpression of deletion constructs did not. To examine how decreasing translation affects particle dynamics, we inhibited translation in Drosophila germ cells using cycloheximide and puromycin. In contrast to stress granules and Processing bodies, cycloheximide treatment did not disassemble Clu particles yet puromycin treatment did. Surprisingly, cycloheximide stabilized particles in the presence of oxidative and nutritional stress. These findings demonstrate that Clu particles have novel dynamics in response to altered ribosome activity compared to stress granules and Processing bodies and support a model where they function as hubs of translation whose assembly heavily depends on the dynamic availability of polysomes.
Collapse
Affiliation(s)
- Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation, Rockville, MD
| | - Kelsey M. Sheard
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation, Rockville, MD
- Current address: Meso Scale Diagnostics LLC, Gaithersburg, MD 20877
| | - Rachel T. Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
| |
Collapse
|
9
|
Niu Y, Luo J, Zong C. Single-cell total-RNA profiling unveils regulatory hubs of transcription factors. Nat Commun 2024; 15:5941. [PMID: 39009595 PMCID: PMC11251146 DOI: 10.1038/s41467-024-50291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Recent development of RNA velocity uses master equations to establish the kinetics of the life cycle of RNAs from unspliced RNA to spliced RNA (i.e., mature RNA) to degradation. To feed this kinetic analysis, simultaneous measurement of unspliced RNA and spliced RNA in single cells is greatly desired. However, the majority of single-cell RNA-seq chemistry primarily captures mature RNA species to measure gene expressions. Here, we develop a one-step total-RNA chemistry-based single-cell RNA-seq method: snapTotal-seq. We benchmark this method with multiple single-cell RNA-seq assays in their performance in kinetic analysis of cell cycle by RNA velocity. Next, with LASSO regression between transcription factors, we identify the critical regulatory hubs mediating the cell cycle dynamics. We also apply snapTotal-seq to profile the oncogene-induced senescence and identify the key regulatory hubs governing the entry of senescence. Furthermore, from the comparative analysis of unspliced RNA and spliced RNA, we identify a significant portion of genes whose expression changes occur in spliced RNA but not to the same degree in unspliced RNA, indicating these gene expression changes are mainly controlled by post-transcriptional regulation. Overall, we demonstrate that snapTotal-seq can provide enriched information about gene regulation, especially during the transition between cell states.
Collapse
Affiliation(s)
- Yichi Niu
- Department of Molecular and Human Genetics, Houston, TX, USA
- Genetics & Genomics Program, Houston, TX, USA
| | - Jiayi Luo
- Department of Molecular and Human Genetics, Houston, TX, USA
- Cancer and Cell Biology Program, Houston, TX, USA
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Houston, TX, USA.
- Genetics & Genomics Program, Houston, TX, USA.
- Cancer and Cell Biology Program, Houston, TX, USA.
- Integrative Molecular and Biomedical Sciences Program, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
10
|
Vijayakumar A, Majumder M, Yin S, Brobbey C, Karam J, Howley B, Howe P, Berto S, Madan L, Gan W, Palanisamy V. PRMT5-mediated arginine methylation of FXR1 is essential for RNA binding in cancer cells. Nucleic Acids Res 2024; 52:7225-7244. [PMID: 38709899 PMCID: PMC11229354 DOI: 10.1093/nar/gkae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/29/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
Emerging evidence indicates that arginine methylation promotes the stability of arginine-glycine-rich (RGG) motif-containing RNA-binding proteins (RBPs) and regulates gene expression. Here, we report that post-translational modification of FXR1 enhances the binding with mRNAs and is involved in cancer cell growth and proliferation. Independent point mutations in arginine residues of FXR1's nuclear export signal (R386 and R388) and RGG (R453, R455 and R459) domains prevent it from binding to RNAs that form G-quadruplex (G4) RNA structures. Disruption of G4-RNA structures by lithium chloride failed to bind with FXR1, indicating its preference for G4-RNA structure containing mRNAs. Furthermore, loss-of-function of PRMT5 inhibited FXR1 methylation both in vivo and in vitro, affecting FXR1 protein stability, inhibiting RNA-binding activity and cancer cell growth and proliferation. Finally, the enhanced crosslinking and immunoprecipitation (eCLIP) analyses reveal that FXR1 binds with the G4-enriched mRNA targets such as AHNAK, MAP1B, AHNAK2, HUWE1, DYNC1H1 and UBR4 and controls its mRNA expression in cancer cells. Our findings suggest that PRMT5-mediated FXR1 methylation is required for RNA/G4-RNA binding, which promotes gene expression in cancer cells. Thus, FXR1's structural characteristics and affinity for RNAs preferentially G4 regions provide new insights into the molecular mechanism of FXR1 in oral cancer cells.
Collapse
Affiliation(s)
- Anitha Vijayakumar
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shasha Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles Brobbey
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joseph Karam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Breege Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Philip H Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lalima K Madan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Dupont M, Krischuns T, Gianetto QG, Paisant S, Bonazza S, Brault JB, Douché T, Arragain B, Florez-Prada A, Perez-Perri J, Hentze M, Cusack S, Matondo M, Isel C, Courtney D, Naffakh N. The RBPome of influenza A virus NP-mRNA reveals a role for TDP-43 in viral replication. Nucleic Acids Res 2024; 52:7188-7210. [PMID: 38686810 PMCID: PMC11229366 DOI: 10.1093/nar/gkae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Genome-wide approaches have significantly advanced our knowledge of the repertoire of RNA-binding proteins (RBPs) that associate with cellular polyadenylated mRNAs within eukaryotic cells. Recent studies focusing on the RBP interactomes of viral mRNAs, notably SARS-Cov-2, have revealed both similarities and differences between the RBP profiles of viral and cellular mRNAs. However, the RBPome of influenza virus mRNAs remains unexplored. Herein, we identify RBPs that associate with the viral mRNA encoding the nucleoprotein (NP) of an influenza A virus. Focusing on TDP-43, we show that it binds several influenza mRNAs beyond the NP-mRNA, and that its depletion results in lower levels of viral mRNAs and proteins within infected cells, and a decreased yield of infectious viral particles. We provide evidence that the viral polymerase recruits TDP-43 onto viral mRNAs through a direct interaction with the disordered C-terminal domain of TDP-43. Notably, other RBPs found to be associated with influenza virus mRNAs also interact with the viral polymerase, which points to a role of the polymerase in orchestrating the assembly of viral messenger ribonucleoproteins.
Collapse
Affiliation(s)
- Maud Dupont
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HUB, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, BelfastBT9 7BL, Northern Ireland
| | - Jean-Baptiste Brault
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
| | - Benoît Arragain
- European Molecular Biology Laboratory, 38042Grenoble, France
| | | | | | | | - Stephen Cusack
- European Molecular Biology Laboratory, 38042Grenoble, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
| | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - David G Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, BelfastBT9 7BL, Northern Ireland
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| |
Collapse
|
12
|
Liu F, Cai S, Dai L, Ai N, Feng G, Wang N, Zhang W, Liu K, Zhou B. SR45a plays a key role in enhancing cotton resistance to Verticillium dahliae by alternative splicing of immunity genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:137-152. [PMID: 38569053 DOI: 10.1111/tpj.16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Alternative splicing (AS) of pre-mRNAs increases the diversity of transcriptome and proteome and plays fundamental roles in plant development and stress responses. However, the prevalent changes in AS events and the regulating mechanisms of plants in response to pathogens remain largely unknown. Here, we show that AS changes are an important mechanism conferring cotton immunity to Verticillium dahliae (Vd). GauSR45a, encoding a serine/arginine-rich RNA binding protein, was upregulated expression and underwent AS in response to Vd infection in Gossypium australe, a wild diploid cotton species highly resistant to Vd. Silencing GauSR45a substantially reduced the splicing ratio of Vd-induced immune-associated genes, including GauBAK1 (BRI1-associated kinase 1) and GauCERK1 (chitin elicitor receptor kinase 1). GauSR45a binds to the GAAGA motif that is commonly found in the pre-mRNA of genes essential for PTI, ETI, and defense. The binding between GauSR45a and the GAAGA motif in the pre-mRNA of BAK1 was enhanced by two splicing factors of GauU2AF35B and GauU1-70 K, thereby facilitating exon splicing; silencing either AtU2AF35B or AtU1-70 K decreased the resistance to Vd in transgenic GauSR45a Arabidopsis. Overexpressing the short splicing variant of BAK1GauBAK1.1 resulted in enhanced Verticillium wilt resistance rather than the long one GauBAK1.2. Vd-induced far more AS events were in G. barbadense (resistant tetraploid cotton) than those in G. hirsutum (susceptible tetraploid cotton) during Vd infection, indicating resistance divergence in immune responses at a genome-wide scale. We provided evidence showing a fundamental mechanism by which GauSR45a enhances cotton resistance to Vd through global regulation of AS of immunity genes.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Institue of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50#, Nanjing, 210014, China
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Nanjing Forestry University, 159 Longpan Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Nijiang Ai
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Guoli Feng
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Ningshan Wang
- Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Kang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production cosponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Francisco-Velilla R, Abellan S, Embarc-Buh A, Martinez-Salas E. Oligomerization regulates the interaction of Gemin5 with members of the SMN complex and the translation machinery. Cell Death Discov 2024; 10:306. [PMID: 38942768 PMCID: PMC11213948 DOI: 10.1038/s41420-024-02057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/30/2024] Open
Abstract
RNA-binding proteins are multifunctional molecules impacting on multiple steps of gene regulation. Gemin5 was initially identified as a member of the survival of motor neurons (SMN) complex. The protein is organized in structural and functional domains, including a WD40 repeats domain at the N-terminal region, a tetratricopeptide repeat (TPR) dimerization module at the central region, and a non-canonical RNA-binding site at the C-terminal end. The TPR module allows the recruitment of the endogenous Gemin5 protein in living cells and the assembly of a dimer in vitro. However, the biological relevance of Gemin5 oligomerization is not known. Here we interrogated the Gemin5 interactome focusing on oligomerization-dependent or independent regions. We show that the interactors associated with oligomerization-proficient domains were primarily annotated to ribosome, splicing, translation regulation, SMN complex, and RNA stability. The presence of distinct Gemin5 protein regions in polysomes highlighted differences in translation regulation based on their oligomerization capacity. Furthermore, the association with native ribosomes and negative regulation of translation was strictly dependent on both the WD40 repeats domain and the TPR dimerization moiety, while binding with the majority of the interacting proteins, including SMN, Gemin2, and Gemin4, was determined by the dimerization module. The loss of oligomerization did not perturb the predominant cytoplasmic localization of Gemin5, reinforcing the cytoplasmic functions of this essential protein. Our work highlights a distinctive role of the Gemin5 domains for its functions in the interaction with members of the SMN complex, ribosome association, and RBP interactome.
Collapse
Affiliation(s)
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049, Madrid, Spain
| | | |
Collapse
|
14
|
Bonazza S, Coutts HL, Sukumar S, Turkington HL, Courtney DG. Identifying cellular RNA-binding proteins during infection uncovers a role for MKRN2 in influenza mRNA trafficking. PLoS Pathog 2024; 20:e1012231. [PMID: 38753876 PMCID: PMC11135703 DOI: 10.1371/journal.ppat.1012231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/29/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Utilisation of RNA-binding proteins (RBPs) is an important aspect of post-transcriptional regulation of viral RNA. Viruses such as influenza A viruses (IAV) interact with RBPs to regulate processes including splicing, nuclear export and trafficking, while also encoding RBPs within their genomes, such as NP and NS1. But with almost 1000 RBPs encoded within the human genome it is still unclear what role, if any, many of these proteins play during viral replication. Using the RNA interactome capture (RIC) technique, we isolated RBPs from IAV infected cells to unravel the RBPome of mRNAs from IAV infected human cells. This led to the identification of one particular RBP, MKRN2, that associates with and positively regulates IAV mRNA. Through further validation, we determined that MKRN2 is involved in the nuclear-cytoplasmic trafficking of IAV mRNA potentially through an association with the RNA export mediator GLE1. In the absence of MKRN2, IAV mRNAs accumulate in the nucleus of infected cells, which may lead to their degradation by the nuclear RNA exosome complex. MKRN2, therefore, appears to be required for the efficient nuclear export of IAV mRNAs in human cells.
Collapse
Affiliation(s)
- Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Hannah Leigh Coutts
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Swathi Sukumar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Hannah Louise Turkington
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - David Gary Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
15
|
Wang S, Sun H, Chen G, Wu C, Sun B, Lin J, Lin D, Zeng D, Lin B, Huang G, Lu X, Lin H, Liang Y. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities. Crit Rev Oncol Hematol 2024; 195:104271. [PMID: 38272151 DOI: 10.1016/j.critrevonc.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) refer to a class of proteins that participate in alternative splicing, RNA stability, polyadenylation, localization and translation of RNAs, thus regulating gene expression in post-transcriptional manner. Dysregulation of RNA-RBP interaction contributes to various diseases, including cancer. In breast cancer, disorders in RBP expression and function influence the biological characteristics of tumor cells. Targeting RBPs has fostered the development of innovative therapies for breast cancer. However, the RBP-related mechanisms in breast cancer are not completely clear. In this review, we summarize the regulatory mechanisms of RBPs and their signaling crosstalk in breast cancer. Specifically, we emphasize the potential of certain RBPs as prognostic factors due to their effects on proliferation, invasion, apoptosis, and therapy resistance of breast cancer cells. Most importantly, we present a comprehensive overview of the latest RBP-related therapeutic strategies and novel therapeutic targets that have proven to be useful in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Guanyuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Chengyu Wu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Bingmei Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Jiajia Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Danping Lin
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaofeng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| |
Collapse
|
16
|
Awad S, Skipper W, Vostrejs W, Ozorowski K, Min K, Pfuhler L, Mehta D, Cooke A. The YBX3 RNA-binding protein posttranscriptionally controls SLC1A5 mRNA in proliferating and differentiating skeletal muscle cells. J Biol Chem 2024; 300:105602. [PMID: 38159852 PMCID: PMC10837625 DOI: 10.1016/j.jbc.2023.105602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
In humans, skeletal muscles comprise nearly 40% of total body mass, which is maintained throughout adulthood by a balance of muscle protein synthesis and breakdown. Cellular amino acid (AA) levels are critical for these processes, and mammalian cells contain transporter proteins that import AAs to maintain homeostasis. Until recently, the control of transporter regulation has largely been studied at the transcriptional and posttranslational levels. However, here, we report that the RNA-binding protein YBX3 is critical to sustain intracellular AAs in mouse skeletal muscle cells, which aligns with our recent findings in human cells. We find that YBX3 directly binds the solute carrier (SLC)1A5 AA transporter messenger (m)RNA to posttranscriptionally control SLC1A5 expression during skeletal muscle cell differentiation. YBX3 regulation of SLC1A5 requires the 3' UTR. Additionally, intracellular AAs transported by SLC1A5, either directly or indirectly through coupling to other transporters, are specifically reduced when YBX3 is depleted. Further, we find that reduction of the YBX3 protein reduces proliferation and impairs differentiation in skeletal muscle cells, and that YBX3 and SLC1A5 protein expression increase substantially during skeletal muscle differentiation, independently of their respective mRNA levels. Taken together, our findings suggest that YBX3 regulates AA transport in skeletal muscle cells, and that its expression is critical to maintain skeletal muscle cell proliferation and differentiation.
Collapse
Affiliation(s)
- Silina Awad
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - William Skipper
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - William Vostrejs
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | | | - Kristen Min
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - Liva Pfuhler
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - Darshan Mehta
- Biology Department, Haverford College, Haverford, Pennsylvania, USA
| | - Amy Cooke
- Biology Department, Haverford College, Haverford, Pennsylvania, USA.
| |
Collapse
|
17
|
Min KW, Jo MH, Song M, Lee JW, Shim MJ, Kim K, Park HB, Ha S, Mun H, Polash A, Hafner M, Cho JH, Kim D, Jeong JH, Ko S, Hohng S, Kang SU, Yoon JH. Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing. RNA Biol 2024; 21:1-15. [PMID: 38372062 PMCID: PMC10878027 DOI: 10.1080/15476286.2024.2314846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Although Argonaute (AGO) proteins have been the focus of microRNA (miRNA) studies, we observed AGO-free mature miRNAs directly interacting with RNA-binding proteins, implying the sophisticated nature of fine-tuning gene regulation by miRNAs. To investigate microRNA-binding proteins (miRBPs) globally, we analyzed PAR-CLIP data sets to identify RBP quaking (QKI) as a novel miRBP for let-7b. Potential existence of AGO-free miRNAs were further verified by measuring miRNA levels in genetically engineered AGO-depleted human and mouse cells. We have shown that QKI regulates miRNA-mediated gene silencing at multiple steps, and collectively serves as an auxiliary factor empowering AGO2/let-7b-mediated gene silencing. Depletion of QKI decreases interaction of AGO2 with let-7b and target mRNA, consequently controlling target mRNA decay. This finding indicates that QKI is a complementary factor in miRNA-mediated mRNA decay. QKI, however, also suppresses the dissociation of let-7b from AGO2, and slows the assembly of AGO2/miRNA/target mRNA complexes at the single-molecule level. We also revealed that QKI overexpression suppresses cMYC expression at post-transcriptional level, and decreases proliferation and migration of HeLa cells, demonstrating that QKI is a tumour suppressor gene by in part augmenting let-7b activity. Our data show that QKI is a new type of RBP implicated in the versatile regulation of miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Myung Hyun Jo
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Minseok Song
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Min Ji Shim
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Kyungmin Kim
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hyun Bong Park
- Department of Biology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Shinwon Ha
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
| | - Ahsan Polash
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ji-Hoon Jeong
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Sungchul Hohng
- Department of Physics & Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Department of Oncology Science, University of Oklahoma, Oklahoma City, USA
| |
Collapse
|
18
|
Ruffenach G, Medzikovic L, Sun W, Hong J, Eghbali M. Functions of RNA-Binding Proteins in Cardiovascular Disease. Cells 2023; 12:2794. [PMID: 38132114 PMCID: PMC10742114 DOI: 10.3390/cells12242794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Gene expression is under tight regulation from the chromatin structure that regulates gene accessibility by the transcription machinery to protein degradation. At the transcript level, this regulation falls on RNA-binding proteins (RBPs). RBPs are a large and diverse class of proteins involved in all aspects of a transcript's lifecycle: splicing and maturation, localization, stability, and translation. In the past few years, our understanding of the role of RBPs in cardiovascular diseases has expanded. Here, we discuss the general structure and function of RBPs and the latest discoveries of their role in pulmonary and systemic cardiovascular diseases.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Lejla Medzikovic
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Wasila Sun
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| | - Jason Hong
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA (W.S.)
| |
Collapse
|
19
|
Kern C, Radon C, Wende W, Leitner A, Sträßer K. Cross-linking mass spectrometric analysis of the endogenous TREX complex from Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2023; 29:1870-1880. [PMID: 37699651 PMCID: PMC10653388 DOI: 10.1261/rna.079758.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023]
Abstract
The conserved TREX complex has multiple functions in gene expression such as transcription elongation, 3' end processing, mRNP assembly and nuclear mRNA export as well as the maintenance of genomic stability. In Saccharomyces cerevisiae, TREX is composed of the pentameric THO complex, the DEAD-box RNA helicase Sub2, the nuclear mRNA export adaptor Yra1, and the SR-like proteins Gbp2 and Hrb1. Here, we present the structural analysis of the endogenous TREX complex of S. cerevisiae purified from its native environment. To this end, we used cross-linking mass spectrometry to gain structural information on regions of the complex that are not accessible to classical structural biology techniques. We also used negative-stain electron microscopy to investigate the organization of the cross-linked complex used for XL-MS by comparing our endogenous TREX complex with recently published structural models of recombinant THO-Sub2 complexes. According to our analysis, the endogenous yeast TREX complex preferentially assembles into a dimer.
Collapse
Affiliation(s)
- Carina Kern
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Christin Radon
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Wolfgang Wende
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany
- Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany
| |
Collapse
|
20
|
Bravo‐Estupiñan DM, Aguilar‐Guerrero K, Quirós S, Acón M, Marín‐Müller C, Ibáñez‐Hernández M, Mora‐Rodríguez RA. Gene dosage compensation: Origins, criteria to identify compensated genes, and mechanisms including sensor loops as an emerging systems-level property in cancer. Cancer Med 2023; 12:22130-22155. [PMID: 37987212 PMCID: PMC10757140 DOI: 10.1002/cam4.6719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The gene dosage compensation hypothesis presents a mechanism through which the expression of certain genes is modulated to compensate for differences in the dose of genes when additional chromosomes are present. It is one of the means through which cancer cells actively cope with the potential damaging effects of aneuploidy, a hallmark of most cancers. Dosage compensation arises through several processes, including downregulation or overexpression of specific genes and the relocation of dosage-sensitive genes. In cancer, a majority of compensated genes are generally thought to be regulated at the translational or post-translational level, and include the basic components of a compensation loop, including sensors of gene dosage and modulators of gene expression. Post-translational regulation is mostly undertaken by a general degradation or aggregation of remaining protein subunits of macromolecular complexes. An increasingly important role has also been observed for transcriptional level regulation. This article reviews the process of targeted gene dosage compensation in cancer and other biological conditions, along with the mechanisms by which cells regulate specific genes to restore cellular homeostasis. These mechanisms represent potential targets for the inhibition of dosage compensation of specific genes in aneuploid cancers. This article critically examines the process of targeted gene dosage compensation in cancer and other biological contexts, alongside the criteria for identifying genes subject to dosage compensation and the intricate mechanisms by which cells orchestrate the regulation of specific genes to reinstate cellular homeostasis. Ultimately, our aim is to gain a comprehensive understanding of the intricate nature of a systems-level property. This property hinges upon the kinetic parameters of regulatory motifs, which we have termed "gene dosage sensor loops." These loops have the potential to operate at both the transcriptional and translational levels, thus emerging as promising candidates for the inhibition of dosage compensation in specific genes. Additionally, they represent novel and highly specific therapeutic targets in the context of aneuploid cancer.
Collapse
Affiliation(s)
- Diana M. Bravo‐Estupiñan
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Programa de Doctorado en Ciencias, Sistema de Estudios de Posgrado (SEP)Universidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Karol Aguilar‐Guerrero
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Maestría académica en Microbiología, Programa de Posgrado en Microbiología, Parasitología, Química Clínica e InmunologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Steve Quirós
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| | - Man‐Sai Acón
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
| | - Christian Marín‐Müller
- Speratum Biopharma, Inc.Centro Nacional de Innovación Biotecnológica Nacional (CENIBiot)San JoséCosta Rica
| | - Miguel Ibáñez‐Hernández
- Laboratorio de Terapia Génica, Departamento de BioquímicaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalCiudad de MéxicoMexico
| | - Rodrigo A. Mora‐Rodríguez
- CICICA, Centro de Investigación en Cirugía y Cáncer Research Center on Surgery and CancerUniversidad de Costa RicaSan JoséCosta Rica
- Laboratorio de Quimiosensibilidad tumoral (LQT), Centro de Investigación en enfermedades Tropicales (CIET), Facultad de MicrobiologíaUniversidad de Costa RicaSan JoséCosta Rica
| |
Collapse
|
21
|
Asada R, Dominguez A, Montpetit B. Single-molecule quantitation of RNA-binding protein occupancy and stoichiometry defines a role for Yra1 (Aly/REF) in nuclear mRNP organization. Cell Rep 2023; 42:113415. [PMID: 37963019 PMCID: PMC10841842 DOI: 10.1016/j.celrep.2023.113415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
RNA-binding proteins (RBPs) interact with mRNA to form supramolecular complexes called messenger ribonucleoprotein (mRNP) particles. These dynamic assemblies direct and regulate individual steps of gene expression; however, their composition and functional importance remain largely unknown. Here, we develop a total internal reflection fluorescence-based single-molecule imaging assay to investigate stoichiometry and co-occupancy of 15 RBPs within mRNPs from Saccharomyces cerevisiae. We show compositional heterogeneity of single mRNPs and plasticity across different growth conditions, with major co-occupants of mRNPs containing the nuclear cap-binding complex identified as Yra1 (1-10 copies), Nab2 (1-6 copies), and Npl3 (1-6 copies). Multicopy Yra1-bound mRNPs are specifically co-occupied by the THO complex and assembled on mRNAs biased by transcript length and RNA secondary structure. Yra1 depletion results in decreased compaction of nuclear mRNPs demonstrating a packaging function. Together, we provide a quantitative framework for gene- and condition-dependent RBP occupancy and stoichiometry in individual nuclear mRNPs.
Collapse
Affiliation(s)
- Ryuta Asada
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Andrew Dominguez
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Li Y, Li C, Liu M, Liu S, Liu F, Wang L. The RNA-binding protein CSDE1 promotes hematopoietic stem and progenitor cell generation via translational control of Wnt signaling. Development 2023; 150:dev201890. [PMID: 37874038 PMCID: PMC10652045 DOI: 10.1242/dev.201890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
In vertebrates, the earliest hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of specialized endothelial cells, hemogenic endothelial cells, in the aorta-gonad-mesonephros region through endothelial-to-hematopoietic transition. HSPC generation is efficiently and accurately regulated by a variety of factors and signals; however, the precise control of these signals remains incompletely understood. Post-transcriptional regulation is crucial for gene expression, as the transcripts are usually bound by RNA-binding proteins (RBPs) to regulate RNA metabolism. Here, we report that the RBP protein Csde1-mediated translational control is essential for HSPC generation during zebrafish early development. Genetic mutants and morphants demonstrated that depletion of csde1 impaired HSPC production in zebrafish embryos. Mechanistically, Csde1 regulates HSPC generation through modulating Wnt/β-catenin signaling activity. We demonstrate that Csde1 binds to ctnnb1 mRNAs (encoding β-catenin, an effector of Wnt signaling) and regulates translation but not stability of ctnnb1 mRNA, which further enhances β-catenin protein level and Wnt signal transduction activities. Together, we identify Csde1 as an important post-transcriptional regulator and provide new insights into how Wnt/β-catenin signaling is precisely regulated at the post-transcriptional level.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Can Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
23
|
Larivera S, Neumeier J, Meister G. Post-transcriptional gene silencing in a dynamic RNP world. Biol Chem 2023; 404:1051-1067. [PMID: 37739934 DOI: 10.1515/hsz-2023-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
MicroRNA (miRNA)-guided gene silencing is a key regulatory process in various organisms and linked to many human diseases. MiRNAs are processed from precursor molecules and associate with Argonaute proteins to repress the expression of complementary target mRNAs. Excellent work by numerous labs has contributed to a detailed understanding of the mechanisms of miRNA function. However, miRNA effects have mostly been analyzed and viewed as isolated events and their natural environment as part of complex RNA-protein particles (RNPs) is often neglected. RNA binding proteins (RBPs) regulate key enzymes of the miRNA processing machinery and furthermore RBPs or readers of RNA modifications may modulate miRNA activity on mRNAs. Such proteins may function similarly to miRNAs and add their own contributions to the overall expression level of a particular gene. Therefore, post-transcriptional gene regulation might be more the sum of individual regulatory events and should be viewed as part of a dynamic and complex RNP world.
Collapse
Affiliation(s)
- Simone Larivera
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Julia Neumeier
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
24
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
25
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
26
|
Salvato I, Ricciardi L, Dal Col J, Nigro A, Giurato G, Memoli D, Sellitto A, Lamparelli EP, Crescenzi MA, Vitale M, Vatrella A, Nucera F, Brun P, Caicci F, Dama P, Stiff T, Castellano L, Idrees S, Johansen MD, Faiz A, Wark PA, Hansbro PM, Adcock IM, Caramori G, Stellato C. Expression of targets of the RNA-binding protein AUF-1 in human airway epithelium indicates its role in cellular senescence and inflammation. Front Immunol 2023; 14:1192028. [PMID: 37483631 PMCID: PMC10360199 DOI: 10.3389/fimmu.2023.1192028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1β/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.
Collapse
Affiliation(s)
- Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Luca Ricciardi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Assunta Sellitto
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Maria Assunta Crescenzi
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Monica Vitale
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Paola Dama
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Thomas Stiff
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Leandro Castellano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Peter A. Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian M. Adcock
- National Heart and Lung Institute, Imperial College London and the National Institute for Health and Care Research (NIHR) Imperial Biomedical Research Centre, London, United Kingdom
| | - Gaetano Caramori
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy
| |
Collapse
|
27
|
Guo J, Zhao H, Zhang J, Lv X, Zhang S, Su R, Zheng W, Dai J, Meng F, Gong F, Lu G, Xue Y, Lin G. Selective Translation of Maternal mRNA by eIF4E1B Controls Oocyte to Embryo Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205500. [PMID: 36755190 PMCID: PMC10104655 DOI: 10.1002/advs.202205500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Maternal messenger ribonucleic acids (mRNAs) are driven by a highly orchestrated scheme of recruitment to polysomes and translational activation. However, selecting and regulating individual mRNAs for the translation from a competitive pool of mRNAs are little-known processes. This research shows that the maternal eukaryotic translation initiation factor 4e1b (Eif4e1b) expresses during the oocyte-to-embryo transition (OET), and maternal deletion of Eif4e1b leads to multiple defects concerning oogenesis and embryonic developmental competence during OET. The linear amplification of complementary deoxyribonucleic acid (cDNA) ends, and sequencing (LACE-seq) is used to identify the distinct subset of mRNA and its CG-rich binding sites within the 5' untranslated region (UTR) targeted by eIF4E1B. The proteomics analyses indicate that eIF4E1B-specific bound genes show stronger downregulation at the protein level, which further verify a group of proteins that plays a crucial role in oocyte maturation and embryonic developmental competence is insufficiently synthesized in Eif4e1b-cKO oocytes during OET. Moreover, the biochemical results in vitro are combined to further confirm the maternal-specific translation activation model assembled by eIF4E1B and 3'UTR-associated mRNA binding proteins. The findings demonstrate the indispensability of eIF4E1B for selective translation activation in mammalian oocytes and provide a potential network regulated by eIF4E1B in OET.
Collapse
Affiliation(s)
- Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Hailian Zhao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jue Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Xiangjiang Lv
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Shen Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Ruibao Su
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Jing Dai
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Fei Meng
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan ProvinceReproductive and Genetic Hospital of CITIC‐XiangyaChangsha410078P. R. China
- Laboratory of Reproductive and Stem Cell EngineeringNHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangsha410078P. R. China
| |
Collapse
|
28
|
Fusarium oxysporum f. sp. niveum Pumilio 1 Regulates Virulence on Watermelon through Interacting with the ARP2/3 Complex and Binding to an A-Rich Motif in the 3' UTR of Diverse Transcripts. mBio 2023; 14:e0015723. [PMID: 36856417 PMCID: PMC10128047 DOI: 10.1128/mbio.00157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Fusarium oxysporum f. sp. niveum (Fon), a soilborne phytopathogenic fungus, causes watermelon Fusarium wilt, resulting in serious yield losses worldwide. However, the underlying molecular mechanism of Fon virulence is largely unknown. The present study investigated the biological functions of six FonPUFs, encoding RNA binding Pumilio proteins, and especially explored the molecular mechanism of FonPUF1 in Fon virulence. A series of phenotypic analyses indicated that FonPUFs have distinct but diverse functions in vegetative growth, asexual reproduction, macroconidia morphology, spore germination, cell wall, or abiotic stress response of Fon. Notably, the deletion of FonPUF1 attenuates Fon virulence by impairing the invasive growth and colonization ability inside the watermelon plants. FonPUF1 possesses RNA binding activity, and its biochemical activity and virulence function depend on the RNA recognition motif or Pumilio domains. FonPUF1 associates with the actin-related protein 2/3 (ARP2/3) complex by interacting with FonARC18, which is also required for Fon virulence and plays an important role in regulating mitochondrial functions, such as ATP generation and reactive oxygen species production. Transcriptomic profiling of ΔFonPUF1 identified a set of putative FonPUF1-dependent virulence-related genes in Fon, possessing a novel A-rich binding motif in the 3' untranslated region (UTR), indicating that FonPUF1 participates in additional mechanisms critical for Fon virulence. These findings highlight the functions and molecular mechanism of FonPUFs in Fon virulence. IMPORTANCE Fusarium oxysporum is a devastating plant-pathogenic fungus that causes vascular wilt disease in many economically important crops, including watermelon, worldwide. F. oxysporum f. sp. nievum (Fon) causes serious yield loss in watermelon production. However, the molecular mechanism of Fusarium wilt development by Fon remains largely unknown. Here, we demonstrate that six putative Pumilio proteins-encoding genes (FonPUFs) differentially operate diverse basic biological processes, including stress response, and that FonPUF1 is required for Fon virulence. Notably, FonPUF1 possesses RNA binding activity and associates with the actin-related protein 2/3 complex to control mitochondrial functions. Furthermore, FonPUF1 coordinates the expression of a set of putative virulence-related genes in Fon by binding to a novel A-rich motif present in the 3' UTR of a diverse set of target mRNAs. Our study disentangles the previously unexplored molecular mechanism involved in regulating Fon virulence, providing a possibility for the development of novel strategies for disease management.
Collapse
|
29
|
von der Haar T, Mulroney TE, Hedayioglu F, Kurusamy S, Rust M, Lilley KS, Thaventhiran JE, Willis AE, Smales CM. Translation of in vitro-transcribed RNA therapeutics. Front Mol Biosci 2023; 10:1128067. [PMID: 36845540 PMCID: PMC9943971 DOI: 10.3389/fmolb.2023.1128067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
In vitro transcribed, modified messenger RNAs (IVTmRNAs) have been used to vaccinate billions of individuals against the SARS-CoV-2 virus, and are currently being developed for many additional therapeutic applications. IVTmRNAs must be translated into proteins with therapeutic activity by the same cellular machinery that also translates native endogenous transcripts. However, different genesis pathways and routes of entry into target cells as well as the presence of modified nucleotides mean that the way in which IVTmRNAs engage with the translational machinery, and the efficiency with which they are being translated, differs from native mRNAs. This review summarises our current knowledge of commonalities and differences in translation between IVTmRNAs and cellular mRNAs, which is key for the development of future design strategies that can generate IVTmRNAs with improved activity in therapeutic applications.
Collapse
Affiliation(s)
- Tobias von der Haar
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Thomas E. Mulroney
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Fabio Hedayioglu
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Sathishkumar Kurusamy
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| | - Maria Rust
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James E. Thaventhiran
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Anne E. Willis
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - C. Mark Smales
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
30
|
Xue G, Maciej VD, Machado de Amorim A, Pak M, Jayachandran U, Chakrabarti S. Modulation of RNA-binding properties of the RNA helicase UPF1 by its activator UPF2. RNA (NEW YORK, N.Y.) 2023; 29:178-187. [PMID: 36456182 PMCID: PMC9891255 DOI: 10.1261/rna.079188.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
The NMD helicase UPF1 is a prototype of the superfamily 1 (SF1) of RNA helicases that bind RNA with high affinity and translocate on it in an ATP-dependent manner. Previous studies showed that UPF1 has a low basal catalytic activity that is greatly enhanced upon binding of its interaction partner, UPF2. Activation of UPF1 by UPF2 entails a large conformational change that switches the helicase from an RNA-clamping mode to an RNA-unwinding mode. The ability of UPF1 to bind RNA was expected to be unaffected by this activation mechanism. Here we show, using a combination of biochemical and biophysical methods, that binding of UPF2 to UPF1 drastically reduces the affinity of UPF1 for RNA, leading to a release of the bound RNA. Although UPF2 is capable of binding RNA in vitro, our results suggest that dissociation of the UPF1-RNA complex is not a consequence of direct competition in RNA binding but rather an allosteric effect that is likely mediated by the conformational change in UPF1 that is induced upon binding its activator. We discuss these results in light of transient interactions forged during mRNP assembly, particularly in the UPF1-dependent mRNA decay pathways.
Collapse
Affiliation(s)
- Guangpu Xue
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Vincent D Maciej
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | | | - Melis Pak
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Uma Jayachandran
- Max Planck Institute of Biochemistry, Structural Cell Biology Department, D-82152 Martinsried, Germany
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
31
|
Keil P, Wulf A, Kachariya N, Reuscher S, Hühn K, Silbern I, Altmüller J, Keller M, Stehle R, Zarnack K, Sattler M, Urlaub H, Sträßer K. Npl3 functions in mRNP assembly by recruitment of mRNP components to the transcription site and their transfer onto the mRNA. Nucleic Acids Res 2022; 51:831-851. [PMID: 36583366 PMCID: PMC9881175 DOI: 10.1093/nar/gkac1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large ribonucleoprotein particles (RNPs) these proteins function in. Using UV-induced RNA-protein crosslinking of entire cells, protein complex purification and mass spectrometric analysis, we identified >100 in vivo RNA crosslinks in 16 nuclear mRNP components in Saccharomyces cerevisiae. For functional analysis, we chose Npl3, which displayed crosslinks in its two RNA recognition motifs (RRMs) and in the connecting flexible linker region. Both RRM domains and the linker uniquely contribute to RNA recognition as revealed by NMR and structural analyses. Interestingly, mutations in these regions cause different phenotypes, indicating distinct functions of the different RNA-binding domains. Notably, an npl3-Linker mutation strongly impairs recruitment of several mRNP components to chromatin and incorporation of other mRNP components into nuclear mRNPs, establishing a so far unknown function of Npl3 in nuclear mRNP assembly. Taken together, our integrative analysis uncovers a specific function of the RNA-binding activity of the nuclear mRNP component Npl3. This approach can be readily applied to RBPs in any RNA metabolic process.
Collapse
Affiliation(s)
| | | | | | - Samira Reuscher
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt a.M., Germany
| | - Kristin Hühn
- Institute of Biochemistry, FB08, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Ivan Silbern
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen, University Medical Center Goettingen, Institute of Clinical Chemistry, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Cologne, Germany,Technology platform genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mario Keller
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt a.M., Germany
| | - Ralf Stehle
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany,Institute of Structural Biology, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt a.M., Germany,Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany
| | | | | | - Katja Sträßer
- To whom correspondence should be addressed. Tel: +49 641 99 35400; Fax: +49 641 99 35409;
| |
Collapse
|
32
|
Smirnov A. How global RNA-binding proteins coordinate the behaviour of RNA regulons: an information approach. Comput Struct Biotechnol J 2022; 20:6317-6338. [DOI: 10.1016/j.csbj.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
33
|
Maciej VD, Mateva N, Schwarz J, Dittmers T, Mallick M, Urlaub H, Chakrabarti S. Intrinsically disordered regions of tristetraprolin and DCP2 directly interact to mediate decay of ARE-mRNA. Nucleic Acids Res 2022; 50:10665-10679. [PMID: 36130271 PMCID: PMC9561381 DOI: 10.1093/nar/gkac797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
The RNA-binding protein tristetraprolin (TTP) is a potent activator of mRNA decay, specifically for transcripts bearing AU-rich elements (AREs) in their 3′-untranslated regions. TTP functions as a mediator for mRNA decay by interacting with the decay machinery and recruiting it to the target ARE-mRNA. In this study, we report a weak, but direct interaction between TTP and the human decapping enzyme DCP2, which impacts the stability of ARE transcripts. The TTP–DCP2 interaction is unusual as it involves intrinsically disordered regions (IDRs) of both binding partners. We show that the IDR of DCP2 has a propensity for oligomerization and liquid–liquid phase separation in vitro. Binding of TTP to DCP2 leads to its partitioning into phase-separated droplets formed by DCP2, suggesting that molecular crowding might facilitate the weak interaction between the two proteins and enable assembly of a decapping-competent mRNA–protein complex on TTP-bound transcripts in cells. Our studies underline the role of weak interactions in the cellular interaction network and their contribution towards cellular functionality.
Collapse
Affiliation(s)
- Vincent D Maciej
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Nevena Mateva
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Juliane Schwarz
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, D-37077 Goettingen, Germany.,University Medical Center Goettingen, Bioanalytics, Institute for Clinical Chemistry, Robert Koch Strasse 40, D-37075 Goettingen, Germany
| | - Theresa Dittmers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Megha Mallick
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, D-37077 Goettingen, Germany.,University Medical Center Goettingen, Bioanalytics, Institute for Clinical Chemistry, Robert Koch Strasse 40, D-37075 Goettingen, Germany
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany
| |
Collapse
|
34
|
Structural basis for Gemin5 decamer-mediated mRNA binding. Nat Commun 2022; 13:5166. [PMID: 36056043 PMCID: PMC9440017 DOI: 10.1038/s41467-022-32883-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gemin5 in the Survival Motor Neuron (SMN) complex serves as the RNA-binding protein to deliver small nuclear RNAs (snRNAs) to the small nuclear ribonucleoprotein Sm complex via its N-terminal WD40 domain. Additionally, the C-terminal region plays an important role in regulating RNA translation by directly binding to viral RNAs and cellular mRNAs. Here, we present the three-dimensional structure of the Gemin5 C-terminal region, which adopts a homodecamer architecture comprised of a dimer of pentamers. By structural analysis, mutagenesis, and RNA-binding assays, we find that the intact pentamer/decamer is critical for the Gemin5 C-terminal region to bind cognate RNA ligands and to regulate mRNA translation. The Gemin5 high-order architecture is assembled via pentamerization, allowing binding to RNA ligands in a coordinated manner. We propose a model depicting the regulatory role of Gemin5 in selective RNA binding and translation. Therefore, our work provides insights into the SMN complex-independent function of Gemin5. Structural biology, complemented by biochemistry experiments and RNA-binding assays show that the Gemin5 C-terminal region adopts a decamer architecture. Gemin5 decamerization is essential for its role in regulating mRNA translation.
Collapse
|
35
|
Yang R, Liu H, Yang L, Zhou T, Li X, Zhao Y. RPpocket: An RNA–Protein Intuitive Database with RNA Pocket Topology Resources. Int J Mol Sci 2022; 23:ijms23136903. [PMID: 35805909 PMCID: PMC9266927 DOI: 10.3390/ijms23136903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
RNA–protein complexes regulate a variety of biological functions. Thus, it is essential to explore and visualize RNA–protein structural interaction features, especially pocket interactions. In this work, we develop an easy-to-use bioinformatics resource: RPpocket. This database provides RNA–protein complex interactions based on sequence, secondary structure, and pocket topology analysis. We extracted 793 pockets from 74 non-redundant RNA–protein structures. Then, we calculated the binding- and non-binding pocket topological properties and analyzed the binding mechanism of the RNA–protein complex. The results showed that the binding pockets were more extended than the non-binding pockets. We also found that long-range forces were the main interaction for RNA–protein recognition, while short-range forces strengthened and optimized the binding. RPpocket could facilitate RNA–protein engineering for biological or medical applications.
Collapse
|
36
|
Ribonomics Approaches to Identify RBPome in Plants and Other Eukaryotes: Current Progress and Future Prospects. Int J Mol Sci 2022; 23:ijms23115923. [PMID: 35682602 PMCID: PMC9180120 DOI: 10.3390/ijms23115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins (RBPs) form complex interactions with RNA to regulate the cell’s activities including cell development and disease resistance. RNA-binding proteome (RBPome) aims to profile and characterize the RNAs and proteins that interact with each other to carry out biological functions. Generally, RNA-centric and protein-centric ribonomic approaches have been successfully developed to profile RBPome in different organisms including plants and animals. Further, more and more novel methods that were firstly devised and applied in mammalians have shown great potential to unravel RBPome in plants such as RNA-interactome capture (RIC) and orthogonal organic phase separation (OOPS). Despise the development of various robust and state-of-the-art ribonomics techniques, genome-wide RBP identifications and characterizations in plants are relatively fewer than those in other eukaryotes, indicating that ribonomics techniques have great opportunities in unraveling and characterizing the RNA–protein interactions in plant species. Here, we review all the available approaches for analyzing RBPs in living organisms. Additionally, we summarize the transcriptome-wide approaches to characterize both the coding and non-coding RBPs in plants and the promising use of RBPome for booming agriculture.
Collapse
|
37
|
Francisco-Velilla R, Embarc-Buh A, Del Caño-Ochoa F, Abellan S, Vilar M, Alvarez S, Fernandez-Jaen A, Kour S, Rajan DS, Pandey UB, Ramón-Maiques S, Martinez-Salas E. Functional and structural deficiencies of Gemin5 variants associated with neurological disorders. Life Sci Alliance 2022; 5:5/7/e202201403. [PMID: 35393353 PMCID: PMC8989681 DOI: 10.26508/lsa.202201403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction of RNA-binding proteins is often linked to a wide range of human disease, particularly with neurological conditions. Gemin5 is a member of the survival of the motor neurons (SMN) complex, a ribosome-binding protein and a translation reprogramming factor. Recently, pathogenic mutations in Gemin5 have been reported, but the functional consequences of these variants remain elusive. Here, we report functional and structural deficiencies associated with compound heterozygosity variants within the Gemin5 gene found in patients with neurodevelopmental disorders. These clinical variants are located in key domains of Gemin5, the tetratricopeptide repeat (TPR)-like dimerization module and the noncanonical RNA-binding site 1 (RBS1). We show that the TPR-like variants disrupt protein dimerization, whereas the RBS1 variant confers protein instability. All mutants are defective in the interaction with protein networks involved in translation and RNA-driven pathways. Importantly, the TPR-like variants fail to associate with native ribosomes, hampering its involvement in translation control and establishing a functional difference with the wild-type protein. Our study provides insights into the molecular basis of disease associated with malfunction of the Gemin5 protein.
Collapse
Affiliation(s)
- Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Francisco Del Caño-Ochoa
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Sara Alvarez
- New Integrated Medical Genetics (NIMGENETICS), Madrid, Spain
| | - Alberto Fernandez-Jaen
- Neuropediatric Department, Hospital Universitario Quirónsalud, Madrid, Spain.,School of Medicine, Universidad Europea de Madrid, Madrid, Spain
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Deepa S Rajan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Santiago Ramón-Maiques
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Cientificas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| |
Collapse
|
38
|
Cañonero L, Pautasso C, Galello F, Sigaut L, Pietrasanta L, Arroyo J, Bermúdez-Moretti M, Portela P, Rossi S. Heat stress regulates the expression of TPK1 gene at transcriptional and post-transcriptional levels in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119209. [PMID: 34999138 DOI: 10.1016/j.bbamcr.2021.119209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3∆ mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.
Collapse
Affiliation(s)
- Luciana Cañonero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Constanza Pautasso
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fiorella Galello
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lorena Sigaut
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Lia Pietrasanta
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Física, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Mariana Bermúdez-Moretti
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Buenos Aires, Argentina; CONICET Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
39
|
Vieira-Vieira CH, Dauksaite V, Sporbert A, Gotthardt M, Selbach M. Proteome-wide quantitative RNA-interactome capture identifies phosphorylation sites with regulatory potential in RBM20. Mol Cell 2022; 82:2069-2083.e8. [DOI: 10.1016/j.molcel.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/14/2021] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
40
|
Weis K, Hondele M. The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates. Annu Rev Biochem 2022; 91:197-219. [PMID: 35303788 DOI: 10.1146/annurev-biochem-032620-105429] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DEAD-box ATPases constitute a very large protein family present in all cells, often in great abundance. From bacteria to humans, they play critical roles in many aspects of RNA metabolism, and due to their widespread importance in RNA biology, they have been characterized in great detail at both the structural and biochemical levels. DEAD-box proteins function as RNA-dependent ATPases that can unwind short duplexes of RNA, remodel ribonucleoprotein (RNP) complexes, or act as clamps to promote RNP assembly. Yet, it often remains enigmatic how individual DEAD-box proteins mechanistically contribute to specific RNA-processing steps. Here, we review the role of DEAD-box ATPases in the regulation of gene expression and propose that one common function of these enzymes is in the regulation of liquid-liquid phase separation of RNP condensates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland;
| | - Maria Hondele
- Biozentrum, University of Basel, Basel, Switzerland;
| |
Collapse
|
41
|
Studying RNP Composition with RIP. Methods Mol Biol 2021. [PMID: 34694608 DOI: 10.1007/978-1-0716-1851-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA is never left alone throughout its life cycle. Together with proteins, RNAs form membraneless organelles, called ribonucleoprotein particles (RNPs) where these two types of macromolecules strongly influence each other's functions and destinies. RNA immunoprecipitation is still one of the favorite techniques which allows to simultaneously study both the RNA and protein composition of the RNP complex.
Collapse
|
42
|
Salloum T, Tokajian S, Hirt RP. Advances in Understanding Leishmania Pathobiology: What Does RNA-Seq Tell Us? Front Cell Dev Biol 2021; 9:702240. [PMID: 34540827 PMCID: PMC8440825 DOI: 10.3389/fcell.2021.702240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by a protozoa parasite from over 20 Leishmania species. The clinical manifestations and the outcome of the disease vary greatly. Global RNA sequencing (RNA-Seq) analyses emerged as a powerful technique to profile the changes in the transcriptome that occur in the Leishmania parasites and their infected host cells as the parasites progresses through their life cycle. Following the bite of a sandfly vector, Leishmania are transmitted to a mammalian host where neutrophils and macrophages are key cells mediating the interactions with the parasites and result in either the elimination the infection or contributing to its proliferation. This review focuses on RNA-Seq based transcriptomics analyses and summarizes the main findings derived from this technology. In doing so, we will highlight caveats in our understanding of the parasite's pathobiology and suggest novel directions for research, including integrating more recent data highlighting the role of the bacterial members of the sandfly gut microbiota and the mammalian host skin microbiota in their potential role in influencing the quantitative and qualitative aspects of leishmaniasis pathology.
Collapse
Affiliation(s)
- Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Robert P. Hirt
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
43
|
Conservation in the Iron Responsive Element Family. Genes (Basel) 2021; 12:genes12091365. [PMID: 34573347 PMCID: PMC8466369 DOI: 10.3390/genes12091365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Iron responsive elements (IREs) are mRNA stem-loop targets for translational control by the two iron regulatory proteins IRP1 and IRP2. They are found in the untranslated regions (UTRs) of genes that code for proteins involved in iron metabolism. There are ten “classic” IRE types that define the conserved secondary and tertiary structure elements necessary for proper IRP binding, and there are 83 published “IRE-like” sequences, most of which depart from the established IRE model. Here are structurally-guided discussions regarding the essential features of an IRE and what is important for IRE family membership.
Collapse
|
44
|
Machado de Amorim A, Chakrabarti S. Assembly of multicomponent machines in RNA metabolism: A common theme in mRNA decay pathways. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1684. [PMID: 34351053 DOI: 10.1002/wrna.1684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022]
Abstract
Multicomponent protein-RNA complexes comprising a ribonuclease and partner RNA helicase facilitate the turnover of mRNA in all domains of life. While these higher-order complexes provide an effective means of physically and functionally coupling the processes of RNA remodeling and decay, most ribonucleases and RNA helicases do not exhibit sequence specificity in RNA binding. This raises the question as to how these assemblies select substrates for processing and how the activities are orchestrated at the precise moment to ensure efficient decay. The answers to these apparent puzzles lie in the auxiliary components of the assemblies that might relay decay-triggering signals. Given their function within the assemblies, these components may be viewed as "sensors." The functions and mechanisms of action of the sensor components in various degradation complexes in bacteria and eukaryotes are highlighted here to discuss their roles in RNA decay processes. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
45
|
Liu Y, Sun H, Li X, Liu Q, Zhao Y, Li L, Xu B, Hou Y, Jin W. Identification of a Three-RNA Binding Proteins (RBPs) Signature Predicting Prognosis for Breast Cancer. Front Oncol 2021; 11:663556. [PMID: 34322380 PMCID: PMC8311660 DOI: 10.3389/fonc.2021.663556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/19/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND To date, breast cancer remains the primary cause of tumor-related death among women, even though some leap-type developments of oncology have been done to slash the mortality. Considering the tumor heterogeneity and individual variation, the more reliable biomarkers are required to be identified for supporting the development of precision medicine in breast cancer. METHODS Based on the TCGA-BRCA and METABRIC databases, the differently expressed RNA binding proteins (RBPs) between tumor and normal tissues were investigated. In this study, we focused on the communal differently expressed RBPs in four subtypes of breast cancer. Lasso-penalized Cox analysis, Stepwise-multivariate Cox analysis and Kaplan-Meier survival curve were performed to identify the hub RBP-coding genes in predicting prognosis of breast cancer, and a prognostic model was established. The efficiency of this model was further validated in other independent GSE20685, GSE4922 and FUSCC-TNBC cohorts by calculating the risk score and performing survival analysis, ROC and nomogram. Moreover, pathologic functions of the candidate RBPs in breast cancer were explored using some routine experiments in vitro, and the potential compounds targeting these RBPs were predicted by reviewing the Comparative Toxicogenomics Database. RESULTS Here, we identified 62 RBPs which were differently expressed between the tumor and normal tissues. Thereinto, three RBPs (MRPL12, MRPL13 and POP1) acted as independent risk factors, and their expression pattern also correlated with poor prognosis of patients. A prognostic model, built with these 3-RBPs, possessed statistical significance to predict the survival probability of patients with breast cancer. Furthermore, experimental validations showed that down-regulating the expression of endogenous MRPL12, MRPL13 or POP1 could dramatically suppress the cellular viability and migration of breast cancer cells in vitro. Besides, some compounds (such as the Acetaminophen, Urethane and Tunicamycin) were predicted for curing breast cancer via targeting MRPL12, MRPL13 and POP1 simultaneously. CONCLUSION This study identified and established a 3-RBPs-based signature and nomogram for predicting the survival probability of patients with breast cancer. MRPL12, MRPL13 and POP1 might act as oncogenes in maintaining cellular viability and accelerating metastasis of breast cancer cells, implying the possibility of which to be designed as biomarkers and/or therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuan Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiqi Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangdong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Baojin Xu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Grewe B, Vogt C, Horstkötter T, Tippler B, Xiao H, Müller B, Überla K, Wagner R, Asbach B, Bohne J. The HIV 5' Gag Region Displays a Specific Nucleotide Bias Regulating Viral Splicing and Infectivity. Viruses 2021; 13:v13060997. [PMID: 34071819 PMCID: PMC8227319 DOI: 10.3390/v13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing and the expression of intron-containing mRNAs is one hallmark of HIV gene expression. To facilitate the otherwise hampered nuclear export of non-fully processed mRNAs, HIV encodes the Rev protein, which recognizes its intronic response element and fuels the HIV RNAs into the CRM-1-dependent nuclear protein export pathway. Both alternative splicing and Rev-dependency are regulated by the primary HIV RNA sequence. Here, we show that these processes are extremely sensitive to sequence alterations in the 5’coding region of the HIV genomic RNA. Increasing the GC content by insertion of either GFP or silent mutations activates a cryptic splice donor site in gag, entirely deregulates the viral splicing pattern, and lowers infectivity. Interestingly, an adaptation of the inserted GFP sequence toward an HIV-like nucleotide bias reversed these phenotypes completely. Of note, the adaptation yielded completely different primary sequences although encoding the same amino acids. Thus, the phenotypes solely depend on the nucleotide composition of the two GFP versions. This is a strong indication of an HIV-specific mRNP code in the 5′ gag region wherein the primary RNA sequence bias creates motifs for RNA-binding proteins and controls the fate of the HIV-RNA in terms of viral gene expression and infectivity.
Collapse
Affiliation(s)
- Bastian Grewe
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
| | - Carolin Vogt
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (C.V.); (T.H.)
| | - Theresa Horstkötter
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (C.V.); (T.H.)
| | - Bettina Tippler
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
- Department of Biochemistry, Ruhr-University, 44780 Bochum, Germany
| | - Han Xiao
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
- Institute of Clinical and Molecular Virology, University Clinics Erlangen, 91054 Erlangen, Germany
| | - Bianca Müller
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
- Institute of Clinical and Molecular Virology, University Clinics Erlangen, 91054 Erlangen, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, 93053 Regensburg, Germany; (R.W.); (B.A.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University Regensburg, 93053 Regensburg, Germany; (R.W.); (B.A.)
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (C.V.); (T.H.)
- Correspondence: ; Tel.: +49-511-532-4308
| |
Collapse
|
47
|
Ptok J, Müller L, Ostermann PN, Ritchie A, Dilthey AT, Theiss S, Schaal H. Modifying splice site usage with ModCon: Maintaining the genetic code while changing the underlying mRNP code. Comput Struct Biotechnol J 2021; 19:3069-3076. [PMID: 34136105 PMCID: PMC8178101 DOI: 10.1016/j.csbj.2021.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
Codon degeneracy of amino acid sequences permits an additional “mRNP code” layer underlying the genetic code that is related to RNA processing. In pre-mRNA splicing, splice site usage is determined by both intrinsic strength and sequence context providing RNA binding sites for splicing regulatory proteins. In this study, we systematically examined modification of splicing regulatory properties in the neighborhood of a GT site, i.e. potential splice site, without altering the encoded amino acids. We quantified the splicing regulatory properties of the neighborhood around a potential splice site by its Splice Site HEXplorer Weight (SSHW) based on the HEXplorer score algorithm. To systematically modify GT site neighborhoods, either minimizing or maximizing their SSHW, we designed the novel stochastic optimization algorithm ModCon that applies a genetic algorithm with stochastic crossover, insertion and random mutation elements supplemented by a heuristic sliding window approach. To assess the achievable range in SSHW in human splice donors without altering the encoded amino acids, we applied ModCon to a set of 1000 randomly selected Ensembl annotated human splice donor sites, achieving substantial and accurate changes in SSHW. Using ModCon optimization, we successfully switched splice donor usage in a splice site competition reporter containing coding sequences from FANCA, FANCB or BRCA2, while retaining their amino acid coding information. The ModCon algorithm and its R package implementation can assist in reporter design by either introducing novel splice sites, silencing accidental, undesired splice sites, and by generally modifying the entire mRNP code while maintaining the genetic code.
Collapse
Key Words
- A, adenine
- F1, filial sequence 1
- G, guanine
- GA, genetic algorithm
- HBS, HBond score
- HBond score
- HEXplorer score
- HZEI, HEXplorer score
- P1, parental sequence 1
- SA, splice acceptor
- SD, splice donor
- SR proteins, serine- and arginine-rich proteins
- SRP, splicing regulatory protein
- SSHW, splice site HEXplorer weight
- SW, sliding window
- Splice donor
- Splicing regulatory proteins
- Splicing reporter
- T, thymine
- eGFP, enhanced green fluorescent protein
- hnRNP, heterogeneous nuclear ribonucleoproteins
- nt, nucleotides
- pre-mRNA splicing
- pre-mRNA, precursor messenger RNA
- snRNA, small nuclear RNA
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Philipp Niklas Ostermann
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Anastasia Ritchie
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Alexander T Dilthey
- Institute of Medical Statistics and Computational Biology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
48
|
Vieira-Vieira CH, Selbach M. Opportunities and Challenges in Global Quantification of RNA-Protein Interaction via UV Cross-Linking. Front Mol Biosci 2021; 8:669939. [PMID: 34055886 PMCID: PMC8155585 DOI: 10.3389/fmolb.2021.669939] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
RNA-binding proteins (RBPs) are key mediators of posttranscriptional gene expression control. However, the links between cell signaling on the one hand and RBP function on the other are understudied. While thousands of posttranslational modification (PTM) sites on RBPs have been identified, their functional roles are only poorly characterized. RNA-interactome capture (RIC) and cross-linking and immunoprecipitation (CLIP) are attractive methods that provide information about RBP-RNA interactions on a genome-wide scale. Both approaches rely on the in situ UV cross-linking of RBPs and RNAs, biochemical enrichment and analysis by RNA-sequencing (CLIP) or mass spectrometry (RIC). In principle, RIC- and CLIP-like methods could be used to globally quantify RBP-RNA interactions in response to perturbations. However, several biases have to be taken into account to avoid misinterpretation of the results obtained. Here, we focus on RIC-like methods and discuss four key aspects relevant for quantitative interpretation: (1) the RNA isolation efficiency, (2) the inefficient and highly variable UV cross-linking, (3) the baseline RNA occupancy of RBPs, and (4) indirect factors affecting RBP-RNA interaction. We highlight these points by presenting selected examples of PTMs that might induce differential quantification in RIC-like experiments without necessarily affecting RNA-binding. We conclude that quantifying RBP-RNA interactions via RIC or CLIP-like methods should not be regarded as an end in itself but rather as starting points for deeper analysis.
Collapse
Affiliation(s)
- Carlos H Vieira-Vieira
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
49
|
The RNA binding protein FgRbp1 regulates specific pre-mRNA splicing via interacting with U2AF23 in Fusarium. Nat Commun 2021; 12:2661. [PMID: 33976182 PMCID: PMC8113354 DOI: 10.1038/s41467-021-22917-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/05/2021] [Indexed: 02/03/2023] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is an essential and tightly regulated process in eukaryotic cells; however, the regulatory mechanisms for the splicing are not well understood. Here, we characterize a RNA binding protein named FgRbp1 in Fusarium graminearum, a fungal pathogen of cereal crops worldwide. Deletion of FgRbp1 leads to reduced splicing efficiency in 47% of the F. graminearum intron-containing gene transcripts that are involved in various cellular processes including vegetative growth, development, and virulence. The human ortholog RBM42 is able to fully rescue the growth defects of ΔFgRbp1. FgRbp1 binds to the motif CAAGR in its target mRNAs, and interacts with the splicing factor FgU2AF23, a highly conserved protein involved in 3' splice site recognition, leading to enhanced recruitment of FgU2AF23 to the target mRNAs. This study demonstrates that FgRbp1 is a splicing regulator and regulates the pre-mRNA splicing in a sequence-dependent manner in F. graminearum.
Collapse
|
50
|
Li Z, Zhang P, Zhang R, Wang X, Tse YC, Zhang H. A collection of toolkit strains reveals distinct localization and dynamics of membrane-associated transcripts in epithelia. Cell Rep 2021; 35:109072. [PMID: 33951426 DOI: 10.1016/j.celrep.2021.109072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Visualizing mRNA in real time in vivo at high resolution is critical for a full understanding of the spatiotemporal dynamics of gene regulation and function. Here, using a PP7/PCP-based mRNA-tagging approach, we construct a collection of tissue-specific and differentially expressed toolkit strains for visualizing mRNAs encoding apical, basolateral, and junctional proteins in Caenorhabditis elegans epithelia. We precisely delineate the spatiotemporal organization and dynamics of these transcripts across multiple subcellular compartments and tissues. Remarkably, all the transcripts exhibit an asymmetric, membrane-associated localization during epithelial polarization and maturation, which suggests that mRNA localization is a prerequisite for epithelial polarization and function. Single-particle tracking reveals striking features of the transport dynamics of the mRNAs in a gene-specific, compartment-linked, and time-resolved manner. The toolkit can be used to identify the cis-regulatory elements and trans-acting factors for mRNA localization. This study provides a valuable resource to investigate complex RNA dynamics in epithelial polarity and morphogenesis.
Collapse
Affiliation(s)
- Zhimin Li
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Pei Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruotong Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xinyan Wang
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Chung Tse
- Core Research Facilities, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China.
| |
Collapse
|