1
|
Dai W, Diao H, Qu H, Wurm D, Lu Y, Chen QM. DExH-Box Helicase 9 (DHX9) Participates in De Novo Nrf2 Protein Translation under Oxidative Stress. Mol Cell Proteomics 2025:100977. [PMID: 40280489 DOI: 10.1016/j.mcpro.2025.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Nrf2 transcript factor plays an important role in cellular defense against oxidative stress due to its control for expression of antioxidant and detoxification genes. We have found that Nrf2 gene undergoes de novo protein translation when mammalian cells encounter oxidative stress. Here, we report the discovery of DExH-box helicase-9 (DHX9), also known as RNA helicase A, as a binding protein for Nrf2 mRNA at 5'-untranslated region (5'UTR). H2O2 treatment causes dose- or time- dependent increases of DHX9 binding to Nrf2 5'UTR, in parallel with elevation of Nrf2 protein. Inhibiting DHX9 expression with siRNA or its activity with YK-4-279 inhibitor blocked H2O2 from inducing Nrf2 mRNA recruitment to the ribosomes or Nrf2 protein elevation. As a nuclear protein, DHX9 was found to increase its abundance in the cytosol with oxidative stress. An increase of DHX9 was detected in the ribosomes from cells treated with H2O2, most significantly with 100 μM H2O2, and at 60 mins. Ribosomal fractionation revealed an increase of DHX9 protein at 43/48S and 80S fractions in H2O2 treated cells. H2O2 treatment caused an RNA dependent increase of DHX9 interaction with eIF3η. The binding of DHX9 to Nrf2 5'UTR was enhanced by H2O2 treated cells or by deducting the length of Nrf2 5'UTR. RNase digestion enhanced DHX9 association with the ribosomes. Our data have revealed a novel mechanism of de novo Nrf2 protein translation under oxidative stress involving DHX9 binding to Nrf2 5'UTR, perhaps via removal of a negative RNA element, to recruit 43S pre-initiation complex for translation initiation.
Collapse
Affiliation(s)
- Wujing Dai
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, 1295 N. Martin Ave, Tucson, AZ 85721
| | - Hongting Diao
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, 1295 N. Martin Ave, Tucson, AZ 85721
| | - Han Qu
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, 1295 N. Martin Ave, Tucson, AZ 85721
| | - Daniel Wurm
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, 1295 N. Martin Ave, Tucson, AZ 85721
| | - Yingying Lu
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, 1295 N. Martin Ave, Tucson, AZ 85721
| | - Qin M Chen
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, 1295 N. Martin Ave, Tucson, AZ 85721.
| |
Collapse
|
2
|
Yan Y, Yu C, Xie B, Zhou H, Zhang C, Tian L. Characterization and Early Response of the DEAD Gene Family to Heat Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2025; 14:1172. [PMID: 40284060 PMCID: PMC12030476 DOI: 10.3390/plants14081172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
The DEAD-box RNA helicase family, acting as a critical regulator in RNA metabolism, plays a vital role in plant growth, development, and adaptation to various stresses. Although a number of DEAD proteins have been reported to participate in heat stress response in several species, the response of DEAD-box RNA helicases to heat stress has not been comprehensively analyzed in tomato. In this study, 42 SlDEAD genes were identified from the tomato genome. Evolutionary analysis of DEAD family genes across different plant species reveals that DEAD family genes can be segregated into five groups. A comprehensive analysis of their physicochemical properties, gene structure, chromosome location, and conserved motifs unveils diversity among the members of the SlDEAD family. An investigation into the subcellular localization of seven SlDEAD proteins indicates that SlDEAD7, SlDEAD14, and SlDEAD26 are located in the endoplasmic reticulum, and SlDEAD40 is located in the endoplasmic reticulum and nucleus, whereas SlDEAD17, SlDEAD25, and SlDEAD35 are located in the chloroplast. The expression of 37 out of 42 SlDEAD genes was responsive to heat stress induction. During the early stage of high-temperature treatment, they exhibited five distinct expression patterns. These findings contribute to a deeper comprehension of the evolution, expansion complexity, and function of SlDEAD genes and provide insights into the potential role of SlDEAD genes in tomato tolerance to heat stress.
Collapse
Affiliation(s)
- Yanyan Yan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Chao Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Bolun Xie
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Hui Zhou
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Caiyu Zhang
- Institute of Agricultural Experiment Station of Changxing Substation, Zhejiang University, Hangzhou 310058, China;
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (Y.Y.); (C.Y.); (B.X.); (H.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Abudukeremu A, Azatibieke G, Yimiti G, Guan Y, Chen Z. Development of Polyclonal Antibodies for the Preliminary Characterization of GPATCH1, a Novel Splicing Factor Associated with Human Osteoporosis. Appl Biochem Biotechnol 2025; 197:1790-1804. [PMID: 39607466 DOI: 10.1007/s12010-024-05132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Specific antibodies, which can be used in various experiments, are critical tools for unraveling genes' function, but many commercial antibodies are not tested for these properties. GPATCH1 is a novel G-patch family protein. Genome-wide association studies (GWAS) revealed it as a gene associated with human osteoporosis, and yeast-based research suggested it may be a splicing factor; however, its molecular mechanism remains a mystery. We report here that currently available commercial GPATCH1 antibodies have poor specificity and are not recommended for immunoprecipitation. We elucidated the apparent molecular weight of GPATCH1 to evaluate the antibodies' specificity. Based on this, a specific polyclonal antibody against GPATCH1 that can be used for Western blotting, immunoprecipitation and immunofluorescence was prepared. With the antibodies, we found that GPATCH1 may be a tissue-specific splicing factor. Our study lays the groundwork for further investigations into the molecular mechanisms by which GPATCH1 affects bone metabolism in the future.
Collapse
Affiliation(s)
- Aikedaimu Abudukeremu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Guliqiati Azatibieke
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Gulisitan Yimiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Yaqun Guan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Zhe Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China.
| |
Collapse
|
4
|
Lin R, Elmir E, Reynolds MJ, Johnson AW. In vitro characterization of the yeast DEAH/RHA RNA helicase Dhr1. J Biol Chem 2025; 301:108366. [PMID: 40024476 PMCID: PMC11994318 DOI: 10.1016/j.jbc.2025.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
In eukaryotic ribosome biogenesis, the small subunit (SSU) processome is a metastable intermediate in the assembly of the small (40S) subunit. In the SSU processome, the ribosomal RNA domains are splayed open by the intervention of assembly factors as well as U3 snoRNA. A critical step during the transition from the SSU processome to the nearly mature pre-40S particle is the removal of the U3 snoRNA to allow the formation of the central pseudoknot, a universally conserved structure which connects all domains of the subunit and contributes to its dynamic nature during translation. We previously identified the DEAH/RHA RNA helicase Dhr1 as the enzyme responsible for displacing the U3 snoRNA and the SSU processome factor Utp14 as an activator of Dhr1. Here, we have utilized biochemical and yeast genetic methods to further characterize Dhr1. We show that the N terminus as well as an internal loop within the RecA2 domain are autoinhibitory. We found that Utp14 can activate the ATPase activity of Dhr1 lacking the autoinhibitory N-terminal loop but not full-length Dhr1. We considered the possibility that Utp14 activates Dhr1 by relieving the autoinhibition of the loop within the RecA2 domain. However, our results are more consistent with Utp14 activating Dhr1 by binding to the surface of the RecA1 and RecA2 domains rather than displacing the inhibitory loop. This position of Utp14 is distinct from how G-patch proteins activate other DEXH/RHA helicases and is consistent with our previous conclusion that Utp14 is not a canonical G-patch protein.
Collapse
Affiliation(s)
- Ran Lin
- Department of Molecular Biosciences, The University of Texas at Austin Austin, Texas, USA
| | - Ezzeddine Elmir
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin Austin, Texas, USA.
| |
Collapse
|
5
|
Rehman S, Bahadur S, Xia W, Runan C, Ali M, Maqbool Z. From genes to traits: Trends in RNA-binding proteins and their role in plant trait development: A review. Int J Biol Macromol 2024; 282:136753. [PMID: 39488325 DOI: 10.1016/j.ijbiomac.2024.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
RNA-binding proteins (RBPs) are essential for cellular functions by attaching to RNAs, creating dynamic ribonucleoprotein complexes (RNPs) essential for managing RNA throughout its life cycle. These proteins are critical to all post-transcriptional processes, impacting vital cellular functions during development and adaptation to environmental changes. Notably, in plants, RBPs are critical for adjusting to inconsistent environmental conditions, with recent studies revealing that plants possess, more prominent, and both novel and conserved RBP families compared to other eukaryotes. This comprehensive review delves into the varied RBPs covering their structural attributes, domain base function, and their interactions with RNA in metabolism, spotlighting their role in regulating post-transcription and splicing and their reaction to internal and external stimuli. It highlights the complex regulatory roles of RBPs, focusing on plant trait regulation and the unique functions they facilitate, establishing a foundation for appreciating RBPs' significance in plant growth and environmental response strategies.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Science, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Chen Runan
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Maroof Ali
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Zainab Maqbool
- Botany Department, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
6
|
Wen Z, Hu R, Pi Q, Zhang D, Duan J, Li Z, Li Q, Zhao X, Yang M, Zhao X, Liu D, Su Z, Li D, Zhang Y. DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3295-3311. [PMID: 39166471 PMCID: PMC11606427 DOI: 10.1111/pbi.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.
Collapse
Affiliation(s)
- Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Rujian Hu
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jiangning Duan
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qian Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xiaofei Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Deshui Liu
- Beijing Life Science AcademyBeijingChina
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Zanetti A, Dujardin G, Fares-Taie L, Amiel J, Roger JE, Audo I, Robert MP, David P, Jung V, Goudin N, Guerrera IC, Moriceau S, Amana D, Assia Batzir N, Bachar-Zipori A, Basel Salmon L, Boddaert N, Briault S, Bruel AL, Costet-Fighiera C, Coutinho Santos L, Gitiaux C, Kaminska K, Kuentz P, Orenstein N, Philip-Sarles N, Plutino M, Quinodoz M, Santos C, Sigaudy S, Soeiro E Sá M, Sofrin E, Sousa AB, Sousa-Luis R, Thauvin-Robinet C, van Dijk EL, Zaafrane-Khachnaoui K, Zur D, Kaplan J, Rivolta C, Rozet JM, Perrault I. GPATCH11 variants cause mis-splicing and early-onset retinal dystrophy with neurological impairment. Nat Commun 2024; 15:10096. [PMID: 39572588 PMCID: PMC11582697 DOI: 10.1038/s41467-024-54549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
Here we conduct a study involving 12 individuals with retinal dystrophy, neurological impairment, and skeletal abnormalities, with special focus on GPATCH11, a lesser-known G-patch domain-containing protein, regulator of RNA metabolism. To elucidate its role, we study fibroblasts from unaffected individuals and patients carrying the recurring c.328+1 G > T mutation, which specifically removes the main part of the G-patch domain while preserving the other domains. Additionally, we generate a mouse model replicating the patients' phenotypic defects, including retinal dystrophy and behavioral abnormalities. Our results reveal a subcellular localization of GPATCH11 characterized by a diffuse presence in the nucleoplasm, as well as centrosomal localization, suggesting potential functions in RNA and cilia metabolism. Transcriptomic analysis performed on mouse retina detect dysregulation in both gene expression and splicing activity, impacting key processes such as photoreceptor light responses, RNA regulation, and primary cilia-associated metabolism. Proteomic analysis of mouse retina confirms the roles GPATCH11 plays in RNA processing, splicing, and transcription regulation, while also suggesting additional functions in synaptic plasticity and nuclear stress response. Our research provides insights into the diverse roles of GPATCH11 and identifies that the mutations affecting this protein are responsible for a recently characterized described syndrome.
Collapse
Affiliation(s)
- Andrea Zanetti
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Gwendal Dujardin
- Génétique, Génomique fonctionnelle et Biotechnologies (GGB), Université de Brest, INSERM UMR1078, EFS, Brest, France
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Malformations, INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neurosciences, CERTO-Retina France, CNRS, Paris-Saclay University, Saclay, France
| | - Isabelle Audo
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, National Rare Disease Center REFERET F-, Paris, France
| | - Matthieu P Robert
- Ophthalmology Department, University Hospital Necker-Enfants Malades, APHP, Paris, France
| | - Pierre David
- Transgenesis platform, Laboratory of Animal Experimentation and Transgenesis (LEAT) of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMSS3633, Institute of Genetic Diseases, Imagine, Paris, France
| | - Vincent Jung
- Proteomic Platform Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Nicolas Goudin
- Necker Bioimage Analysis Core Facility of the Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Stéphanie Moriceau
- Platform for Neurobehavioral and metabolism, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Institute of Genetic Diseases, Imagine, Paris, France
| | - Danielle Amana
- Ophthalmology Department, Hospital Center of Orleans, Orleans, France
| | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Anat Bachar-Zipori
- Ophthalmology Division, Tel Aviv Medical Center; Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lina Basel Salmon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Recanati Genetics Institute, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Nathalie Boddaert
- Pediatric-Radiology Department, University Hospital Necker-Enfants Malades, APHP, Paris Cité University, INSERM UMR1163, Paris, France
| | - Sylvain Briault
- Genetics Department, Regional Hospital of Orleans (CHRO), Orleans, France
| | - Ange-Line Bruel
- INSERM UMR1231, GAD team Université de Bourgogne-Franche Comté, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | | | | | - Cyril Gitiaux
- Department of Clinical Neurophysiology, Reference center for neuromuscular pathologies Paris Nord Est, University Hospital Necker-Enfants Malades, Paris Cité University, Paris, France
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Paul Kuentz
- INSERM UMR1231, GAD team Université de Bourgogne-Franche Comté, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Naama Orenstein
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Morgane Plutino
- Service de Génétique Médicale, Hôpital l'Archet 2, CHU de Nice, Nice, France
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Cristina Santos
- Instituto de Oftalmologia Dr. Gama Pinto (IOGP), Lisboa, Portugal
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sabine Sigaudy
- Medical Genetics Department, Hospital Timone Enfant, Marseille, France
| | - Mariana Soeiro E Sá
- Department of Medical Genetics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Efrat Sofrin
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Ana Berta Sousa
- Department of Medical Genetics, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
- Laboratory of Basic Immunology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rui Sousa-Luis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christel Thauvin-Robinet
- INSERM UMR1231, GAD team Université de Bourgogne-Franche Comté, FHU-TRANSLAD, CHU Dijon, Dijon, France
- Reference Center for Rare Diseases "Developmental Abnormalities and Malformation Syndromes" of the East, Genetic center, Hopital d'Enfants, FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette Cedex, France
| | | | - Dinah Zur
- Ophthalmology Division, Tel Aviv Medical Center; Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Cité University, Paris, France.
| |
Collapse
|
8
|
Zhang Y, Zhao J, Chen X, Qiao Y, Kang J, Guo X, Yang F, Lyu K, Ding Y, Zhao Y, Sun H, Kwok CK, Wang H. DHX36 binding induces RNA structurome remodeling and regulates RNA abundance via m 6A reader YTHDF1. Nat Commun 2024; 15:9890. [PMID: 39543097 PMCID: PMC11564809 DOI: 10.1038/s41467-024-54000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
RNA structure constitutes a new layer of gene regulatory mechanisms. RNA binding proteins can modulate RNA secondary structures, thus participating in post-transcriptional regulation. The DEAH-box helicase 36 (DHX36) is known to bind and unwind RNA G-quadruplex (rG4) structure but the transcriptome-wide RNA structure remodeling induced by DHX36 binding and the impact on RNA fate remain poorly understood. Here, we investigate the RNA structurome alteration induced by DHX36 depletion. Our findings reveal that DHX36 binding induces structural remodeling not only at the localized binding sites but also on the entire mRNA transcript most pronounced in 3'UTR regions. DHX36 binding increases structural accessibility at 3'UTRs which is correlated with decreased post-transcriptional mRNA abundance. Further analyses and experiments uncover that DHX36 binding sites are enriched for N6-methyladenosine (m6A) modification and YTHDF1 binding; and DHX36 induced structural changes may facilitate YTHDF1 binding to m6A sites leading to RNA degradation. Altogether, our findings uncover the structural remodeling effect of DHX36 binding and its impact on RNA abundance through regulating m6A dependent YTHDF1 binding.
Collapse
Grants
- 82172436 National Natural Science Foundation of China (National Science Foundation of China)
- 32300703 National Natural Science Foundation of China (National Science Foundation of China)
- 32270587 National Natural Science Foundation of China (National Science Foundation of China)
- National Key R&D Program of China to H.W. (2022YFA0806003);General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (14115319, 14100620, 14106521 and 14105823 to H.W.);the research funds from Health@InnoHK program launched by Innovation Technology Commission, the Government of the Hong Kong SAR, China to H.W.; Collaborative Research Fund (CRF) from RGC to H.W. (C6018-19GF); Theme-based Research Scheme (TRS) from RGC (project number: T13-602/21-N); Hong Kong Epigenomics Project (EpiHK) Fund to H.W.; Area of Excellence Scheme (AoE) from RGC (project number: AoE/M-402/20); Health and Medical Research Fund (HMRF) from Health Bureau of the Hong Kong Special Administrative Region, China (project Code: 10210906 and 08190626 to H.W.).
- CUHK Direct Grant to X.C. (project No.: 2022.038)
- General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (14120420, 14103522 and 14105123); Hong Kong Epigenomics Project (EpiHK) Fund
- General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region (CityU 11100123, CityU 11100222, CityU 11100421); National Natural Science Foundation of China (NSFC) Excellent Young Scientists Fund (Hong Kong and Macau) Project (32222089) to C.K.K.; Croucher Foundation Project (9509003) to C.K.K.; State Key Laboratory of Marine Pollution Seed Collaborative Research Fund (SCRF/0037, SCRF/0040, SCRF0070) to C.K.K.; City University of Hong Kong projects (9678302 and 6000827) to C.K.K.; the Hong Kong Institute for Advanced Study, City University of Hong Kong [9360157] to C.K.K..
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jieyu Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR, China
| | - Xiaona Chen
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China
| | - Yulong Qiao
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China
| | - Jinjin Kang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiaofan Guo
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China
| | - Feng Yang
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Hao Sun
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China.
| | - Chun-Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine Limited, Hong Kong, SAR, China.
| |
Collapse
|
9
|
Hou X, Yang J, Xie Y, Ma B, Wang K, Pan W, Ma S, Wang L, Dong CH. The RNA helicase LOS4 regulates pre-mRNA splicing of key genes (EIN2, ERS2, CTR1) in the ethylene signaling pathway. PLANT CELL REPORTS 2024; 43:252. [PMID: 39367948 DOI: 10.1007/s00299-024-03340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE The Arabidopsis RNA helicase LOS4 plays a key role in regulating pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. The plant hormone ethylene plays diverse roles in plant growth, development, and responses to stress. Ethylene is perceived by the membrane-bound ethylene receptors complex, and then triggers downstream components, such as EIN2, to initiate signal transduction into the nucleus, leading to the activation of ethylene-responsive genes. Over the past decades, substantial information has been accumulated regarding gene cloning, protein-protein interactions, and downstream gene expressions in the ethylene pathway. However, our understanding of mRNA post-transcriptional processing and modification of key genes in the ethylene signaling pathway remains limited. This study aims to provide evidence demonstrating the involvement of the Arabidopsis RNA helicase LOS4 in pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. Various genetic approaches including RNAi gene silencing, CRISPR-Cas9 gene editing, and amino acid mutations were employed in this study. When LOS4 was silenced or knocked down, the ethylene sensitivity of etiolated seedlings was significantly enhanced. Further investigation revealed errors in the EIN2 pre-mRNA splicing when LOS4 was knocked down. In addition, aberrant pre-mRNA splicing was observed in the ERS2 and CTR1 genes in the pathway. Biochemical assays indicated that the los4-2 (E94K) mutant protein exhibited increased ATP binding and enhanced ATP hydrolytic activity. Conversely, the los4-1 (G364R) mutant had reduced substrate RNA binding and lower ATP binding activities. These findings significantly advanced our comprehension of the regulatory functions and molecular mechanisms of RNA helicase in ethylene signaling.
Collapse
Affiliation(s)
- Xiaomin Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jingli Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- Weifang University of Science and Technology, Weifang, 262700, China
| | - Yanhua Xie
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kun Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenqiang Pan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shaoqi Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lijuan Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Li X, Zhong S, Li C, Yan X, Zhu J, Li Y, Wang Z, Peng X, Zhang X. RNA helicase Brr2a promotes miRNA biogenesis by properly remodelling secondary structure of pri-miRNAs. NATURE PLANTS 2024; 10:1532-1547. [PMID: 39271943 PMCID: PMC11578039 DOI: 10.1038/s41477-024-01788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
RNA secondary structure (RSS) of primary microRNAs (pri-miRNAs) is a key determinant for miRNA production. Here we report that RNA helicase (RH) Brr2a, best known as a spliceosome component, modulates the structural complexity of pri-miRNAs to fine tune miRNA yield. Brr2a interacts with microprocessor component HYL1 and its loss reduces the levels of miRNAs derived from both intron-containing and intron-lacking pri-miRNAs. Brr2a binds to pri-miRNAs in vivo and in vitro. Furthermore, Brr2a hydrolyses ATP and the activity can be significantly enhanced by pri-miRNAs. Consequently, Brr2a unwinds pri-miRNAs in vitro. Moreover, Brr2a variants with compromised ATPase or RH activity are incapable of unwinding pri-miRNA, and their transgenic plants fail to restore miRNA levels in brr2a-2. Importantly, most of tested pri-miRNAs display distinct RSS, rendering them unsuitable for efficient processing in brr2a mutants vs Col-0. Collectively, this study reveals that Brr2a plays a non-canonical role in miRNA production beyond splicing regulation.
Collapse
Affiliation(s)
- Xindi Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Songxiao Zhong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xingxing Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, TX, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Kodali S, Proietti L, Valcarcel G, López-Rubio AV, Pessina P, Eder T, Shi J, Jen A, Lupión-Garcia N, Starner AC, Bartels MD, Cui Y, Sands CM, Planas-Riverola A, Martínez A, Velasco-Hernandez T, Tomás-Daza L, Alber B, Manhart G, Mayer IM, Kollmann K, Fatica A, Menendez P, Shishkova E, Rau RE, Javierre BM, Coon J, Chen Q, Van Nostrand EL, Sardina JL, Grebien F, Di Stefano B. RNA sequestration in P-bodies sustains myeloid leukaemia. Nat Cell Biol 2024; 26:1745-1758. [PMID: 39169219 PMCID: PMC12042958 DOI: 10.1038/s41556-024-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Post-transcriptional mechanisms are fundamental safeguards of progenitor cell identity and are often dysregulated in cancer. Here, we identified regulators of P-bodies as crucial vulnerabilities in acute myeloid leukaemia (AML) through genome-wide CRISPR screens in normal and malignant haematopoietic progenitors. We found that leukaemia cells harbour aberrantly elevated numbers of P-bodies and show that P-body assembly is crucial for initiation and maintenance of AML. Notably, P-body loss had little effect upon homoeostatic haematopoiesis but impacted regenerative haematopoiesis. Molecular characterization of P-bodies purified from human AML cells unveiled their critical role in sequestering messenger RNAs encoding potent tumour suppressors from the translational machinery. P-body dissolution promoted translation of these mRNAs, which in turn rewired gene expression and chromatin architecture in leukaemia cells. Collectively, our findings highlight the contrasting and unique roles of RNA sequestration in P-bodies during tissue homoeostasis and oncogenesis. These insights open potential avenues for understanding myeloid leukaemia and future therapeutic interventions.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Animals
- Hematopoiesis/genetics
- Cell Line, Tumor
- Mice
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ludovica Proietti
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gemma Valcarcel
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Patrizia Pessina
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Núria Lupión-Garcia
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne C Starner
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mason D Bartels
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Yingzhi Cui
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alba Martínez
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | | | - Bernhard Alber
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gabriele Manhart
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Isabella Maria Mayer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Pablo Menendez
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Rachel E Rau
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | - Joshua Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Qi Chen
- Molecular Medicine Program, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric L Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Jose L Sardina
- Josep Carreras Leukaemia Research Institute, Badalona, Spain.
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Dostálková A, Křížová I, Junková P, Racková J, Kapisheva M, Novotný R, Danda M, Zvonařová K, Šinkovec L, Večerková K, Bednářová L, Ruml T, Rumlová M. Unveiling the DHX15-G-patch interplay in retroviral RNA packaging. Proc Natl Acad Sci U S A 2024; 121:e2407990121. [PMID: 39320912 PMCID: PMC11459146 DOI: 10.1073/pnas.2407990121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
We explored how a simple retrovirus, Mason-Pfizer monkey virus (M-PMV) to facilitate its replication process, utilizes DHX15, a cellular RNA helicase, typically engaged in RNA processing. Through advanced genetic engineering techniques, we showed that M-PMV recruits DHX15 by mimicking cellular mechanisms, relocating it from the nucleus to the cytoplasm to aid in viral assembly. This interaction is essential for the correct packaging of the viral genome and critical for its infectivity. Our findings offer unique insights into the mechanisms of viral manipulation of host cellular processes, highlighting a sophisticated strategy that viruses employ to leverage cellular machinery for their replication. This study adds valuable knowledge to the understanding of viral-host interactions but also suggests a common evolutionary history between cellular processes and viral mechanisms. This finding opens a unique perspective on the export mechanism of intron-retaining mRNAs in the packaging of viral genetic information and potentially develop ways to stop it.
Collapse
Affiliation(s)
- Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Petra Junková
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Jana Racková
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Radim Novotný
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Matěj Danda
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Karolína Zvonařová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Larisa Šinkovec
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| | - Kateřina Večerková
- Department of Informatics and Chemistry, University of Chemistry and Technology, 166 28Prague, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20Prague, Czech Republic
| | - Lucie Bednářová
- Institute of Organic Chemistry and Biochemistry Research Centre & Gilead Sciences, Czech Academy of Sciences, 166 10Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology166 28, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, 166 28Prague, Czech Republic
| |
Collapse
|
13
|
Huang J, Zhao Y, Liu S, Chen Y, Du M, Wang Q, Zhang J, Yang X, Chen J, Zhang X. RH20, a phase-separated RNA helicase protein, facilitates plant resistance to viruses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112176. [PMID: 38971466 DOI: 10.1016/j.plantsci.2024.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
RNA silencing, a conserved gene regulatory mechanism, is critical for host resistance to viruses. Liquid-liquid phase separation (LLPS) is an important mechanism in regulating various biological processes. Emerging studies suggest RNA helicases play important roles in microRNA (miRNA) production through LLPS. In this study, we investigated the functional role of RNA helicase 20 (RH20), a DDX5 homolog in Arabidopsis thaliana, in RNA silencing and plant resistance to viruses. Our findings reveal that RH20 localizes in both the cytoplasm and nucleus, with puncta formation in the cytoplasm exhibiting liquid-liquid phase separation behavior. We demonstrate that RH20 plays positive roles in plant immunity against viruses. Further study showed that RH20 interacts with Argonaute 2 (AGO2), a key component of the RNA silencing pathway. Moreover, RH20 promotes the accumulation of both endogenous and exogenous small RNAs (sRNAs). Overall, our study identifies RH20 as a novel phase separation protein that interacting with AGO2, influencing sRNAs accumulation, and enhancing plant resistance to viruses.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shasha Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqiu Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Department of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meng Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianguang Yang
- Department of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Hainan Seed Industry Laboratory, Sanya 572025, China.
| |
Collapse
|
14
|
Yuan P, Cai Q, Hu Z. Arabidopsis DEAD-box RNA helicase 12 is required for salt tolerance during seed germination. Biochem Biophys Res Commun 2024; 725:150228. [PMID: 38936167 DOI: 10.1016/j.bbrc.2024.150228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
The DEAD-box family is the largest family of RNA helicases (RHs), playing crucial roles in RNA metabolism and plant stress resistance. In this study, we report that an RNA helicase, RH12, positively regulates plant salt tolerance, as rh12 knockout mutants exhibit heightened sensitivity to salt stress. Further analysis indicates that RH12 is involved in the abscisic acid (ABA) response, as rh12 knockout mutants show increased sensitivity to ABA. Examination of reactive oxygen species (ROS) revealed that RH12 helps inhibit ROS accumulation under salt stress during seed germination. Additionally, RH12 accelerates the degradation of specific germination-related transcripts. In conclusion, our results demonstrate that RH12 plays multiple roles in the salt stress response in Arabidopsis.
Collapse
Affiliation(s)
- Penglai Yuan
- College of Life Sciences, Nanjing Agricultural University, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, China.
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Tang X, Deng Y, Liang Y, Liao D, Wen F, Zhang Y. An RNA Helicase DHX33 Inhibitor Shows Broad Anticancer Activity via Inducing Ferroptosis in Cancer Cells. ACS OMEGA 2024; 9:28372-28384. [PMID: 38973855 PMCID: PMC11223218 DOI: 10.1021/acsomega.4c02265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
RNA helicase DHX33 has been identified as a critical factor promoting cancer development. In the present study, a previously developed small molecule inhibitor for DHX33, KY386, was found to robustly kill cancer cells via a new path, the ferroptosis pathway. Mechanistically, DHX33 promotes the expression of critical players in lipid metabolism including FADS1, FADS2, and SCD1 genes, thereby sensitizing cancer cells to ferroptosis mediated cell death. Our study reveals a novel mechanism of DHX33 in promoting tumorigenesis and highlights that pharmacological targeting DHX33 can be a feasible option in human cancers. Normally differentiated cells are insensitive to DHX33 inhibition, and DHX33 inhibitors have little cellular toxicity in vitro and in vivo. Our studies demonstrated that DHX33 inhibitors can be promising anticancer agents with great potential for cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Deqing Liao
- Shenzhen KeYe Life Technologies
Co., Ltd, Shenzhen, Guangdong 518155, China
| | - Fuyu Wen
- Shenzhen KeYe Life Technologies
Co., Ltd, Shenzhen, Guangdong 518155, China
| | - Yandong Zhang
- Shenzhen KeYe Life Technologies
Co., Ltd, Shenzhen, Guangdong 518155, China
| |
Collapse
|
16
|
Li Y, Li S, Zhao X, Shi C, Chai Y, Huang A, Shi Y. Novel insights into whey protein among Yak, Yellow Cattle, and Cattle-Yak milk. Food Chem X 2024; 22:101384. [PMID: 38681228 PMCID: PMC11046070 DOI: 10.1016/j.fochx.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
This study identified characteristic whey proteins from Zhongdian Yak (ZY), Diqing Yellow Cattle (DYC), and Cattle Yak (CY), revealing insights into their potential functions and released peptides. A total of 118 whey proteins were quantified in milk obtained from the three breeds of cattle, including seven characteristic proteins (IGL@ protein, 40S ribosomal protein S9, calreticulin, etc.) in CY milk and two characteristic proteins (RNA helicase and uncharacterized protein (A0A3Q1LFQ2)) in ZY milk. These characteristic proteins are involved in the phagosome and Fc gamma R-mediated phagocytosis pathways, exhibiting immunoprotective activities, verified through molecular docking. Furthermore, the molecular docking results showed five whey proteins (IGL@ protein, rho GDP-dissociation inhibitor 1, small monomeric GTPase, action-like protein 3, and adenylyl cyclase-associated protein) interacted with TLR4 through multiple hydrogen and hydrophobic bonds. Therefore, these proteins may exert immunomodulatory functions by inhibiting TLR4. Meanwhile, whey proteins produced bioactive peptides, such as antioxidant peptides and ACE inhibitory peptides after simulated gastrointestinal digestion (SGID). The whey proteins and bioactive peptides from CY exhibited more types and activities than the ZY and DYC whey proteins. This study provides a theoretical basis for promoting formula milk powder production.
Collapse
Affiliation(s)
- Yufang Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shijun Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xingwen Zhao
- College of Food Engineering, Dali Vocational and Technical College of Agriculture and Forestry, Dali 671003, China
| | - Chongying Shi
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yunmei Chai
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanan Shi
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
17
|
Portolés I, Ribera J, Fernandez-Galán E, Lecue E, Casals G, Melgar-Lesmes P, Fernández-Varo G, Boix L, Sanduzzi M, Aishwarya V, Reig M, Jiménez W, Morales-Ruiz M. Identification of Dhx15 as a Major Regulator of Liver Development, Regeneration, and Tumor Growth in Zebrafish and Mice. Int J Mol Sci 2024; 25:3716. [PMID: 38612527 PMCID: PMC11011938 DOI: 10.3390/ijms25073716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
RNA helicase DHX15 plays a significant role in vasculature development and lung metastasis in vertebrates. In addition, several studies have demonstrated the overexpression of DHX15 in the context of hepatocellular carcinoma. Therefore, we hypothesized that this helicase may play a significant role in liver regeneration, physiology, and pathology. Dhx15 gene deficiency was generated by CRISPR/Cas9 in zebrafish and by TALEN-RNA in mice. AUM Antisense-Oligonucleotides were used to silence Dhx15 in wild-type mice. The hepatocellular carcinoma tumor induction model was generated by subcutaneous injection of Hepa 1-6 cells. Homozygous Dhx15 gene deficiency was lethal in zebrafish and mouse embryos. Dhx15 gene deficiency impaired liver organogenesis in zebrafish embryos and liver regeneration after partial hepatectomy in mice. Also, heterozygous mice presented decreased number and size of liver metastasis after Hepa 1-6 cells injection compared to wild-type mice. Dhx15 gene silencing with AUM Antisense-Oligonucleotides in wild-type mice resulted in 80% reduced expression in the liver and a significant reduction in other major organs. In addition, Dhx15 gene silencing significantly hindered primary tumor growth in the hepatocellular carcinoma experimental model. Regarding the potential use of DHX15 as a diagnostic marker for liver disease, patients with hepatocellular carcinoma showed increased levels of DHX15 in blood samples compared with subjects without hepatic affectation. In conclusion, Dhx15 is a key regulator of liver physiology and organogenesis, is increased in the blood of cirrhotic and hepatocellular carcinoma patients, and plays a key role in controlling hepatocellular carcinoma tumor growth and expansion in experimental models.
Collapse
Affiliation(s)
- Irene Portolés
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic of Barcelona, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 170 Villarroel St. Barcelona, 08036 Barcelona, Spain; (I.P.); (J.R.); (E.F.-G.); (E.L.); (G.C.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic of Barcelona, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 170 Villarroel St. Barcelona, 08036 Barcelona, Spain; (I.P.); (J.R.); (E.F.-G.); (E.L.); (G.C.); (P.M.-L.); (G.F.-V.); (W.J.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28222 Madrid, Spain; (L.B.); (M.S.); (M.R.)
| | - Esther Fernandez-Galán
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic of Barcelona, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 170 Villarroel St. Barcelona, 08036 Barcelona, Spain; (I.P.); (J.R.); (E.F.-G.); (E.L.); (G.C.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Elena Lecue
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic of Barcelona, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 170 Villarroel St. Barcelona, 08036 Barcelona, Spain; (I.P.); (J.R.); (E.F.-G.); (E.L.); (G.C.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic of Barcelona, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 170 Villarroel St. Barcelona, 08036 Barcelona, Spain; (I.P.); (J.R.); (E.F.-G.); (E.L.); (G.C.); (P.M.-L.); (G.F.-V.); (W.J.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28222 Madrid, Spain; (L.B.); (M.S.); (M.R.)
- Commission for the Biochemical Evaluation of the Hepatic Disease-SEQCML, 08036 Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic of Barcelona, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 170 Villarroel St. Barcelona, 08036 Barcelona, Spain; (I.P.); (J.R.); (E.F.-G.); (E.L.); (G.C.); (P.M.-L.); (G.F.-V.); (W.J.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28222 Madrid, Spain; (L.B.); (M.S.); (M.R.)
- Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic of Barcelona, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 170 Villarroel St. Barcelona, 08036 Barcelona, Spain; (I.P.); (J.R.); (E.F.-G.); (E.L.); (G.C.); (P.M.-L.); (G.F.-V.); (W.J.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28222 Madrid, Spain; (L.B.); (M.S.); (M.R.)
| | - Loreto Boix
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28222 Madrid, Spain; (L.B.); (M.S.); (M.R.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marco Sanduzzi
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28222 Madrid, Spain; (L.B.); (M.S.); (M.R.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Veenu Aishwarya
- AUM LifeTech, Inc., 3675 Market Street, Suite 200, Philadelphia, PA 19104, USA;
| | - Maria Reig
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28222 Madrid, Spain; (L.B.); (M.S.); (M.R.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic of Barcelona, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 170 Villarroel St. Barcelona, 08036 Barcelona, Spain; (I.P.); (J.R.); (E.F.-G.); (E.L.); (G.C.); (P.M.-L.); (G.F.-V.); (W.J.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28222 Madrid, Spain; (L.B.); (M.S.); (M.R.)
- Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department-CDB, Hospital Clínic of Barcelona, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), 170 Villarroel St. Barcelona, 08036 Barcelona, Spain; (I.P.); (J.R.); (E.F.-G.); (E.L.); (G.C.); (P.M.-L.); (G.F.-V.); (W.J.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28222 Madrid, Spain; (L.B.); (M.S.); (M.R.)
- Commission for the Biochemical Evaluation of the Hepatic Disease-SEQCML, 08036 Barcelona, Spain
- Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
18
|
Mu F, Zheng H, Zhao Q, Zhu M, Dong T, Kai L, Li Z. Genome-wide systematic survey and analysis of the RNA helicase gene family and their response to abiotic stress in sweetpotato. BMC PLANT BIOLOGY 2024; 24:193. [PMID: 38493089 PMCID: PMC10944623 DOI: 10.1186/s12870-024-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024]
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.
Collapse
Affiliation(s)
- Fangfang Mu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Zheng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Qiaorui Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
19
|
Fang L, Zhang L, Wang M, He Y, Yang J, Huang Z, Tan Y, Fang K, Li J, Sun Z, Li Y, Tang Y, Liang W, Cui H, Zhu Q, Wu Z, Li Y, Hu Y, Chen W. Pooled CRISPR Screening Identifies P-Bodies as Repressors of Cancer Epithelial-Mesenchymal Transition. Cancer Res 2024; 84:659-674. [PMID: 38190710 DOI: 10.1158/0008-5472.can-23-1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental cellular process frequently hijacked by cancer cells to promote tumor progression, especially metastasis. EMT is orchestrated by a complex molecular network acting at different layers of gene regulation. In addition to transcriptional regulation, posttranscriptional mechanisms may also play a role in EMT. Here, we performed a pooled CRISPR screen analyzing the influence of 1,547 RNA-binding proteins on cell motility in colon cancer cells and identified multiple core components of P-bodies (PB) as negative modulators of cancer cell migration. Further experiments demonstrated that PB depletion by silencing DDX6 or EDC4 could activate hallmarks of EMT thereby enhancing cell migration in vitro as well as metastasis formation in vivo. Integrative multiomics analysis revealed that PBs could repress the translation of the EMT driver gene HMGA2, which contributed to PB-meditated regulation of EMT. This mechanism is conserved in other cancer types. Furthermore, endoplasmic reticulum stress was an intrinsic signal that induced PB disassembly and translational derepression of HMGA2. Taken together, this study has identified a function of PBs in the regulation of EMT in cancer. SIGNIFICANCE Systematic investigation of the influence of posttranscriptional regulation on cancer cell motility established a connection between P-body-mediated translational control and EMT, which could be therapeutically exploited to attenuate metastasis formation.
Collapse
Affiliation(s)
- Liang Fang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Li Zhang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Mengran Wang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Yuhao He
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Jiao Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Zengjin Huang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Ying Tan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Ke Fang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Jun Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Zhiyuan Sun
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Yanping Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Yisen Tang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Weizheng Liang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, P.R. China
| | - Huanhuan Cui
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Qionghua Zhu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Yiming Li
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
- Department of Systems Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
20
|
Xu J, Liu LY, Zhi FJ, Song YJ, Zhang ZH, Li B, Zheng FY, Gao PC, Zhang SZ, Zhang YY, Zhang Y, Qiu Y, Jiang B, Li YQ, Peng C, Chu YF. DDX5 inhibits inflammation by modulating m6A levels of TLR2/4 transcripts during bacterial infection. EMBO Rep 2024; 25:770-795. [PMID: 38182816 PMCID: PMC10897170 DOI: 10.1038/s44319-023-00047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway. This process disrupts the DDX5 m6A writing complex and halts m6A modification as well as degradation of TLR2/4 mRNAs, thereby promoting the expression of TLR2 and TLR4 and downstream NF-κB activation. The role of DDX5 in regulating inflammation is also validated in vivo, as DDX5- and METTL3-KO mice exhibit enhanced expression of inflammatory cytokines. Our findings show that DDX5 acts as a molecular switch to regulate inflammation during bacterial infection and shed light on mechanisms of quiescent inflammation during homeostasis.
Collapse
Affiliation(s)
- Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li-Yuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei-Jie Zhi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yin-Juan Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zi-Hui Zhang
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Fu-Ying Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Peng-Cheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Su-Zi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu-Yu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Ying Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong-Qing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Peng
- National Key Laboratory of Veterinary Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Yue-Feng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
21
|
Li Q, Guo H, Xu J, Li X, Wang D, Guo Y, Qing G, Van Vlierberghe P, Liu H. A helicase-independent role of DHX15 promotes MYC stability and acute leukemia cell survival. iScience 2024; 27:108571. [PMID: 38161423 PMCID: PMC10755364 DOI: 10.1016/j.isci.2023.108571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
DHX15 has been implicated in RNA splicing and ribosome biogenesis, primarily functioning as an RNA helicase. To systematically assess the cellular role of DHX15, we conducted proteomic analysis to investigate the landscape of DHX15 interactome, and identified MYC as a binding partner. DHX15 co-localizes with MYC in cells and directly interacts with MYC in vitro. Importantly, DHX15 contributes to MYC protein stability at the post-translational level and independent of its RNA binding capacity. Mechanistic investigation reveals that DHX15 interferes the interaction between MYC and FBXW7, thereby preventing MYC polyubiquitylation and proteasomal degradation. Consequently, the abrogation of DHX15 drastically inhibits MYC-mediated transcriptional output. While DHX15 depletion blocks T cell development and leukemia cell survival as we recently reported, overexpression of MYC significantly rescues the phenotypic defects. These findings shed light on the essential role of DHX15 in mammalian cells and suggest that maintaining sufficient MYC expression is a significant contributor to DHX15-mediated cellular functions.
Collapse
Affiliation(s)
- Qilong Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Hao Guo
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Jin Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Xinlu Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Donghai Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Ying Guo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Guoliang Qing
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | | | - Hudan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
22
|
Fidler E, Dwyer K, Ansari A. Ssu72: a versatile protein with functions in transcription and beyond. Front Mol Biosci 2024; 11:1332878. [PMID: 38304578 PMCID: PMC10830811 DOI: 10.3389/fmolb.2024.1332878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Eukaryotic transcription is a complex process involving a vast network of protein and RNA factors that influence gene expression. The main player in transcription is the RNA polymerase that synthesizes the RNA from the DNA template. RNA polymerase II (RNAPII) transcribes all protein coding genes and some noncoding RNAs in eukaryotic cells. The polymerase is aided by interacting partners that shuttle it along the gene for initiation, elongation and termination of transcription. One of the many factors that assist RNAPII in transcription of genes is Ssu72. It is a carboxy-terminal-domain (CTD)-phosphatase that plays pleiotropic roles in the transcription cycle. It is essential for cell viability in Saccharomyces cerevisiae, the organism in which it was discovered. The homologues of Ssu72 have been identified in humans, mice, plants, flies, and fungi thereby suggesting the evolutionarily conserved nature of the protein. Recent studies have implicated the factor beyond the confines of transcription in homeostasis and diseases.
Collapse
Affiliation(s)
| | | | - Athar Ansari
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
23
|
Arul Nambi Rajan A, Asada R, Montpetit B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and promote Dbp5-mediated tRNA export in vivo in Saccharomyces cerevisiae. eLife 2024; 12:RP89835. [PMID: 38189406 PMCID: PMC10945473 DOI: 10.7554/elife.89835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double-stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, DavisDavisUnited States
| | - Ryuta Asada
- Department of Viticulture and Enology, University of California, DavisDavisUnited States
| | - Ben Montpetit
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, DavisDavisUnited States
- Department of Viticulture and Enology, University of California, DavisDavisUnited States
| |
Collapse
|
24
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Jagtap PKA, Müller M, Kiss AE, Thomae AW, Lapouge K, Beck M, Becker PB, Hennig J. Structural basis of RNA-induced autoregulation of the DExH-type RNA helicase maleless. Mol Cell 2023; 83:4318-4333.e10. [PMID: 37989319 DOI: 10.1016/j.molcel.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Marisa Müller
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Anna E Kiss
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; Core Facility Bioimaging at the Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
26
|
Rajan AAN, Asada R, Montpetit B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and to promote Dbp5 mediated tRNA export in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547072. [PMID: 37425677 PMCID: PMC10327206 DOI: 10.1101/2023.06.29.547072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
| | - Ryuta Asada
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Ben Montpetit
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
27
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
28
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
29
|
Wang X, Chen S, Wen F, Zeng Y, Zhang Y. RNA helicase DHX33 regulates HMGB family genes in human cancer cells. Cell Signal 2023; 110:110832. [PMID: 37543097 DOI: 10.1016/j.cellsig.2023.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
RNA helicase DHX33 has been shown to be aberrantly expressed in various human cancers, however, its role in tumorigenesis remains incompletely understood. In this report, we uncovered that a family of DNA architecture proteins, HMGBs, can be regulated by DHX33 in cancer cells but not in normal cells. Specifically, DHX33 knockdown caused the downregulation of HMGBs at the levels of both gene transcription and protein expression. Notably, in RAS driven lung tumorigenesis, nuclear HMGBs proteins can be induced via DHX33. When DHX33 was knocked out, HMGBs overexpression was debilitated. Mechanistically, DHX33 was found to bind to the promoters of HMGB family genes and regulated their transcription through demethylation on gene promoters. Our study reveals a novel mechanism for DHX33 to promote tumorigenesis and highlights its therapeutic value in human cancers.
Collapse
Affiliation(s)
- Xingshun Wang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653199, China
| | - Shiyun Chen
- Shenzhen KeYe Life Technologies, Co., Ltd, Shenzhen, Guangdong 518122, China; Southern University of Science and Technology, Shenzhen, China
| | - Fuyu Wen
- Shenzhen KeYe Life Technologies, Co., Ltd, Shenzhen, Guangdong 518122, China
| | - Yong Zeng
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653199, China.
| | - Yandong Zhang
- Shenzhen KeYe Life Technologies, Co., Ltd, Shenzhen, Guangdong 518122, China.
| |
Collapse
|
30
|
Dallastella M, de Oliveira WK, Rodrigues ML, Goldenberg S, Alves LR. The characterization of RNA-binding proteins and RNA metabolism-related proteins in fungal extracellular vesicles. Front Cell Infect Microbiol 2023; 13:1247329. [PMID: 37780856 PMCID: PMC10539620 DOI: 10.3389/fcimb.2023.1247329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
RNA-binding proteins (RBPs) are essential for regulating RNA metabolism, stability, and translation within cells. Recent studies have shown that RBPs are not restricted to intracellular functions and can be found in extracellular vesicles (EVs) in different mammalian cells. EVs released by fungi contain a variety of proteins involved in RNA metabolism. These include RNA helicases, which play essential roles in RNA synthesis, folding, and degradation. Aminoacyl-tRNA synthetases, responsible for acetylating tRNA molecules, are also enriched in EVs, suggesting a possible link between these enzymes and tRNA fragments detected in EVs. Proteins with canonical RNA-binding domains interact with proteins and RNA, such as the RNA Recognition Motif (RRM), Zinc finger, and hnRNP K-homology (KH) domains. Polyadenylate-binding protein (PABP) plays a critical role in the regulation of gene expression by binding the poly(A) tail of messenger RNA (mRNA) and facilitating its translation, stability, and localization, making it a key factor in post-transcriptional control of gene expression. The presence of proteins related to the RNA life cycle in EVs from different fungal species suggests a conserved mechanism of EV cargo packing. Various models have been proposed for selecting RNA molecules for release into EVs. Still, the actual loading processes are unknown, and further molecular characterization of these proteins may provide insight into the mechanism of RNA sorting into EVs. This work reviews the current knowledge of RBPs and proteins related to RNA metabolism in EVs derived from distinct fungi species, and presents an analysis of proteomic datasets through GO term and orthology analysis, Our investigation identified orthologous proteins in fungal EVs on different fungal species.
Collapse
Affiliation(s)
- Marianna Dallastella
- Gene Expression Regulation Laboratory, Carlos Chagas Institute (ICC), Oswaldo Cruz Foundation, FIOCRUZ, Curitiba, Brazil
| | - Willian Klassen de Oliveira
- Laboratory for Applied Sciences and Technology in Health, Carlos Chagas Institute, FIOCRUZ PR, Curitiba, Brazil
| | - Marcio L. Rodrigues
- Gene Expression Regulation Laboratory, Carlos Chagas Institute (ICC), Oswaldo Cruz Foundation, FIOCRUZ, Curitiba, Brazil
- Microbiology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Samuel Goldenberg
- Gene Expression Regulation Laboratory, Carlos Chagas Institute (ICC), Oswaldo Cruz Foundation, FIOCRUZ, Curitiba, Brazil
| | - Lysangela R. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute (ICC), Oswaldo Cruz Foundation, FIOCRUZ, Curitiba, Brazil
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center, University Laval, Quebec, QC, Canada
| |
Collapse
|
31
|
Becker RA, Hub JS. Molecular simulations of DEAH-box helicases reveal control of domain flexibility by ligands: RNA, ATP, ADP, and G-patch proteins. Biol Chem 2023; 404:867-879. [PMID: 37253384 DOI: 10.1515/hsz-2023-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
DEAH-box helicases use the energy from ATP hydrolysis to translocate along RNA strands. They are composed of tandem RecA-like domains and a C-terminal domain connected by flexible linkers, and the activity of several DEAH-box helicases is regulated by cofactors called G-patch proteins. We used all-atom molecular dynamics simulations of the helicases Prp43, Prp22, and DHX15 in various liganded states to investigate how RNA, ADP, ATP, or G-patch proteins influence their conformational dynamics. The simulations suggest that apo helicases are highly flexible, whereas binding of RNA renders the helicases more rigid. ATP and ADP control the stability of the RecA1-RecA2 interface, but they have only a smaller effect on domain flexibility in absence of a RecA1-RecA2 interface. Binding of a G-patch protein to DHX15 imposes a more structured conformational ensemble, characterized by more defined relative domain arrangements and by an increased conformational stability of the RNA tunnel. However, the effect of the G-patch protein on domain dynamics is far more subtle as compared to the effects of RNA or ATP/ADP. The simulations characterize DEAH-box helicase as dynamic machines whose conformational ensembles are strongly defined by the presence of RNA, ATP, or ADP and only fine-tuned by the presence of G-patch proteins.
Collapse
Affiliation(s)
- Robert A Becker
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
| |
Collapse
|
32
|
Enders M, Neumann P, Dickmanns A, Ficner R. Structure and function of spliceosomal DEAH-box ATPases. Biol Chem 2023; 404:851-866. [PMID: 37441768 DOI: 10.1515/hsz-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.
Collapse
Affiliation(s)
- Marieke Enders
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
33
|
Schmitzová J, Cretu C, Dienemann C, Urlaub H, Pena V. Structural basis of catalytic activation in human splicing. Nature 2023; 617:842-850. [PMID: 37165190 PMCID: PMC10208982 DOI: 10.1038/s41586-023-06049-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Pre-mRNA splicing follows a pathway driven by ATP-dependent RNA helicases. A crucial event of the splicing pathway is the catalytic activation, which takes place at the transition between the activated Bact and the branching-competent B* spliceosomes. Catalytic activation occurs through an ATP-dependent remodelling mediated by the helicase PRP2 (also known as DHX16)1-3. However, because PRP2 is observed only at the periphery of spliceosomes3-5, its function has remained elusive. Here we show that catalytic activation occurs in two ATP-dependent stages driven by two helicases: PRP2 and Aquarius. The role of Aquarius in splicing has been enigmatic6,7. Here the inactivation of Aquarius leads to the stalling of a spliceosome intermediate-the BAQR complex-found halfway through the catalytic activation process. The cryogenic electron microscopy structure of BAQR reveals how PRP2 and Aquarius remodel Bact and BAQR, respectively. Notably, PRP2 translocates along the intron while it strips away the RES complex, opens the SF3B1 clamp and unfastens the branch helix. Translocation terminates six nucleotides downstream of the branch site through an assembly of PPIL4, SKIP and the amino-terminal domain of PRP2. Finally, Aquarius enables the dissociation of PRP2, plus the SF3A and SF3B complexes, which promotes the relocation of the branch duplex for catalysis. This work elucidates catalytic activation in human splicing, reveals how a DEAH helicase operates and provides a paradigm for how helicases can coordinate their activities.
Collapse
Affiliation(s)
- Jana Schmitzová
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constantin Cretu
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK
- Cluster of Excellence Multiscale Bioimaging (MBExC), Universitätsmedizin Göttingen, Göttingen, Germany
| | - Christian Dienemann
- Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Clinical Chemistry, Bioanalytics, University Medical Center Sciences, Göttingen, Germany
| | - Vladimir Pena
- Macromolecular Crystallography, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Research Group Mechanisms and Regulation of Splicing, The Institute of Cancer Research, London, UK.
| |
Collapse
|
34
|
Mei Y, Khan H, Shishikura M, Ishiyama S, Khan A, Orita H, Brock MV. pfeRNAs-A Novel Class of Small Non-coding RNAs With Real Translational Potential. J Surg Res 2023; 284:237-244. [PMID: 36599285 PMCID: PMC9911372 DOI: 10.1016/j.jss.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
Small non-coding RNAs (sncRNAs) are defined by being less than 200 nucleotides (nt) in length, and consequently, have been divided into many different subclasses including mature microRNA (miRNA), small interfering RNA (siRNA), piwi-interacting RNA (piRNA), protein functional effector sncRNA (pfeRNA), precursor miRNA (pre-miRNA), small nucleolar RNA (snoRNA), 5S ribosome RNA (5SrRNA), 5.8SrRNA, and small nuclear RNA (snRNA). Except for the class of pfeRNAs, the discovery, identification, biogenesis, characterization, and function of other sncRNAs have been well documented. Herein, we provide a review, written especially for clinicians, of the least understood class of functional sncRNAs, the pfeRNAs, focusing on their initial discovery, identification, unique features, function, as well as their exciting clinical translational potential.
Collapse
Affiliation(s)
- Yuping Mei
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Hamza Khan
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Maria Shishikura
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Shun Ishiyama
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Gastroenterology and Minimally Invasive Surgery, Juntendo University, Tokyo, Japan
| | - Ali Khan
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hajime Orita
- Department of Gastroenterology and Minimally Invasive Surgery, Juntendo University, Tokyo, Japan
| | - Malcolm V Brock
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
35
|
The Terminal Extensions of Dbp7 Influence Growth and 60S Ribosomal Subunit Biogenesis in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24043460. [PMID: 36834876 PMCID: PMC9960301 DOI: 10.3390/ijms24043460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis.
Collapse
|
36
|
Shih CY, Chen YC, Lin HY, Chu CY. RNA Helicase DDX6 Regulates A-to-I Editing and Neuronal Differentiation in Human Cells. Int J Mol Sci 2023; 24:ijms24043197. [PMID: 36834609 PMCID: PMC9965400 DOI: 10.3390/ijms24043197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The DEAD-box proteins, one family of RNA-binding proteins (RBPs), participate in post-transcriptional regulation of gene expression with multiple aspects. Among them, DDX6 is an essential component of the cytoplasmic RNA processing body (P-body) and is involved in translational repression, miRNA-meditated gene silencing, and RNA decay. In addition to the cytoplasmic function, DDX6 is also present in the nucleus, but the nuclear function remains unknown. To decipher the potential role of DDX6 in the nucleus, we performed mass spectrometry analysis of immunoprecipitated DDX6 from a HeLa nuclear extract. We found that adenosine deaminases that act on RNA 1 (ADAR1) interact with DDX6 in the nucleus. Utilizing our newly developed dual-fluorescence reporter assay, we elucidated the DDX6 function as negative regulators in cellular ADAR1p110 and ADAR2. In addition, depletion of DDX6 and ADARs results in the opposite effect on facilitation of RA-induced differentiation of neuronal lineage cells. Our data suggest the impact of DDX6 in regulation of the cellular RNA editing level, thus contributing to differentiation in the neuronal cell model.
Collapse
Affiliation(s)
- Chia-Yu Shih
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Heng-Yi Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-33669876
| |
Collapse
|
37
|
Cui H, Yang J, Yang B, Hao Y, Shi X, Zhang D, Yang X, Zhang T, Zhao D, Yuan X, Chen X, Liu X, Zheng H, Zhang K. Cyproheptadine hydrochloride inhibits African swine fever viral replication in vitro. Microb Pathog 2023; 175:105957. [PMID: 36572196 DOI: 10.1016/j.micpath.2022.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
African swine fever (ASF) is an infectious disease caused by the African swine fever virus (ASFV), and has a high mortality rate. It has caused serious socioeconomic consequences worldwide. Currently, there are no available commercial vaccines or antiviral drug interventions. D1133L is one of the key genes for ASFV replication and antiviral drug screening. In this study, a virtual screening software program, PyRx, was used to screen libraries of compounds against the potential drug target D1133L. Twelve compounds with a high affinity for ASFV D1133L were screened, and cyproheptadine hydrochloride (periactin) was identified as a candidate drug. The periactin has little cytotoxicity, and which dose-dependently inhibited ASFV replication in vitro. Further research indicated that periactin could significantly down-regulate D1133L at the transcriptional and protein levels with RT-qPCR and western blot methods. This study has provided important candidate drugs for the prevention and treatment of ASF, as well as biological materials and new fields of view for the research and development of vaccines and drugs for ASFV.
Collapse
Affiliation(s)
- Huimei Cui
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Jinke Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Yu Hao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xing Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - DengShuai Zhao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xingguo Yuan
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xuehui Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China.
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, PR China.
| |
Collapse
|
38
|
Khreiss A, Capeyrou R, Lebaron S, Albert B, Bohnsack K, Bohnsack M, Henry Y, Henras A, Humbert O. The DEAD-box protein Dbp6 is an ATPase and RNA annealase interacting with the peptidyl transferase center (PTC) of the ribosome. Nucleic Acids Res 2023; 51:744-764. [PMID: 36610750 PMCID: PMC9881158 DOI: 10.1093/nar/gkac1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are ribozymes, hence correct folding of the rRNAs during ribosome biogenesis is crucial to ensure catalytic activity. RNA helicases, which can modulate RNA-RNA and RNA/protein interactions, are proposed to participate in rRNA tridimensional folding. Here, we analyze the biochemical properties of Dbp6, a DEAD-box RNA helicase required for the conversion of the initial 90S pre-ribosomal particle into the first pre-60S particle. We demonstrate that in vitro, Dbp6 shows ATPase as well as annealing and clamping activities negatively regulated by ATP. Mutations in Dbp6 core motifs involved in ATP binding and ATP hydrolysis are lethal and impair Dbp6 ATPase activity but increase its RNA binding and RNA annealing activities. These data suggest that correct regulation of these activities is important for Dbp6 function in vivo. Using in vivo cross-linking (CRAC) experiments, we show that Dbp6 interacts with 25S rRNA sequences located in the 5' domain I and in the peptidyl transferase center (PTC), and also crosslinks to snoRNAs hybridizing to the immature PTC. We propose that the ATPase and RNA clamping/annealing activities of Dbp6 modulate interactions of snoRNAs with the immature PTC and/or contribute directly to the folding of this region.
Collapse
Affiliation(s)
- Ali Khreiss
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Yves Henry
- Correspondence may also be addressed to Yves Henry. Tel: +33 5 61 33 59 53; Fax: +33 5 61 33 58 86;
| | - Anthony K Henras
- Correspondence may also be addressed to Anthony Henras. Tel: +33 5 61 33 59 55; Fax: +33 5 61 33 58 86;
| | - Odile Humbert
- To whom correspondence should be addressed. Tel: +33 5 61 33 59 52; Fax: +33 5 61 33 58 86;
| |
Collapse
|
39
|
Sadic M, Schneider WM, Katsara O, Medina GN, Fisher A, Mogulothu A, Yu Y, Gu M, de los Santos T, Schneider RJ, Dittmann M. DDX60 selectively reduces translation off viral type II internal ribosome entry sites. EMBO Rep 2022; 23:e55218. [PMID: 36256515 PMCID: PMC9724679 DOI: 10.15252/embr.202255218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
Co-opting host cell protein synthesis is a hallmark of many virus infections. In response, certain host defense proteins limit mRNA translation globally, albeit at the cost of the host cell's own protein synthesis. Here, we describe an interferon-stimulated helicase, DDX60, that decreases translation from viral internal ribosome entry sites (IRESs). DDX60 acts selectively on type II IRESs of encephalomyocarditis virus (EMCV) and foot and mouth disease virus (FMDV), but not by other IRES types or by 5' cap. Correspondingly, DDX60 reduces EMCV and FMDV (type II IRES) replication, but not that of poliovirus or bovine enterovirus 1 (BEV-1; type I IRES). Furthermore, replacing the IRES of poliovirus with a type II IRES is sufficient for DDX60 to inhibit viral replication. Finally, DDX60 selectively modulates the amount of translating ribosomes on viral and in vitro transcribed type II IRES mRNAs, but not 5' capped mRNA. Our study identifies a novel facet in the repertoire of interferon-stimulated effector genes, the selective downregulation of translation from viral type II IRES elements.
Collapse
Affiliation(s)
| | | | | | - Gisselle N Medina
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,National Bio and Agro‐Defense Facility (NBAF), ARSUSDAManhattanKSUSA
| | | | - Aishwarya Mogulothu
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutStorrsCTUSA
| | - Yingpu Yu
- The Rockefeller UniversityNew YorkNYUSA
| | | | | | | | | |
Collapse
|
40
|
Kim J, Muraoka M, Okada H, Toyoda A, Ajima R, Saga Y. The RNA helicase DDX6 controls early mouse embryogenesis by repressing aberrant inhibition of BMP signaling through miRNA-mediated gene silencing. PLoS Genet 2022; 18:e1009967. [PMID: 36197846 PMCID: PMC9534413 DOI: 10.1371/journal.pgen.1009967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
The evolutionarily conserved RNA helicase DDX6 is a central player in post-transcriptional regulation, but its role during embryogenesis remains elusive. We here show that DDX6 enables proper cell lineage specification from pluripotent cells by analyzing Ddx6 knockout (KO) mouse embryos and employing an in vitro epiblast-like cell (EpiLC) induction system. Our study unveils that DDX6 is an important BMP signaling regulator. Deletion of Ddx6 causes the aberrant upregulation of the negative regulators of BMP signaling, which is accompanied by enhanced expression of Nodal and related genes. Ddx6 KO pluripotent cells acquire higher pluripotency with a strong inclination toward neural lineage commitment. During gastrulation, abnormally expanded Nodal and Eomes expression in the primitive streak likely promotes endoderm cell fate specification while inhibiting mesoderm differentiation. We also genetically dissected major DDX6 pathways by generating Dgcr8, Dcp2, and Eif4enif1 KO models in addition to Ddx6 KO. We found that the miRNA pathway mutant Dgcr8 KO phenocopies Ddx6 KO, indicating that DDX6 mostly works along with the miRNA pathway during early development, whereas its P-body-related functions are dispensable. Therefore, we conclude that DDX6 prevents aberrant upregulation of BMP signaling inhibitors by participating in miRNA-mediated gene silencing processes. Overall, this study delineates how DDX6 affects the development of the three primary germ layers during early mouse embryogenesis and the underlying mechanism of DDX6 function.
Collapse
Affiliation(s)
- Jessica Kim
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Hajime Okada
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Rieko Ajima
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| | - Yumiko Saga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
- * E-mail: (RA); (YS)
| |
Collapse
|
41
|
Hug N, Aitken S, Longman D, Raab M, Armes H, Mann AR, Rio-Machin A, Fitzgibbon J, Rouault-Pierre K, Cáceres JF. A dual role for the RNA helicase DHX34 in NMD and pre-mRNA splicing and its function in hematopoietic differentiation. RNA (NEW YORK, N.Y.) 2022; 28:1224-1238. [PMID: 35768279 PMCID: PMC9380745 DOI: 10.1261/rna.079277.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
The DExD/H-box RNA helicase DHX34 is a nonsense-mediated decay (NMD) factor that together with core NMD factors coregulates NMD targets in nematodes and in vertebrates. Here, we show that DHX34 is also associated with the human spliceosomal catalytic C complex. Mapping of DHX34 endogenous binding sites using cross-linking immunoprecipitation (CLIP) revealed that DHX34 is preferentially associated with pre-mRNAs and locates at exon-intron boundaries. Accordingly, we observed that DHX34 regulates a large number of alternative splicing (AS) events in mammalian cells in culture, establishing a dual role for DHX34 in both NMD and pre-mRNA splicing. We previously showed that germline DHX34 mutations associated to familial myelodysplasia (MDS)/acute myeloid leukemia (AML) predisposition abrogate its activity in NMD. Interestingly, we observe now that DHX34 regulates the splicing of pre-mRNAs that have been linked to AML/MDS predisposition. This is consistent with silencing experiments in hematopoietic stem/progenitor cells (HSPCs) showing that loss of DHX34 results in differentiation blockade of both erythroid and myeloid lineages, which is a hallmark of AML development. Altogether, these data unveil new cellular functions of DHX34 and suggest that alterations in the levels and/or activity of DHX34 could contribute to human disease.
Collapse
Affiliation(s)
- Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Michaela Raab
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Hannah Armes
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Abigail R Mann
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Ana Rio-Machin
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jude Fitzgibbon
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
42
|
Bohnsack KE, Kanwal N, Bohnsack MT. Prp43/DHX15 exemplify RNA helicase multifunctionality in the gene expression network. Nucleic Acids Res 2022; 50:9012-9022. [PMID: 35993807 PMCID: PMC9458436 DOI: 10.1093/nar/gkac687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Dynamic regulation of RNA folding and structure is critical for the biogenesis and function of RNAs and ribonucleoprotein (RNP) complexes. Through their nucleotide triphosphate-dependent remodelling functions, RNA helicases are key modulators of RNA/RNP structure. While some RNA helicases are dedicated to a specific target RNA, others are multifunctional and engage numerous substrate RNAs in different aspects of RNA metabolism. The discovery of such multitasking RNA helicases raises the intriguing question of how these enzymes can act on diverse RNAs but also maintain specificity for their particular targets within the RNA-dense cellular environment. Furthermore, the identification of RNA helicases that sit at the nexus between different aspects of RNA metabolism raises the possibility that they mediate cross-regulation of different cellular processes. Prominent and extensively characterized multifunctional DEAH/RHA-box RNA helicases are DHX15 and its Saccharomyces cerevisiae (yeast) homologue Prp43. Due to their central roles in key cellular processes, these enzymes have also served as prototypes for mechanistic studies elucidating the mode of action of this type of enzyme. Here, we summarize the current knowledge on the structure, regulation and cellular functions of Prp43/DHX15, and discuss the general concept and implications of RNA helicase multifunctionality.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Correspondence may also be addressed to Katherine E. Bohnsack. Tel: +49 551 3969305; Fax: +49 551 395960;
| | - Nidhi Kanwal
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- To whom correspondence should be addressed. Tel: +49 551 395968; Fax: +49 551 395960;
| |
Collapse
|
43
|
Moraleva AA, Deryabin AS, Rubtsov YP, Rubtsova MP, Dontsova OA. Eukaryotic Ribosome Biogenesis: The 60S Subunit. Acta Naturae 2022; 14:39-49. [PMID: 35925480 PMCID: PMC9307984 DOI: 10.32607/actanaturae.11541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Ribosome biogenesis is consecutive coordinated maturation of ribosomal precursors in the nucleolus, nucleoplasm, and cytoplasm. The formation of mature ribosomal subunits involves hundreds of ribosomal biogenesis factors that ensure ribosomal RNA processing, tertiary structure, and interaction with ribosomal proteins. Although the main features and stages of ribosome biogenesis are conservative among different groups of eukaryotes, this process in human cells has become more complicated due to the larger size of the ribosomes and pre-ribosomes and intricate regulatory pathways affecting their assembly and function. Many of the factors involved in the biogenesis of human ribosomes have been identified using genome-wide screening based on RNA interference. A previous part of this review summarized recent data on the processing of the primary rRNA transcript and compared the maturation of the small 40S subunit in yeast and human cells. This part of the review focuses on the biogenesis of the large 60S subunit of eukaryotic ribosomes.
Collapse
Affiliation(s)
- A. A. Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. S. Deryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Yu. P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. P. Rubtsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
| | - O. A. Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
44
|
McElreavey K, Pailhoux E, Bashamboo A. DHX37 and 46,XY DSD: A New Ribosomopathy? Sex Dev 2022; 16:194-206. [PMID: 35835064 DOI: 10.1159/000522004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Recently, a series of recurrent missense variants in the RNA-helicase DHX37 have been reported associated with either 46,XY gonadal dysgenesis, 46,XY testicular regression syndrome (TRS), or anorchia. All affected children have non-syndromic forms of disorders/differences of sex development (DSD). These variants, which involve highly conserved amino acids within known functional domains of the protein, are predicted by in silico tools to have a deleterious effect on helicase function. DHX37 is required for ribosome biogenesis in eukaryotes, and how these variants cause DSD is unclear. The relationship between DHX37 and human congenital disorders is complex as compound heterozygous as well as de novo heterozygous missense variants in DHX37 are also associated with a complex congenital developmental syndrome (NEDBAVC, neurodevelopmental disorder with brain anomalies and with or without vertebral or cardiac anomalies; OMIM 618731), consisting of microcephaly, global developmental delay, seizures, facial dysmorphia, and kidney and cardiac anomalies. Here, we will give a brief overview of ribosome biogenesis and the role of DHX37 in this process. We will discuss variants in DHX37, their contribution to human disease in the general context of human ribosomopathies, and the possible disease mechanisms that may be involved.
Collapse
Affiliation(s)
- Kenneth McElreavey
- Human Developmental Genetics, CNRS UMR3738, Institut Pasteur, Paris, France
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Anu Bashamboo
- Human Developmental Genetics, CNRS UMR3738, Institut Pasteur, Paris, France
| |
Collapse
|
45
|
Structural basis for broad anti-phage immunity by DISARM. Nat Commun 2022; 13:2987. [PMID: 35624106 PMCID: PMC9142583 DOI: 10.1038/s41467-022-30673-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
In the evolutionary arms race against phage, bacteria have assembled a diverse arsenal of antiviral immune strategies. While the recently discovered DISARM (Defense Island System Associated with Restriction-Modification) systems can provide protection against a wide range of phage, the molecular mechanisms that underpin broad antiviral targeting but avoiding autoimmunity remain enigmatic. Here, we report cryo-EM structures of the core DISARM complex, DrmAB, both alone and in complex with an unmethylated phage DNA mimetic. These structures reveal that DrmAB core complex is autoinhibited by a trigger loop (TL) within DrmA and binding to DNA substrates containing a 5′ overhang dislodges the TL, initiating a long-range structural rearrangement for DrmAB activation. Together with structure-guided in vivo studies, our work provides insights into the mechanism of phage DNA recognition and specific activation of this widespread antiviral defense system. DISARM (Defense Island System Associated with Restriction Modification) systems can provide bacteria with protection against a wide range of phage. Here, Bravo et al. determine cryo-EM structures of the core DISARM complex that shed light onto phage DNA recognition and activation of this widespread defense system.
Collapse
|
46
|
Jo SH, Park HJ, Lee A, Jung H, Park JM, Kwon SY, Kim HS, Lee HJ, Kim YS, Jung C, Cho HS. The Arabidopsis cyclophilin CYP18-1 facilitates PRP18 dephosphorylation and the splicing of introns retained under heat stress. THE PLANT CELL 2022; 34:2383-2403. [PMID: 35262729 PMCID: PMC9134067 DOI: 10.1093/plcell/koac084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/05/2022] [Indexed: 05/13/2023]
Abstract
In plants, heat stress induces changes in alternative splicing, including intron retention; these events can rapidly alter proteins or downregulate protein activity, producing nonfunctional isoforms or inducing nonsense-mediated decay of messenger RNA (mRNA). Nuclear cyclophilins (CYPs) are accessory proteins in the spliceosome complexes of multicellular eukaryotes. However, whether plant CYPs are involved in pre-mRNA splicing remain unknown. Here, we found that Arabidopsis thaliana CYP18-1 is necessary for the efficient removal of introns that are retained in response to heat stress during germination. CYP18-1 interacts with Step II splicing factors (PRP18a, PRP22, and SWELLMAP1) and associates with the U2 and U5 small nuclear RNAs in response to heat stress. CYP18-1 binds to phospho-PRP18a, and increasing concentrations of CYP18-1 are associated with increasing dephosphorylation of PRP18a. Furthermore, interaction and protoplast transfection assays revealed that CYP18-1 and the PP2A-type phosphatase PP2A B'η co-regulate PRP18a dephosphorylation. RNA-seq and RT-qPCR analysis confirmed that CYP18-1 is essential for splicing introns that are retained under heat stress. Overall, we reveal the mechanism of action by which CYP18-1 activates the dephosphorylation of PRP18 and show that CYP18-1 is crucial for the efficient splicing of retained introns and rapid responses to heat stress in plants.
Collapse
Affiliation(s)
- Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology,
Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology,
Korea University of Science and Technology, Daejeon 34113, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology,
Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University
of Science and Technology, Daejeon 34113, Korea
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo
Bio, Anseong 17558, Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology
Institute/Green Bio Science and Technology, Seoul National University,
Pyeongchang 25354, Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major
in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National
University, Seoul 08826, Korea
| | | |
Collapse
|
47
|
Whitman BT, Murray CRA, Whitford DS, Paul SS, Fahlman RP, Glover MJN, Owttrim GW. Degron-mediated proteolysis of CrhR-like DEAD-box RNA helicases in cyanobacteria. J Biol Chem 2022; 298:101925. [PMID: 35413287 PMCID: PMC9117542 DOI: 10.1016/j.jbc.2022.101925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022] Open
Abstract
Conditional proteolytic degradation is an irreversible and highly regulated process that fulfills crucial regulatory functions in all organisms. As proteolytic targets tend to be critical metabolic or regulatory proteins, substrates are targeted for degradation only under appropriate conditions through the recognition of an amino acid sequence referred to as a “degron”. DEAD-box RNA helicases mediate all aspects of RNA metabolism, contributing to cellular fitness. However, the mechanism by which abiotic-stress modulation of protein stability regulates bacterial helicase abundance has not been extensively characterized. Here, we provide in vivo evidence that proteolytic degradation of the cyanobacterial DEAD-box RNA helicase CrhR is conditional, being initiated by a temperature upshift from 20 to 30 °C in the model cyanobacterium, Synechocystis sp. PCC 6803. We show degradation requires a unique, highly conserved, inherently bipartite degron located in the C-terminal extension found only in CrhR-related RNA helicases in the phylum Cyanobacteria. However, although necessary, the degron is not sufficient for proteolysis, as disruption of RNA helicase activity and/or translation inhibits degradation. These results suggest a positive feedback mechanism involving a role for CrhR in expression of a crucial factor required for degradation. Furthermore, AlphaFold structural prediction indicated the C-terminal extension is a homodimerization domain with homology to other bacterial RNA helicases, and mass photometry data confirmed that CrhR exists as a dimer in solution at 22 °C. These structural data suggest a model wherein the CrhR degron is occluded at the dimerization interface but could be exposed if dimerization was disrupted by nonpermissive conditions.
Collapse
Affiliation(s)
- Brendan T Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R A Murray
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Denise S Whitford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Simanta S Paul
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard P Fahlman
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark J N Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
48
|
Venus S, Jankowsky E. Measuring the impact of cofactors on RNA helicase activities. Methods 2022; 204:376-385. [PMID: 35429628 PMCID: PMC9306305 DOI: 10.1016/j.ymeth.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
RNA helicases are the largest class of enzymes in eukaryotic RNA metabolism. In cells, protein cofactors regulate RNA helicase functions and impact biochemical helicase activities. Understanding how cofactors affect enzymatic activities of RNA helicases is thus critical for delineating physical roles and regulation of RNA helicases in cells. Here, we discuss approaches and conceptual considerations for the design of experiments to interrogate cofactor effects on RNA helicase activities in vitro. We outline the mechanistic frame for helicase reactions, discuss optimization of experimental setup and reaction parameters for measuring cofactor effects on RNA helicase activities, and provide basic guides to data analysis and interpretation. The described approaches are also instructive for determining the impact of small molecule inhibitors of RNA helicases.
Collapse
|
49
|
Shinriki S, Hirayama M, Nagamachi A, Yokoyama A, Kawamura T, Kanai A, Kawai H, Iwakiri J, Liu R, Maeshiro M, Tungalag S, Tasaki M, Ueda M, Tomizawa K, Kataoka N, Ideue T, Suzuki Y, Asai K, Tani T, Inaba T, Matsui H. DDX41 coordinates RNA splicing and transcriptional elongation to prevent DNA replication stress in hematopoietic cells. Leukemia 2022; 36:2605-2620. [PMID: 36229594 PMCID: PMC9613458 DOI: 10.1038/s41375-022-01708-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Myeloid malignancies with DDX41 mutations are often associated with bone marrow failure and cytopenia before overt disease manifestation. However, the mechanisms underlying these specific conditions remain elusive. Here, we demonstrate that loss of DDX41 function impairs efficient RNA splicing, resulting in DNA replication stress with excess R-loop formation. Mechanistically, DDX41 binds to the 5' splice site (5'SS) of coding RNA and coordinates RNA splicing and transcriptional elongation; loss of DDX41 prevents splicing-coupled transient pausing of RNA polymerase II at 5'SS, causing aberrant R-loop formation and transcription-replication collisions. Although the degree of DNA replication stress acquired in S phase is small, cells undergo mitosis with under-replicated DNA being remained, resulting in micronuclei formation and significant DNA damage, thus leading to impaired cell proliferation and genomic instability. These processes may be responsible for disease phenotypes associated with DDX41 mutations.
Collapse
Affiliation(s)
- Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Mayumi Hirayama
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Nagamachi
- grid.257022.00000 0000 8711 3200Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akihiko Yokoyama
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Yamagata, Japan
| | - Takeshi Kawamura
- grid.26999.3d0000 0001 2151 536XIsotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akinori Kanai
- grid.26999.3d0000 0001 2151 536XLaboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hidehiko Kawai
- grid.257022.00000 0000 8711 3200Department of Nucleic Acids Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junichi Iwakiri
- grid.26999.3d0000 0001 2151 536XLaboratory of Genome Informatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Rin Liu
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Maeshiro
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Saruul Tungalag
- grid.274841.c0000 0001 0660 6749Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayoshi Tasaki
- grid.274841.c0000 0001 0660 6749Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- grid.274841.c0000 0001 0660 6749Department of Neurology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- grid.274841.c0000 0001 0660 6749Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoyuki Kataoka
- grid.26999.3d0000 0001 2151 536XLaboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Ideue
- grid.274841.c0000 0001 0660 6749Department of Biological Sciences, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Yutaka Suzuki
- grid.26999.3d0000 0001 2151 536XLaboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kiyoshi Asai
- grid.26999.3d0000 0001 2151 536XLaboratory of Genome Informatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tokio Tani
- grid.274841.c0000 0001 0660 6749Department of Biological Sciences, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Toshiya Inaba
- grid.257022.00000 0000 8711 3200Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
50
|
Guo R, Pyle AM. Monitoring functional RNA binding of RNA-dependent ATPase enzymes such as SF2 helicases using RNA dependent ATPase assays: A RIG-I case study. Methods Enzymol 2022; 673:39-52. [DOI: 10.1016/bs.mie.2022.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|