1
|
Tonsager AJ, Zukowski A, Radebaugh CA, Weirich A, Stargell LA, Ramachandran S. The histone chaperone Spn1 preserves chromatin protections at promoters and nucleosome positioning in open reading frames. G3 (BETHESDA, MD.) 2025; 15:jkaf032. [PMID: 39960479 PMCID: PMC12005155 DOI: 10.1093/g3journal/jkaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Spn1 is a multifunctional histone chaperone that associates with RNA polymerase II during elongation and is essential for life in eukaryotes. While previous work has elucidated regions of the protein important for its many interactions, it is unknown how these domains contribute to the maintenance of chromatin structure. Here, we employ digestion by micrococcal nuclease followed by single-stranded library preparation and sequencing to characterize chromatin structure in Saccharomyces cerevisiae expressing wild-type or mutants of Spn1 (spn1K192N or spn1141-305). We mapped protections of all sizes genome wide. Surprisingly, we observed a widespread loss of short fragments over nucleosome-depleted regions (NDRs) at promoters in the spn1K192N-containing strain, indicating critical functions of Spn1 in maintaining normal chromatin architecture outside open reading frames. Additionally, there are shifts in DNA protections in both Spn1 mutant-expressing strains over open reading frames, which indicate changes in nucleosome and subnucleosome positioning. This was observed in markedly different Spn1 mutant strains, demonstrating that multiple functions of Spn1 are required to maintain proper chromatin structure in open reading frames. Changes in chromatin structure correlate positively with changes in gene expression, as shown by RNA-seq analysis in the Spn1 mutant strains. Taken together, our results reveal a previously unknown role of Spn1 in the maintenance of NDR architecture and deepen our understanding of Spn1-dependent chromatin maintenance over transcribed regions.
Collapse
Affiliation(s)
- Andrew J Tonsager
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado School Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Abigail Weirich
- Department of Biochemistry and Molecular Genetics, University of Colorado School Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, University of Colorado School Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Tonsager AJ, Zukowski A, Radebaugh CA, Weirich A, Stargell LA, Ramachandran S. THE HISTONE CHAPERONE SPN1 PRESERVES CHROMATIN PROTECTIONS AT PROMOTERS AND NUCLEOSOME POSITIONING IN OPEN READING FRAMES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.14.585010. [PMID: 38559248 PMCID: PMC10979989 DOI: 10.1101/2024.03.14.585010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spn1 is a multifunctional histone chaperone that associates with RNA polymerase II during elongation and is essential for life in eukaryotes. While previous work has elucidated regions of the protein important for its many interactions, it is unknown how these domains contribute to the maintenance of chromatin structure. Here, we employ digestion by micrococcal nuclease followed by single-stranded library preparation and sequencing (MNase-SSP) to characterize chromatin structure in Saccharomyces cerevisiae expressing wild-type or mutants of Spn1 (spn1 K192N or spn1 141-305 ). We mapped protections of all sizes genome-wide. Surprisingly, we observed a widespread loss of short fragments over nucleosome-depleted regions (NDRs) at promoters in the spn1 K192N -containing strain, indicating critical functions of Spn1 in maintaining normal chromatin architecture outside open reading frames. Additionally, there are shifts in DNA protections in both Spn1 mutant expressing strains over open reading frames, which indicate changes in nucleosome and subnucleosome positioning. This was observed in markedly different Spn1 mutant strains, demonstrating that multiple functions of Spn1 are required to maintain proper chromatin structure in open reading frames. Changes in chromatin structure correlate positively with changes in gene expression as shown by RNA-seq analysis in the Spn1 mutant strains. Taken together, our results reveal a previously unknown role of Spn1 in the maintenance of NDR architecture and deepen our understanding of Spn1-dependent chromatin maintenance over transcribed regions.
Collapse
Affiliation(s)
- Andrew J. Tonsager
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Catherine A. Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Abigail Weirich
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Laurie A. Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
3
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
4
|
Kariyawasam NL, Wereszczynski J. The Influence of Ionic Environment on Nucleosome-Mica Interactions Revealed via Molecular Dynamics Simulations. J Phys Chem B 2024; 128:12038-12049. [PMID: 39607409 DOI: 10.1021/acs.jpcb.4c04223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nucleosomes are the fundamental units of DNA compaction, playing a key role in modulating gene expression. As such, they are widely studied through both experimental and computational methods. While atomic force microscopy (AFM) is a powerful tool for visualizing and characterizing both canonical and modified nucleosomes, it relies on nucleosome interactions with mica surfaces. These interactions occur through cations adsorbed on the negatively charged mica, but the specific influences of monovalent and divalent cations on nucleosome adsorption remain unclear. In this study, we used molecular dynamics simulations to investigate how monovalent potassium ions and divalent magnesium ions affect nucleosome binding to mica surfaces. We also explored the impact of pretreated mica surfaces on nucleosome binding and structure. Our findings reveal that nucleosome-mica interactions depend on the type of cations present, which leads to distinct effects on nucleosome structure. Notably, nucleosomes bind effectively to mica surfaces in the presence of potassium ions with minimal structural perturbations.
Collapse
Affiliation(s)
- Nilusha L Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago 60616, United States
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60625, United States
| | - Jeff Wereszczynski
- Departments of Physics and Biology, Illinois Institute of Technology, Chicago, Illinois 60625, United States
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60625, United States
| |
Collapse
|
5
|
Davies M, Boyce M, Conway E. Short circuit: Transcription factor addiction as a growing vulnerability in cancer. Curr Opin Struct Biol 2024; 89:102948. [PMID: 39536500 PMCID: PMC11614577 DOI: 10.1016/j.sbi.2024.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Core regulatory circuitry refers to the network of lineage-specific transcription factors regulating expression of both their own coding genes, and that of other transcription factors. Such autoregulatory feedback loops coordinate the transcriptome and epigenome during development and cell fate decisions. This circuitry is hijacked during oncogenesis resulting in cancer cell fate being maintained by lineage-specific transcription factors. Major advances in functional genomics and chemical biology are paving the way for a new generation of cancer therapeutics aimed at disrupting this circuitry through both direct and indirect means. Here we review these critical advances in mechanistic understanding of transcription factor addiction in cancer and how the advent of proteolysis targeting chimeras and CRISPR screen assays are leading the way for a new paradigm in targeted cancer treatments.
Collapse
Affiliation(s)
- Molly Davies
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland. https://twitter.com/daviesmolly13
| | - Maeve Boyce
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eric Conway
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
6
|
Dhillon N, Kamakaka RT. Transcriptional silencing in Saccharomyces cerevisiae: known unknowns. Epigenetics Chromatin 2024; 17:28. [PMID: 39272151 PMCID: PMC11401328 DOI: 10.1186/s13072-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
7
|
Kariyawasam NL, Wereszczynski J. The Influence of Ionic Environment on Nucleosome-Mica Interactions Revealed via Molecular Dynamics Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600666. [PMID: 38979319 PMCID: PMC11230366 DOI: 10.1101/2024.06.25.600666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mica serves as a crucial substrate in Atomic Force Microscopy (AFM) studies for visualizing and characterizing nucleosomes. Nucleosomes interact with the negatively charged mica surface via adsorbed cations. However, the specific influences of monovalent and divalent cations on nucleosome adsorption to the mica surface remain unclear. In this study, we investigated the binding of nucleosomes to the mica surface in the presence of monovalent potassium ions and divalent magnesium ions using molecular dynamics simulations. We also explored the impact of pre-treated mica surfaces on nucleosome binding and structure. Our findings reveal that nucleosome-mica interactions vary depending on the cations present, resulting in distinct effects on nucleosome structure. Notably, nucleosomes bind effectively to a mica surface in the presence of potassium ions with minimal structural perturbations.
Collapse
Affiliation(s)
- Nilusha L Kariyawasam
- Department of Physics, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
| | - Jeff Wereszczynski
- Departments of Physics and Biology, Illinois Institute of Technology, Chicago, USA
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, USA
| |
Collapse
|
8
|
Oyarzún-Cisterna A, Gidi C, Raiqueo F, Amigo R, Rivas C, Torrejón M, Gutiérrez JL. General regulatory factors exert differential effects on nucleosome sliding activity of the ISW1a complex. Biol Res 2024; 57:22. [PMID: 38704609 PMCID: PMC11069190 DOI: 10.1186/s40659-024-00500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. RESULTS Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. CONCLUSIONS Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.
Collapse
Affiliation(s)
- Andrea Oyarzún-Cisterna
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Cristián Gidi
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Fernanda Raiqueo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Roberto Amigo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Camila Rivas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile
| | - José L Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070043, Concepción, Chile.
| |
Collapse
|
9
|
Nie XY, Menet JS. Circadian regulation of stereotypic chromatin conformations at enhancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590818. [PMID: 38712031 PMCID: PMC11071494 DOI: 10.1101/2024.04.24.590818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cooperation between the circadian transcription factor (TF) CLOCK:BMAL1 and other TFs at cis-regulatory elements (CREs) is critical to daily rhythms of transcription. Yet, the modalities of this cooperation are unclear. Here, we analyzed the co-binding of multiple TFs on single DNA molecules in mouse liver using single molecule footprinting (SMF). We found that SMF reads clustered in stereotypic chromatin states that reflect distinguishable organization of TFs and nucleosomes, and that were remarkably conserved between all samples. DNA protection at CLOCK:BMAL1 binding motif (E-box) varied between CREs, from E-boxes being solely bound by CLOCK:BMAL1 to situations where other TFs competed with CLOCK:BMAL1 for E-box binding. SMF also uncovered CLOCK:BMAL1 cooperative binding at E-boxes separated by 250 bp, which structurally altered the CLOCK:BMAL1-DNA interface. Importantly, we discovered multiple nucleosomes with E-boxes at entry/exit sites that were removed upon CLOCK:BMAL1 DNA binding, thereby promoting the formation of open chromatin states that facilitate DNA binding of other TFs and that were associated with rhythmic transcription. These results demonstrate the utility of SMF for studying how CLOCK:BMAL1 and other TFs regulate stereotypical chromatin states at CREs to promote transcription.
Collapse
Affiliation(s)
- Xinyu Y. Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
| | - Jerome S. Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX
| |
Collapse
|
10
|
Niederhuber MJ, Leatham-Jensen M, McKay DJ. The SWI/SNF nucleosome remodeler constrains enhancer activity during Drosophila wing development. Genetics 2024; 226:iyad196. [PMID: 37949841 PMCID: PMC10847718 DOI: 10.1093/genetics/iyad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Chromatin remodeling is central to the dynamic changes in gene expression that drive cell fate determination. During development, the sets of enhancers that are accessible for use change globally as cells transition between stages. While transcription factors and nucleosome remodelers are known to work together to control enhancer accessibility, it is unclear how the short stretches of DNA that they individually unmask yield the kilobase-sized accessible regions characteristic of active enhancers. Here, we performed a genetic screen to investigate the role of nucleosome remodelers in control of dynamic enhancer activity. We find that the Drosophila Switch/Sucrose Non-Fermenting complex, BAP, is required for repression of a temporally dynamic enhancer, brdisc. Contrary to expectations, we find that the BAP-specific subunit Osa is dispensable for mediating changes in chromatin accessibility between the early and late stages of wing development. Instead, we find that Osa is required to constrain the levels of brdisc activity when the enhancer is normally active. Genome-wide profiling reveals that Osa directly binds brdisc as well as thousands of other developmentally dynamic regulatory sites, including multiple genes encoding components and targets of the Notch signaling pathway. Transgenic reporter analyses demonstrate that Osa is required for activation and for constraint of different sets of target enhancers in the same cells. Moreover, Osa loss results in hyperactivation of the Notch ligand Delta and development of ectopic sensory structures patterned by Notch signaling early in development. Together, these findings indicate that proper constraint of enhancer activity is necessary for regulation of dose-dependent developmental events.
Collapse
Affiliation(s)
- Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Onoa B, Díaz-Celis C, Cañari-Chumpitaz C, Lee A, Bustamante C. Real-Time Multistep Asymmetrical Disassembly of Nucleosomes and Chromatosomes Visualized by High-Speed Atomic Force Microscopy. ACS CENTRAL SCIENCE 2024; 10:122-137. [PMID: 38292612 PMCID: PMC10823521 DOI: 10.1021/acscentsci.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
During replication, expression, and repair of the eukaryotic genome, cellular machinery must access the DNA wrapped around histone proteins forming nucleosomes. These octameric protein·DNA complexes are modular, dynamic, and flexible and unwrap or disassemble either spontaneously or by the action of molecular motors. Thus, the mechanism of formation and regulation of subnucleosomal intermediates has gained attention genome-wide because it controls DNA accessibility. Here, we imaged nucleosomes and their more compacted structure with the linker histone H1 (chromatosomes) using high-speed atomic force microscopy to visualize simultaneously the changes in the DNA and the histone core during their disassembly when deposited on mica. Furthermore, we trained a neural network and developed an automatic algorithm to track molecular structural changes in real time. Our results show that nucleosome disassembly is a sequential process involving asymmetrical stepwise dimer ejection events. The presence of H1 restricts DNA unwrapping, significantly increases the nucleosomal lifetime, and affects the pathway in which heterodimer asymmetrical dissociation occurs. We observe that tetrasomes are resilient to disassembly and that the tetramer core (H3·H4)2 can diffuse along the nucleosome positioning sequence. Tetrasome mobility might be critical to the proper assembly of nucleosomes and can be relevant during nucleosomal transcription, as tetrasomes survive RNA polymerase passage. These findings are relevant to understanding nucleosome intrinsic dynamics and their modification by DNA-processing enzymes.
Collapse
Affiliation(s)
- Bibiana Onoa
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
| | - César Díaz-Celis
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
| | - Cristhian Cañari-Chumpitaz
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
| | - Antony Lee
- Laboratoire
Photonique Numérique et Nanosciences, LP2N UMR 5298, Université de Bordeaux, Institut d’Optique,
CNRS, F-33400 Talence, France
| | - Carlos Bustamante
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Brahma S, Henikoff S. The BAF chromatin remodeler synergizes with RNA polymerase II and transcription factors to evict nucleosomes. Nat Genet 2024; 56:100-111. [PMID: 38049663 PMCID: PMC10786724 DOI: 10.1038/s41588-023-01603-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023]
Abstract
Chromatin accessibility is a hallmark of active transcription and entails ATP-dependent nucleosome remodeling, which is carried out by complexes such as Brahma-associated factor (BAF). However, the mechanistic links between transcription, nucleosome remodeling and chromatin accessibility are unclear. Here, we used a chemical-genetic approach coupled with time-resolved chromatin profiling to dissect the interplay between RNA Polymerase II (RNAPII), BAF and DNA-sequence-specific transcription factors in mouse embryonic stem cells. We show that BAF dynamically unwraps and evicts nucleosomes at accessible chromatin regions, while RNAPII promoter-proximal pausing stabilizes BAF chromatin occupancy and enhances ATP-dependent nucleosome eviction by BAF. We find that although RNAPII and BAF dynamically probe both transcriptionally active and Polycomb-repressed genomic regions, pluripotency transcription factor chromatin binding confers locus specificity for productive chromatin remodeling and nucleosome eviction by BAF. Our study suggests a paradigm for how functional synergy between dynamically acting chromatin factors regulates locus-specific nucleosome organization and chromatin accessibility.
Collapse
Affiliation(s)
- Sandipan Brahma
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
13
|
Wang P, Fan N, Yang W, Cao P, Liu G, Zhao Q, Guo P, Li X, Lin X, Jiang N, Nashun B. Transcriptional regulation of FACT involves Coordination of chromatin accessibility and CTCF binding. J Biol Chem 2024; 300:105538. [PMID: 38072046 PMCID: PMC10808957 DOI: 10.1016/j.jbc.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Histone chaperone FACT (facilitates chromatin transcription) is well known to promote chromatin recovery during transcription. However, the mechanism how FACT regulates genome-wide chromatin accessibility and transcription factor binding has not been fully elucidated. Through loss-of-function studies, we show here that FACT component Ssrp1 is required for DNA replication and DNA damage repair and is also essential for progression of cell phase transition and cell proliferation in mouse embryonic fibroblast cells. On the molecular level, absence of the Ssrp1 leads to increased chromatin accessibility, enhanced CTCF binding, and a remarkable change in dynamic range of gene expression. Our study thus unequivocally uncovers a unique mechanism by which FACT complex regulates transcription by coordinating genome-wide chromatin accessibility and CTCF binding.
Collapse
Affiliation(s)
- Peijun Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Na Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China
| | - Pengbo Cao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China
| | - Guojun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qi Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengfei Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xihe Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
14
|
Obermeyer S, Schrettenbrunner L, Stöckl R, Schwartz U, Grasser K. Different elongation factors distinctly modulate RNA polymerase II transcription in Arabidopsis. Nucleic Acids Res 2023; 51:11518-11533. [PMID: 37819035 PMCID: PMC10681736 DOI: 10.1093/nar/gkad825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Various transcript elongation factors (TEFs) including modulators of RNA polymerase II (RNAPII) activity and histone chaperones tune the efficiency of transcription in the chromatin context. TEFs are involved in establishing gene expression patterns during growth and development in Arabidopsis, while little is known about the genomic distribution of the TEFs and the way they facilitate transcription. We have mapped the genome-wide occupancy of the elongation factors SPT4-SPT5, PAF1C and FACT, relative to that of elongating RNAPII phosphorylated at residues S2/S5 within the carboxyterminal domain. The distribution of SPT4-SPT5 along transcribed regions closely resembles that of RNAPII-S2P, while the occupancy of FACT and PAF1C is rather related to that of RNAPII-S5P. Under transcriptionally challenging heat stress conditions, mutant plants lacking the corresponding TEFs are differentially impaired in transcript synthesis. Strikingly, in plants deficient in PAF1C, defects in transcription across intron/exon borders are observed that are cumulative along transcribed regions. Upstream of transcriptional start sites, the presence of FACT correlates with nucleosomal occupancy. Under stress conditions FACT is particularly required for transcriptional upregulation and to promote RNAPII transcription through +1 nucleosomes. Thus, Arabidopsis TEFs are differently distributed along transcribed regions, and are distinctly required during transcript elongation especially upon transcriptional reprogramming.
Collapse
Affiliation(s)
- Simon Obermeyer
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Lukas Schrettenbrunner
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Richard Stöckl
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
15
|
Amigo R, Raiqueo F, Tarifeño E, Farkas C, Gutiérrez JL. Poly(dA:dT) Tracts Differentially Modulate Nucleosome Remodeling Activity of RSC and ISW1a Complexes, Exerting Tract Orientation-Dependent and -Independent Effects. Int J Mol Sci 2023; 24:15245. [PMID: 37894925 PMCID: PMC10607297 DOI: 10.3390/ijms242015245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The establishment and maintenance of nucleosome-free regions (NFRs) are prominent processes within chromatin dynamics. Transcription factors, ATP-dependent chromatin remodeling complexes (CRCs) and DNA sequences are the main factors involved. In Saccharomyces cerevisiae, CRCs such as RSC contribute to chromatin opening at NFRs, while other complexes, including ISW1a, contribute to NFR shrinking. Regarding DNA sequences, growing evidence points to poly(dA:dT) tracts as playing a direct role in active processes involved in nucleosome positioning dynamics. Intriguingly, poly(dA:dT)-tract-containing NFRs span asymmetrically relative to the location of the tract by a currently unknown mechanism. In order to obtain insight into the role of poly(dA:dT) tracts in nucleosome remodeling, we performed a systematic analysis of their influence on the activity of ISW1a and RSC complexes. Our results show that poly(dA:dT) tracts differentially affect the activity of these CRCs. Moreover, we found differences between the effects exerted by the two alternative tract orientations. Remarkably, tract-containing linker DNA is taken as exit DNA for nucleosome sliding catalyzed by RSC. Our findings show that defined DNA sequences, when present in linker DNA, can dictate in which direction a remodeling complex has to slide nucleosomes and shed light into the mechanisms underlying asymmetrical chromatin opening around poly(dA:dT) tracts.
Collapse
Affiliation(s)
- Roberto Amigo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Fernanda Raiqueo
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Estefanía Tarifeño
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| | - Carlos Farkas
- Biomedical Sciences Research Laboratory, Department of Basic Sciences and Morphology, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile;
| | - José L. Gutiérrez
- Laboratory of Transcriptional Regulation, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción 4070043, Chile; (R.A.); (F.R.); (E.T.)
| |
Collapse
|
16
|
Arenas-Mena C, Akin S. Widespread priming of transcriptional regulatory elements by incipient accessibility or RNA polymerase II pause in early embryos of the sea urchin Strongylocentrotus purpuratus. Genetics 2023; 225:iyad145. [PMID: 37551428 PMCID: PMC10789315 DOI: 10.1093/genetics/iyad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Transcriptional regulatory elements (TREs) are the primary nodes that control developmental gene regulatory networks. In embryo stages, larvae, and adult differentiated red spherule cells of the sea urchin Strongylocentrotus purpuratus, transcriptionally engaged TREs are detected by Precision Run-On Sequencing (PRO-seq), which maps genome-wide at base pair resolution the location of paused or elongating RNA polymerase II (Pol II). In parallel, TRE accessibility is estimated by the Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-seq). Our analysis identifies surprisingly early and widespread TRE accessibility in 4-cell cleavage embryos that is not necessarily followed by concurrent or subsequent transcription. TRE transcriptional differences identified by PRO-seq provide more contrast among embryonic stages than ATAC-seq accessibility differences, in agreement with the apparent excess of accessible but inactive TREs during embryogenesis. Global TRE accessibility reaches a maximum around the 20-hour late blastula stage, which coincides with the consolidation of major embryo regionalizations and peak histone variant H2A.Z expression. A transcriptional potency model based on labile nucleosome TRE occupancy driven by DNA sequences and the prevalence of histone variants is proposed in order to explain the basal accessibility of transcriptionally inactive TREs during embryogenesis. However, our results would not reconcile well with labile nucleosome models based on simple A/T sequence enrichment. In addition, a large number of distal TREs become transcriptionally disengaged during developmental progression, in support of an early Pol II paused model for developmental gene regulation that eventually resolves in transcriptional activation or silencing. Thus, developmental potency in early embryos may be facilitated by incipient accessibility and transcriptional pause at TREs.
Collapse
Affiliation(s)
- Cesar Arenas-Mena
- Department of Biology, College of Staten Island, City University of New York (CUNY), 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- PhD Programs in Biology and Biochemistry at the City University of New York (CUNY), Graduate Center, 365 Fifth Avenue, New York, NY, 10016, USA
| | - Serhat Akin
- Department of Biology, College of Staten Island, City University of New York (CUNY), 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- PhD Program in Biology at the City University of New York (CUNY), Graduate Center, 365 Fifth Avenue, New York, NY, 10016, USA
| |
Collapse
|
17
|
Moleri P, Wilkins BJ. Unnatural Amino Acid Crosslinking for Increased Spatiotemporal Resolution of Chromatin Dynamics. Int J Mol Sci 2023; 24:12879. [PMID: 37629060 PMCID: PMC10454095 DOI: 10.3390/ijms241612879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The utilization of an expanded genetic code and in vivo unnatural amino acid crosslinking has grown significantly in the past decade, proving to be a reliable system for the examination of protein-protein interactions. Perhaps the most utilized amino acid crosslinker, p-benzoyl-(l)-phenylalanine (pBPA), has delivered a vast compendium of structural and mechanistic data, placing it firmly in the upper echelons of protein analytical techniques. pBPA contains a benzophenone group that is activated with low energy radiation (~365 nm), initiating a diradical state that can lead to hydrogen abstraction and radical recombination in the form of a covalent bond to a neighboring protein. Importantly, the expanded genetic code system provides for site-specific encoding of the crosslinker, yielding spatial control for protein surface mapping capabilities. Paired with UV-activation, this process offers a practical means for spatiotemporal understanding of protein-protein dynamics in the living cell. The chromatin field has benefitted particularly well from this technique, providing detailed mapping and mechanistic insight for numerous chromatin-related pathways. We provide here a brief history of unnatural amino acid crosslinking in chromatin studies and outlooks into future applications of the system for increased spatiotemporal resolution in chromatin related research.
Collapse
Affiliation(s)
| | - Bryan J. Wilkins
- Department of Chemistry and Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Riverdale, NY 10471, USA
| |
Collapse
|
18
|
Gòdia M, Lian Y, Naval-Sanchez M, Ponte I, Rodríguez-Gil JE, Sanchez A, Clop A. Micrococcal nuclease sequencing of porcine sperm suggests enriched co-location between retained histones and genomic regions related to semen quality and early embryo development. PeerJ 2023; 11:e15520. [PMID: 37361042 PMCID: PMC10290446 DOI: 10.7717/peerj.15520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
The mammalian spermatozoon has a unique chromatin structure in which the majority of histones are replaced by protamines during spermatogenesis and a small fraction of nucleosomes are retained at specific locations of the genome. The sperm's chromatin structure remains unresolved in most animal species, including the pig. However, mapping the genomic locations of retained nucleosomes in sperm could help understanding the molecular basis of both sperm development and function as well as embryo development. This information could then be useful to identify molecular markers for sperm quality and fertility traits. Here, micrococcal nuclease digestion coupled with high throughput sequencing was performed on pig sperm to map the genomic location of mono- and sub-nucleosomal chromatin fractions in relation to a set of diverse functional elements of the genome, some of which were related to semen quality and early embryogenesis. In particular, the investigated elements were promoters, the different sections of the gene body, coding and non-coding RNAs present in the pig sperm, potential transcription factor binding sites, genomic regions associated to semen quality traits and repeat elements. The analysis yielded 25,293 and 4,239 peaks in the mono- and sub-nucleosomal fractions, covering 0.3% and 0.02% of the porcine genome, respectively. A cross-species comparison revealed positional conservation of the nucleosome retention in sperm between the pig data and a human dataset that found nucleosome enrichment in genomic regions of importance in development. Both gene ontology analysis of the genes mapping nearby the mono-nucleosomal peaks and the identification of putative transcription factor binding motifs within the mono- and the sub- nucleosomal peaks showed enrichment for processes related to sperm function and embryo development. There was significant motif enrichment for Znf263, which in humans was suggested to be a key regulator of genes with paternal preferential expression during early embryogenesis. Moreover, enriched positional intersection was found in the genome between the mono-nucleosomal peaks and both the RNAs present in pig sperm and the RNAs related to sperm quality. There was no co-location between GWAS hits for semen quality in swine and the nucleosomal sites. Finally, the data evidenced depletion of mono-nucleosomes in long interspersed nuclear elements and enrichment of sub-nucleosomes in short interspersed repeat elements.These results suggest that retained nucleosomes in sperm could both mark regulatory elements or genes expressed during spermatogenesis linked to semen quality and fertility and act as transcriptional guides during early embryogenesis. The results of this study support the undertaking of ambitious research using a larger number of samples to robustly assess the positional relationship between histone retention in sperm and the reproductive ability of boars.
Collapse
Affiliation(s)
- Marta Gòdia
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
- Animal Breeding and Genomics, Wageningen University and Research, Wageninger, Netherlands
| | - Yu Lian
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
| | | | - Inma Ponte
- Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Catalonia, Spain
| | - Joan Enric Rodríguez-Gil
- Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Catalonia, Spain
| | - Armand Sanchez
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
- Animal and food sciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Catalonia, Spain
| | - Alex Clop
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Jauregui-Lozano J, McGovern SE, Bakhle KM, Hagins AC, Weake VM. Establishing the contribution of active histone methylation marks to the aging transcriptional landscape of Drosophila photoreceptors. Sci Rep 2023; 13:5105. [PMID: 36991154 PMCID: PMC10060402 DOI: 10.1038/s41598-023-32273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Studies in multiple organisms have shown that aging is accompanied by several molecular phenotypes that include dysregulation of chromatin. Since chromatin regulates DNA-based processes such as transcription, alterations in chromatin modifications could impact the transcriptome and function of aging cells. In flies, as in mammals, the aging eye undergoes changes in gene expression that correlate with declining visual function and increased risk of retinal degeneration. However, the causes of these transcriptome changes are poorly understood. Here, we profiled chromatin marks associated with active transcription in the aging Drosophila eye to understand how chromatin modulates transcriptional outputs. We found that both H3K4me3 and H3K36me3 globally decrease across all actively expressed genes with age. However, we found no correlation with changes in differential gene expression. Downregulation of the H3K36me3 methyltransferase Set2 in young photoreceptors revealed significant changes in splicing events that overlapped significantly with those observed in aging photoreceptors. These overlapping splicing events impacted multiple genes involved in phototransduction and neuronal function. Since proper splicing is essential for visual behavior, and because aging Drosophila undergo a decrease in visual function, our data suggest that H3K36me3 could play a role in maintaining visual function in the aging eye through regulating alternative splicing.
Collapse
Affiliation(s)
- Juan Jauregui-Lozano
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
- University of California San Diego, San Diego, CA, 92093, USA
| | - Sarah E McGovern
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Kimaya M Bakhle
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Arrianna C Hagins
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, 47907, USA.
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
20
|
Huang Y, Cai W, Lu Q, Lv J, Wan M, Guan D, Yang S, He S. PMT6 Is Required for SWC4 in Positively Modulating Pepper Thermotolerance. Int J Mol Sci 2023; 24:ijms24054849. [PMID: 36902276 PMCID: PMC10003703 DOI: 10.3390/ijms24054849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
High temperature stress (HTS), with growth and development impairment, is one of the most important abiotic stresses frequently encountered by plants, in particular solanacaes such as pepper, that mainly distribute in tropical and subtropical regions. Plants activate thermotolerance to cope with this stress; however, the underlying mechanism is currently not fully understood. SWC4, a shared component of SWR1- and NuA4 complexes implicated in chromatin remodeling, was previously found to be involved in the regulation of pepper thermotolerance, but the underlying mechanism remains poorly understood. Herein, PMT6, a putative methyltranferase was originally found to interact with SWC4 by co-immunoprecipitation (Co-IP)-combined LC/MS assay. This interaction was further confirmed by bimolecular fluorescent complimentary (BiFC) and Co-IP assay, and PMT6 was further found to confer SWC4 methylation. By virus-induced gene silencing, it was found that PMT6 silencing significantly reduced pepper basal thermotolerance and transcription of CaHSP24 and significantly reduced the enrichment of chromatin-activation-related H3K9ac, H4K5ac, and H3K4me3 in TSS of CaHSP24, which was previously found to be positively regulated by CaSWC4. By contrast, the overexpression of PMT6 significantly enhanced basal thermotolerance of pepper plants. All these data indicate that PMT6 acts as a positive regulator in pepper thermotolerance, likely by methylating SWC4.
Collapse
Affiliation(s)
- Yu Huang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiwei Cai
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaoling Lu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingang Lv
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiyun Wan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.Y.); (S.H.)
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.Y.); (S.H.)
| |
Collapse
|
21
|
Klf4 haploinsufficiency in Sp7+ lineage leads to underdeveloped mandibles and insufficient elongation of mandibular incisor. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166636. [PMID: 36584722 DOI: 10.1016/j.bbadis.2022.166636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
The mandible is an important component of the craniofacial bones, whose development is regulated by complex molecular networks and involves the well-coordinated development of the bone, cartilage, and teeth. Previously, we demonstrated that Krüppel-like factor 4 (KLF4) promoted dentinogenesis and osteogenesis, but it was enigmatic whether Klf4 participated in the development of the mandible. In this study, the Sp7-Cre; Klf4f/+ mice exhibited underdeveloped mandibles and insufficient elongation of the mandibular incisor when compared with Klf4f/+ and Sp7-Cre mice. Moreover, morphological and molecular analysis showed that the alveolar bone mass was significantly decreased in KLF4 deficient mice, accompanied by reduced expression of osteoblast-related genes. Meanwhile, the KLF4 deficient mice had decreased expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) and no significant change of osteoprotegerin (OPG) in the alveolar bone near the mandibular incisor. Simultaneously, the osteoclastogenesis in the alveolar bone of KLF4 deficient mice was attenuated, which was demonstrated by a diminished number of tartrate-resistant acid phosphatase positive (TRAP+), matrix metallopeptidase 9 positive (MMP9+), and cathepsin K positive (CTSK+) multinucleated osteoclasts, respectively. Collectively, our study suggested that Klf4 participated in mandibular development, and Klf4 in Sp7+ lineage affected osteogenesis directly and osteoclastogenesis indirectly.
Collapse
|
22
|
Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell 2023; 83:373-392. [PMID: 36693380 PMCID: PMC9898153 DOI: 10.1016/j.molcel.2022.12.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.
Collapse
Affiliation(s)
- Seungsoo Kim
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Brahma S, Henikoff S. RNA Polymerase II, the BAF remodeler and transcription factors synergize to evict nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525083. [PMID: 36711459 PMCID: PMC9882304 DOI: 10.1101/2023.01.22.525083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromatin accessibility is a hallmark of active transcription and requires ATP-dependent nucleosome remodeling by Brahma-Associated Factor (BAF). However, the mechanistic link between transcription, nucleosome remodeling, and chromatin accessibility is unclear. Here, we used a chemical-genetic approach to dissect the interplay between RNA Polymerase II (RNAPII), BAF, and DNA-sequence-specific transcription factors (TFs) in mouse embryonic stem cells. By time-resolved chromatin profiling with acute transcription block at distinct stages, we show that RNAPII promoter-proximal pausing stabilizes BAF chromatin occupancy and enhances nucleosome eviction by BAF. We find that RNAPII and BAF probe both transcriptionally active and Polycomb-repressed genomic regions and provide evidence that TFs capture transient site exposure due to nucleosome unwrapping by BAF to confer locus specificity for persistent chromatin remodeling. Our study reveals the mechanistic basis of cell-type-specific chromatin accessibility. We propose a new paradigm for how functional synergy between dynamically acting chromatin factors regulates nucleosome organization.
Collapse
Affiliation(s)
- Sandipan Brahma
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave North, Seattle, WA, 98109
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave North, Seattle, WA, 98109
- Howard Hughes Medical Institute, USA
| |
Collapse
|
24
|
Jennings MR, Parks RJ. Human Adenovirus Gene Expression and Replication Is Regulated through Dynamic Changes in Nucleoprotein Structure throughout Infection. Viruses 2023; 15:161. [PMID: 36680201 PMCID: PMC9863843 DOI: 10.3390/v15010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Human adenovirus (HAdV) is extremely common and can rapidly spread in confined populations such as daycare centers, hospitals, and retirement homes. Although HAdV usually causes only minor illness in otherwise healthy patients, HAdV can cause significant morbidity and mortality in certain populations, such as the very young, very old, or immunocompromised individuals. During infection, the viral DNA undergoes dramatic changes in nucleoprotein structure that promote the rapid expression of viral genes, replication of the DNA, and generation of thousands of new infectious virions-each process requiring a distinct complement of virus and host-encoded proteins. In this review, we summarize our current understanding of the nucleoprotein structure of HAdV DNA during the various phases of infection, the cellular proteins implicated in mediating these changes, and the role of epigenetics in HAdV gene expression and replication.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
25
|
Li D, Zhang L, He Y, Zhou T, Cheng X, Huang W, Xu Y. Novel histone post-translational modifications in diabetes and complications of diabetes: The underlying mechanisms and implications. Biomed Pharmacother 2022; 156:113984. [DOI: 10.1016/j.biopha.2022.113984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
26
|
Abstract
In anaphase, any unresolved DNA entanglements between the segregating sister chromatids can give rise to chromatin bridges. To prevent genome instability, chromatin bridges must be resolved prior to cytokinesis. The SNF2 protein PICH has been proposed to play a direct role in this process through the remodeling of nucleosomes. However, direct evidence of nucleosome remodeling by PICH has remained elusive. Here, we present an in vitro single-molecule assay that mimics chromatin under tension, as is found in anaphase chromatin bridges. Applying a combination of dual-trap optical tweezers and fluorescence imaging of PICH and histones bound to a nucleosome-array construct, we show that PICH is a tension- and ATP-dependent nucleosome remodeler that facilitates nucleosome unwrapping and then subsequently slides remaining histones along the DNA. This work elucidates the role of PICH in chromatin-bridge dissolution, and might provide molecular insights into the mechanisms of related SNF2 proteins.
Collapse
|
27
|
Opportunistic binding of EcR to open chromatin drives tissue-specific developmental responses. Proc Natl Acad Sci U S A 2022; 119:e2208935119. [PMID: 36161884 DOI: 10.1073/pnas.2208935119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Steroid hormones perform diverse biological functions in developing and adult animals. However, the mechanistic basis for their tissue specificity remains unclear. In Drosophila, the ecdysone steroid hormone is essential for coordinating developmental timing across physically separated tissues. Ecdysone directly impacts genome function through its nuclear receptor, a heterodimer of the EcR and ultraspiracle proteins. Ligand binding to EcR triggers a transcriptional cascade, including activation of a set of primary response transcription factors. The hierarchical organization of this pathway has left the direct role of EcR in mediating ecdysone responses obscured. Here, we investigate the role of EcR in controlling tissue-specific ecdysone responses, focusing on two tissues that diverge in their response to rising ecdysone titers: the larval salivary gland, which undergoes programmed destruction, and the wing imaginal disc, which initiates morphogenesis. We find that EcR functions bimodally, with both gene repressive and activating functions, even at the same developmental stage. EcR DNA binding profiles are highly tissue-specific, and transgenic reporter analyses demonstrate that EcR plays a direct role in controlling enhancer activity. Finally, despite a strong correlation between tissue-specific EcR binding and tissue-specific open chromatin, we find that EcR does not control chromatin accessibility at genomic targets. We conclude that EcR contributes extensively to tissue-specific ecdysone responses. However, control over access to its binding sites is subordinated to other transcription factors.
Collapse
|
28
|
FACT modulates the conformations of histone H2A and H2B N-terminal tails within nucleosomes. Commun Biol 2022; 5:814. [PMID: 35963897 PMCID: PMC9376062 DOI: 10.1038/s42003-022-03785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Gene expression is regulated by the modification and accessibility of histone tails within nucleosomes. The histone chaperone FACT (facilitate chromatin transcription), comprising SPT16 and SSRP1, interacts with nucleosomes through partial replacement of DNA with the phosphorylated acidic intrinsically disordered (pAID) segment of SPT16; pAID induces an accessible conformation of the proximal histone H3 N-terminal tail (N-tail) in the unwrapped nucleosome with FACT. Here, we use NMR to probe the histone H2A and H2B tails in the unwrapped nucleosome. Consequently, both the H2A and H2B N-tails on the pAID-proximal side bind to pAID with robust interactions, which are important for nucleosome assembly with FACT. Furthermore, the conformations of these N-tails on the distal DNA-contact site are altered from those in the canonical nucleosome. Our findings highlight that FACT both proximally and distally regulates the conformations of the H2A and H2B N-tails in the asymmetrically unwrapped nucleosome.
Collapse
|
29
|
Kim J, Sheu KM, Cheng QJ, Hoffmann A, Enciso G. Stochastic models of nucleosome dynamics reveal regulatory rules of stimulus-induced epigenome remodeling. Cell Rep 2022; 40:111076. [PMID: 35830792 PMCID: PMC10074953 DOI: 10.1016/j.celrep.2022.111076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
The genomic positions of nucleosomes are a defining feature of the cell's epigenomic state, but signal-dependent transcription factors (SDTFs), upon activation, bind to specific genomic locations and modify nucleosome positioning. Here we leverage SDTFs as perturbation probes to learn about nucleosome dynamics in living cells. We develop Markov models of nucleosome dynamics and fit them to time course sequencing data of DNA accessibility. We find that (1) the dynamics of DNA unwrapping are significantly slower in cells than reported from cell-free experiments, (2) only models with cooperativity in wrapping and unwrapping fit the available data, (3) SDTF activity produces the highest eviction probability when its binding site is adjacent to but not on the nucleosome dyad, and (4) oscillatory SDTF activity results in high location variability. Our work uncovers the regulatory rules governing SDTF-induced nucleosome dynamics in live cells, which can predict chromatin accessibility alterations during inflammation at single-nucleosome resolution.
Collapse
Affiliation(s)
- Jinsu Kim
- Department of Mathematics, Pohang University of Science and Technology, Pohang, South Korea
| | - Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Quen J Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA.
| | - German Enciso
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
30
|
Abstract
Gene regulation arises out of dynamic competition between nucleosomes, transcription factors, and other chromatin proteins for the opportunity to bind genomic DNA. The timescales of nucleosome assembly and binding of factors to DNA determine the outcomes of this competition at any given locus. Here, we review how these properties of chromatin proteins and the interplay between the dynamics of different factors are critical for gene regulation. We discuss how molecular structures of large chromatin-associated complexes, kinetic measurements, and high resolution mapping of protein-DNA complexes in vivo set the boundary conditions for chromatin dynamics, leading to models of how the steady state behaviors of regulatory elements arise.
Collapse
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA;
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics and RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
31
|
Johnson SL, Narlikar GJ. ATP hydrolysis coordinates the activities of two motors in a dimeric chromatin remodeling enzyme. J Mol Biol 2022; 434:167653. [PMID: 35659534 DOI: 10.1016/j.jmb.2022.167653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
ATP-dependent chromatin remodelers are essential enzymes that restructure eukaryotic genomes to enable all DNA-based processes. The diversity and complexity of these processes are matched by the complexity of the enzymes that carry them out, making remodelers a challenging class of molecular motors to study by conventional methods. Here we use a single molecule biophysical assay to overcome some of these challenges, enabling a detailed mechanistic dissection of a paradigmatic remodeler reaction, that of sliding a nucleosome towards the longer DNA linker. We focus on how two motors of a dimeric remodeler coordinate to accomplish such directional sliding. We find that ATP hydrolysis by both motors promotes coordination, suggesting a role for ATP in resolving the competition for directional commitment. Furthermore, we show an artificially constitutive dimer is no more or less coordinated, but is more processive, suggesting a cell could modulate a remodeler's oligomeric state to modulate local chromatin dynamics.
Collapse
Affiliation(s)
- Stephanie L Johnson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. https://twitter.com/StephL_Johnson
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
32
|
Abstract
Like many intracellular pathogens, the protozoan parasite Toxoplasma gondii has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how T. gondii effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France;
| |
Collapse
|
33
|
Zhao S, Cui H, Hu Z, Du L, Ran X, Wen X. Senecavirus A Enhances Its Adaptive Evolution via Synonymous Codon Bias Evolution. Viruses 2022; 14:v14051055. [PMID: 35632797 PMCID: PMC9146685 DOI: 10.3390/v14051055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Synonymous codon bias in the viral genome affects protein translation and gene expression, suggesting that the synonymous codon mutant plays an essential role in influencing virulence and evolution. However, how the recessive mutant form contributes to virus evolvability remains elusive. In this paper, we characterize how the Senecavirus A (SVA), a picornavirus, utilizes synonymous codon mutations to influence its evolution, resulting in the adaptive evolution of the virus to adverse environments. The phylogenetic tree and Median-joining (MJ)-Network of these SVA lineages worldwide were constructed to reveal SVA three-stage genetic development clusters. Furthermore, we analyzed the codon bias of the SVA genome of selected strains and found that SVA could increase the GC content of the third base of some amino acid synonymous codons to enhance the viral RNA adaptive evolution. Our results highlight the impact of recessive mutation of virus codon bias on the evolution of the SVA and uncover a previously underappreciated evolutionary strategy for SVA. They also underline the importance of understanding the genetic evolution of SVA and how SVA adapts to the adverse effects of external stress.
Collapse
Affiliation(s)
- Simiao Zhao
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Huiqi Cui
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenru Hu
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Li Du
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
| | - Xuhua Ran
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| | - Xiaobo Wen
- College of Animal Science and Technology, Hainan University, Haikou 570228, China; (S.Z.); (H.C.); (Z.H.); (L.D.)
- Correspondence: (X.R.); (X.W.)
| |
Collapse
|
34
|
Qian J, Guo F. De novo programming: establishment of epigenome in mammalian oocytes. Biol Reprod 2022; 107:40-53. [PMID: 35552602 DOI: 10.1093/biolre/ioac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Abstract
Innovations in ultrasensitive and single-cell measurements enable us to study layers of genome regulation in the view of cellular and regulatory heterogeneity. Genome-scale mapping allows to evaluate epigenetic features and dynamics in different genomic contexts, including genebodies, CGIs, ICRs, promoters, PMDs, and repetitive elements. The epigenome of early embryos, fetal germ cells, and sperm has been extensively studied for the past decade, while oocytes remain less clear. Emerging evidence now supports the notion that transcription and chromatin accessibility precede de novo DNA methylation in both human and mouse oocytes. Recent studies also start to chart correlations among different histone modifications and DNA methylation. We discussed the potential mechanistic hierarchy by which shapes oocyte DNA methylome, also provided insights into the convergent and divergent features between human and mice.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Fan Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Sheu KM, Hoffmann A. Functional Hallmarks of Healthy Macrophage Responses: Their Regulatory Basis and Disease Relevance. Annu Rev Immunol 2022; 40:295-321. [PMID: 35471841 PMCID: PMC10074967 DOI: 10.1146/annurev-immunol-101320-031555] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages are first responders for the immune system. In this role, they have both effector functions for neutralizing pathogens and sentinel functions for alerting other immune cells of diverse pathologic threats, thereby initiating and coordinating a multipronged immune response. Macrophages are distributed throughout the body-they circulate in the blood, line the mucosal membranes, reside within organs, and survey the connective tissue. Several reviews have summarized their diverse roles in different physiological scenarios and in the initiation or amplification of different pathologies. In this review, we propose that both the effector and the sentinel functions of healthy macrophages rely on three hallmark properties: response specificity, context dependence, and stimulus memory. When these hallmark properties are diminished, the macrophage's biological functions are impaired, which in turn results in increased risk for immune dysregulation, manifested by immune deficiency or autoimmunity. We review the evidence and the molecular mechanisms supporting these functional hallmarks.
Collapse
Affiliation(s)
- Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA;
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA;
| |
Collapse
|
36
|
Herbert A, Fedorov A, Poptsova M. Mono a Mano: ZBP1's Love-Hate Relationship with the Kissing Virus. Int J Mol Sci 2022; 23:3079. [PMID: 35328502 PMCID: PMC8955656 DOI: 10.3390/ijms23063079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Z-DNA binding protein (ZBP1) very much represents the nuclear option. By initiating inflammatory cell death (ICD), ZBP1 activates host defenses to destroy infectious threats. ZBP1 is also able to induce noninflammatory regulated cell death via apoptosis (RCD). ZBP1 senses the presence of left-handed Z-DNA and Z-RNA (ZNA), including that formed by expression of endogenous retroelements. Viruses such as the Epstein-Barr "kissing virus" inhibit ICD, RCD and other cell death signaling pathways to produce persistent infection. EBV undergoes lytic replication in plasma cells, which maintain detectable levels of basal ZBP1 expression, leading us to suggest a new role for ZBP1 in maintaining EBV latency, one of benefit for both host and virus. We provide an overview of the pathways that are involved in establishing latent infection, including those regulated by MYC and NF-κB. We describe and provide a synthesis of the evidence supporting a role for ZNA in these pathways, highlighting the positive and negative selection of ZNA forming sequences in the EBV genome that underscores the coadaptation of host and virus. Instead of a fight to the death, a state of détente now exists where persistent infection by the virus is tolerated by the host, while disease outcomes such as death, autoimmunity and cancer are minimized. Based on these new insights, we propose actionable therapeutic approaches to unhost EBV.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| | - Aleksandr Fedorov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| |
Collapse
|
37
|
Hirai S, Tomimatsu K, Miyawaki-Kuwakado A, Takizawa Y, Komatsu T, Tachibana T, Fukushima Y, Takeda Y, Negishi L, Kujirai T, Koyama M, Ohkawa Y, Kurumizaka H. Unusual nucleosome formation and transcriptome influence by the histone H3mm18 variant. Nucleic Acids Res 2021; 50:72-91. [PMID: 34929737 PMCID: PMC8855299 DOI: 10.1093/nar/gkab1137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/14/2022] Open
Abstract
Histone H3mm18 is a non-allelic H3 variant expressed in skeletal muscle and brain
in mice. However, its function has remained enigmatic. We found that H3mm18 is
incorporated into chromatin in cells with low efficiency, as compared to H3.3.
We determined the structures of the nucleosome core particle (NCP) containing
H3mm18 by cryo-electron microscopy, which revealed that the entry/exit DNA
regions are drastically disordered in the H3mm18 NCP. Consistently, the H3mm18
NCP is substantially unstable in vitro. The forced expression
of H3mm18 in mouse myoblast C2C12 cells markedly suppressed muscle
differentiation. A transcriptome analysis revealed that the forced expression of
H3mm18 affected the expression of multiple genes, and suppressed a group of
genes involved in muscle development. These results suggest a novel gene
expression regulation system in which the chromatin landscape is altered by the
formation of unusual nucleosomes with a histone variant, H3mm18, and provide
important insight into understanding transcription regulation by chromatin.
Collapse
Affiliation(s)
- Seiya Hirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Kosuke Tomimatsu
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka812-0054, Japan
| | - Atsuko Miyawaki-Kuwakado
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka812-0054, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Tetsuro Komatsu
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15, Showa-machi, Maebashi, Gunma371-8512, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka558-8585, Japan
| | - Yutaro Fukushima
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Yasuko Takeda
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Masako Koyama
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka812-0054, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| |
Collapse
|
38
|
Structural Insight into Chromatin Recognition by Multiple Domains of the Tumor Suppressor RBBP1. J Mol Biol 2021; 433:167224. [PMID: 34506790 DOI: 10.1016/j.jmb.2021.167224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023]
Abstract
Retinoblastoma-binding protein 1 (RBBP1) is involved in gene regulation, epigenetic regulation, and disease processes. RBBP1 contains five domains with DNA-binding or histone-binding activities, but how RBBP1 specifically recognizes chromatin is still unknown. An AT-rich interaction domain (ARID) in RBBP1 was proposed to be the key region for DNA-binding and gene suppression. Here, we first determined the solution structure of a tandem PWWP-ARID domain mutant of RBBP1 after deletion of a long flexible acidic loop L12 in the ARID domain. NMR titration results indicated that the ARID domain interacts with DNA with no GC- or AT-rich preference. Surprisingly, we found that the loop L12 binds to the DNA-binding region of the ARID domain as a DNA mimic and inhibits DNA binding. The loop L12 can also bind weakly to the Tudor and chromobarrel domains of RBBP1, but binds more strongly to the DNA-binding region of the histone H2A-H2B heterodimer. Furthermore, both the loop L12 and DNA can enhance the binding of the chromobarrel domain to H3K4me3 and H4K20me3. Based on these results, we propose a model of chromatin recognition by RBBP1, which highlights the unexpected multiple key roles of the disordered acidic loop L12 in the specific binding of RBBP1 to chromatin.
Collapse
|
39
|
The BAF chromatin remodeling complexes: structure, function, and synthetic lethalities. Biochem Soc Trans 2021; 49:1489-1503. [PMID: 34431497 DOI: 10.1042/bst20190960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
BAF complexes are multi-subunit chromatin remodelers, which have a fundamental role in genomic regulation. Large-scale sequencing efforts have revealed frequent BAF complex mutations in many human diseases, particularly in cancer and neurological disorders. These findings not only underscore the importance of the BAF chromatin remodelers in cellular physiological processes, but urge a more detailed understanding of their structure and molecular action to enable the development of targeted therapeutic approaches for diseases with BAF complex alterations. Here, we review recent progress in understanding the composition, assembly, structure, and function of BAF complexes, and the consequences of their disease-associated mutations. Furthermore, we highlight intra-complex subunit dependencies and synthetic lethal interactions, which have emerged as promising treatment modalities for BAF-related diseases.
Collapse
|
40
|
Tilly BC, Chalkley GE, van der Knaap JA, Moshkin YM, Kan TW, Dekkers DH, Demmers JA, Verrijzer CP. In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin. eLife 2021; 10:69424. [PMID: 34313222 PMCID: PMC8352592 DOI: 10.7554/elife.69424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
ATP-dependent chromatin remodelers control the accessibility of genomic DNA through nucleosome mobilization. However, the dynamics of genome exploration by remodelers, and the role of ATP hydrolysis in this process remain unclear. We used live-cell imaging of Drosophila polytene nuclei to monitor Brahma (BRM) remodeler interactions with its chromosomal targets. In parallel, we measured local chromatin condensation and its effect on BRM association. Surprisingly, only a small portion of BRM is bound to chromatin at any given time. BRM binds decondensed chromatin but is excluded from condensed chromatin, limiting its genomic search space. BRM-chromatin interactions are highly dynamic, whereas histone-exchange is limited and much slower. Intriguingly, loss of ATP hydrolysis enhanced chromatin retention and clustering of BRM, which was associated with reduced histone turnover. Thus, ATP hydrolysis couples nucleosome remodeling to remodeler release, driving a continuous transient probing of the genome.
Collapse
Affiliation(s)
- Ben C Tilly
- Department of Biochemistry, Rotterdam, Netherlands
| | | | | | | | | | - Dick Hw Dekkers
- Department of Biochemistry, Rotterdam, Netherlands.,Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Aa Demmers
- Department of Biochemistry, Rotterdam, Netherlands.,Proteomics Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
41
|
Jauregui-Lozano J, Bakhle K, Weake VM. In vivo tissue-specific chromatin profiling in Drosophila melanogaster using GFP-tagged nuclei. Genetics 2021; 218:6281219. [PMID: 34022041 DOI: 10.1093/genetics/iyab079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The chromatin landscape defines cellular identity in multicellular organisms with unique patterns of DNA accessibility and histone marks decorating the genome of each cell type. Thus, profiling the chromatin state of different cell types in an intact organism under disease or physiological conditions can provide insight into how chromatin regulates cell homeostasis in vivo. To overcome the many challenges associated with characterizing chromatin state in specific cell types, we developed an improved approach to isolate Drosophila melanogaster nuclei tagged with a GFPKASH protein. The perinuclear space-localized KASH domain anchors GFP to the outer nuclear membrane, and expression of UAS-GFPKASH can be controlled by tissue-specific Gal4 drivers. Using this protocol, we profiled chromatin accessibility using an improved version of Assay for Transposable Accessible Chromatin followed by sequencing (ATAC-seq), called Omni-ATAC. In addition, we examined the distribution of histone marks using Chromatin immunoprecipitation followed by sequencing (ChIP-seq) and Cleavage Under Targets and Tagmentation (CUT&Tag) in adult photoreceptor neurons. We show that the chromatin landscape of photoreceptors reflects the transcriptional state of these cells, demonstrating the quality and reproducibility of our approach for profiling the transcriptome and epigenome of specific cell types in Drosophila.
Collapse
Affiliation(s)
| | - Kimaya Bakhle
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
42
|
Grady WM. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv Cancer Res 2021; 151:425-468. [PMID: 34148620 DOI: 10.1016/bs.acr.2021.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a leading cause of cancer related deaths worldwide. One of the hallmarks of cancer and a fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological process of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the initiation and progression of cancers, including colorectal cancer. Epigenetic alterations, which include changes affecting DNA methylation, histone modifications, chromatin structure, and noncoding RNA expression, have emerged as a major class of molecular alteration in colon polyps and colorectal cancer. The classes of epigenetic alterations, their status in colorectal polyps and cancer, their effects on neoplasm biology, and their application to clinical care will be discussed.
Collapse
Affiliation(s)
- William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
43
|
Yu S, Guo J, Sun Z, Lin C, Tao H, Zhang Q, Cui Y, Zuo H, Lin Y, Chen S, Liu H, Chen Z. BMP2-dependent gene regulatory network analysis reveals Klf4 as a novel transcription factor of osteoblast differentiation. Cell Death Dis 2021; 12:197. [PMID: 33608506 PMCID: PMC7895980 DOI: 10.1038/s41419-021-03480-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) regulate the expression of target genes, inducing changes in cell morphology or activities needed for cell fate determination and differentiation. The BMP signaling pathway is widely regarded as one of the most important pathways in vertebrate skeletal biology, of which BMP2 is a potent inducer, governing the osteoblast differentiation of bone marrow stromal cells (BMSCs). However, the mechanism by which BMP2 initiates its downstream transcription factor cascade and determines the direction of differentiation remains largely unknown. In this study, we used RNA-seq, ATAC-seq, and animal models to characterize the BMP2-dependent gene regulatory network governing osteoblast lineage commitment. Sp7-Cre; Bmp2fx/fx mice (BMP2-cKO) were generated and exhibited decreased bone density and lower osteoblast number (n > 6). In vitro experiments showed that BMP2-cKO mouse bone marrow stromal cells (mBMSCs) had an impact on osteoblast differentiation and deficient cell proliferation. Osteogenic medium induced mBMSCs from BMP2-cKO mice and control were subjected to RNA-seq and ATAC-seq analysis to reveal differentially expressed TFs, along with their target open chromatin regions. Combined with H3K27Ac CUT&Tag during osteoblast differentiation, we identified 2338 BMP2-dependent osteoblast-specific active enhancers. Motif enrichment assay revealed that over 80% of these elements were directly targeted by RUNX2, DLX5, MEF2C, OASIS, and KLF4. We deactivated Klf4 in the Sp7 + lineage to validate the role of KLF4 in osteoblast differentiation of mBMSCs. Compared to the wild-type, Sp7-Cre; Klf4fx/+ mice (KLF4-Het) were smaller in size and had abnormal incisors resembling BMP2-cKO mice. Additionally, KLF4-Het mice had fewer osteoblasts and decreased osteogenic ability. RNA-seq and ATAC-seq revealed that KLF4 mainly "co-bound" with RUNX2 to regulate downstream genes. Given the significant overlap between KLF4- and BMP2-dependent NFRs and enriched motifs, our findings outline a comprehensive BMP2-dependent gene regulatory network specifically governing osteoblast differentiation of the Sp7 + lineage, in which Klf4 is a novel transcription factor.
Collapse
Affiliation(s)
- Shuaitong Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinqiang Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zheyi Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chujiao Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huangheng Tao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qian Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Cui
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuxiu Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
44
|
Grady WM, Yu M, Markowitz SD. Epigenetic Alterations in the Gastrointestinal Tract: Current and Emerging Use for Biomarkers of Cancer. Gastroenterology 2021; 160:690-709. [PMID: 33279516 PMCID: PMC7878343 DOI: 10.1053/j.gastro.2020.09.058] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer, liver cancer, stomach cancer, pancreatic cancer, and esophageal cancer are leading causes of cancer-related deaths worldwide. A fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological processes of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the clinical behavior of the precancers and cancers and can be used as biomarkers for cancer risk determination, early detection of cancer and precancer, determination of the prognosis of cancer and prediction of the response to therapy. Epigenetic alterations have emerged as one of most robust classes of biomarkers and are the basis for a growing number of clinical tests for cancer screening and surveillance.
Collapse
Affiliation(s)
- William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA,Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | | |
Collapse
|
45
|
Lobbia VR, Trueba Sanchez MC, van Ingen H. Beyond the Nucleosome: Nucleosome-Protein Interactions and Higher Order Chromatin Structure. J Mol Biol 2021; 433:166827. [PMID: 33460684 DOI: 10.1016/j.jmb.2021.166827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/20/2022]
Abstract
The regulation of chromatin biology ultimately depends on the manipulation of its smallest subunit, the nucleosome. The proteins that bind and operate on the nucleosome do so, while their substrate is part of a polymer embedded in the dense nuclear environment. Their molecular interactions must in some way be tuned to deal with this complexity. Due to the rapid increase in the number of high-resolution structures of nucleosome-protein complexes and the increasing understanding of the cellular chromatin structure, it is starting to become clearer how chromatin factors operate in this complex environment. In this review, we analyze the current literature on the interplay between nucleosome-protein interactions and higher-order chromatin structure. We examine in what way nucleosomes-protein interactions can affect and can be affected by chromatin organization at the oligonucleosomal level. In addition, we review the characteristics of nucleosome-protein interactions that can cause phase separation of chromatin. Throughout, we hope to illustrate the exciting challenges in characterizing nucleosome-protein interactions beyond the nucleosome.
Collapse
Affiliation(s)
- Vincenzo R Lobbia
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Maria Cristina Trueba Sanchez
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
46
|
Abdulhay NJ, McNally CP, Hsieh LJ, Kasinathan S, Keith A, Estes LS, Karimzadeh M, Underwood JG, Goodarzi H, Narlikar GJ, Ramani V. Massively multiplex single-molecule oligonucleosome footprinting. eLife 2020; 9:59404. [PMID: 33263279 PMCID: PMC7735760 DOI: 10.7554/elife.59404] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023] Open
Abstract
Our understanding of the beads-on-a-string arrangement of nucleosomes has been built largely on high-resolution sequence-agnostic imaging methods and sequence-resolved bulk biochemical techniques. To bridge the divide between these approaches, we present the single-molecule adenine methylated oligonucleosome sequencing assay (SAMOSA). SAMOSA is a high-throughput single-molecule sequencing method that combines adenine methyltransferase footprinting and single-molecule real-time DNA sequencing to natively and nondestructively measure nucleosome positions on individual chromatin fibres. SAMOSA data allows unbiased classification of single-molecular 'states' of nucleosome occupancy on individual chromatin fibres. We leverage this to estimate nucleosome regularity and spacing on single chromatin fibres genome-wide, at predicted transcription factor binding motifs, and across human epigenomic domains. Our analyses suggest that chromatin is comprised of both regular and irregular single-molecular oligonucleosome patterns that differ subtly in their relative abundance across epigenomic domains. This irregularity is particularly striking in constitutive heterochromatin, which has typically been viewed as a conformationally static entity. Our proof-of-concept study provides a powerful new methodology for studying nucleosome organization at a previously intractable resolution and offers up new avenues for modeling and visualizing higher order chromatin structure.
Collapse
Affiliation(s)
- Nour J Abdulhay
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States
| | - Colin P McNally
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States
| | - Laura J Hsieh
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States
| | | | - Aidan Keith
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States
| | - Laurel S Estes
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States
| | - Mehran Karimzadeh
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.,Vector Institute, Toronto, United States
| | | | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.,Bakar Computational Health Sciences Institute, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States
| | - Vijay Ramani
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.,Bakar Computational Health Sciences Institute, San Francisco, United States
| |
Collapse
|
47
|
Dumasia NP, Pethe PS. Pancreas development and the Polycomb group protein complexes. Mech Dev 2020; 164:103647. [PMID: 32991980 DOI: 10.1016/j.mod.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
The dual nature of pancreatic tissue permits both endocrine and exocrine functions. Enzymatic secretions by the exocrine pancreas help digestive processes while the pancreatic hormones regulate glucose homeostasis and energy metabolism. Pancreas organogenesis is defined by a conserved array of signaling pathways that act on common gut progenitors to bring about the generation of diverse cell types. Multiple cellular processes characterize development of the mature organ. These processes are mediated by signaling pathways that regulate lineage-specific transcription factors and chromatin modifications guiding long-term gene expression programs. The chromatin landscape is altered chiefly by DNA or histone modifications, chromatin remodelers, and non-coding RNAs. Amongst histone modifiers, several studies have identified Polycomb group (PcG) proteins as crucial determinants mediating transcriptional repression of genes involved in developmental processes. Although PcG-mediated chromatin modifications define cellular transitions and influence cell identity of multipotent progenitors, much remains to be understood regarding coordination between extracellular signals and their impact on Polycomb functions during the pancreas lineage progression. In this review, we discuss interactions between sequence-specific DNA binding proteins and chromatin regulators underlying pancreas development and insulin producing β-cells, with particular focus on Polycomb group proteins. Understanding such basic molecular mechanisms would improve current strategies for stem cell-based differentiation while also help elucidate the pathogenesis of several pancreas-related maladies, including diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai 400 056, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Pune 412 115, India.
| |
Collapse
|
48
|
Espejo I, Di Croce L, Aranda S. The changing chromatome as a driver of disease: A panoramic view from different methodologies. Bioessays 2020; 42:e2000203. [PMID: 33169398 DOI: 10.1002/bies.202000203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Indexed: 12/16/2022]
Abstract
Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the "chromatome") are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could, thus, reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
Collapse
Affiliation(s)
- Isabel Espejo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,UniversitatPompeuFabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
49
|
Chen H, Liang H. A High-Resolution Map of Human Enhancer RNA Loci Characterizes Super-enhancer Activities in Cancer. Cancer Cell 2020; 38:701-715.e5. [PMID: 33007258 PMCID: PMC7658066 DOI: 10.1016/j.ccell.2020.08.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022]
Abstract
Although enhancers play critical roles in cancer, quantifying enhancer activities in clinical samples remains challenging, especially for super-enhancers. Enhancer activities can be inferred from enhancer RNA (eRNA) signals, which requires enhancer transcription loci definition. Only a small proportion of human eRNA loci has been precisely identified, limiting investigations of enhancer-mediated oncogenic mechanisms. Here, we characterize super-enhancer regions using aggregated RNA sequencing (RNA-seq) data from large cohorts. Super-enhancers usually contain discrete loci featuring sharp eRNA expression peaks. We identify >300,000 eRNA loci in ∼377 Mb super-enhancer regions that are regulated by evolutionarily conserved, well-positioned nucleosomes and are frequently dysregulated in cancer. The eRNAs provide explanatory power for cancer phenotypes beyond that provided by mRNA expression through resolving intratumoral heterogeneity with enhancer cell-type specificity. Our study provides a high-resolution map of eRNA loci through which super-enhancer activities can be quantified by RNA-seq and a user-friendly data portal, enabling a broad range of biomedical investigations.
Collapse
Affiliation(s)
- Han Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Coux RX, Owens NDL, Navarro P. Chromatin accessibility and transcription factor binding through the perspective of mitosis. Transcription 2020; 11:236-240. [PMID: 33054514 PMCID: PMC7714440 DOI: 10.1080/21541264.2020.1825907] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromatin accessibility is generally perceived as a common property of active regulatory elements where transcription factors are recruited via DNA-specific interactions and other physico-chemical properties to regulate gene transcription. Recent work in the context of mitosis provides less trivial and potentially more interesting relationships than previously anticipated.
Collapse
Affiliation(s)
- Rémi-Xavier Coux
- Epigenomics, Proliferation and the Identity of Cells, Department of Development and Stem Cell Biology, Institut Pasteur , Paris, France
| | - Nick D L Owens
- Institute of Biomedical and Clinical Science, University of Exeter Medical School , Exeter, UK
| | - Pablo Navarro
- Epigenomics, Proliferation and the Identity of Cells, Department of Development and Stem Cell Biology, Institut Pasteur , Paris, France
| |
Collapse
|