1
|
Dutka P, Li EH, Zhong T, Jensen GJ, Kaplan M. Structural differences in the outer membrane-associated flagellar rings between sheathed and unsheathed flagella. FEBS Lett 2025; 599:1236-1245. [PMID: 39973388 DOI: 10.1002/1873-3468.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
The bacterial flagellar motor generates a torque to move the bacterium in its environment. Despite sharing a conserved core, flagellar motors of different species exhibit structural diversity with species-specific embellishments. These embellishments are classified into various types, including integrated (spanning the whole periplasmic space) or outer membrane (OM)-associated ones. Here, we used cryo-electron tomography to investigate the structural differences between the embellishments of sheathed and unsheathed flagella in various species. We discovered that the integrated embellishments of sheathed flagella have disks and rings with a constant diameter, while those of unsheathed flagella have components that vary significantly in diameter. Both unsheathed and sheathed flagella with OM-associated embellishments have components with constant diameter with a subset of motors having an additional extracellular ring. In this Hypothesis article, we propose that these differences may play a role in the formation of the sheath, as having large protein disks of various diameters underneath the OM may interfere with membrane bending to form the sheath.
Collapse
Affiliation(s)
- Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ethan H Li
- Department of Microbiology, University of Chicago, IL, USA
| | - Tengfei Zhong
- Department of Microbiology, University of Chicago, IL, USA
| | - Grant J Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | |
Collapse
|
2
|
Tachiyama S, Rosinke K, Khan MF, Zhou X, Xin Y, Botting JM, Yue J, Roujeinikova A, Hoover TR, Liu J. FlgY, PflA, and PflB form a spoke-ring network in the high-torque flagellar motor of Helicobacter pylori. Proc Natl Acad Sci U S A 2025; 122:e2421632122. [PMID: 40261933 PMCID: PMC12054838 DOI: 10.1073/pnas.2421632122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Helicobacter pylori has evolved distinct flagellar motility to colonize the human stomach. Rotation of the H. pylori flagella is driven by one of the largest known bacterial flagellar motors. In addition to the core motor components found in Escherichia coli and Salmonella enterica, the flagellar motor in H. pylori possesses many accessories that enable the bacteria to penetrate the gastric mucus layer. Here, we utilize cryoelectron tomography with molecular genetics and biochemical approaches to characterize three accessory proteins, FlgY, PflA, and PflB, and their roles in H. pylori flagellar assembly and motility. Comparative analyses of in situ flagellar motor structures from pflA, pflB, and flgY mutants and wild-type H. pylori reveal that FlgY forms a 13-fold proximal spoke-ring around the MS-ring and that PflA and PflB form an 18-fold distal spoke-ring enclosing 18 torque-generating stator complexes. We build a pseudoatomic model of the H. pylori motor by leveraging AlphaFold-predicted structures, protein-protein interactions, and in situ motor structures. Our model suggests that the FlgY spoke-ring functions as a bearing around the rotating MS-ring and as a template for stabilizing the PflA-PflB spoke-ring, thus enabling the recruitment of 18 stator complexes for high-torque generation. Overall, our study sheds light on how this spoke-ring network between the MS-ring and stator complexes enables the unique motility of H. pylori. As these accessory proteins are conserved in the phylum Campylobacterota, our findings apply broadly to a better understanding of how polar flagella help bacteria thrive in gastric and enteric niches.
Collapse
Affiliation(s)
- Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Kyle Rosinke
- Department of Microbiology, University of Georgia, Athens, GA30602
| | - Mohammad F. Khan
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | - Xiaotian Zhou
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| | - Yue Xin
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| | - Jack M. Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Jian Yue
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | | | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| |
Collapse
|
3
|
Onoe S, Nishikino T, Kinoshita M, Takekawa N, Minamino T, Imada K, Namba K, Kishikawa JI, Kato T. Cryo-EM Structure of the Flagellar Motor Complex from Paenibacillus sp. TCA20. Biomolecules 2025; 15:435. [PMID: 40149971 PMCID: PMC11940548 DOI: 10.3390/biom15030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
The bacterial flagellum, a complex nanomachine composed of numerous proteins, is utilized by bacteria for swimming in various environments and plays a crucial role in their survival and infection. The flagellar motor is composed of a rotor and stator complexes, with each stator unit functioning as an ion channel that converts flow from outside of cell membrane into rotational motion. Paenibacillus sp. TCA20 was discovered in a hot spring, and a structural analysis was conducted on the stator complex using cryo-electron microscopy to elucidate its function. Two of the three structures (Classes 1 and 3) were found to have structural properties typical for other stator complexes. In contrast, in Class 2 structures, the pentamer ring of the A subunits forms a C-shape, with lauryl maltose neopentyl glycol (LMNG) bound to the periplasmic side of the interface between the A and B subunits. This interface is conserved in all stator complexes, suggesting that hydrophobic ligands and lipids can bind to this interface, a feature that could potentially be utilized in the development of novel antibiotics aimed at regulating cell motility and infection.
Collapse
Affiliation(s)
- Sakura Onoe
- Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan (T.N.)
| | - Tatsuro Nishikino
- Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan (T.N.)
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Aichi, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya 466-8555, Aichi, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Osaka, Japan (K.N.)
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita 565-0871, Osaka, Japan
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Osaka, Japan (K.N.)
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Osaka, Japan (K.N.)
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita 565-0871, Osaka, Japan
| | - Jun-ichi Kishikawa
- Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan (T.N.)
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Kyoto, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan (T.N.)
| |
Collapse
|
4
|
Halte M, Popp PF, Hathcock D, Severn J, Fischer S, Goosmann C, Ducret A, Charpentier E, Tu Y, Lauga E, Erhardt M, Renault TT. Bacterial motility depends on a critical flagellum length and energy-optimized assembly. Proc Natl Acad Sci U S A 2025; 122:e2413488122. [PMID: 40067900 PMCID: PMC11929379 DOI: 10.1073/pnas.2413488122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
The flagellum is the most complex macromolecular structure known in bacteria and is composed of around two dozen distinct proteins. The main building block of the long, external flagellar filament, flagellin, is secreted through the flagellar type-III secretion system at a remarkable rate of several tens of thousands of amino acids per second, significantly surpassing the rates achieved by other pore-based protein secretion systems. The evolutionary implications and potential benefits of this high secretion rate for flagellum assembly and function, however, have remained elusive. In this study, we provide both experimental and theoretical evidence that the flagellar secretion rate has been evolutionarily optimized to facilitate rapid and efficient construction of a functional flagellum. By synchronizing flagellar assembly, we found that a minimal filament length of 2.5 μm was required for swimming motility. Biophysical modeling revealed that this minimal filament length threshold resulted from an elasto-hydrodynamic instability of the whole swimming cell, dependent on the filament length. Furthermore, we developed a stepwise filament labeling method combined with electron microscopy visualization to validate predicted flagellin secretion rates of up to 10,000 amino acids per second. A biophysical model of flagellum growth demonstrates that the observed high flagellin secretion rate efficiently balances filament elongation and energy consumption, thereby enabling motility in the shortest amount of time. Taken together, these insights underscore the evolutionary pressures that have shaped the development and optimization of the flagellum and type-III secretion system, illuminating the intricate interplay and cost-benefit tradeoff between functionality and efficiency in assembly of large macromolecular structures.
Collapse
Affiliation(s)
- Manuel Halte
- Institute of Biology–Department of Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin10115, Germany
| | - Philipp F. Popp
- Institute of Biology–Department of Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin10115, Germany
| | - David Hathcock
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY10598
| | - John Severn
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Svenja Fischer
- Institute of Biology–Department of Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Max Planck Unit for the Science of Pathogens, Berlin10117, Germany
| | | | - Adrien Ducret
- Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, CNRS UMR 5086, Université de Lyon, Lyon69367, France
| | | | - Yuhai Tu
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY10598
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Marc Erhardt
- Institute of Biology–Department of Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Max Planck Unit for the Science of Pathogens, Berlin10117, Germany
| | - Thibaud T. Renault
- Institute of Biology–Department of Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin10115, Germany
- Max Planck Unit for the Science of Pathogens, Berlin10117, Germany
- Univ. Bordeaux, CNRS, INSERM, Acides nucléiques: Régulations naturelles et artificielles, UMR 5320, U1212, BordeauxF-33000, France
| |
Collapse
|
5
|
Liu G, Tian N, Chen L, Xie S, Hu J, Jin Q, Shao C, Huang M, Su Q, Huang J, Liu Z, Liu S. Transcriptomic Analysis of the Negative Effect of Epigallocatechin-3-Gallate from Tea Plant ( Camellia sinensis) on Agrobacterium-Mediated Transformation Efficiency. Curr Issues Mol Biol 2025; 47:178. [PMID: 40136432 PMCID: PMC11941606 DOI: 10.3390/cimb47030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Agrobacterium-mediated transformation is a widely used method for plant genetic modification. However, its efficiency in tea plants is notably low, and the underlying molecular mechanisms remain unclear, hindering advancements in the molecular breeding and biology of tea plants. In this study, tobacco was utilized as a model to investigate the effects of various concentrations of epigallocatechin-3-gallate (EGCG) on Agrobacterium transformation efficiency. The results demonstrated that at an EGCG concentration of 0.4 mg/mL, Agrobacterium nearly lost its ability to transform tobacco. Additionally, malondialdehyde content in Agrobacterium was measured before and after EGCG treatment. The findings indicated that EGCG treatment led to an increase in malondialdehyde content. Transcriptome sequencing analysis revealed that differentially expressed genes (DEGs) involved in Agrobacterium flagellar synthesis and secretion systems were down-regulated under EGCG stress. Furthermore, flgE, virB4, and virB6 were identified as hub genes through weighted gene co-expression network analysis (WGCNA). These results elucidate the dynamic mechanisms by which EGCG affects Agrobacterium at both the physicochemical and molecular levels, providing a theoretical basis for optimizing genetic transformation in tea plants.
Collapse
Affiliation(s)
- Guizhi Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Lan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Siyi Xie
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jinyu Hu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Qifang Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Chenyu Shao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Mengdi Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Qin Su
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (G.L.); (N.T.); (L.C.); (S.X.); (J.H.); (C.S.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Hu H, Popp PF, Hughes TCD, Roa-Eguiara A, Rutbeek NR, Martin FJO, Hendriks IA, Payne LJ, Yan Y, Humolli D, Klein-Sousa V, Songailiene I, Wang Y, Nielsen ML, Berry RM, Harms A, Erhardt M, Jackson SA, Taylor NMI. Structure and mechanism of the Zorya anti-phage defence system. Nature 2025; 639:1093-1101. [PMID: 39662505 PMCID: PMC11946911 DOI: 10.1038/s41586-024-08493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Zorya is a recently identified and widely distributed bacterial immune system that protects bacteria from viral (phage) infections. Three Zorya subtypes have been identified, each containing predicted membrane-embedded ZorA-ZorB (ZorAB) complexes paired with soluble subunits that differ among Zorya subtypes, notably ZorC and ZorD in type I Zorya systems1,2. Here we investigate the molecular basis of Zorya defence using cryo-electron microscopy, mutagenesis, fluorescence microscopy, proteomics and functional studies. We present cryo-electron microscopy structures of ZorAB and show that it shares stoichiometry and features of other 5:2 inner membrane ion-driven rotary motors. The ZorA5B2 complex contains a dimeric ZorB peptidoglycan-binding domain and a pentameric α-helical coiled-coil tail made of ZorA that projects approximately 70 nm into the cytoplasm. We also characterize the structure and function of the soluble Zorya components ZorC and ZorD, finding that they have DNA-binding and nuclease activity, respectively. Comprehensive functional and mutational analyses demonstrate that all Zorya components work in concert to protect bacterial cells against invading phages. We provide evidence that ZorAB operates as a proton-driven motor that becomes activated after sensing of phage invasion. Subsequently, ZorAB transfers the phage invasion signal through the ZorA cytoplasmic tail to recruit and activate the soluble ZorC and ZorD effectors, which facilitate the degradation of the phage DNA. In summary, our study elucidates the foundational mechanisms of Zorya function as an anti-phage defence system.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Philipp F Popp
- Institute of Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas C D Hughes
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aritz Roa-Eguiara
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole R Rutbeek
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Freddie J O Martin
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo Alexander Hendriks
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leighton J Payne
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yumeng Yan
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorentina Humolli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Victor Klein-Sousa
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inga Songailiene
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Michael Lund Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard M Berry
- Department of Physics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Alexander Harms
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Marc Erhardt
- Institute of Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Joshi A, Lele PP. Scrutinizing Stator Rotation in the Bacterial Flagellum: Reconciling Experiments and Switching Models. Biomolecules 2025; 15:355. [PMID: 40149891 PMCID: PMC11940233 DOI: 10.3390/biom15030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
The bacterial flagellar motor is one of the few known rotary motors, powering motility and chemotaxis. The mechanisms underlying its rotation and the switching of its rotational direction are fundamental problems in biology that are of significant interest. Recent high-resolution studies of the flagellar motor have transformed our understanding of the motor, revealing a novel gear mechanism where a membranous pentamer of MotA proteins rotates around a cell wall-anchored dimer of MotB proteins to turn the contacting flagellar rotor. A derivative model suggests that significant changes in rotor diameter occur during switching, enabling each MotA5MotB2 stator unit to shift between internal and external gear configurations, causing clockwise (CW) and counterclockwise (CCW) motor rotation, respectively. However, recent structural work favors a mechanism where the stator units dynamically swing back and forth between the two gear configurations without significant changes in rotor diameter. Given the intricate link between the switching model and the gear mechanism for flagellar rotation, a critical evaluation of the underlying assumptions is crucial for refining switching models. This review scrutinizes key assumptions within prevailing models of flagellar rotation and switching, identifies knowledge gaps, and proposes avenues for future biophysical tests.
Collapse
Affiliation(s)
- Ayush Joshi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77480, USA;
| | - Pushkar P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77480, USA;
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77840, USA
| |
Collapse
|
8
|
Feng X, Tachiyama S, He J, Zhu S, Zhao H, Botting JM, Liu Y, Chen Y, Hua C, Lara-Tejero M, Baker MAB, Gao X, Liu J, Gao B. The architecture, assembly, and evolution of a complex flagellar motor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638559. [PMID: 40027708 PMCID: PMC11870540 DOI: 10.1101/2025.02.19.638559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bacterial flagella drive motility in many species, likely including the last bacterial common ancestor 1,2 . Knowledge of flagellar assembly and function has mainly come from studies of Escherichia coli and Salmonella enterica , which have simple flagellar motors 3-7 . However, most flagellated bacteria possess complex motors with unique, species-specific adaptations whose mechanisms and evolution remain largely unexplored 8-10 . Here, we deploy a multidisciplinary approach to build a near-complete model of the flagellar motor in Campylobacter jejuni , revealing its remarkable complexity in architecture and composition. We identify an E-ring around the MS-ring, a periplasmic cage with two distinctive conformations, and an intricate interaction network between the E-ring and cage. These scaffolds play critical roles in stabilizing and regulating 17 torque-generating stator complexes for optimal motility. In-depth evolutionary analyses uncover the ancient origin and prevalence of the E-ring in flagellated species of the domain Bacteria as well as a unique exaptation of type IV pili components PilMNOPQF in the ancestral motor of the phylum Campylobacterota . Collectively, our studies reveal novel mechanisms of assembly and function in complex flagellar motors and shed light on the evolution of flagella and modern bacterial species.
Collapse
|
9
|
Sheenu, Jain D. Transcription Regulation of Flagellins: A Structural Perspective. Biochemistry 2025; 64:770-781. [PMID: 39874281 DOI: 10.1021/acs.biochem.4c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors. Expression of late flagellar genes requires the complete assembly of the flagellar basal body and hook. The extracellular segment of the flagellum, termed filament, is composed of self-assembling flagellin subunits encoded by the fliC gene and harbors potent antigenic epitopes. Structural studies have illuminated the molecular mechanisms underlying its assembly and its regulation at the transcription level. σ28, a key subunit of the RNA polymerase complex, binds to specific promoter sequences to initiate transcription of late flagellar genes, while its activity is controlled by the antisigma factor FlgM. This review summarizes current insights into the structural characterization of flagellins across various bacterial species, their transcription by σ28, and the structural mechanism controlling σ28 activity through FlgM. Additionally, we highlight the regulation of flagellin gene expression via transcription factors and their post-transcriptional regulation, providing a comprehensive overview of the intricate mechanisms that support bacterial motility and adaptation.
Collapse
Affiliation(s)
- Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
10
|
McArthur SJ, Umeda K, Kodera N. Nano-Scale Video Imaging of Motility Machinery by High-Speed Atomic Force Microscopy. Biomolecules 2025; 15:257. [PMID: 40001560 PMCID: PMC11852755 DOI: 10.3390/biom15020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Motility is a vital aspect of many forms of life, with a wide range of highly conserved as well as highly unique systems adapted to the needs of various organisms and environments. While many motility systems are well studied using structural techniques like X-ray crystallography and electron microscopy, as well as fluorescence microscopy methodologies, it is difficult to directly determine the relationship between the shape and movement of a motility system due to a notable gap in spatiotemporal resolution. Bridging this gap as well as understanding the dynamic molecular movements that underpin motility mechanisms has been challenging. The advent of high-speed atomic force microscopy (HS-AFM) has provided a new window into understanding these nano-scale machines and the dynamic processes underlying motility. In this review, we highlight some of the advances in this field, ranging from reconstituted systems and purified higher-order supramolecular complexes to live cells, in both prokaryotic and eukaryotic contexts.
Collapse
Affiliation(s)
- Steven John McArthur
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan and Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
11
|
Chen Y, Tachiyama S, Li Y, Feng X, Zhao H, Wu Y, Guo Y, Lara-Tejero M, Hua C, Liu J, Gao B. Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in Campylobacter jejuni. Proc Natl Acad Sci U S A 2025; 122:e2412594121. [PMID: 39793078 PMCID: PMC11725899 DOI: 10.1073/pnas.2412594121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of Campylobacter jejuni. FlgX forms a stable tetramer that does not bind cyclic di-GMP (c-di-GMP), unlike other canonical PilZ domain-containing proteins. Cryoelectron tomography and subtomogram averaging of flagellar motors in situ provide evidence that FlgX interacts with each stator unit and plays a critical role in stator ring assembly and stability. Furthermore, FlgX is conserved and was most likely present in the common ancestor of the phylum Campylobacterota. Overall, FlgX represents a divergence in function for PilZ superfamily proteins as well as a player in the key stator-rotor interaction of complex flagellar motors.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Yuqian Li
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Xueyin Feng
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hang Zhao
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Yanmin Wu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Guo
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - María Lara-Tejero
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Canfeng Hua
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Beile Gao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| |
Collapse
|
12
|
Nakamura S, Minamino T. Structure and Dynamics of the Bacterial Flagellar Motor Complex. Biomolecules 2024; 14:1488. [PMID: 39766194 PMCID: PMC11673145 DOI: 10.3390/biom14121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Many bacteria swim in liquids and move over solid surfaces by rotating flagella. The bacterial flagellum is a supramolecular protein complex that is composed of about 30 different flagellar proteins ranging from a few to tens of thousands. Despite structural and functional diversities of the flagella among motile bacteria, the flagellum commonly consists of a membrane-embedded rotary motor fueled by an ion motive force across the cytoplasmic membrane, a universal joint, and a helical propeller that extends several micrometers beyond the cell surface. The flagellar motor consists of a rotor and several stator units, each of which acts as a transmembrane ion channel complex that converts the ion flux through the channel into the mechanical work required for force generation. The rotor ring complex is equipped with a reversible gear that is regulated by chemotactic signal transduction pathways. As a result, bacteria can move to more desirable locations in response to environmental changes. Recent high-resolution structural analyses of flagella using cryo-electron microscopy have provided deep insights into the assembly, rotation, and directional switching mechanisms of the flagellar motor complex. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan;
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita Osaka 565-0871, Japan
| |
Collapse
|
13
|
Fu S, Tian M, Chen M, Wu Z, Zhang R, Yuan J. MotY modulates proton-driven flagellar motor output in Pseudomonas aeruginosa. BMC Microbiol 2024; 24:461. [PMID: 39516722 PMCID: PMC11546298 DOI: 10.1186/s12866-024-03602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
MotY homologs are present in a variety of monotrichous bacterial strains and are thought to form an additional structural T ring in flagellar motors. While MotY potentially plays an important role in motor torque generation, its impact on motor output dynamics remains poorly understood. In this study, we investigate the role of MotY in P. aeruginosa, elucidating its interactions with the two sets of stator units (MotAB and MotCD) using Förster resonance energy transfer (FRET) assays. Employing a newly developed bead assay, we characterize the dynamic behavior of flagellar motors in motY mutants, identifying MotY as the key functional protein to affect the clockwise bias of naturally unbiased motors in P. aeruginosa. Our findings reveal that MotY enhances stator assembly efficiency without affecting the overall assembly of the flagellar structure. Additionally, we demonstrate that MotY is essential for maintaining motor torque and regulating switching rates. Our study highlights the physiological significance of MotY in fine-tuning flagellar motor function in complex environments.
Collapse
Affiliation(s)
- Sanyuan Fu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Maojin Tian
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, Shandong, 255036, China
| | - Min Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengyu Wu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China.
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
14
|
Tan J, Zhang L, Zhou X, Han S, Zhou Y, Zhu Y. Structural basis of the bacterial flagellar motor rotational switching. Cell Res 2024; 34:788-801. [PMID: 39179739 PMCID: PMC11528121 DOI: 10.1038/s41422-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
The bacterial flagellar motor is a huge bidirectional rotary nanomachine that drives rotation of the flagellum for bacterial motility. The cytoplasmic C ring of the flagellar motor functions as the switch complex for the rotational direction switching from counterclockwise to clockwise. However, the structural basis of the rotational switching and how the C ring is assembled have long remained elusive. Here, we present two high-resolution cryo-electron microscopy structures of the C ring-containing flagellar basal body-hook complex from Salmonella Typhimurium, which are in the default counterclockwise state and in a constitutively active CheY mutant-induced clockwise state, respectively. In both complexes, the C ring consists of four subrings, but is in two different conformations. The CheY proteins are bound into an open groove between two adjacent protomers on the surface of the middle subring of the C ring and interact with the FliG and FliM subunits. The binding of the CheY protein induces a significant upward shift of the C ring towards the MS ring and inward movements of its protomers towards the motor center, which eventually remodels the structures of the FliG subunits and reverses the orientations and surface electrostatic potential of the αtorque helices to trigger the counterclockwise-to-clockwise rotational switching. The conformational changes of the FliG subunits reveal that the stator units on the motor require a relocation process in the inner membrane during the rotational switching. This study provides unprecedented molecular insights into the rotational switching mechanism and a detailed overall structural view of the bacterial flagellar motors.
Collapse
Affiliation(s)
- Jiaxing Tan
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling Zhang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingtong Zhou
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siyu Han
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yongqun Zhu
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Center for Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Martin FJO, Santiveri M, Hu H, Taylor NMI. Ion-driven rotary membrane motors: From structure to function. Curr Opin Struct Biol 2024; 88:102884. [PMID: 39053417 DOI: 10.1016/j.sbi.2024.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/16/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Ion-driven membrane motors, essential across all domains of life, convert a gradient of ions across a membrane into rotational energy, facilitating diverse biological processes including ATP synthesis, substrate transport, and bacterial locomotion. Herein, we highlight recent structural advances in the understanding of two classes of ion-driven membrane motors: rotary ATPases and 5:2 motors. The recent structure of the human F-type ATP synthase is emphasised along with the gained structural insight into clinically relevant mutations. Furthermore, we highlight the diverse roles of 5:2 motors and recent mechanistic understanding gained through the resolution of ions in the structure of a sodium-driven motor, combining insights into potential unifying mechanisms of ion selectivity and rotational torque generation in the context of their function as part of complex biological systems.
Collapse
Affiliation(s)
- Freddie J O Martin
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
16
|
Panich J, Dudebout EM, Wadhwa N, Blair DF. Swashing motility: A novel propulsion-independent mechanism for surface migration in Salmonella and E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609010. [PMID: 39229098 PMCID: PMC11370582 DOI: 10.1101/2024.08.21.609010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bacterial motility over surfaces is crucial for colonization, biofilm formation, and pathogenicity. Surface motility in Escherichia coli and Salmonella enterica is traditionally believed to rely on flagellar propulsion. Here, we report a novel mode of motility, termed "swashing," where these bacteria migrate on agar surfaces without functional flagella. Mutants lacking flagellar filaments and motility proteins exhibit rapid surface migration comparable to wild-type strains. Unlike previously described sliding motility, swashing is inhibited by surfactants and requires fermentable sugars. We propose that the fermentation of sugars at the colony edge produces osmolytes, creating local osmotic gradients that draw water from the agar, forming a fluid bulge that propels the colony forward. Our findings challenge the established view that flagellar propulsion is required for surface motility in E. coli and Salmonella, and highlight the role of a fermentation in facilitating bacterial spreading. This discovery expands our understanding of bacterial motility, offering new insights into bacterial adaptive strategies in diverse environments.
Collapse
Affiliation(s)
- Justin Panich
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Eric M. Dudebout
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Navish Wadhwa
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, AZ 85287
| | - David F. Blair
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
17
|
Paternò GM. Materials-driven strategies in bacterial engineering. MRS COMMUNICATIONS 2024; 14:1027-1036. [PMID: 39404665 PMCID: PMC7616573 DOI: 10.1557/s43579-024-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 11/01/2024]
Abstract
This perspective article focuses on the innovative field of materials-based bacterial engineering, highlighting interdisciplinary research that employs material science to study, augment, and exploit the attributes of living bacteria. By utilizing exogenous abiotic material interfaces, researchers can engineer bacteria to perform new functions, such as enhanced bioelectric capabilities and improved photosynthetic efficiency. Additionally, materials can modulate bacterial communities and transform bacteria into biohybrid microrobots, offering promising solutions for sustainable energy production, environmental remediation, and medical applications. Finally, the perspective discusses a general paradigm for engineering bacteria through the materials-driven modulation of their transmembrane potential. This parameter regulates their ion channel activity and ultimately their bioenergetics, suggesting that controlling it could allow scientists to hack the bioelectric language bacteria use for communication, task execution, and environmental response. Graphical abstract
Collapse
Affiliation(s)
- Giuseppe Maria Paternò
- Physics Department, Politecnico Di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Center for Nanoscience and Technology, Istituto Italiano Di Tecnologia, Via Rubattino 71, 20134 Milano, Italy
| |
Collapse
|
18
|
Nakanishi K, Kojima K, Sowa Y, Sudo Y. Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins. J Phys Chem B 2024; 128:6509-6517. [PMID: 38949422 DOI: 10.1021/acs.jpcb.4c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Proton (H+) motive force (PMF) serves as the energy source for the flagellar motor rotation, crucial for microbial motility. Here, to control PMF using light, we introduced light-driven inward and outward proton pump rhodopsins, RmXeR and AR3, into Escherichia coli. The motility of E. coli cells expressing RmXeR and AR3 significantly decreased and increased upon illumination, respectively. Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with RmXeR, while it increased to 1170 pN nm with AR3. These alterations in PMF correspond to +146 mV (RmXeR) and -140 mV (AR3), respectively. Thus, bidirectional optical control of PMF in E. coli was successfully achieved by using proton pump rhodopsins. This system holds a potential for enhancing our understanding of the roles of PMF in various biological functions.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Sowa
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo 184-8584, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
19
|
Sobe RC, Scharf BE. The swimming defect caused by the absence of the transcriptional regulator LdtR in Sinorhizobium meliloti is restored by mutations in the motility genes motA and motS. Mol Microbiol 2024; 121:954-970. [PMID: 38458990 DOI: 10.1111/mmi.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
The flagellar motor is a powerful macromolecular machine used to propel bacteria through various environments. We determined that flagellar motility of the alpha-proteobacterium Sinorhizobium meliloti is nearly abolished in the absence of the transcriptional regulator LdtR, known to influence peptidoglycan remodeling and stress response. LdtR does not regulate motility gene transcription. Remarkably, the motility defects of the ΔldtR mutant can be restored by secondary mutations in the motility gene motA or a previously uncharacterized gene in the flagellar regulon, which we named motS. MotS is not essential for S. meliloti motility and may serve an accessory role in flagellar motor function. Structural modeling predicts that MotS comprised an N-terminal transmembrane segment, a long-disordered region, and a conserved β-sandwich domain. The C terminus of MotS is localized in the periplasm. Genetics based substitution of MotA with MotAG12S also restored the ΔldtR motility defect. The MotAG12S variant protein features a local polarity shift at the periphery of the MotAB stator units. We propose that MotS may be required for optimal alignment of stators in wild-type flagellar motors but becomes detrimental in cells with altered peptidoglycan. Similarly, the polarity shift in stator units composed of MotB/MotAG12S might stabilize its interaction with altered peptidoglycan.
Collapse
Affiliation(s)
- Richard C Sobe
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
20
|
Uneme M, Ishikawa K, Furuta K, Yamashita A, Kaito C. Overexpression of the flagellar motor protein MotB sensitizes Bacillus subtilis to aminoglycosides in a motility-independent manner. PLoS One 2024; 19:e0300634. [PMID: 38669243 PMCID: PMC11051680 DOI: 10.1371/journal.pone.0300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/02/2024] [Indexed: 04/28/2024] Open
Abstract
The flagellar motor proteins, MotA and MotB, form a complex that rotates the flagella by utilizing the proton motive force (PMF) at the bacterial cell membrane. Although PMF affects the susceptibility to aminoglycosides, the effect of flagellar motor proteins on the susceptibility to aminoglycosides has not been investigated. Here, we found that MotB overexpression increased susceptibility to aminoglycosides, such as kanamycin and gentamicin, in Bacillus subtilis without affecting swimming motility. MotB overexpression did not affect susceptibility to ribosome-targeting antibiotics other than aminoglycosides, cell wall-targeting antibiotics, DNA synthesis-inhibiting antibiotics, or antibiotics inhibiting RNA synthesis. Meanwhile, MotB overexpression increased the susceptibility to aminoglycosides even in the motA-deletion mutant, which lacks swimming motility. Overexpression of the MotB mutant protein carrying an amino acid substitution at the proton-binding site (D24A) resulted in the loss of the enhanced aminoglycoside-sensitive phenotype. These results suggested that MotB overexpression sensitizes B. subtilis to aminoglycosides in a motility-independent manner. Notably, the aminoglycoside-sensitive phenotype induced by MotB requires the proton-binding site but not the MotA/MotB complex formation.
Collapse
Affiliation(s)
- Mio Uneme
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuya Ishikawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
21
|
Miyamura Y, Nishikino T, Koiwa H, Homma M, Kojima S. Roles of linker region flanked by transmembrane and peptidoglycan binding region of PomB in energy conversion of the Vibrio flagellar motor. Genes Cells 2024; 29:282-289. [PMID: 38351850 DOI: 10.1111/gtc.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 04/04/2024]
Abstract
The flagellar components of Vibrio spp., PomA and PomB, form a complex that transduces sodium ion and contributes to rotate flagella. The transmembrane protein PomB is attached to the basal body T-ring by its periplasmic region and has a plug segment following the transmembrane helix to prevent ion flux. Previously we showed that PomB deleted from E41 to R120 (Δ41-120) was functionally comparable to the full-length PomB. In this study, three deletions after the plug region, PomB (Δ61-120), PomB (Δ61-140), and PomB (Δ71-150), were generated. PomB (Δ61-120) conferred motility, whereas the other two mutants showed almost no motility in soft agar plate; however, we observed some swimming cells with speed comparable for the wild-type cells. When the two PomB mutants were introduced into a wild-type strain, the swimming ability was not affected by the mutant PomBs. Then, we purified the mutant PomAB complexes to confirm the stator formation. When plug mutations were introduced into the PomB mutants, the reduced motility by the deletion was rescued, suggesting that the stator was activated. Our results indicate that the deletions prevent the stator activation and the linker and plug regions, from E41 to S150, are not essential for the motor function of PomB but are important for its regulation.
Collapse
Affiliation(s)
- Yusuke Miyamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tatsuro Nishikino
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hiroaki Koiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Michio Homma
- Division of Material Science and Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Vélez-González F, Marcos-Vilchis A, Vega-Baray B, Dreyfus G, Poggio S, Camarena L. Rotation of the Fla2 flagella of Cereibacter sphaeroides requires the periplasmic proteins MotK and MotE that interact with the flagellar stator protein MotB2. PLoS One 2024; 19:e0298028. [PMID: 38507361 PMCID: PMC10954123 DOI: 10.1371/journal.pone.0298028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/16/2024] [Indexed: 03/22/2024] Open
Abstract
The bacterial flagellum is a complex structure formed by more than 25 different proteins, this appendage comprises three conserved structures: the basal body, the hook and filament. The basal body, embedded in the cell envelope, is the most complex structure and houses the export apparatus and the motor. In situ images of the flagellar motor in different species have revealed a huge diversity of structures that surround the well-conserved periplasmic components of the basal body. The identity of the proteins that form these novel structures in many cases has been elucidated genetically and biochemically, but in others they remain to be identified or characterized. In this work, we report that in the alpha proteobacteria Cereibacter sphaeroides the novel protein MotK along with MotE are essential for flagellar rotation. We show evidence that these periplasmic proteins interact with each other and with MotB2. Moreover, these proteins localize to the flagellated pole and MotK localization is dependent on MotB2 and MotA2. These results together suggest that the role of MotK and MotE is to activate or recruit the flagellar stators to the flagellar structure.
Collapse
Affiliation(s)
- Fernanda Vélez-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arely Marcos-Vilchis
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamín Vega-Baray
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
23
|
Zhai Y, Tian W, Chen K, Lan L, Kan J, Shi H. Flagella-mediated adhesion of Escherichia coli O157:H7 to surface of stainless steel, glass and fresh produces during sublethal injury and recovery. Food Microbiol 2024; 117:104383. [PMID: 37918998 DOI: 10.1016/j.fm.2023.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 11/04/2023]
Abstract
E. coli O157:H7 can be induced into sublethally injured (SI) state by lactic acid (LA) and regain activity in nutrient environments. This research clarified the role of flagella-related genes (fliD, fliS, cheA and motA) in adhesion of E. coli O157:H7 onto stainless steel, glass, lettuce, spinach, red cabbage and cucumber during LA-induced SI and recovery by plate counting. Results of adhesion showed improper flagellar rotation caused by the deletion of motA resulting in the decreased adhesion. Motility of wildtype determined by diameter of motility halo decreased in SI state and repaired with recovery time increasing, lagging behind changes in expression of flagella-related genes. Flagellar function-impaired strains all exhibited non-motile property. Thus, we speculated that flagella-mediated motility is critical in early stage of adhesion. We also found the effects of Fe2+, Ca2+ and Mn2+ on adhesion or motility of wildtype was independent of bacterial states. However, the addition of Ca2+ and Mn2+ did not affect motility of flagellar function-impaired strains as they did on wildtype. This research provides new insights to understand the role of flagella and cations in bacterial adhesion, which will aid in development of anti-adhesion agents to reduce bio-contamination in food processing.
Collapse
Affiliation(s)
- Yujun Zhai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Weina Tian
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Linshu Lan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
24
|
Minamino T, Kinoshita M. Structure, Assembly, and Function of Flagella Responsible for Bacterial Locomotion. EcoSal Plus 2023; 11:eesp00112023. [PMID: 37260402 PMCID: PMC10729930 DOI: 10.1128/ecosalplus.esp-0011-2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 01/28/2024]
Abstract
Many motile bacteria use flagella for locomotion under a variety of environmental conditions. Because bacterial flagella are under the control of sensory signal transduction pathways, each cell is able to autonomously control its flagellum-driven locomotion and move to an environment favorable for survival. The flagellum of Salmonella enterica serovar Typhimurium is a supramolecular assembly consisting of at least three distinct functional parts: a basal body that acts as a bidirectional rotary motor together with multiple force generators, each of which serves as a transmembrane proton channel to couple the proton flow through the channel with torque generation; a filament that functions as a helical propeller that produces propulsion; and a hook that works as a universal joint that transmits the torque produced by the rotary motor to the helical propeller. At the base of the flagellum is a type III secretion system that transports flagellar structural subunits from the cytoplasm to the distal end of the growing flagellar structure, where assembly takes place. In recent years, high-resolution cryo-electron microscopy (cryoEM) image analysis has revealed the overall structure of the flagellum, and this structural information has made it possible to discuss flagellar assembly and function at the atomic level. In this article, we describe what is known about the structure, assembly, and function of Salmonella flagella.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
25
|
Ridone P, Winter DL, Baker MAB. Tuning the stator subunit of the flagellar motor with coiled-coil engineering. Protein Sci 2023; 32:e4811. [PMID: 37870481 PMCID: PMC10659934 DOI: 10.1002/pro.4811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Many bacteria swim driven by an extracellular filament rotated by the bacterial flagellar motor. This motor is powered by the stator complex, MotA5 MotB2 , an heptameric complex which forms an ion channel which couples energy from the ion motive force to torque generation. Recent structural work revealed that stator complex consists of a ring of five MotA subunits which rotate around a central dimer of MotB subunits. Transmembrane (TM) domains TM3 and TM4 from MotA combine with the single TM domain from MotB to form two separate ion channels within this complex. Much is known about the ion binding site and ion specificity; however, to date, no modeling has been undertaken to explore the MotB-MotB dimer stability and the role of MotB conformational dynamics during rotation. Here, we modeled the central MotB dimer using coiled-coil engineering and modeling principles and calculated free energies to identify stable states in the operating cycle of the stator. We found three stable coiled-coil states with dimer interface angles of 28°, 56°, and 64°. We tested the effect of strategic mutagenesis on the comparative energy of the states and correlated motility with a specific hierarchy of stability between the three states. In general, our results indicate agreement with existing models describing a 36° rotation step of the MotA pentameric ring during the power stroke and provide an energetic basis for the coordinated rotation of the central MotB dimer based on coiled-coil modeling.
Collapse
Affiliation(s)
- Pietro Ridone
- School of Biotechnology and Biomolecular ScienceUNSW SydneySydneyAustralia
| | - Daniel L. Winter
- School of Biotechnology and Biomolecular ScienceUNSW SydneySydneyAustralia
| | | |
Collapse
|
26
|
Botting JM, Tachiyama S, Gibson KH, Liu J, Starai VJ, Hoover TR. FlgV forms a flagellar motor ring that is required for optimal motility of Helicobacter pylori. PLoS One 2023; 18:e0287514. [PMID: 37976320 PMCID: PMC10655999 DOI: 10.1371/journal.pone.0287514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 11/19/2023] Open
Abstract
Flagella-driven motility is essential for Helicobacter pylori to colonize the human stomach, where it causes a variety of diseases, including chronic gastritis, peptic ulcer disease, and gastric cancer. H. pylori has evolved a high-torque-generating flagellar motor that possesses several accessories not found in the archetypical Escherichia coli motor. FlgV was one of the first flagellar accessory proteins identified in Campylobacter jejuni, but its structure and function remain poorly understood. Here, we confirm that deletion of flgV in H. pylori B128 and a highly motile variant of H. pylori G27 (G27M) results in reduced motility in soft agar medium. Comparative analyses of in-situ flagellar motor structures of wild-type, ΔflgV, and a strain expressing FlgV-YFP showed that FlgV forms a ring-like structure closely associated with the junction of two highly conserved flagellar components: the MS and C rings. The results of our studies suggest that the FlgV ring has adapted specifically in Campylobacterota to support the assembly and efficient function of the high-torque-generating motors.
Collapse
Affiliation(s)
- Jack M. Botting
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Shoichi Tachiyama
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Katherine H. Gibson
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
27
|
Vidwans NA, Rhee KY, Lele PP, Vaddiraju S. Real-Time Deduction of Mechanisms and Kinetics Underlying Photocatalytic Water Disinfection: Cell Motility and Particle Tracking. ACS ES&T WATER 2023; 3:2938-2947. [PMID: 38204756 PMCID: PMC10778399 DOI: 10.1021/acsestwater.3c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The current methods used to study photocatalysis-assisted water disinfection at a laboratory scale may not lead to process scale-up for large-scale implementation. These methods do not capture the process complexity and address all the factors underlying disinfection kinetics, including the physical characteristics (e.g., shape and size) of the photocatalyst, the light intensity, the form of the catalyst (e.g., free-floating and immobilized), and the photocatalyst-microorganism interaction mode (e.g., collision mode and constant contact mode). This drawback can be overcome using in situ methods to track the interaction between the photocatalysts and the microorganisms (e.g., Escherichia coli) and thereby engineering the resulting disinfection kinetics. Contextually, this study employed microscopy and particle-tracking algorithms to quantify in situ cell motility of E. coli undergoing titanium dioxide (TiO2) nanowire-assisted photocatalysis, which was observed to correlate with cell viability closely. This experimentation also informed that the E. coli bacterium interacted with the photocatalysts through collisions (without sustained contact), which allowed for phenomenological modeling of the observed first-order kinetics of E. coli inactivation. Addition of fluorescent-tagging assays to microscopy revealed that cell membrane integrity loss is the primary mode of bacterial inactivation. This methodology is independent of the microorganism or the photocatalyst type and hence is expected to be beneficial for engineering disinfection kinetics.
Collapse
Affiliation(s)
- Niraj Ashutosh Vidwans
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kathy Y Rhee
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Sreeram Vaddiraju
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
28
|
Kaplan M, Yao Q, Jensen GJ. Structure and Assembly of the Proteus mirabilis Flagellar Motor by Cryo-Electron Tomography. Int J Mol Sci 2023; 24:8292. [PMID: 37176000 PMCID: PMC10179241 DOI: 10.3390/ijms24098292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Proteus mirabilis is a Gram-negative Gammaproteobacterium and a major causative agent of urinary tract infections in humans. It is characterized by its ability to switch between swimming motility in liquid media and swarming on solid surfaces. Here, we used cryo-electron tomography and subtomogram averaging to reveal the structure of the flagellar motor of P. mirabilis at nanometer resolution in intact cells. We found that P. mirabilis has a motor that is structurally similar to those of Escherichia coli and Salmonella enterica, lacking the periplasmic elaborations that characterize other more specialized gammaproteobacterial motors. In addition, no density corresponding to stators was present in the subtomogram average suggesting that the stators are dynamic. Finally, several assembly intermediates of the motor were seen that support the inside-out assembly pathway.
Collapse
Affiliation(s)
- Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qing Yao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| |
Collapse
|
29
|
Markert J, Luger K, Lee H, Hu H, Taylor NMI, Fernandez-Martinez J, Rout M, Alder N. Depicting protein structures as schematics. Trends Biochem Sci 2023; 48:307-310. [PMID: 36931235 DOI: 10.1016/j.tibs.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 03/17/2023]
Affiliation(s)
- Jonathan Markert
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Hayun Lee
- Department of Biological and Chemical Engineering, Dongyang Mirae University, Seoul, South Korea.
| | - Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA; Ikerbasque, Basque Foundation for Science and Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Michael Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA.
| | - Nathan Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
30
|
Morimoto YV, Minamino T. Measurements of the Ion Channel Activity of the Transmembrane Stator Complex in the Bacterial Flagellar Motor. Methods Mol Biol 2023; 2646:83-94. [PMID: 36842108 DOI: 10.1007/978-1-0716-3060-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The bacterial flagellum is driven by a rotational motor located at the base of the flagellum. The stator unit complex conducts cations such as protons (H+) and sodium ions (Na+) along the electrochemical potential across the cytoplasmic membrane and interacts with the rotor to generate the rotational force. Escherichia coli and Salmonella have the H+-type stator complex, which serves as a transmembrane H+ channel that couples H+ flow through an ion channel to torque generation whereas Vibrio and some Bacillus species have the Na+-type stator complex. In this chapter, we describe how to measure the ion conductivity of the transmembrane stator complex over-expressed in E. coli cells using fluorescent indicators. Intensity measurements of fluorescent indicators using either a fluorescence spectrophotometer or microscope allow quantitative detection of changes in the intracellular ion concentrations due to the ion channel activity of the transmembrane protein complex.
Collapse
Affiliation(s)
- Yusuke V Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan.
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan.
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
31
|
Kojima S, Homma M, Kandori H. Purification of the Na +-Driven PomAB Stator Complex and Its Analysis Using ATR-FTIR Spectroscopy. Methods Mol Biol 2023; 2646:95-107. [PMID: 36842109 DOI: 10.1007/978-1-0716-3060-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The flagellar motor of marine Vibrio is driven by the sodium-motive force across the inner membrane. The stator complex, consisting of two membrane proteins PomA and PomB, is responsible for energy conversion in the motor. To understand the coupling of the Na+ flux with torque generation, it is essential to clearly identify the Na+-binding sites and the Na+ flux pathway through the stator channel. Although residues essential for Na+ flux have been identified by using mutational analysis, it has been difficult to observe Na+ binding to the PomAB stator complex. Here we describe a method to monitor the binding of Na+ to purified PomAB stator complex using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. This method demonstrates that Na+-binding sites are formed by critical aspartic acid and threonine residues located in the transmembrane segments of PomAB.
Collapse
Affiliation(s)
- Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
32
|
Han Q, Wang SF, Qian XX, Guo L, Shi YF, He R, Yuan JH, Hou YJ, Li DF. Flagellar brake protein YcgR interacts with motor proteins MotA and FliG to regulate the flagellar rotation speed and direction. Front Microbiol 2023; 14:1159974. [PMID: 37125196 PMCID: PMC10140304 DOI: 10.3389/fmicb.2023.1159974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
In E. coli and related species, flagellar brake protein YcgR responds to the elevated intracellular c-di-GMP, decreases the flagellar rotation speed, causes a CCW rotation bias, and regulates bacterial swimming. Boehm et al. suggested that c-di-GMP-activated YcgR directly interacted with the motor protein MotA to curb flagellar motor output. Paul et al. proposed that YcgR disrupted the organization of the FliG C-terminal domain to bias the flagellar rotation. The target proteins are controversial, and the role of motor proteins remains unclear in flagellar rotation speed and direction regulation by YcgR. Here we assayed the motor proteins' affinity via a modified FRET biosensor and accessed the role of those key residue via bead assays. We found that YcgR could interact with both MotA and FliG, and the affinities could be enhanced upon c-di-GMP binding. Furthermore, residue D54 of YcgR-N was needed for FliG binding. The mutation of the FliG binding residue D54 or the MotA binding ones, F117 and E232, restored flagellar rotation speed in wild-type cells and cells lacking chemotaxis response regulator CheY that switched the flagellar rotation direction and decreased the CCW ratio in wild-type cells. We propose that c-di-GMP-activated YcgR regulated the flagellar rotation speed and direction via its interaction with motor proteins MotA and FliG. Our work suggest the role of YcgR-motor proteins interaction in bacterial swimming regulation.
Collapse
Affiliation(s)
- Qun Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shao-Feng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Xin Qian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi-Feng Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun-Hua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan-Jie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yan-Jie Hou,
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- De-Feng Li,
| |
Collapse
|
33
|
Hadjidemetriou K, Kaur S, Cassidy CK, Zhang P. Mechanisms of E. coli chemotaxis signaling pathways visualized using cryoET and computational approaches. Biochem Soc Trans 2022; 50:1595-1605. [PMID: 36421737 PMCID: PMC9788364 DOI: 10.1042/bst20220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
Chemotaxis signaling pathways enable bacteria to sense and respond to their chemical environment and, in some species, are critical for lifestyle processes such as biofilm formation and pathogenesis. The signal transduction underlying chemotaxis behavior is mediated by large, highly ordered protein complexes known as chemosensory arrays. For nearly two decades, cryo-electron tomography (cryoET) has been used to image chemosensory arrays, providing an increasingly detailed understanding of their structure and function. In this mini-review, we provide an overview of the use of cryoET to study chemosensory arrays, including imaging strategies, key results, and outstanding questions. We further discuss the application of molecular modeling and simulation techniques to complement structure determination efforts and provide insight into signaling mechanisms. We close the review with a brief outlook, highlighting promising future directions for the field.
Collapse
Affiliation(s)
| | - Satinder Kaur
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - C. Keith Cassidy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, U.K
| |
Collapse
|
34
|
A multi-state dynamic process confers mechano-adaptation to a biological nanomachine. Nat Commun 2022; 13:5327. [PMID: 36088344 PMCID: PMC9464220 DOI: 10.1038/s41467-022-33075-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Adaptation is a defining feature of living systems. The bacterial flagellar motor adapts to changes in the external mechanical load by adding or removing torque-generating (stator) units. But the molecular mechanism behind this mechano-adaptation remains unclear. Here, we combine single motor eletrorotation experiments and theoretical modeling to show that mechano-adaptation of the flagellar motor is enabled by multiple mechanosensitive internal states. Dwell time statistics from experiments suggest the existence of at least two bound states with a high and a low unbinding rate, respectively. A first-passage-time analysis of a four-state model quantitatively explains the experimental data and determines the transition rates among all four states. The torque generated by bound stator units controls their effective unbinding rate by modulating the transition between the bound states, possibly via a catch bond mechanism. Similar force-mediated feedback enabled by multiple internal states may apply to adaptation in other macromolecular complexes. Combining experiments with modeling, Wadhwa et al. propose a model for mechano-adaptation in the bacterial flagellar motor, finding that load-dependent transitions between multiple internal states govern the binding and unbinding of subunits.
Collapse
|
35
|
Sobe RC, Gilbert C, Vo L, Alexandre G, Scharf BE. FliL and its paralog MotF have distinct roles in the stator activity of the Sinorhizobium meliloti flagellar motor. Mol Microbiol 2022; 118:223-243. [PMID: 35808893 PMCID: PMC9541039 DOI: 10.1111/mmi.14964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
The bacterial flagellum is a complex macromolecular machine that drives bacteria through diverse fluid environments. Although many components of the flagellar motor are conserved across species, the roles of FliL are numerous and species-specific. Here, we have characterized an additional player required for flagellar motor function in Sinorhizobium meliloti, MotF, which we have identified as a FliL paralog. We performed a comparative analysis of MotF and FliL, identified interaction partners through bacterial two-hybrid and pull-down assays, and investigated their roles in motility and motor rotation. Both proteins form homooligomers, and interact with each other, and with the stator proteins MotA and MotB. The ∆motF mutant exhibits normal flagellation but its swimming behavior and flagellar motor activity are severely impaired and erratic. In contrast, the ∆fliL mutant is mostly aflagellate and nonmotile. Amino acid substitutions in cytoplasmic regions of MotA or disruption of the proton channel plug of MotB partially restored motor activity to the ∆motF but not the ∆fliL mutant. Altogether, our findings indicate that both, MotF and FliL, are essential for flagellar motor torque generation in S. meliloti. FliL may serve as a scaffold for stator integration into the motor, and MotF is required for proton channel modulation.
Collapse
Affiliation(s)
- Richard C. Sobe
- Department of Biological SciencesLife Sciences I, Virginia TechBlacksburgVirginiaUSA
| | - Crystal Gilbert
- Department of Biological SciencesLife Sciences I, Virginia TechBlacksburgVirginiaUSA
| | - Lam Vo
- Department of Biochemistry and Cell and Molecular BiologyUniversity of Tennessee at KnoxvilleKnoxvilleTennesseeUSA
- Present address:
Molecular Cellular and Developmental Biology and PhysicsYale UniversityNew HavenConnecticutUSA
| | - Gladys Alexandre
- Department of Biochemistry and Cell and Molecular BiologyUniversity of Tennessee at KnoxvilleKnoxvilleTennesseeUSA
| | - Birgit E. Scharf
- Department of Biological SciencesLife Sciences I, Virginia TechBlacksburgVirginiaUSA
| |
Collapse
|
36
|
Feng Z, Wang Y, Xu H, Guo Y, Xia W, Zhao C, Zhao X, Wu J. Recent advances in bacterial therapeutics based on sense and response. Acta Pharm Sin B 2022; 13:1014-1027. [PMID: 36970195 PMCID: PMC10031265 DOI: 10.1016/j.apsb.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/26/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Intelligent drug delivery is a promising strategy for cancer therapies. In recent years, with the rapid development of synthetic biology, some properties of bacteria, such as gene operability, excellent tumor colonization ability, and host-independent structure, make them ideal intelligent drug carriers and have attracted extensive attention. By implanting condition-responsive elements or gene circuits into bacteria, they can synthesize or release drugs by sensing stimuli. Therefore, compared with traditional drug delivery, the usage of bacteria for drug loading has better targeting ability and controllability, and can cope with the complex delivery environment of the body to achieve the intelligent delivery of drugs. This review mainly introduces the development of bacterial-based drug delivery carriers, including mechanisms of bacterial targeting to tumor colonization, gene deletions or mutations, environment-responsive elements, and gene circuits. Meanwhile, we summarize the challenges and prospects faced by bacteria in clinical research, and hope to provide ideas for clinical translation.
Collapse
Affiliation(s)
- Zhuo Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Yunfei Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Wen Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Chenxuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaozhi Zhao
- Department of Andrology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
- Corresponding authors. Tel.: +025 83592629.
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
- Corresponding authors. Tel.: +025 83592629.
| |
Collapse
|
37
|
Guo S, Liu J. The Bacterial Flagellar Motor: Insights Into Torque Generation, Rotational Switching, and Mechanosensing. Front Microbiol 2022; 13:911114. [PMID: 35711788 PMCID: PMC9195833 DOI: 10.3389/fmicb.2022.911114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
The flagellar motor is a bidirectional rotary nanomachine used by many bacteria to sense and move through environments of varying complexity. The bidirectional rotation of the motor is governed by interactions between the inner membrane-associated stator units and the C-ring in the cytoplasm. In this review, we take a structural biology perspective to discuss the distinct conformations of the stator complex and the C-ring that regulate bacterial motility by switching rotational direction between the clockwise (CW) and counterclockwise (CCW) senses. We further contextualize recent in situ structural insights into the modulation of the stator units by accessory proteins, such as FliL, to generate full torque. The dynamic structural remodeling of the C-ring and stator complexes as well as their association with signaling and accessory molecules provide a mechanistic basis for how bacteria adjust motility to sense, move through, and survive in specific niches both outside and within host cells and tissues.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Microbial Sciences Institute, Yale University, West Haven, CT, United States.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT, United States.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
38
|
Mondino S, San Martin F, Buschiazzo A. 3D cryo-electron microscopic imaging of bacterial flagella: novel structural and mechanistic insights into cell motility. J Biol Chem 2022; 298:102105. [PMID: 35671822 PMCID: PMC9254593 DOI: 10.1016/j.jbc.2022.102105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising ≳25 different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly due to the revolutionary improvements in 3D cryo-electron microscopy methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. Additionally, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.
Collapse
Affiliation(s)
- Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Fabiana San Martin
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay; Microbiology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
39
|
Homma M, Kojima S. The Periplasmic Domain of the Ion-Conducting Stator of Bacterial Flagella Regulates Force Generation. Front Microbiol 2022; 13:869187. [PMID: 35572622 PMCID: PMC9093738 DOI: 10.3389/fmicb.2022.869187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
The bacterial flagellar stator is a unique ion-conducting membrane protein complex composed of two kinds of proteins, the A subunit and the B subunit. The stator couples the ion-motive force across the membrane into rotational force. The stator becomes active only when it is incorporated into the flagellar motor. The periplasmic region of the B subunit positions the stator by using the peptidoglycan-binding (PGB) motif in its periplasmic C-terminal domain to attach to the cell wall. Functional studies based on the crystal structures of the C-terminal domain of the B subunit (MotBC or PomBC) reveal that a dramatic conformational change in a characteristic α-helix allows the stator to conduct ions efficiently and bind to the PG layer. The plug and the following linker region between the transmembrane (TM) and PG-binding domains of the B subunit function in regulating the ion conductance. In Vibrio spp., the transmembrane protein FliL and the periplasmic MotX and MotY proteins also contribute to the motor function. In this review, we describe the functional and structural changes which the stator units undergo to regulate the activity of the stator to drive flagellar rotation.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
40
|
Thormann KM. Dynamic Hybrid Flagellar Motors-Fuel Switch and More. Front Microbiol 2022; 13:863804. [PMID: 35495728 PMCID: PMC9039648 DOI: 10.3389/fmicb.2022.863804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Flagellar motors are intricate rotating nanomachines that are powered by transmembrane ion gradients. The stator complexes are the powerhouses of the flagellar motor: They convert a transmembrane ion gradient, mainly of H+ or Na+, into rotation of the helical flagellar filament. They are thus essential for motor function. The number of stators synchronously engaged in the motor is surprisingly dynamic and depends on the load and the environmental concentration of the corresponding coupling ion. Thus, the rotor-stator interactions determine an important part of the properties of the motor. Numerous bacteria have been identified as possessing more than one set of stators, and some species have been demonstrated to use these different stators in various configurations to modify motor functions by dynamic in-flight swapping. Here, we review knowledge of the properties, the functions, and the evolution of these hybrid motors and discuss questions that remain unsolved.
Collapse
Affiliation(s)
- Kai M Thormann
- Fachbereich für Chemie und Biologie, Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
41
|
Manson MD. Rotary Nanomotors in the Rear View Mirror. Front Microbiol 2022; 13:873573. [PMID: 35572653 PMCID: PMC9100566 DOI: 10.3389/fmicb.2022.873573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/20/2023] Open
Abstract
Rotation is part of our everyday lives. For most of human history, rotation was considered a uniquely human invention, something beyond the anatomical capabilities of organisms. In 1973, Howard Berg made the audacious proposal that the common gut bacterium Escherichia coli swims by rotating helical flagellar filaments. In 1987, Paul Boyer suggested that the FoF1 ATP synthase of E. coli is also a rotary device. Now we know that rotating nanomachines evolved independently at least three times. They power a wide variety of cellular processes. Here, the study of flagellar rotation in E. coli is briefly summarized. In 2020, the Cryo-EM structure of the MotAB stator element of the bacterial flagellum was described. The structure strongly suggests that the MotAB stator rotates to drive flagellar rotation. Similar motors are coupled to other diverse processes. The following articles in this issue review the current knowledge and speculation about rotating biological nanomachines.
Collapse
|
42
|
Nuno de Sousa Machado J, Albers SV, Daum B. Towards Elucidating the Rotary Mechanism of the Archaellum Machinery. Front Microbiol 2022; 13:848597. [PMID: 35387068 PMCID: PMC8978795 DOI: 10.3389/fmicb.2022.848597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Motile archaea swim by means of a molecular machine called the archaellum. This structure consists of a filament attached to a membrane-embedded motor. The archaellum is found exclusively in members of the archaeal domain, but the core of its motor shares homology with the motor of type IV pili (T4P). Here, we provide an overview of the different components of the archaellum machinery and hypothetical models to explain how rotary motion of the filament is powered by the archaellum motor.
Collapse
Affiliation(s)
- João Nuno de Sousa Machado
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
43
|
Webby MN, Williams-Jones DP, Press C, Kleanthous C. Force-Generation by the Trans-Envelope Tol-Pal System. Front Microbiol 2022; 13:852176. [PMID: 35308353 PMCID: PMC8928145 DOI: 10.3389/fmicb.2022.852176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
The Tol-Pal system spans the cell envelope of Gram-negative bacteria, transducing the potential energy of the proton motive force (PMF) into dissociation of the TolB-Pal complex at the outer membrane (OM), freeing the lipoprotein Pal to bind the cell wall. The primary physiological role of Tol-Pal is to maintain OM integrity during cell division through accumulation of Pal molecules at division septa. How the protein complex couples the PMF at the inner membrane into work at the OM is unknown. The effectiveness of this trans-envelope energy transduction system is underscored by the fact that bacteriocins and bacteriophages co-opt Tol-Pal as part of their import/infection mechanisms. Mechanistic understanding of this process has been hindered by a lack of structural data for the inner membrane TolQ-TolR stator, of its complexes with peptidoglycan (PG) and TolA, and of how these elements combined power events at the OM. Recent studies on the homologous stators of Ton and Mot provide a starting point for understanding how Tol-Pal works. Here, we combine ab initio protein modeling with previous structural data on sub-complexes of Tol-Pal as well as mutagenesis, crosslinking, co-conservation analysis and functional data. Through this composite pooling of in silico, in vitro, and in vivo data, we propose a mechanism for force generation in which PMF-driven rotary motion within the stator drives conformational transitions within a long TolA helical hairpin domain, enabling it to reach the TolB-Pal complex at the OM.
Collapse
Affiliation(s)
| | | | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Nishikino T, Sagara Y, Terashima H, Homma M, Kojima S. Hoop-like role of the cytosolic interface helix in Vibrio PomA, an ion-conducting membrane protein, in the bacterial flagellar motor. J Biochem 2022; 171:443-450. [PMID: 35015887 DOI: 10.1093/jb/mvac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio has a polar flagellum driven by sodium ions for swimming. The force-generating stator unit consists of PomA and PomB. PomA contains four-transmembrane regions and a cytoplasmic domain of approximately 100 residues which interacts with the rotor protein, FliG, to be important for the force generation of rotation. The three-dimensional structure of the stator shows that the cytosolic interface (CI) helix of PomA is located parallel to the inner membrane. In this study, we investigated the function of CI helix and its role as stator. Systematic proline mutagenesis showed that residues K64, F66, and M67 were important for this function. The mutant stators did not assemble around the rotor. Moreover, the growth defect caused by PomB plug deletion was suppressed by these mutations. We speculate that the mutations affect the structure of the helices extending from TM3 and TM4 and reduce the structural stability of the stator complex. This study suggests that the helices parallel to the inner membrane play important roles in various processes, such as the hoop-like function in securing the stability of the stator complex and the ion conduction pathway, which may lead to the elucidation of the ion permeation and assembly mechanism of the stator.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Institute for protein research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yugo Sagara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroyuki Terashima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.,Department of bacteriology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
45
|
Homma M, Nishikino T, Kojima S. Achievements in bacterial flagellar research with focus on Vibrio species. Microbiol Immunol 2021; 66:75-95. [PMID: 34842307 DOI: 10.1111/1348-0421.12954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
In 1980's, the most genes involved in the bacterial flagellar function and formation had been isolated though many of their functions or roles were not clarified. Bacterial flagella are the primary locomotive organ and are not necessary for growing in vitro but are probably essential for living in natural condition and are involved in the pathogenicity. In vitro, the flagella-deficient strains can grow at rates similar to wild-type strains. More than 50 genes are responsible for flagellar function, and the flagellum is constructed by more than 20 structural proteins. The maintenance cost of flagellum is high as several genes are required for its development. The fact that it evolved as a motor organ even with such the high cost shows that the motility is indispensable to survive under the harsh environment of Earth. In this review, we focus on flagella-related research conducted by the authors for about 40 years and flagellar research focused on Vibrio spp. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University
| |
Collapse
|
46
|
Abstract
Bacteria have developed a large array of motility mechanisms to exploit available resources and environments. These mechanisms can be broadly classified into swimming in aqueous media and movement over solid surfaces. Swimming motility involves either the rotation of rigid helical filaments through the external medium or gyration of the cell body in response to the rotation of internal filaments. On surfaces, bacteria swarm collectively in a thin layer of fluid powered by the rotation of rigid helical filaments, they twitch by assembling and disassembling type IV pili, they glide by driving adhesins along tracks fixed to the cell surface and, finally, non-motile cells slide over surfaces in response to outward forces due to colony growth. Recent technological advances, especially in cryo-electron microscopy, have greatly improved our knowledge of the molecular machinery that powers the various forms of bacterial motility. In this Review, we describe the current understanding of the physical and molecular mechanisms that allow bacteria to move around.
Collapse
|