1
|
Messina RL, Sanfilippo M, Vella V, Pandini G, Vigneri P, Nicolosi ML, Gianì F, Vigneri R, Frasca F. Reactivation of p53 mutants by prima-1 [corrected] in thyroid cancer cells. Int J Cancer 2011; 130:2259-70. [PMID: 21647879 DOI: 10.1002/ijc.26228] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 05/20/2011] [Indexed: 12/12/2022]
Abstract
Most undifferentiated thyroid carcinomas express p53 mutants and thereafter, are very resistant to chemotherapy. p53 reactivation and induction of massive apoptosis (Prima-1) is a compound restoring the tumor-suppressor activity of p53 mutants. We tested the effect of Prima-1 in thyroid cancer cells harboring p53 mutations. Increasing doses of Prima-1 reduced viability of thyroid cancer cells at a variable extent (range 20-80%). Prima-1 up-regulated p53 target genes (p21(WAF1) , BCL2-associated X protein (Bax), and murine double minute 2 (MDM2)), in BC-PAP and Hth-74 cells (expressing D259Y/K286E and K286E p53 mutants) but had no effect in SW1736 (p53 null) and TPC-1 (expressing wild-type p53) thyroid cancer cells. Prima-1 also increased the cytotoxic effects of either doxorubicin or cisplatin in thyroid cancer cells, including the chemo-resistant 8305C, Hth-74 and BC-PAP cells. Moreover, real-time PCR and Western blot indicated that Prima-1 increases the mRNA of thyroid-specific differentiation markers in thyroid cancer cells. Fluorescence-activated cell sorting analysis revealed that Prima-1 effect on thyroid cancer cells occurs via the enhancement of both cell cycle arrest and apoptosis. Small interfering RNA experiments indicated that Prima-1 effect is mediated by p53 mutants but not by the p53 paralog p73. Moreover, in C-643 thyroid cancer cells, forced to ectopically express wild-type p53, Prima-1 prevented the dominant negative effect of double K248Q/K286E p53 mutant. Finally, co-IP experiments indicated that in Hth-74 cells Prima-1 prevents the ability of p53 mutants to sequestrate the p53 paralog TAp73. These in vitro studies imply that p53 mutant reactivation by small compounds may become a novel anticancer therapy in undifferentiated thyroid carcinomas.
Collapse
Affiliation(s)
- Rosa Linda Messina
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
|
3
|
Bassett EA, Wang W, Rastinejad F, El-Deiry WS. Structural and functional basis for therapeutic modulation of p53 signaling. Clin Cancer Res 2008; 14:6376-86. [PMID: 18927276 DOI: 10.1158/1078-0432.ccr-08-1526] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effective modulation of structural features and/or functional properties of the major tumor suppressor p53 as a wild-type or cancer-associated mutant protein represents a major challenge in drug development for cancer. p53 is an attractive target for therapeutic design because of its involvement as a mediator of growth arrest and apoptosis after exposure to chemoradiotherapy and/or radiotherapy. Although most clinically used cytotoxic agents target stabilization of wild-type p53, there are a number of approaches that hold promise for reactivation of mutant p53. On the other hand, brief blockade of p53 may reduce toxicity from systemic cytotoxic therapy. Screens for restoration of p53 transcriptional responses in p53-deficient cells may provide a functional means to develop anticancer therapeutics. Structure-based modulation continues to hold promise for development of peptides or small molecules capable of modulation of either wild-type or mutant p53 proteins.
Collapse
Affiliation(s)
- Emily A Bassett
- Department of Medicine, The Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
4
|
Rao CV, Swamy MV, Patlolla JMR, Kopelovich L. Suppression of familial adenomatous polyposis by CP-31398, a TP53 modulator, in APCmin/+ mice. Cancer Res 2008; 68:7670-5. [PMID: 18794156 PMCID: PMC2597360 DOI: 10.1158/0008-5472.can-08-1610] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
p53 mutations occur in a large number of human malignancies. Mutant p53 is unable to affect downstream genes necessary for DNA repair, cell cycle regulation, and apoptosis. The styrylquinazoline CP-31398 can rescue destabilized mutant p53 expression and promote activity of wild-type p53. The present study examines chemopreventive effects of CP-31398 on intestinal adenoma development in an animal model of familial adenomatous polyposis. Effects were examined at both early and late stages of adenoma formation. Effects of CP-31398 on early-stage adenomas were determined by feeding 7-week-old female C57BL/6J-APC(min) (heterozygous) and wild-type C57BL/6J mice with American Institute of Nutrition-76A diets containing 0, 100, or 200 ppm of CP-31398 for 75 days. To examine activity toward late-stage adenomas, CP-31398 administration was delayed until 15 weeks of age and continued for 50 days. During early-stage intervention, dietary CP-31398 suppressed development of intestinal tumors by 36% (P < 0.001) and 75% (P < 0.0001), at low and high dose, respectively. During late-stage intervention, CP-31398 also significantly suppressed intestinal polyp formation, albeit to a lesser extent than observed with early intervention. Adenomas in treated mice showed increased apoptotic cell death and decreased proliferation in conjunction with increased expression of p53, p21(WAF1/CIP), cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase. These observations show for the first time that the p53-modulating agent CP-31398 possesses significant chemopreventive activity in vivo against intestinal neoplastic lesions in genetically predisposed APC(min/+) mice. Chemopreventive activity of other agents that restore tumor suppressor functions of mutant p53 in tumor cells is currently under investigation.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Department of Medicine, Hem-Onc Section, University of Oklahoma Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | |
Collapse
|
5
|
Sun F, Mi Z, Condliffe SB, Bertrand CA, Gong X, Lu X, Zhang R, Latoche JD, Pilewski JM, Robbins PD, Frizzell RA. Chaperone displacement from mutant cystic fibrosis transmembrane conductance regulator restores its function in human airway epithelia. FASEB J 2008; 22:3255-63. [PMID: 18556464 DOI: 10.1096/fj.07-105338] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). The most common mutation, DeltaF508, omits the phenylalanine residue at position 508 in the first nucleotide binding domain (NBD1) of CFTR. The mutant protein is retained in the endoplasmic reticulum and degraded by the ubiquitin-proteasome system. We demonstrate that expression of NBD1 plus the regulatory domain (RD) of DeltaF508 CFTR (DeltaFRD) restores the biogenesis of mature DeltaF508 CFTR protein. In addition, DeltaFRD elicited a cAMP-stimulated anion conductance response in primary human bronchial epithelial (HBE) cells isolated from homozygous DeltaF508 CF patients. A protein transduction domain (PTD) could efficiently transduce (approximately 90%) airway epithelial cells. When fused to a PTD, direct addition of the DeltaFRD peptide conferred a dose-dependent, cAMP-stimulated anion efflux to DeltaF508 HBE cells. Hsp70 and Hsp90 associated equally with WT and DeltaF508 CFTR, whereas nearly twice as much of the Hsp90 cochaperone, Aha1, associated with DeltaF508 CFTR. Expression of DeltaFRD produced a dose-dependent removal of Aha1 from DeltaF508 CFTR that correlated with its functional rescue. These findings indicate that disruption of the excessive association of the cochaperone, Aha1, with DeltaF508 CFTR is associated with the correction of its maturation, trafficking and regulated anion channel activity in human airway epithelial cells. Thus, PTD-mediated DeltaFRD fragment delivery may provide a therapy for CF.
Collapse
Affiliation(s)
- Fei Sun
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kuribayashi K, El-Deiry WS. Regulation of programmed cell death by the p53 pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:201-21. [PMID: 18441595 DOI: 10.1007/978-1-4020-6554-5_10] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The p53 pathway is targeted for inactivation in most human cancers either directly or indirectly, highlighting its critical function as a tumor suppressor gene. p53 is normally activated by cellular stress and mediates a growth-suppressive response that involves cell cycle arrest and apoptosis. In the case of cell cycle arrest, p21 appears sufficient to block cell cycle progression out of G1 until repair has occurred or the cellular stress has been resolved. The p53-dependent apoptotic response is more complex and involves transcriptional activation of multiple proapoptotic target genes, tissue, and signal specificity, as well as additional events that are less well understood. In this chapter, we summarize the apoptosis pathway regulated by p53 and include some open questions in this field.
Collapse
Affiliation(s)
- Kageaki Kuribayashi
- Lab. of Molecular Oncology and Cell Cycle Regulation, Dept of Medicine (Hematology/Oncology), Inst. for Translational Medicine and Therapeutics and the Abramson Comprehensive Cancer Center, Univ.of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Cerchietti LC, Polo JM, Da Silva GF, Farinha P, Shaknovich R, Gascoyne RD, Dowdy SF, Melnick A. Sequential transcription factor targeting for diffuse large B-cell lymphomas. Cancer Res 2008; 68:3361-9. [PMID: 18451163 PMCID: PMC2748725 DOI: 10.1158/0008-5472.can-07-5817] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcription factors play a central role in malignant transformation by activating or repressing waves of downstream target genes. Therapeutic targeting of transcription factors can reprogram cancer cells to lose their advantages in growth and survival. The BCL6 transcriptional repressor plays a central role in the pathogenesis of diffuse large B-cell lymphomas (DLBCL) and controls downstream checkpoints, including the p53 tumor suppressor gene. We report that a specific inhibitor of BCL6 called BPI can trigger a p53 response in DLBCL cells. This was partially due to induction of p53 activity and partially due to relief of direct repression by BCL6 of p53 target genes. BPI could thus induce a p53-like response even in the presence of mutant p53. Moreover, sequential BCL6 peptide inhibitors followed by p53 peptide or small-molecule activators provided a more powerful antilymphoma effect than either treatment alone by maximally restoring p53 target gene expression. Therefore, tandem targeting of the overlapping BCL6 and p53 transcriptional programs can correct aberrant survival pathways in DLBCL and might provide an effective therapeutic approach to lymphoma therapy.
Collapse
Affiliation(s)
- Leandro C Cerchietti
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine. 1300 Morris Park Ave, Bronx, NY 10461
| | - Jose M Polo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine. 1300 Morris Park Ave, Bronx, NY 10461
| | - Gustavo F Da Silva
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine. 1300 Morris Park Ave, Bronx, NY 10461
| | - Pedro Farinha
- Department of Pathology, British Columbia Cancer Agency, 600 W 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Rita Shaknovich
- Department of Pathology. Albert Einstein College of Medicine. 1300 Morris Park Ave, Bronx, NY 10461
| | - Randy D Gascoyne
- Department of Pathology, British Columbia Cancer Agency, 600 W 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Steven F Dowdy
- Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine. University of California at San Diego School of Medicine. 9500 Gilman Drive, Dept 0686. La Jolla, CA 92093−0686
| | - Ari Melnick
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine. 1300 Morris Park Ave, Bronx, NY 10461
| |
Collapse
|
8
|
Chin Lee SH, Jefferies R, Watt P, Hopkins R, Sotzik F, Reid S, Armson A, Boxell A, Ryan U. In vitro analysis of the TAT protein transduction domain as a drug delivery vehicle in protozoan parasites. Exp Parasitol 2008; 118:303-7. [DOI: 10.1016/j.exppara.2007.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/20/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
|
9
|
Abstract
PURPOSE OF REVIEW p53 mutation occurs in over half of all human tumors. Among the remaining tumors, although they may process a wild-type p53, the pathways of p53-induced cell-cycle arrest and apoptosis are deficient. Therefore, p53 serves as a unique molecular target for cancer therapy. This review focuses on the current progress regarding restoration of p53 function in human tumors for molecularly targeted therapy. RECENT FINDINGS Targeting p53 for cancer therapy has been intensively pursued. CP-31398 was the first small molecule identified with the ability to restore the wild-type conformation to mutant p53. Subsequently, PRIMA-1 and ellipticine were found to be able to induce mutant p53-dependent cell death. Nutlin was developed to rescue wild-type p53 from degradation mediated by MDM2. More recently, p53 family members can be activated and therefore serve as substitutes of p53 in tumor cells and induce cell death. SUMMARY Loss of p53 function is a characteristic of almost all human tumors. Recent advances demonstrate that reconstitution of p53 function is possible and practical as a promising antitumor strategy.
Collapse
|
10
|
Gump JM, Dowdy SF. TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol Med 2008; 13:443-8. [PMID: 17913584 DOI: 10.1016/j.molmed.2007.08.002] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/01/2007] [Accepted: 08/13/2007] [Indexed: 11/24/2022]
Abstract
Research into the mechanism of protein transduction has undergone a renaissance in the past five years as many groups have sought to understand the behavior of transducing peptides to harness their enormous therapeutic and diagnostic potential. The field has benefited greatly from rigorous cell biological and biophysical studies of the mechanism used by cell penetrating peptides to enter cells and deliver their cargo. The recent identification of fluid phase endocytosis as the mode of cellular entry for TAT and other protein transduction domains has enhanced our understanding of how transduction facilitates intracellular delivery. Many outstanding questions and contradictions still remain to be resolved in the field. Nevertheless, the current body of work regarding the mechanism of uptake gives a much clearer picture of how these macromolecules enter cells and how we might enhance the bioavailability to take advantage of them clinically.
Collapse
Affiliation(s)
- Jacob M Gump
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0686, USA
| | | |
Collapse
|
11
|
Tang X, Zhu Y, Han L, Kim AL, Kopelovich L, Bickers DR, Athar M. CP-31398 restores mutant p53 tumor suppressor function and inhibits UVB-induced skin carcinogenesis in mice. J Clin Invest 2007; 117:3753-64. [PMID: 18060030 PMCID: PMC2096455 DOI: 10.1172/jci32481] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 09/19/2007] [Indexed: 01/10/2023] Open
Abstract
Mutations in the tumor suppressor p53 are detectable in over 50% of all human malignancies. Mutant p53 protein is incapable of transactivating its downstream target genes that are required for DNA repair and apoptosis. Chronic exposure to UVB induces p53 mutations and is carcinogenic in both murine and human skin. CP-31398, a styrylquinazoline compound, restores the tumor suppressor functions of mutant forms of p53 in tumor cells. However, its effectiveness in vivo remains unclear. Here, we demonstrate that CP-31398 blocked UVB-induced skin carcinogenesis and was associated with increases in p53, p21, and BclXs. CP-31398 downregulated Bcl2, proliferating nuclear cell antigen, and cyclin D1. Activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase also occurred in both tumor and perilesional skin following treatment. CP-31398 induced the expression of p53-dependent target proteins, and this was followed by apoptosis in UVB-irradiated wild-type mice but not in their p53-deficient littermates. Similar effects were observed in human skin carcinoma A431 cells expressing mutant p53. In addition, CP-31398 induced mitochondrial translocation of p53, leading to changes in mitochondrial membrane permeability pore transition (MPT) and consequent cytochrome c release in these cells. Blocking MPT diminished p53 translocation and apoptosis. These studies indicate that reconstituting p53 tumor suppressor functions in vivo by small molecular weight compounds may block the pathogenesis and progression of skin cancer.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/radiation effects
- Caspase 3/genetics
- Caspase 3/metabolism
- Cell Line, Tumor
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/radiation effects
- Cyclin D
- Cyclins/genetics
- Cyclins/metabolism
- Cytochromes c/genetics
- Cytochromes c/metabolism
- Environmental Exposure/adverse effects
- Female
- Humans
- Male
- Mice
- Mice, Hairless
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Membrane Transport Proteins/antagonists & inhibitors
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Permeability Transition Pore
- Mutation/drug effects
- Mutation/radiation effects
- Neoplasms, Radiation-Induced/drug therapy
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/metabolism
- Neoplasms, Radiation-Induced/pathology
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Proliferating Cell Nuclear Antigen/genetics
- Proliferating Cell Nuclear Antigen/metabolism
- Protein Transport/drug effects
- Protein Transport/genetics
- Protein Transport/radiation effects
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Ultraviolet Rays/adverse effects
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Xiuwei Tang
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Yucui Zhu
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Lydia Han
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Arianna L. Kim
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Levy Kopelovich
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - David R. Bickers
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Mohammad Athar
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Kim HA, Won Kim D, Park J, Choi SY. Transduction of Cu, Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into human chondrocytes. Arthritis Res Ther 2007; 8:R96. [PMID: 16792821 PMCID: PMC1779403 DOI: 10.1186/ar1972] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/04/2006] [Accepted: 05/12/2006] [Indexed: 01/01/2023] Open
Abstract
This study was performed to investigate the transduction of a full-length superoxide dismutase (SOD) protein fused to transactivator of transcription (Tat) into human chondrocytes, and to determine the regulatory function of transduced Tat-SOD in the inflammatory cytokine induced catabolic pathway. The pTat-SOD expression vector was constructed to express the basic domain of HIV-1 Tat as a fusion protein with Cu, Zn-SOD. We also purified histidine-tagged SOD without an HIV-1 Tat and Tat-GFP as control proteins. Cartilage samples were obtained from patients with osteoarthritis (OA) and chondrocytes were cultured in both a monolayer and an explant. For the transduction of fusion proteins, cells/explants were treated with a variety of concentrations of fusion proteins. The transduced protein was detected by fluorescein labeling, western blotting and SOD activity assay. Effects of transduced Tat-SOD on the regulation of IL-1 induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression was assessed by the Griess reaction and reverse transcriptase PCR, respectively. Tat-SOD was successfully delivered into both the monolayer and explant cultured chondrocytes, whereas the control SOD was not. The intracellular transduction of Tat-SOD into cultured chondrocytes was detected after 1 hours, and the amount of transduced protein did not change significantly after further incubation. SOD enzyme activity increased in a dose-dependent manner. NO production and iNOS mRNA expression, in response to IL-1 stimulation, was significantly down-regulated by pretreatment with Tat-SOD fusion proteins. This study shows that protein delivery employing the Tat-protein transduction domain is feasible as a therapeutic modality to regulate catabolic processes in cartilage. Construction of additional Tat-fusion proteins that can regulate cartilage metabolism favorably and application of this technology in in vivo models of arthritis are the subjects of future studies.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyongchondong, Dongan-gu, Anyang, Kyunggi-do, 431-070, Korea
| | - Dae Won Kim
- Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Jinseu Park
- Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Sciences and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| |
Collapse
|
13
|
Delaroche D, Aussedat B, Aubry S, Chassaing G, Burlina F, Clodic G, Bolbach G, Lavielle S, Sagan S. Tracking a new cell-penetrating (W/R) nonapeptide, through an enzyme-stable mass spectrometry reporter tag. Anal Chem 2007; 79:1932-8. [PMID: 17260976 DOI: 10.1021/ac061108l] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have designed a mass stable reporter (msr) tag with m/z over 500, trifluoroacetyl(alpha,alpha-diethyl)Gly-Lys(Nepsilonbiotin)-(D)Lys-Cys, for the quantification of the uptake and study of the degradation processes of cell-penetrating peptides (CPP), by matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. This tag was found stable in cell lysis conditions. Using a quantitative MALDI-TOF mass spectrometry analysis based method, an accurate tracking of a new CPP and of its degradation products could be done. (1) The new msr(W/R) nonapeptide (H-RRWWRRWRR-NH2) enters chinese hamster ovary (CHO) K1 cells with a kinetic reaching a steady state after 30-60 min of incubation. This plateau was stable for 4 h and decreased slowly afterward. (2) The peptide msr(W/R) nonapeptide was not cytotoxic over 48 h incubation with CHO cells. (3) After 1 h incubation, the msr(W/R) nonapeptide accumulated with a 3-fold higher concentration than the extracellularly added concentration (7.5 microM). (4) The intracellular quantification was accurate with less than 3% of the quantified peptide being potentially membrane-bound. (5) There was no leakage of the full-length CPP outside the cells. And, finally, (6) analysis of the degradation process of this new CPP suggests that the peptide did not traffick to lysosomes.
Collapse
Affiliation(s)
- Diane Delaroche
- Synthèse, Structure et Fonction de Molécules Bioactives (CNRS) and FR 2769, UMR 7613, and Plateforme de Spectrométrie de Masse et Protéomique, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kunz C, Borghouts C, Buerger C, Groner B. Peptide Aptamers with Binding Specificity for the Intracellular Domain of the ErbB2 Receptor Interfere with AKT Signaling and Sensitize Breast Cancer Cells to Taxol. Mol Cancer Res 2006; 4:983-98. [PMID: 17189388 DOI: 10.1158/1541-7786.mcr-06-0046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ErbB2 receptor tyrosine kinase is overexpressed in approximately 30% of breast tumor cases and its overexpression correlates with an unfavorable prognosis. A major contributor for this course of the disease is the insensitivity of these tumors toward chemotherapy. Monoclonal antibodies, inhibiting the ligand-induced activation of the receptor and tyrosine kinase inhibitors acting on the intrinsic enzymatic activity of the intracellular domain, have been developed as targeted drugs. Both have been shown to be beneficial for breast cancer patients. We targeted a third aspect of receptor function: its association with intracellular signaling components. For this purpose, we selected peptide aptamers, which specifically interact with defined domains of the intracellular part of the receptor. The peptide aptamers were selected from a random peptide library using a yeast two-hybrid system with the intracellular tyrosine kinase domain of ErbB2 as a bait construct. The peptide aptamer AII-7 interacts with high specificity with the ErbB2 receptor in vitro and in vivo. The aptamers colocalized with the intracellular domain of ErbB2 within cells. We investigated the functional consequences of the aptamer interaction with the ErbB2 receptor within tumor cells. The aptamer sequences were either expressed intracellularly or introduced into the cells as recombinant aptamer proteins. The phosphorylation of p42/44 mitogen-activated protein kinase was nearly unaffected and the activation of signal transducers and activators of transcription-3 was only modestly reduced. In contrast, they strongly inhibited the induction of AKT kinase in MCF7 breast cancer cells treated with heregulin, whereas AKT activation downstream of insulin-like growth factor I or epidermal growth factor receptor was not or only slightly affected. High AKT activity is responsible for the enhanced resistance of ErbB2-overexpressing cancer cells toward chemotherapeutic agents. Peptide aptamer interference with AKT activation resulted in the restoration of regular sensitivity of breast cancer cells toward Taxol.
Collapse
Affiliation(s)
- Christian Kunz
- Georg-Speyer-Haus, Institute for Biomedical Research, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
15
|
Goda N, Tenno T, Inomata K, Iwaya N, Sasaki Y, Shirakawa M, Hiroaki H. LBT/PTD dual tagged vector for purification, cellular protein delivery and visualization in living cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:141-6. [PMID: 17207544 DOI: 10.1016/j.bbamcr.2006.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 11/20/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Cellular protein delivery is an emerging technique, by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an E. coli expression vector suited for protein cellular delivery experiments. The plasmid is designed to generate a C-terminal fusion with the 12 amino acid HIV-Tat peptide as a protein transduction domain (PTD), whereas the protein N-terminus is fused to an 17-residue peptide lanthanide-binding tag (LBT). LBT is used for both purification by affinity chromatography and fluorescent detection with Tb(3+) as a coordinating metal. We have employed the TA-cloning site between the two tags, LBT and PTD, according to the PRESAT-vector methodology [N. Goda, T. Tenno, H. Takasu, H. Hiroaki, M. Shirakawa, The PRESAT-vector: asymmetric T-vector for high-throughput screening of soluble protein domains for structural proteomics, Protein Sci. 13 (2004) 652-658], which facilitates unidirectional cloning of any PCR-amplified DNA fragments corresponding to the protein of interest. A simple three-step protocol consisting of affinity purification of LBT/PTD dual-tagged proteins has also been developed, in which the proteins are purified by heparin-, then immobilized Ni(2+)-, and then heparin-affinity chromatography, in this order. The purified protein is ready for protein delivery experiment, and the delivered protein is visible by fluorescent microscopy. Our LBT/PTD dual-tagged PRESAT-vector provides a powerful research tool for exploring cellular functions of proteins in the post-genomic era.
Collapse
Affiliation(s)
- Natsuko Goda
- Division of Molecular Biophysics, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Chauhan A, Tikoo A, Kapur AK, Singh M. The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release 2006; 117:148-62. [PMID: 17196289 PMCID: PMC1859861 DOI: 10.1016/j.jconrel.2006.10.031] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 10/20/2006] [Indexed: 01/08/2023]
Abstract
Protein transduction with cell penetrating peptides over the past several years has been shown to be an effective way of delivering proteins in vitro and now several reports have also shown valuable in vivo applications in correcting disease states. An impressive bioinspired phenomenon of crossing biological barriers came from HIV transactivator Tat protein. Specifically, the protein transduction domain of HIV Tat has been shown to be a potent pleiotropic peptide in protein delivery. Various approaches such as molecular modeling, arginine guanidinium head group structural strategy, multimerization of PTD sequence and phage display system have been applied for taming of the PTD. This has resulted in identification of PTD variants which are efficient in cell membrane penetration and cytoplasmic delivery. In spite of these state of the art technologies, the dilemma of low protein transduction efficiency and target specific delivery of PTD fusion proteins remains unsolved. Moreover, some misconceptions about PTD of Tat in the literature require considerations. We have assembled critical information on secretory, plasma membrane penetration and transcellular properties of Tat and PTD using molecular analysis and available experimental evidences.
Collapse
Affiliation(s)
- Ashok Chauhan
- Department of Neurology, Richard Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, 509 Pathology, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
17
|
Wang W, Kim SH, El-Deiry WS. Small-molecule modulators of p53 family signaling and antitumor effects in p53-deficient human colon tumor xenografts. Proc Natl Acad Sci U S A 2006; 103:11003-8. [PMID: 16835297 PMCID: PMC1544164 DOI: 10.1073/pnas.0604507103] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p53 deficiency is common in almost all human tumors and contributes to an aggressive chemo- or radiotherapy-resistant phenotype, therefore providing a target for drug development. Molecular targeting to restore wild-type p53 activity has been attempted in drug development and has led to the identification of CP-31398, PRIMA1, and the Nutlins. However, strategies targeting p53-activated transcriptional responses or p53 family member expression in p53-deficient tumors have yet to be explored. Here we demonstrate the use of noninvasive bioluminescence imaging in a high-throughput cell-based screen of small molecules that activate p53 responses and cell death in human tumor cells carrying a mutant p53. We isolated a number of small molecules that activate p53 reporter activity, increase expression of p53 target genes such as p21(WAF1) or death receptor 5 (KILLER/DR5) of TNF-related apoptosis-inducing ligand (TRAIL), and induce apoptosis in p53-deficient cells. Some of the compounds activate a p53 response by increasing p73 expression, and knockdown of transactivating isoforms of p73 by small interfering RNA reduces their induction of p53-responsive transcriptional activity. Some compounds do not induce significant p73 expression but induce a high p53-responsive transcriptional activity in the absence of p53. In vivo experiments demonstrate potent antitumor effects of selected compounds, using either HCT116/p53(-/-) or DLD1 human colon tumor xenografts. The results establish the feasibility of a cell-based drug screening strategy targeting the p53 transcription factor family of importance in human cancer and provide lead compounds for further development in cancer therapy.
Collapse
Affiliation(s)
- Wenge Wang
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Departments of Medicine (Hematology/Oncology), Genetics, and Pharmacology, Institute for Translational Medicine and Therapeutics, Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Seok-Hyun Kim
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Departments of Medicine (Hematology/Oncology), Genetics, and Pharmacology, Institute for Translational Medicine and Therapeutics, Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Wafik S. El-Deiry
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Departments of Medicine (Hematology/Oncology), Genetics, and Pharmacology, Institute for Translational Medicine and Therapeutics, Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|