1
|
Wang C, Guo X, Wang W, Li JX, Wang TY. From Cell Clones to Recombinant Protein Product Heterogeneity in Chinese Hamster Ovary Cell Systems. Int J Mol Sci 2025; 26:1324. [PMID: 39941092 PMCID: PMC11818180 DOI: 10.3390/ijms26031324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Chinese hamster ovary (CHO) cells are commonly used to produce recombinant therapeutic proteins (RTPs). The yield of RTPs in CHO cells has been greatly improved through cell editing and optimization of culture media, cell culture processes, and expression vectors. However, the heterogeneity of cell clones and product aggregation considerably affect the yield and quality of RTPs. Recently, novel technologies such as semi-targeted and site-specific transgene integration, endoplasmic reticulum-residents, and cell culture process optimization have been used to address these issues. In this review, novel developments in the field of CHO cell expression system heterogeneity are summarized. Moreover, the advantages and limitations of the new strategies are discussed, and important methods for the control of RTP quality are outlined.
Collapse
Affiliation(s)
- Chong Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China;
| | - Xiao Guo
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; (X.G.); (J.-X.L.)
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| | - Wen Wang
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| | - Jia-Xin Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; (X.G.); (J.-X.L.)
| | - Tian-Yun Wang
- International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China;
| |
Collapse
|
2
|
Raigani M, Namdar P, Barkhordari F, Seyedjavadi SS, Rahimpour A, Adeli A. Development of an attenuated glutamine synthetase (GS) selection system for the stable expression of tissue plasminogen activator in CHO-K1 cells. Prep Biochem Biotechnol 2025:1-7. [PMID: 39838843 DOI: 10.1080/10826068.2025.2454335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Chinese hamster ovary (CHO) cells represent the most common host system for the expression of high-quality recombinant proteins. The development of stable CHO cell lines used in industrial recombinant protein production often relies on dihydrofolate reductase (DHFR) and glutamine synthetase (GS) amplification systems. Conventional approaches to develop stable cell lines lead to heterogeneous cell populations. Consequently, it is desirable to adopt innovative strategies to increase the efficiency of clone selection to reduce the time and effort invested in the cell line development process. Attenuating the selection marker gene is an effective strategy for isolating high-producing cells. In this study, we evaluated the efficiency of an attenuated glutamine synthetase selection system for the expression of human tissue plasminogen activator (t-PA) in CHO cells. We introduced an AU-rich element (ARE) at the 3'UTR of the glutamine synthetase coding sequence and employed a weak promoter (mSV40) for the expression of this gene. Subsequently, we analyzed the effect of ARE on the GS RNA levels, and recombinant t-PA expression. Our results demonstrate that the use of ARE significantly enhances the detection of high expressing cells compared to the control. Additionally, the t-PA expression level in GS-ARE clones was approximately 900-fold greater than those without the ARE.
Collapse
Affiliation(s)
- Mozhgan Raigani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Pegah Namdar
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahwaz, Iran
| | | | | | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Adeli
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Zhang J, Wang L, Zhang X, Sun Q, Zhang J. Matrix attachment regions enhance transgene expression by manipulating position-dependent effects in stably transfected CHO-K1 cells. Biochem Cell Biol 2024; 102:526-534. [PMID: 39029107 DOI: 10.1139/bcb-2023-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
We previously found that the position of matrix attachment regions (MARs) within the vector significantly affects its ability to enhance transgenic expression in the recombinant protein production. This study aims to systematically investigate the position-dependent impacts of MAR on transgene expression. We observed a significant increase in enhanced green fluorescent protein (eGFP) expression levels in stably transfected CHO-K1 cells with either MAR 1-68 or MAR X-29 when MARs located upstream of the promoter. This increase was especially evident with MAR flanked the expression cassette. Concurrently, a substantial increase was observed in the percentage of eGFP-expressing cells, with 97.8% and 96.0% in MAR-containing constructs versus 73.7% in MAR-absent constructs. Further analysis of erythropoietin (EPO) expression revealed that constructs with flanking MARs induced the highest EPO productivity. Bioinformatics analysis revealed that certain specific transcription factors are important in modulating the transcription process. In conclusion, vectors harboring both MARs around the expression cassette constitute an optimal construct for enhanced recombinant protein production in CHO-K1 cells. This insight underscores the importance of strategic MAR incorporation in vector design for optimized recombinant protein expression.
Collapse
Affiliation(s)
- Jihong Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453003, China
| | - Lin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xi Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453003, China
| | - Qiuli Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453003, China
| | - Junhe Zhang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang 453003, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
4
|
Yamano-Adachi N, Hata H, Nakanishi Y, Omasa T. Effects of genome instability of parental CHO cell clones on chromosome number distribution and recombinant protein production in parent-derived subclones. J Biosci Bioeng 2024; 137:54-63. [PMID: 37981489 DOI: 10.1016/j.jbiosc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chinese hamster ovary (CHO) cells are the de facto standard host cells for biopharmaceuticals, and there is great interest in developing methods for constructing stable production cell lines. In this study, clones with a wide chromosome number distribution were selected from isolated antibody-producing strains, and subclones obtained from these clones were evaluated. The transgene copy number varied between the subclones. Even among subclones with similar copy numbers of antibody genes and maintained insertion sites, clones with different productivity were generated. Although the chromosome number distribution differed between these subclones, there was no correlation between the variability in chromosome number after cloning (genome instability) and productivity. Most of the subclones obtained from a parental strain with a wide chromosome number had the same wide chromosome number distribution as the parental strain. Less frequently, cells with less variation (remaining in one distribution) in chromosome number were isolated from cells with a wide chromosome number distribution, from which subclones with less variation in chromosome number were obtained when subcloning was performed again. These results imply that the characteristics of clones with chromosomal instability are inherited by subclones, and thus provide a better understanding of cell line stability/instability.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hirofumi Hata
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuto Nakanishi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Yamaguchi K, Ogawa R, Tsukahara M, Kawakami K. Efficient production of recombinant proteins in suspension CHO cells culture using the Tol2 transposon system coupled with cycloheximide resistance selection. Sci Rep 2023; 13:7628. [PMID: 37165015 PMCID: PMC10172305 DOI: 10.1038/s41598-023-34636-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
DNA recombination techniques in mammalian cells has been applied to the production of therapeutic proteins for several decades. To be used for commercial production, established cell lines should stably express target proteins with high productivity and acceptable quality for human use. In the conventional transfection method, the screening process is laborious and time-consuming since superior cell lines had to be selected from an enormous number of transfected cell pools and clonal cell lines with a wide variety of transgene insertion locations. In this study, we demonstrated that the combination of a Tol2 transposon system and cell selection by cycloheximide resistance is an efficient method to express therapeutic proteins, such as human antibody in suspension culture of Chinese hamster ovary cells. The resulting stable cell lines showed constant productivity and cell growth over a long enough cultivation periods for recombinant protein production. We anticipate that this approach will prove widely applicable to protein production in research and development of pharmaceutical products.
Collapse
Affiliation(s)
- Keina Yamaguchi
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Bio Process Research and Development Laboratories, Kyowa Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki, Gunma, 370-0013, Japan.
| | - Risa Ogawa
- Bio Process Research and Development Laboratories, Kyowa Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki, Gunma, 370-0013, Japan
| | - Masayoshi Tsukahara
- Bio Process Research and Development Laboratories, Kyowa Kirin Co., Ltd., 100-1 Hagiwara-machi, Takasaki, Gunma, 370-0013, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
6
|
Li Q, Yan RF, Yang YX, Mi CL, Jia YL, Wang TY. Stabilizing and Anti-Repressor Elements Effectively Increases Transgene Expression in Transfected CHO Cells. Front Bioeng Biotechnol 2022; 10:840600. [PMID: 35721852 PMCID: PMC9199445 DOI: 10.3389/fbioe.2022.840600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are currently the most widely used host cells for recombinant therapeutic protein (RTP) production. Currently, the RTP yields need to increase further to meet the market needs and reduce costs. In this study, three stabilizing and anti-repressor (SAR) elements from the human genome were selected, including human SAR7, SAR40, and SAR44 elements. SAR elements were cloned upstream of the promoter in the eukaryotic vector, followed by transfection into CHO cells, and were screened under G418 pressure. Flow cytometry was used to detect enhanced green fluorescent protein (eGFP) expression levels. The gene copy numbers and mRNA expression levels were determined through quantitative real-time PCR. Furthermore, the effect of the stronger SAR elements on adalimumab was investigated. The results showed that transgene expression levels in the SAR-containing vectors were higher than that of the control vector, and SAR7 and SAR40 significantly increased and maintained the long-term expression of the transgene in CHO cells. In addition, the transgene expression level increase was related with gene copy numbers and mRNA expression levels. Collectively, SAR elements can enhance the transgene expression and maintain the long-term expression of a transgene in transfected CHO cells, which may be used to increase recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Qin Li
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Rui-Fang Yan
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yong-Xiao Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Chun-Liu Mi
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yan-Long Jia
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Dehdilani N, Taemeh SY, Goshayeshi L, Dehghani H. Genetically engineered birds; pre-CRISPR and CRISPR era. Biol Reprod 2021; 106:24-46. [PMID: 34668968 DOI: 10.1093/biolre/ioab196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Abstract
Generating biopharmaceuticals in genetically engineered bioreactors continues to reign supreme. Hence, genetically engineered birds have attracted considerable attention from the biopharmaceutical industry. Fairly recent genome engineering methods have made genome manipulation an easy and affordable task. In this review, we first provide a broad overview of the approaches and main impediments ahead of generating efficient and reliable genetically engineered birds, and various factors that affect the fate of a transgene. This section provides an essential background for the rest of the review, in which we discuss and compare different genome manipulation methods in the pre-CRISPR and CRISPR era in the field of avian genome engineering.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Snijders KE, Fehér A, Táncos Z, Bock I, Téglási A, van den Berk L, Niemeijer M, Bouwman P, Le Dévédec SE, Moné MJ, Van Rossom R, Kumar M, Wilmes A, Jennings P, Verfaillie CM, Kobolák J, Ter Braak B, Dinnyés A, van de Water B. Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages. Arch Toxicol 2021; 95:3285-3302. [PMID: 34480604 PMCID: PMC8448683 DOI: 10.1007/s00204-021-03127-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62–1000 nM) or diethyl maleate (5.62–1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.
Collapse
Affiliation(s)
- Kirsten E Snijders
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | - Linda van den Berk
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn J Moné
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Rob Van Rossom
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | | | - Bas Ter Braak
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - András Dinnyés
- BioTalentum Ltd., 2100, Gödöllő, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary.
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
9
|
Abstract
Germline editing, the process by which the genome of an individual is edited in such a way that the change is heritable, has been applied to a wide variety of animals [D. A. Sorrell, A. F. Kolb, Biotechnol. Adv. 23, 431-469 (2005); D. Baltimore et al., Science 348, 36-38 (2015)]. Because of its relevancy in agricultural and biomedical research, the pig genome has been extensively modified using a multitude of technologies [K. Lee, K. Farrell, K. Uh, Reprod. Fertil. Dev. 32, 40-49 (2019); C. Proudfoot, S. Lillico, C. Tait-Burkard, Anim. Front. 9, 6-12 (2019)]. In this perspective, we will focus on using pigs as the model system to review the current methodologies, applications, and challenges of mammalian germline genome editing. We will also discuss the broad implications of animal germline editing and its clinical potential.
Collapse
|
10
|
Fusion with matrix attachment regions enhances expression of recombinant protein in human HT-1080 cells. J Biosci Bioeng 2020; 130:533-538. [PMID: 32773266 DOI: 10.1016/j.jbiosc.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022]
Abstract
Like endogenous proteins, recombinant foreign proteins produced in human cell lines also need post-translational modifications. However, high and long-term expression of a gene of interest (GOI) presents significant challenges for recombinant protein production in human cells. In this work, the effect of human matrix attachment region elements (MARs), including the β-globin MAR (gMAR), chicken lysozyme MAR (cMAR), and a combination of these two, on the stable expression of GOI was assessed in human HT-1080 cells. After transfection with vectors containing the MAR elements and eGFP, stably HT-1080 cell pools were obtained under selective pressure. eGFP protein expression was analyzed by flow cytometry, while transgene copy number and eGFP mRNA expression levels were determined with qPCR and qRT-PCR technology. We found that MARs could not enhance transfection efficiency, but gMAR could significantly increase eGFP expression in stable HT-1080 cell pools by approximately 2.69-fold. Moreover, gMAR could also increase eGFP expression stability during long-term culture. Lastly, we showed that the effect of the MARs on transgenes was related to the gene copy number. In summary, this study found that MARs could both enhance the transgene expression and stability in HT-1080 cells.
Collapse
|
11
|
Fluorescence-assisted sequential insertion of transgenes (FASIT): an approach for increasing specific productivity in mammalian cells. Sci Rep 2020; 10:12840. [PMID: 32732973 PMCID: PMC7392891 DOI: 10.1038/s41598-020-69709-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/16/2020] [Indexed: 11/08/2022] Open
Abstract
Currently, the generation of cell lines for the production of recombinant proteins has the limitation of unstable gene expression due to the repeat-induced gene silencing or the loss of transgene copies resulting from recombination events. In this work, we developed a new strategy based on the sequential insertion of transgenes for generating stable clones producing high levels of a chimeric human follicle-stimulating hormone (hscFSH). Gene insertion was done by transducing HEK-293 cells with a lentiviral vector containing a bicistronic transcriptional unit for expressing hscFSH and GFP genes. Clone selection was performed by flow cytometry coupled to cell sorting, and the GFP gene was further removed by CRE-mediated site-specific recombination. High-producing clones of hscFSH were obtained after three rounds of lentiviral transduction. Expression levels increased in a step-wise manner from 7 to 23 pg/cell/day, with a relatively constant rate of 7 pg/cell/day in each round of transduction. The GFP gene was successfully removed from the cell genome without disturbing the hscFSH gene expression. Clones generated using this approach showed stable expression levels for more than two years. This is the first report describing the sequential insertion of transgenes as an alternative for increasing the expression levels of transformed cell lines. The methodology described here could notably impact on biotechnological industry by improving the capacity of mammalian cells to produce biopharmaceuticals.
Collapse
|
12
|
Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 2020; 40:833-851. [DOI: 10.1080/07388551.2020.1768043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kajan Srirangan
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Martin Loignon
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Gupta K, Parasnis M, Jain R, Dandekar P. Vector-related stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol Adv 2019; 37:107415. [DOI: 10.1016/j.biotechadv.2019.107415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
|
14
|
An efficient protein production system via gene amplification on a human artificial chromosome and the chromosome transfer to CHO cells. Sci Rep 2019; 9:16954. [PMID: 31740706 PMCID: PMC6861226 DOI: 10.1038/s41598-019-53116-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
Gene amplification methods play a crucial role in establishment of cells that produce high levels of recombinant protein. However, the stability of such cell lines and the level of recombinant protein produced continue to be suboptimal. Here, we used a combination of a human artificial chromosome (HAC) vector and initiation region (IR)/matrix attachment region (MAR) gene amplification method to establish stable cells that produce high levels of recombinant protein. Amplification of Enhanced green fluorescent protein (EGFP) was induced on a HAC carrying EGFP gene and IR/MAR sequences (EGFP MAR-HAC) in CHO DG44 cells. The expression level of EGFP increased approximately 6-fold compared to the original HAC without IR/MAR sequences. Additionally, anti-vascular endothelial growth factor (VEGF) antibody on a HAC (VEGF MAR-HAC) was also amplified by utilization of this IR/MAR-HAC system, and anti-VEGF antibody levels were approximately 2-fold higher compared with levels in control cells without IR/MAR. Furthermore, the expression of anti-VEGF antibody with VEGF MAR-HAC in CHO-K1 cells increased 2.3-fold compared with that of CHO DG44 cells. Taken together, the IR/MAR-HAC system facilitated amplification of a gene of interest on the HAC vector, and could be used to establish a novel cell line that stably produced protein from mammalian cells.
Collapse
|
15
|
Zhang J, Zhang J, Cheng S, Yang W, Li S. Enhanced transgene expression using two β-globin MARs flanking expression cassettes in stably transfected CHO-K1 cells. 3 Biotech 2019; 9:435. [PMID: 31696040 DOI: 10.1007/s13205-019-1971-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/23/2019] [Indexed: 02/02/2023] Open
Abstract
In this study, we systemically investigated the positions and orientations of matrix attachment regions (MARs) in expression vectors to fully explore the mechanism for improving transgene expression. We constructed 14 vectors that incorporated human β-globin MARs into pIRES-eGFP backbone vectors. The MARs flanked the eGFP expression cassette or promoter in a forward/reverse orientation. After stable transfection into CHO-K1 cells with these vectors, eGFP expression levels were increased significantly relative to that of the control vector (MAR-devoid) when two MARs flanking the expression cassette were incorporated, followed by those at the 5' site (upstream of the promoter). Simultaneously, the percentage of the eGFP-expressing cells was elevated to some extent. The vector with both MARs in forward orientation flanking the expression cassette yielded the highest transgene expression levels (2.5-fold). The orientation (forward or reverse) of the MARs did not present a significant difference when added in the same site. In addition, transgene expression levels were not exclusively dependent on transgene copy numbers. Bioinformatic analysis indicated that some specific transcription factors may contribute to the transcriptional process. In conclusion, two MARs in a forward orientation and flanking the expression cassette comprised the optimal construct for improving the stable transgene expression in the CHO-K1 cells. The effects may be related to specific transcription factors, such as PRDM1 and REL.
Collapse
Affiliation(s)
- Jihong Zhang
- 1School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Junhe Zhang
- 1School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Shan Cheng
- 1School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan China
| | - Wenwen Yang
- 1School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Shijiang Li
- 3The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100 China
| |
Collapse
|
16
|
Hunter M, Yuan P, Vavilala D, Fox M. Optimization of Protein Expression in Mammalian Cells. ACTA ACUST UNITED AC 2018; 95:e77. [DOI: 10.1002/cpps.77] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Chaturvedi P, Zhao B, Zimmerman DL, Belmont AS. Stable and reproducible transgene expression independent of proliferative or differentiated state using BAC TG-EMBED. Gene Ther 2018; 25:376-391. [PMID: 29930343 PMCID: PMC6195848 DOI: 10.1038/s41434-018-0021-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/20/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
Reproducible and stable transgene expression is an important goal in both basic research and biotechnology, with each application demanding a range of transgene expression. Problems in achieving stable transgene expression include multi-copy transgene silencing, chromosome-position effects, and loss of expression during long-term culture, induced cell quiescence, and/or cell differentiation. Previously, we described the “BAC TG-EMBED” method for copy-number dependent, chromosome position-independent expression of embedded transgenes within a BAC containing ~170 kb of the mouse Dhfr locus. Here we demonstrate wider applicability of the method by identifying a BAC and promoter combination that drives reproducible, copy-number dependent, position-independent transgene expression even after induced quiescence and/or cell differentiation into multiple cell types. Using a GAPDH BAC containing ~200 kb of the human GAPDH gene locus and a 1.2 kb human UBC promoter, we achieved stable GFP-ZeoR reporter expression in mouse NIH 3T3 cells after low-serum induced cell cycle arrest or differentiation into adipocytes. More notably, GFP-ZeoR expression remained stable and copy-number dependent even after differentiation of mouse ESCs into several distinct lineages. These results highlight the potential use of BAC TG-EMBED as an expression platform for high-level but stable, long-term expression of transgene independent of cell proliferative or differentiated state.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - Binhui Zhao
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA
| | - David L Zimmerman
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.,Biology Department, College of the Ozarks, Point Lookout, MO, USA
| | - Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
18
|
Nematpour F, Mahboudi F, Vaziri B, Khalaj V, Ahmadi S, Ahmadi M, Ebadat S, Davami F. Evaluating the expression profile and stability of different UCOE containing vector combinations in mAb-producing CHO cells. BMC Biotechnol 2017; 17:18. [PMID: 28228095 PMCID: PMC5322649 DOI: 10.1186/s12896-017-0330-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/03/2017] [Indexed: 12/03/2022] Open
Abstract
Background As the demand for monoclonal antibodies (mAb) increases, more efficient expression methods are required for their manufacturing process. Transcriptional gene silencing is a common phenomenon in recombinant cell lines which leads to expression reduction and instability. There are reports on improved antibody expression in ubiquitous chromatin opening element (UCOE) containing both heavy and light chain gene constructs. Here we investigate the impact of having these elements as part of the light chain, heavy chain or both genes during cell line development. In this regard, non-UCOE and UCOE vectors were constructed and stable Chinese hamster ovary (CHO) cell pools were generated by different vector combinations. Results Expression analysis revealed that all UCOE cell pools had higher antibody yields compared to non-UCOE cells, Moreover the most optimal expression was obtained by cells containing just the UCOE on heavy chain. In terms of stability, it was shown that the high level of expression was kept consistence for more than four months in these cells whereas the expression titers were reduced in the other UCOE pools. Conclusions In conclusion, UCOE significantly enhanced the level and stability of antibody expression and the use of this element with heavy chain provided more stable cell lines with higher production level.
Collapse
Affiliation(s)
- Fatemeh Nematpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fereidoun Mahboudi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Vahid Khalaj
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Samira Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Maryam Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.,Departments of Medical Biotechnology, Semnan University of Medical Sciences, Semnan, 3519899951, Iran
| | - Saedeh Ebadat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
19
|
Alves CS, Dobrowsky TM. Strategies and Considerations for Improving Expression of "Difficult to Express" Proteins in CHO Cells. Methods Mol Biol 2017; 1603:1-23. [PMID: 28493120 DOI: 10.1007/978-1-4939-6972-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite substantial advances in the field of mammalian expression, there are still proteins that are characterized as difficult to express. Determining the expression bottleneck requires troubleshooting techniques specific for the given molecule and host. The complex array of intracellular processes involved in protein expression includes transcription, protein folding, post-translation processing, and secretion. Challenges in any of these steps could result in low protein expression, while the inherent properties of the molecule itself may limit its production via mechanisms such as cytotoxicity or inherent instability. Strategies to identify the rate-limiting step and subsequently improve expression and production are discussed here.
Collapse
|
20
|
NEMATPOUR F, MAHBOUDI F, KHALAJ V, VAZIRI B, AHMADI S, AHMADI M, EBADAT S, DAVAMI F. Optimization of monoclonal antibody expression in CHOcells by employing epigenetic gene regulation tools. Turk J Biol 2017. [DOI: 10.3906/biy-1702-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
21
|
Zucchelli S, Patrucco L, Persichetti F, Gustincich S, Cotella D. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs. Comput Struct Biotechnol J 2016; 14:404-410. [PMID: 27872686 PMCID: PMC5107644 DOI: 10.1016/j.csbj.2016.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Area of Neuroscience, SISSA, Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy; Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
22
|
Ho SCL, Koh EYC, Soo BPC, Mariati, Chao SH, Yang Y. Evaluating the use of a CpG free promoter for long-term recombinant protein expression stability in Chinese hamster ovary cells. BMC Biotechnol 2016; 16:71. [PMID: 27756290 PMCID: PMC5070371 DOI: 10.1186/s12896-016-0300-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/13/2016] [Indexed: 12/04/2022] Open
Abstract
Background Methylated CpG dinucleotides in promoters are associated with the loss of gene expression in recombinant Chinese hamster ovary (CHO) cells during large-scale commercial manufacturing. We evaluated a promoter devoid of CpG dinucleotides, CpGfree, in parallel with a similar CpG containing promoter, CpGrich, for their ability to maintain the expression of recombinant enhanced green fluorescent protein (EGFP) after 8 weeks of culturing. Results While the promoters gave similar transient expression levels, CpGfree clones had significantly higher average stable expression possibly due to increased resistance to early silencing during integration into the chromosome. A greater proportion of cells in clones generated using the CpGfree promoter were still expressing detectable levels of EGFP after 8 weeks but the relative expression levels measured at week 8 to those measured at week 0 did not improve compared to clones generated using the CpGrich promoter. Chromatin immunoprecipitation assays indicated that the repression of the CpGfree promoter was likely linked to histone deacetylation and methylation. Use of histone deacetylase inhibitors also managed to recover some of the lost expression. Conclusion Using a promoter without CpG dinucleotides could mitigate the early gene silencing but did not improve longer-term expression stability as silencing due to histone modifications could still take place. The results presented here would aid in promoter selection and design for improved protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Steven C L Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Esther Y C Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Benjamin P C Soo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Mariati
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.,Department of Microbiology, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore, 117597, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| |
Collapse
|
23
|
Identification of regulatory motifs in the CHO genome for stable monoclonal antibody production. Cytotechnology 2016; 69:451-460. [PMID: 27544513 DOI: 10.1007/s10616-016-0017-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used for therapeutic protein production. When a transgene is integrated into the genome of a CHO cell, the expression level is highly dependent on the site of integration because of positional effects such as gene silencing. To overcome negative positional effects and establish stable CHO cell lines with high productivity, several regulatory DNA elements are used in vector construction. Previously, we established the CHO DR1000L-4N cell line, a stable and high copy number Dhfr gene-amplified cell line. It was hypothesized that the chromosomal location of the exogenous gene-amplified region in the CHO DR1000L-4N genome contains regulatory motifs for stable protein production. Therefore, we isolated DNA regulatory motifs from the CHO DR1000L-4N cell line and determined whether these motifs act as an insulator. Our results suggest that stable expression of a transgene can be promoted by the CHO genome sequence, and it would be a powerful tool for therapeutic protein manufacturing.
Collapse
|
24
|
Wang XJ, Wang J, Wang YY, Guo YJ, Chu BB, Yang GY. Sus scrofa matrix attachment region enhances expression of the PiggyBac system transfected into HEK293T cells. Biotechnol Lett 2016; 38:949-58. [PMID: 26965151 DOI: 10.1007/s10529-016-2074-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To determine the effects of the Sus scrofa matrix attachment region (SusMAR) on transgene expression in HEK293T cells. RESULTS Three expression vectors with the MAR at different sites in the PiggyBac (PB) transposon vector backbone were compared: two MARs flanking the β-galactosidase (β-gal) expression cassette, and one at the upstream or downstream site. Bos taurus MAR (BosMAR) and a β-gal expression cassette without MARs were the positive and negative controls, respectively. Compared to the control, β-gal activity of all SusMAR and BosMAR vectors was significantly improved in the presence of PB transposase (PBase). However, only the downstream SusMAR and upstream BosMAR vectors showed increased expression in the absence of PBase. Expression was significantly increased in all vectors with the PBase group compared to those without the PBase group. Gene copy numbers were not increased compared to the negative control. CONCLUSIONS SusMAR enhanced recombinant gene expression levels and stability in HEK293T cells, was not increase transgene copy number. These results could facilitate the development of vectors for stable production of therapeutic proteins.
Collapse
Affiliation(s)
- Xin-Jian Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiang Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yu-Jie Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Bei-Bei Chu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guo-Yu Yang
- College of Animal Husbandary and Veterinary Science, Henan Agricultural University, Wenhua Road 95, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
25
|
Sun QL, Zhao CP, Chen SN, Wang L, Wang TY. Molecular characterization of a human matrix attachment region that improves transgene expression in CHO cells. Gene 2016; 582:168-72. [PMID: 26869318 DOI: 10.1016/j.gene.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Chinese hamster ovary (CHO) cells offer many advantages for recombinant gene expression, including proper folding and post-translational modification of the recombinant protein. However, due to positional effects resulting from the neighboring chromatin, transgenes are often expressed at low levels in these cells. While previous studies demonstrated that matrix attachment regions (MARs) can be utilized to increase transgene expression by buffering transgene silencing, the mechanism by which this occurs is poorly understood. We therefore performed a deletion analysis of the human β-globin MAR sequence to characterize the regions that are necessary to enhance transgene expression in CHO cells. Our results indicate that of the six β-globin MAR fragments tested (MAR-1-6; nucleotides 1-540, 420-1020, 900-1500, 1380-1980, 1860-2460, and 2340-2999, respectively), MAR-2, followed by MAR-3, was the most effective region for promoting stable and elevated transgene expression. Meanwhile, bioinformatic analyses demonstrated that these fragments encode a MAR-like motif and several transcription factor binding sites, including special AT-rich binding protein 1 (SATB1), CCAAT-enhancer-binding proteins (C/EBP), CCCTC-binding factor (CTCF), and Glutathione (GSH) binding motifs, indicating that these elements may contribute to the MAR-mediated enhancement of transgene expression. In addition, we found that truncated MAR derivatives yield more stable transgene expression levels than transgenes lacking the MAR. We concluded that the MAR-mediated transcriptional activation of transgenes requires a specific AT-rich sequence, as well as specific transcription factor-binding motifs.
Collapse
Affiliation(s)
- Qiu-Li Sun
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Shao-Nan Chen
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Li Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China;; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, 453003, Henan, China.
| |
Collapse
|
26
|
Veith N, Ziehr H, MacLeod RAF, Reamon-Buettner SM. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. BMC Biotechnol 2016; 16:6. [PMID: 26800878 PMCID: PMC4722726 DOI: 10.1186/s12896-016-0238-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/15/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recombinant cell lines developed for therapeutic antibody production often suffer instability or lose recombinant protein expression during long-term culture. Heterogeneous gene expression among cell line subclones may result from epigenetic modifications of DNA or histones, the protein component of chromatin. We thus investigated in such cell lines, DNA methylation and the chromatin environment along the human eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) promoter in an antibody protein-expression vector which was integrated into the Chinese hamster ovary (CHO) cell line genome. RESULTS We analyzed four PT1-CHO cell lines which exhibited losses of protein expression at advanced passage number (>P35) growing in adherent conditions and in culture medium with 10 % FCS. These cell lines exhibited different integration sites and transgene copy numbers as determined by fluorescence in situ hybridization (FISH) and quantitative PCR (qPCR), respectively. By qRT-PCR, we analyzed the recombinant mRNA expression and correlated it with DNA methylation and with results from various approaches interrogating the chromatin landscape along the EEF1A1 promoter region. Each PT1-CHO cell line displayed specific epigenetic signatures or chromatin marks correlating with recombinant mRNA expression. The cell line with the lowest recombinant mRNA expression (PT1-1) was characterized by the highest nucleosome occupancy and displayed the lowest enrichment for histone marks associated with active transcription. In contrast, the cell line with the highest recombinant mRNA expression (PT1-55) exhibited the highest numbers of formaldehyde-assisted isolation of regulatory elements (FAIRE)-enriched regions, and was marked by enrichment for histone modifications H3K9ac and H3K9me3. Another cell line with the second highest recombinant mRNA transcription and the most stable protein expression (PT1-7) had the highest enrichments of the histone variants H3.3 and H2A.Z, and the histone modification H3K9ac. A further cell line (PT1-30) scored the highest enrichments for the bivalent marks H3K4me3 and H3K27me3. Finally, DNA methylation made a contribution, but only in the culture medium with reduced FCS or in a different expression vector. CONCLUSIONS Our results suggest that the chromatin state along the EEF1A1 promoter region can help predict recombinant mRNA expression, and thus may assist in selecting desirable clones during cell line development for protein production.
Collapse
Affiliation(s)
- Nathalie Veith
- Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Holger Ziehr
- Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| | - Roderick A F MacLeod
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124, Braunschweig, Germany.
| | - Stella Marie Reamon-Buettner
- Preclinical Pharmacology and In Vitro Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
27
|
Kalyanasundram J, Chia SL, Song AAL, Raha AR, Young HA, Yusoff K. Surface display of glycosylated Tyrosinase related protein-2 (TRP-2) tumour antigen on Lactococcus lactis. BMC Biotechnol 2015; 15:113. [PMID: 26715153 PMCID: PMC4696278 DOI: 10.1186/s12896-015-0231-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/22/2015] [Indexed: 01/27/2023] Open
Abstract
Background The exploitation of the surface display system of food and commensal lactic acid bacteria (LAB) for bacterial, viral, or protozoan antigen delivery has received strong interest recently. The Generally Regarded as Safe (GRAS) status of the Lactococcus lactis coupled with a non-recombinant strategy of in-trans surface display, provide a safe platform for therapeutic drug and vaccine development. However, production of therapeutic proteins fused with cell-wall anchoring motifs is predominantly limited to prokaryotic expression systems. This presents a major disadvantage in the surface display system particularly when glycosylation has been recently identified to significantly enhance epitope presentation. In this study, the glycosylated murine Tyrosinase related protein-2 (TRP-2) with the ability to anchor onto the L. lactis cell wall was produced in suspension adapted Chinese Hamster Ovary (CHO-S) cells by expressing TRP-2 fused with cell wall anchoring LysM motif (cA) at the C-terminus. Results A total amount of 33 μg of partially purified TRP-2-cA from ~6.0 g in wet weight of CHO-S cells was purified by His-tag affinity chromatography. The purified TRP-2-cA protein was shown to be N-glycosylated and successfully anchored to the L. lactis cell wall. Conclusions Thus cell surface presentation of glycosylated mammalian antigens may now permit development of novel and inexpensive vaccine platforms.
Collapse
Affiliation(s)
- Jeevanathan Kalyanasundram
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Adelene Ai-Lian Song
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Abdul Rahim Raha
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
28
|
Improved transgene integration into the Chinese hamster ovary cell genome using the Cre-loxP system. J Biosci Bioeng 2015; 120:99-106. [DOI: 10.1016/j.jbiosc.2014.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 11/22/2022]
|
29
|
Harraghy N, Calabrese D, Fisch I, Girod PA, LeFourn V, Regamey A, Mermod N. Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol J 2015; 10:967-78. [DOI: 10.1002/biot.201400649] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
|
30
|
Role of epigenetics in expression of recombinant proteins from mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Accurate comparison of antibody expression levels by reproducible transgene targeting in engineered recombination-competent CHO cells. Appl Microbiol Biotechnol 2014; 98:9723-33. [PMID: 25158835 PMCID: PMC4231286 DOI: 10.1007/s00253-014-6011-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 11/23/2022]
Abstract
Over the years, Chinese hamster ovary (CHO) cells have emerged as the major host for expressing biotherapeutic proteins. Traditional methods to generate high-producer cell lines rely on random integration(s) of the gene of interest but have thereby left the identification of bottlenecks as a challenging task. For comparison of different producer cell lines derived from various transfections, a system that provides control over transgene expression behavior is highly needed. This motivated us to develop a novel “DUKX-B11 F3/F” cell line to target different single-chain antibody fragments into the same chromosomal target site by recombinase-mediated cassette exchange (RMCE) using the flippase (FLP)/FLP recognition target (FRT) system. The RMCE-competent cell line contains a gfp reporter fused to a positive/negative selection system flanked by heterospecific FRT (F) variants under control of an external CMV promoter, constructed as “promoter trap”. The expression stability and FLP accessibility of the tagged locus was demonstrated by successive rounds of RMCE. As a proof of concept, we performed RMCE using cassettes encoding two different anti-HIV single-chain Fc fragments, 3D6scFv-Fc and 2F5scFv-Fc. Both targeted integrations yielded homogenous cell populations with comparable intracellular product contents and messenger RNA (mRNA) levels but product related differences in specific productivities. These studies confirm the potential of the newly available “DUKX-B11 F3/F” cell line to guide different transgenes into identical transcriptional control regions by RMCE and thereby generate clones with comparable amounts of transgene mRNA. This new host is a prerequisite for cell biology studies of independent transfections and transgenes.
Collapse
|
32
|
Dharshanan S, Chong H, Cheah SH, Zamrod Z. Stable expression of H1C2 monoclonal antibody in NS0 and CHO cells using pFUSE and UCOE expression system. Cytotechnology 2014; 66:625-33. [PMID: 23881539 PMCID: PMC4082778 DOI: 10.1007/s10616-013-9615-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/06/2013] [Indexed: 12/30/2022] Open
Abstract
From our recent publications, it was found that the deimmunization method (Dharshanan et al. (2012) Sci Res Essays 7:2288-2299) should be applied for the development of humanized anti-C2 monoclonal antibody (H1C2 mAb). However, the overlapping-PCR mutagenesis procedure used to insert the variable regions into cloning vectors was laborious and time-consuming. Additionally, the expression of H1C2 mAb in NS0 cells was low in static culture vessels. Therefore H1C2 mAb was redeveloped by deimmunization method with the following modifications in order to optimize the production of H1C2 mAb. First, instead of the overlapping-PCR mutagenesis procedure, synthetic DNA coding the variable regions were used to express the mAb. Second, two expression vectors, pFUSE and UCOE, were used to express H1C2 mAb in NS0 cells and CHO cells in order to investigate the combination that gave the highest number of high producing stable clones. This will provide the highest chance of finding clones with the requisite high productivity and stability required for manufacturing. We found that transfection of UCOE in CHO cells generated the highest number of high producing stable clones. To our knowledge, this is the first time that H1C2 mAb has been expressed in CHO cells.
Collapse
Affiliation(s)
- Suba Dharshanan
- Protein Science Department, Inno Biologics, Nilai, Negeri Sembilan, Malaysia,
| | | | | | | |
Collapse
|
33
|
Fliedl L, Manhart G, Kast F, Katinger H, Kunert R, Grillari J, Wieser M, Grillari-Voglauer R. Novel human renal proximal tubular cell line for the production of complex proteins. J Biotechnol 2014; 176:29-39. [DOI: 10.1016/j.jbiotec.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 11/29/2022]
|
34
|
Shi L, Chen X, Tang W, Li Z, Liu J, Gao F, Sang J. Combination of FACS and homologous recombination for the generation of stable and high-expression engineered cell lines. PLoS One 2014; 9:e91712. [PMID: 24646904 PMCID: PMC3960159 DOI: 10.1371/journal.pone.0091712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 02/14/2014] [Indexed: 11/30/2022] Open
Abstract
Traditionally, cell line generation requires several months and involves screening of over several hundred cell clones for high productivity before dozens are selected as candidate cell lines. Here, we have designed a new strategy for the generation of stable and high-expression cell lines by combining homologous recombination (HR) and fluorescence-activated cell sorting (FACS). High expression was indicated by the expression of secreted green fluorescent protein (SEGFP). Parental cell lines with the highest expression of SEGFP were then selected by FACS and identified by stability analysis. Consequently, HR vectors were constructed using the cassette for SEGFP as the HR region. After transfecting the HR vector, the cells with negative SEGFP expression were enriched by FACS. The complete exchange between SEGFP and target gene (TNFR-Fc) cassettes was demonstrated by DNA analysis. Compared with the traditional method, by integrating the cassette containing the gene of interest into the pre-selected site, the highest producing cells secreted a more than 8-fold higher titer of target protein. Hence, this new strategy can be applied to isolated stable cell lines with desirable expression of any gene of interest. The stable cell lines can rapidly produce proteins for researching protein structure and function and are even applicable in drug discovery.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- R&D Department, AutekBio, Inc., Beijing, China
| | - Xuesi Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Zhenyi Li
- R&D Department, AutekBio, Inc., Beijing, China
| | - Jin Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Feng Gao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- R&D Department, AutekBio, Inc., Beijing, China
- * E-mail: (JS); (FG)
| | - Jianli Sang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail: (JS); (FG)
| |
Collapse
|
35
|
Hou JJC, Hughes BS, Smede M, Leung KM, Levine K, Rigby S, Gray PP, Munro TP. High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. N Biotechnol 2014; 31:214-20. [PMID: 24518824 DOI: 10.1016/j.nbt.2014.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 10/25/2022]
Abstract
Therapeutic recombinant monoclonal antibodies (mAbs) are commonly produced by high-expressing, clonal, mammalian cells. Creation of these clones for manufacturing remains heavily reliant on stringent selection and gene amplification, which in turn can lead to genetic instability, variable expression, product heterogeneity and prolonged development timelines. Inclusion of cis-acting ubiquitous chromatin opening elements (UCOE™) in mammalian expression vectors has been shown to improve productivity and facilitate high-level gene expression irrespective of the chromosomal integration site without lengthy gene amplification protocols. In this study we have used high-throughput robotic clone selection in combination with UCOE™ containing expression vectors to develop a rapid, streamlined approach for early-stage cell line development and isolation of high-expressing clones for mAb production using Chinese hamster ovary (CHO) cells. Our results demonstrate that it is possible to go from transfection to stable clones in only 4 weeks, while achieving specific productivities exceeding 20 pg/cell/day. Furthermore, we have used this approach to quickly screen several process-crucial parameters including IgG subtype, enhancer-promoter combination and UCOE™ length. The use of UCOE™-containing vectors in combination with automated robotic selection provides a rapid method for the selection of stable, high-expressing clones.
Collapse
Affiliation(s)
- Jeff Jia Cheng Hou
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia.
| | - Ben S Hughes
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Matthew Smede
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Kar Man Leung
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Kara Levine
- Pharm Chemical Solution (PCS), EMD Millipore, 2 Gill Street, Woburn, MA 01801, USA
| | - Susan Rigby
- Pharm Chemical Solution (PCS), EMD Millipore, 2 Gill Street, Woburn, MA 01801, USA
| | - Peter P Gray
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Trent P Munro
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| |
Collapse
|
36
|
Dhamne H, Chande AG, Mukhopadhyaya R. Lentiviral vector platform for improved erythropoietin expression concomitant with shRNA mediated host cell elastase down regulation. Plasmid 2014; 71:1-7. [DOI: 10.1016/j.plasmid.2013.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 01/28/2023]
|
37
|
Nishimiya D. Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol 2013; 98:1031-42. [PMID: 24327213 DOI: 10.1007/s00253-013-5427-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
Mammalian cells have been successfully used for the industrial manufacture of antibodies due to their ability to synthesize antibodies correctly. Nascent polypeptides must be subjected to protein folding and assembly in the ER and the Golgi to be secreted as mature proteins. If these reactions do not proceed appropriately, unfolded or misfolded proteins are degraded by the ER-associated degradation (ERAD) pathway. The accumulation of unfolded proteins or intracellular antibody crystals accompanied by this failure triggers the unfolded protein response (UPR), which can considerably attenuate the levels of translation, folding, assembly, and secretion, resulting in reduction of antibody productivity. Accumulating studies by omics-based analysis of recombinant mammalian cells suggest that not only protein secretion processes including protein folding and assembly but also translation are likely to be the rate-limiting factors for increasing antibody production. Here, this review describes the mechanism of antibody folding and assembly and recent advantages which could improve recombinant antibody production in mammalian cells by utilizing proteins such as ER chaperones or UPR-related proteins.
Collapse
Affiliation(s)
- Daisuke Nishimiya
- New Modality Research Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan,
| |
Collapse
|
38
|
Arope S, Harraghy N, Pjanic M, Mermod N. Molecular characterization of a human matrix attachment region epigenetic regulator. PLoS One 2013; 8:e79262. [PMID: 24244463 PMCID: PMC3828356 DOI: 10.1371/journal.pone.0079262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/25/2013] [Indexed: 01/08/2023] Open
Abstract
Matrix attachment regions (MAR) generally act as epigenetic regulatory sequences that increase gene expression, and they were proposed to partition chromosomes into loop-forming domains. However, their molecular mode of action remains poorly understood. Here, we assessed the possible contribution of the AT-rich core and adjacent transcription factor binding motifs to the transcription augmenting and anti-silencing effects of human MAR 1–68. Either flanking sequences together with the AT-rich core were required to obtain the full MAR effects. Shortened MAR derivatives retaining full MAR activity were constructed from combinations of the AT-rich sequence and multimerized transcription factor binding motifs, implying that both transcription factors and the AT-rich microsatellite sequence are required to mediate the MAR effect. Genomic analysis indicated that MAR AT-rich cores may be depleted of histones and enriched in RNA polymerase II, providing a molecular interpretation of their chromatin domain insulator and transcriptional augmentation activities.
Collapse
Affiliation(s)
- Salina Arope
- Laboratory of Molecular Biotechnology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Niamh Harraghy
- Laboratory of Molecular Biotechnology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Milos Pjanic
- Laboratory of Molecular Biotechnology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Nicolas Mermod
- Laboratory of Molecular Biotechnology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Noh SM, Sathyamurthy M, Lee GM. Development of recombinant Chinese hamster ovary cell lines for therapeutic protein production. Curr Opin Chem Eng 2013. [DOI: 10.1016/j.coche.2013.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Establishment of a CpG island microarray for analyses of genome-wide DNA methylation in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2013; 98:579-89. [PMID: 24146078 PMCID: PMC3890572 DOI: 10.1007/s00253-013-5282-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 01/08/2023]
Abstract
Optimizing productivity and growth rates of recombinant Chinese hamster ovary (CHO) cells requires insight into the regulation of cellular processes. In this regard, the elucidation of the epigenetic process of DNA methylation, known to influence transcription by a differential occurrence in CpG islands in promoter regions, is increasingly gaining importance. However, DNA methylation has not yet been investigated on a genomic scale in CHO cells and suitable tools have not existed until now. Based on the genomic and transcriptomic CHO data currently available, we developed a customized oligonucleotide microarray covering 19598 CpG islands (89 % of total bioinformatically identified CpG islands) in the CHO genome. We applied our CHO-specific CpG island microarray to investigate the effect of butyrate treatment on differential DNA methylation in CHO cultures in a time-dependent approach. Supplementation of butyrate is known to enhance cell specific productivities in CHO cells and leads to alterations of epigenetic silencing events. Gene ontology clusters regarding, e.g., chromatin modification or DNA repair, were significantly overrepresented 24 h after butyrate addition. Functional classifications furthermore indicated that several major signaling systems such as the Wnt/β-catenin pathway were affected by butyrate treatment. Our novel CHO-specific CpG island microarray will provide valuable information in future studies of cellular processes associated with productivity and product characteristics.
Collapse
|
41
|
Majocchi S, Aritonovska E, Mermod N. Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes. Nucleic Acids Res 2013; 42:193-204. [PMID: 24071586 PMCID: PMC3874193 DOI: 10.1093/nar/gkt880] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In eukaryotic cells, transgene expression levels may be limited by an unfavourable chromatin structure at the integration site. Epigenetic regulators are DNA sequences which may protect transgenes from such position effect. We evaluated different epigenetic regulators for their ability to protect transgene expression at telomeres, which are commonly associated to low or inconsistent expression because of their repressive chromatin environment. Although to variable extents, matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE) and the chicken cHS4 insulator acted as barrier elements, protecting a telomeric-distal transgene from silencing. MARs also increased the probability of silent gene reactivation in time-course experiments. Additionally, all MARs improved the level of expression in non-silenced cells, unlike other elements. MARs were associated to histone marks usually linked to actively expressed genes, especially acetylation of histone H3 and H4, suggesting that they may prevent the spread of silencing chromatin by imposing acetylation marks on nearby nucleosomes. Alternatively, an UCOE was found to act by preventing deposition of repressive chromatin marks. We conclude that epigenetic DNA elements used to enhance and stabilize transgene expression all have specific epigenetic signature that might be at the basis of their mode of action.
Collapse
Affiliation(s)
- Stefano Majocchi
- Laboratory of Molecular Biotechnology, Center for Biotechnology UNIL-EPFL, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
42
|
Gion WR, Davis-Taber RA, Regier DA, Fung E, Medina L, Santora LC, Bose S, Ivanov AV, Perilli-Palmer BA, Chumsae CM, Matuck JG, Kunes YZ, Carson GR. Expression of antibodies using single open reading frame (sORF) vector design: Demonstration of manufacturing feasibility. MAbs 2013; 5:595-607. [PMID: 23774760 PMCID: PMC3906313 DOI: 10.4161/mabs.25161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 01/13/2023] Open
Abstract
Efficient production of large quantities of therapeutic antibodies is becoming a major goal of the pharmaceutical industry. We developed a proprietary expression system using a polyprotein precursor-based approach to antibody expression in mammalian cells. In this approach, the coding regions for heavy and light chains are included within a single open reading frame (sORF) separated by an in-frame intein gene. A single mRNA and subsequent polypeptide are produced upon transient and stable transfection into HEK293 and CHO cells, respectively. Heavy and light chains are separated by the autocatalytic action of the intein and antibody processing proceeds to produce active, secreted antibody. Here, we report advances in sORF technology toward establishment of a viable manufacturing platform for therapeutic antibodies in CHO cells. Increasing expression levels and improving antibody processing by intein and signal peptide selection are discussed.
Collapse
|
43
|
MAR elements and transposons for improved transgene integration and expression. PLoS One 2013; 8:e62784. [PMID: 23646143 PMCID: PMC3640020 DOI: 10.1371/journal.pone.0062784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/24/2013] [Indexed: 01/01/2023] Open
Abstract
Reliable and long-term expression of transgenes remain significant challenges for gene therapy and biotechnology applications, especially when antibiotic selection procedures are not applicable. In this context, transposons represent attractive gene transfer vectors because of their ability to promote efficient genomic integration in a variety of mammalian cell types. However, expression from genome-integrating vectors may be inhibited by variable gene transcription and/or silencing events. In this study, we assessed whether inclusion of two epigenetic control elements, the human Matrix Attachment Region (MAR) 1–68 and X-29, in a piggyBac transposon vector, may lead to more reliable and efficient expression in CHO cells. We found that addition of the MAR 1–68 at the center of the transposon did not interfere with transposition frequency, and transgene expressing cells could be readily detected from the total cell population without antibiotic selection. Inclusion of the MAR led to higher transgene expression per integrated copy, and reliable expression could be obtained from as few as 2–4 genomic copies of the MAR-containing transposon vector. The MAR X-29-containing transposons was found to mediate elevated expression of therapeutic proteins in polyclonal or monoclonal CHO cell populations using a transposable vector devoid of selection gene. Overall, we conclude that MAR and transposable vectors can be used to improve transgene expression from few genomic transposition events, which may be useful when expression from a low number of integrated transgene copies must be obtained and/or when antibiotic selection cannot be applied.
Collapse
|
44
|
Abstract
Generation and characterization of transgenic mice are important elements of biomedical research. In recent years, transgenic technology has become more versatile and sophisticated, mainly because of the incorporation of recombinase-mediated conditional expression and targeted insertion, site-specific endonuclease-mediated genome editing, siRNA-mediated gene knockdown, various inducible gene expression systems, and fluorescent protein marking and tracking techniques. Site-specific recombinases (such as PhiC31) and engineered endonucleases (such as ZFN and Talen) have significantly enhanced our ability to target transgenes into specific genomic loci, but currently a great majority of transgenic mouse lines are continuingly being created using the conventional random insertion method. A major challenge for using this conventional method is that the genomic environment at the integration site has a substantial influence on the expression of the transgene. Although our understanding of such chromosomal position effects and our means to combat them are still primitive, adhering to some general guidelines can significantly increase the odds of successful transgene expression. This chapter first discusses the major problems associated with transgene expression, and then describes some of the principles for using plasmid and bacterial artificial chromosomes (BACs) for generating transgenic constructs. Finally, the strategies for conducting each of the major types of transgenic research are discussed, including gene overexpression, promoter characterization, cell-lineage tracing, mutant complementation, expression of double or multiple transgenes, siRNA knockdown, and conditional and inducible systems.
Collapse
Affiliation(s)
- Lita A. Freeman
- grid.279885.90000000122934638Pulmonary & Vascular Medicine Branch, National Institutes of Health (NIH) National Heart, Lung & Blood Institute, Bethesda, Maryland USA
| |
Collapse
|
45
|
Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 2013; 40:257-74. [PMID: 23385853 DOI: 10.1007/s10295-013-1235-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/22/2013] [Indexed: 12/28/2022]
Abstract
Almost all of the 200 or so approved biopharmaceuticals have been produced in one of three host systems: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells. We describe the most widely used methods for the expression of recombinant proteins in the cytoplasm or periplasm of E. coli, as well as strategies for secreting the product to the growth medium. Recombinant expression in E. coli influences the cell physiology and triggers a stress response, which has to be considered in process development. Increased expression of a functional protein can be achieved by optimizing the gene, plasmid, host cell, and fermentation process. Relevant properties of two yeast expression systems, S. cerevisiae and P. pastoris, are summarized. Optimization of expression in S. cerevisiae has focused mainly on increasing the secretion, which is otherwise limiting. P. pastoris was recently approved as a host for biopharmaceutical production for the first time. It enables high-level protein production and secretion. Additionally, genetic engineering has resulted in its ability to produce recombinant proteins with humanized glycosylation patterns. Several mammalian cell lines of either rodent or human origin are also used in biopharmaceutical production. Optimization of their expression has focused on clonal selection, interference with epigenetic factors and genetic engineering. Systemic optimization approaches are applied to all cell expression systems. They feature parallel high-throughput techniques, such as DNA microarray, next-generation sequencing and proteomics, and enable simultaneous monitoring of multiple parameters. Systemic approaches, together with technological advances such as disposable bioreactors and microbioreactors, are expected to lead to increased quality and quantity of biopharmaceuticals, as well as to reduced product development times.
Collapse
|
46
|
Datta P, Linhardt RJ, Sharfstein ST. An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 2013; 110:1255-71. [DOI: 10.1002/bit.24841] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
|
47
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
48
|
Jin Y, Liu Z, Cao W, Ma X, Fan Y, Yu Y, Bai J, Chen F, Rosales J, Lee KY, Fu S. Novel functional MAR elements of double minute chromosomes in human ovarian cells capable of enhancing gene expression. PLoS One 2012; 7:e30419. [PMID: 22319568 PMCID: PMC3272018 DOI: 10.1371/journal.pone.0030419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/15/2011] [Indexed: 12/13/2022] Open
Abstract
Double minute chromosomes or double minutes (DMs) are cytogenetic hallmarks of extrachromosomal genomic amplification and play a critical role in tumorigenesis. Amplified copies of oncogenes in DMs have been associated with increased growth and survival of cancer cells but DNA sequences in DMs which are mostly non-coding remain to be characterized. Following sequencing and bioinformatics analyses, we have found 5 novel matrix attachment regions (MARs) in a 682 kb DM in the human ovarian cancer cell line, UACC-1598. By electrophoretic mobility shift assay (EMSA), we determined that all 5 MARs interact with the nuclear matrix in vitro. Furthermore, qPCR analysis revealed that these MARs associate with the nuclear matrix in vivo, indicating that they are functional. Transfection of MARs constructs into human embryonic kidney 293T cells showed significant enhancement of gene expression as measured by luciferase assay, suggesting that the identified MARS, particularly MARs 1 to 4, regulate their target genes in vivo and are potentially involved in DM-mediated oncogene activation.
Collapse
Affiliation(s)
- Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Zheng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wei Cao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xinying Ma
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yihui Fan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jesusa Rosales
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Ki-Young Lee
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
49
|
A matter of packaging: influence of nucleosome positioning on heterologous gene expression. Methods Mol Biol 2012; 824:51-64. [PMID: 22160893 DOI: 10.1007/978-1-61779-433-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The organization of DNA into the various levels of chromatin compaction is the main obstacle that restricts the access of transcriptional machinery to genes. Genome-wide chromatin analyses have shown that there are common chromatin organization patterns for most genes but have also revealed important differences in nucleosome positioning throughout the genome. Such chromatin heterogeneity is one of the reasons why recombinant gene expression is highly dependent on integration sites. Different solutions have been tested for this problem, including artificial targeting of chromatin-modifying factors or the addition of DNA elements, which efficiently counteract the influence of the chromatin environment.An influence of the chromatin configuration of the recombinant gene itself on its transcriptional behavior has also been established. This view is especially important for heterologous genes since the general parameters of chromatin organization change from one species to another. The chromatin organization of bacterial DNA proves particularly dramatic when introduced into eukaryotes. The nucleosome positioning of recombinant genes is the result of the interaction between the machinery of the hosting cell and the sequences of both the recombinant genes and the promoter regions. We discuss the key aspects of this phenomenon from the heterologous gene expression perspective.
Collapse
|
50
|
Harraghy N, Buceta M, Regamey A, Girod PA, Mermod N. Using matrix attachment regions to improve recombinant protein production. Methods Mol Biol 2012; 801:93-110. [PMID: 21987249 DOI: 10.1007/978-1-61779-352-3_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chinese hamster ovary (CHO) cells are the system of choice for the production of complex molecules, such as monoclonal antibodies. Despite significant progress in improving the yield from these cells, the process to the selection, identification, and maintenance of high-producing cell lines remains cumbersome, time consuming, and often of uncertain outcome. Matrix attachment regions (MARs) are DNA sequences that help generate and maintain an open chromatin domain that is favourable to transcription and may also facilitate the integration of several copies of the transgene. By incorporating MARs into expression vectors, an increase in the proportion of high-producer cells as well as an increase in protein production are seen, thereby reducing the number of clones to be screened and time to production by as much as 9 months. In this chapter, we describe how MARs can be used to increase transgene expression and provide protocols for the transfection of CHO cells in suspension and detection of high-producing antibody cell clones.
Collapse
Affiliation(s)
- Niamh Harraghy
- Laboratory of Molecular Biotechnology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|