1
|
Al-Samydai A, Abu Hajleh MN, Al-Sahlawi F, Nsairat H, Khatib AA, Alqaraleh M, Ibrahim AK. Advancements of metallic nanoparticles: A promising frontier in cancer treatment. Sci Prog 2024; 107:368504241274967. [PMID: 39370817 PMCID: PMC11459474 DOI: 10.1177/00368504241274967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The incidence of cancer is increasing and evolving as a major source of mortality. Nanotechnology has garnered considerable scientific interest in recent decades and can offer a promising solution to the challenges encountered with traditional chemotherapy. Nanoparticle utilization holds promise in combating cancer and other diseases, offering exciting prospects for drug delivery systems and medicinal applications. Metallic nanoparticles exhibit remarkable physical and chemical properties, such as their minute size, chemical composition, structure, and extensive surface area, rendering them versatile and cost-effective. Research has demonstrated their significant and beneficial impact on cancer treatment, characterized by enhanced targeting abilities, gene activity suppression, and improved drug delivery efficiency. By incorporating targeting ligands, functionalized metal nanoparticles ensure precise energy deposition within tumors, thereby augmenting treatment accuracy. Moreover, beyond their therapeutic efficacy, metal nanoparticles serve as valuable tools for cancer cell visualization, contributing to diagnostic techniques. Utilizing metal nanoparticles in therapeutic systems allows for simultaneous cancer diagnosis and treatment, while also facilitating controlled drug release, thus revolutionizing cancer care. This narrative review investigates the advancements of metal nanoparticles in cancer treatment, types and mechanisms in targeting cancer cells, application in clinical scenarios, and potential toxicity in medicine.
Collapse
Affiliation(s)
- Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Maha N. Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Farah Al-Sahlawi
- Department of Pharmaceutics at the College of Pharmacy, University of Alkafeel, AlNajaf, Iraq
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Arwa Al Khatib
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Moath Alqaraleh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Alia K. Ibrahim
- Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
2
|
Pacheco-Tovar D, Pacheco-Tovar MG, Saavedra-Alonso S, Zapata-Benavides P, Torres-del-Muro FDJ, Bollain-y-Goytia JJ, Herrera-Esparza R, Rodríguez-Padilla C, Avalos-Díaz E. shRNA-Targeting Caspase-3 Inhibits Cell Detachment Induced by Pemphigus Vulgaris Autoantibodies in HaCaT Cells. Int J Mol Sci 2024; 25:8864. [PMID: 39201550 PMCID: PMC11354573 DOI: 10.3390/ijms25168864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pemphigus is an autoimmune disease that affects the skin and mucous membranes, induced by the deposition of pemphigus IgG, which mainly targets desmogleins 1 and 3 (Dsg1 and 3). This autoantibody causes steric interference between Dsg1 and 3 and the loss of cell adhesion, producing acantholysis. This molecule and its cellular effects are clinically reflected as intraepidermal blistering. Pemphigus vulgaris-IgG (PV-IgG) binding involves p38MAPK-signaling-dependent caspase-3 activation. The present work assessed the in vitro effect of PV-IgG on the adherence of HaCaT cells dependent on caspase-3. PV-IgG induced cell detachment and apoptotic changes, as demonstrated by annexin fluorescent assays. The effect of caspase-3 induced by PV-IgG was suppressed in cells pre-treated with caspase-3-shRNA, and normal IgG (N-IgG) as a control had no relevant effects on the aforementioned parameters. The results demonstrated that shRNA reduces caspase-3 expression, as measured via qRT-PCR and via Western blot and immunofluorescence, and increases cell adhesion. In conclusion, shRNA prevented in vitro cell detachment and the late effects of apoptosis induced by PV-IgG on HaCaT cells, furthering our understanding of the molecular role of caspase-3 cell adhesion dependence in pemphigus disease.
Collapse
Affiliation(s)
- Deyanira Pacheco-Tovar
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
- School of Chemistry Sciences, Universidad Autónoma de Zacatecas, Campus Universitario Siglo XXI, Carretera Zacatecas-Guadalajara, Ejido “La Escondida”, Zacatecas CP 98160, Zacatecas, Mexico
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - María-Guadalupe Pacheco-Tovar
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
- School of Chemistry Sciences, Universidad Autónoma de Zacatecas, Campus Universitario Siglo XXI, Carretera Zacatecas-Guadalajara, Ejido “La Escondida”, Zacatecas CP 98160, Zacatecas, Mexico
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Santiago Saavedra-Alonso
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Pablo Zapata-Benavides
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Felipe-de-Jesús Torres-del-Muro
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
- School of Chemistry Sciences, Universidad Autónoma de Zacatecas, Campus Universitario Siglo XXI, Carretera Zacatecas-Guadalajara, Ejido “La Escondida”, Zacatecas CP 98160, Zacatecas, Mexico
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Juan-José Bollain-y-Goytia
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
| | - Rafael Herrera-Esparza
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
| | - Cristina Rodríguez-Padilla
- Department of Immunology and Virology, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolás de los Garza CP 64450, Nuevo León, Mexico; (S.S.-A.); (C.R.-P.)
| | - Esperanza Avalos-Díaz
- Department of Immunology, School of Biological Sciences, UACB, Universidad Autónoma de Zacatecas, Av. de la Revolución Mexicana s/n, Colonia Tierra y Libertad, Guadalupe CP 98615, Zacatecas, Mexico; (D.P.-T.); (M.-G.P.-T.); (F.-d.-J.T.-d.-M.); (J.-J.B.-y.-G.)
| |
Collapse
|
3
|
Lou W, Xie L, Xu L, Xu M, Xu F, Zhao Q, Jiang T. Present and future of metal nanoparticles in tumor ablation therapy. NANOSCALE 2023; 15:17698-17726. [PMID: 37917010 DOI: 10.1039/d3nr04362b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is an important factor affecting the quality of human life as well as causing death. Tumor ablation therapy is a minimally invasive local treatment modality with unique advantages in treating tumors that are difficult to remove surgically. However, due to its physical and chemical characteristics and the limitation of equipment technology, ablation therapy cannot completely kill all tumor tissues and cells at one time; moreover, it inevitably damages some normal tissues in the surrounding area during the ablation process. Therefore, this technology cannot be the first-line treatment for tumors at present. Metal nanoparticles themselves have good thermal and electrical conductivity and unique optical and magnetic properties. The combination of metal nanoparticles with tumor ablation technology, on the one hand, can enhance the killing and inhibiting effect of ablation technology on tumors by expanding the ablation range; on the other hand, the ablation technology changes the physicochemical microenvironment such as temperature, electric field, optics, oxygen content and pH in tumor tissues. It helps to stimulate the degree of local drug release of nanoparticles and increase the local content of anti-tumor drugs, thus forming a synergistic therapeutic effect with tumor ablation. Recent studies have found that some specific ablation methods will stimulate the body's immune response while physically killing tumor tissues, generating a large number of immune cells to cause secondary killing of tumor tissues and cells, and with the assistance of metal nanoparticles loaded with immune drugs, the effect of this anti-tumor immunotherapy can be further enhanced. Therefore, the combination of metal nanoparticles and ablative therapy has broad research potential. This review covers common metallic nanoparticles used for ablative therapy and discusses in detail their characteristics, mechanisms of action, potential challenges, and prospects in the field of ablation.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Lei Xu
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Fan Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| |
Collapse
|
4
|
Kanbay M, Copur S, Tanriover C, Ucku D, Laffin L. Future treatments in hypertension: Can we meet the unmet needs of patients? Eur J Intern Med 2023; 115:18-28. [PMID: 37330317 DOI: 10.1016/j.ejim.2023.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of arterial hypertension is approximately 47% in the United States and 55% in Europe. Multiple different medical therapies are used to treat hypertension including diuretics, beta blockers, calcium channel blockers, angiotensin receptor blockers, angiotensin converting enzyme inhibitors, alpha blockers, central acting alpha receptor agonists, neprilysin inhibitors and vasodilators. However, despite the numerous number of medications, the prevalence of hypertension is on the rise, a considerable proportion of the hypertensive population is resistant to these therapeutic modalities and a definitive cure is not possible with the current treatment approaches. Therefore, there is a need for novel therapeutic strategies to provide better treatment and control of hypertension. In this review, our aim is to describe the latest developments in the treatment of hypertension including novel medication classes, gene therapies and RNA-based modalities.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Duygu Ucku
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Luke Laffin
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
5
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Programming cell entry of molecules via reversible synthetic DNA circuits on cell membrane. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Gouda AS, Przypis Ł, Walczak K, Jørgensen PT, Wengel J. Carbazole modified oligonucleotides: synthesis, hybridization studies and fluorescence properties. Org Biomol Chem 2020; 18:6935-6948. [PMID: 32936176 DOI: 10.1039/d0ob01553a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthesis of the novel thiophenyl carbazole phosphoramidite DNA building block 5 was accomplished in four steps using a Suzuki-Miyaura cross-coupling reaction from the core carbazole and it was seamlessly accommodated into a 9-mer DNA-based oligonucleotide by incorporation at the flanking 5'-end in combination with a central insertion of an LNA-T nucleotide. The carbazole-containing oligonucleotide was combined in different duplex hybrids, which were characterized by thermal denaturation, circular dichroism and fluorescence studies. The carbazole monomer modulates the duplex stability in various ways. Thus, monomer Z increased the thermal stability of the 9-mer towards the complementary 9-mer/15-mer DNA duplex by 4.2 °C. Furthermore, indications of its intercalation into the duplex were obtained by modeling studies and robust decreases in fluorescence emission intensities upon duplex formation. In contrast, no clear intercalating tendency was corroborated for monomer Z within the DNA/RNA hybrid duplex as indicated by moderate quenching of the fluorescence and similar duplex thermal stabilities relative to the corresponding control duplex. The recognition efficiencies of the carbazole modified oligonucleotide toward single nucleotide mismatches were studied with two 15-mer model targets (DNA and RNA). For both systems, mismatches positioned at the juxtaposition of the carbazole monomer showed pronounced deceases in thermal denaturation temperature. Steady-state fluorescence emission studies of all mismatched duplexes with incorporation of Z monomer typically displayed efficient fluorescence quenching.
Collapse
Affiliation(s)
- Alaa S Gouda
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
8
|
Piyush R, Rajarshi K, Chatterjee A, Khan R, Ray S. Nucleic acid-based therapy for coronavirus disease 2019. Heliyon 2020; 6:e05007. [PMID: 32984620 PMCID: PMC7501848 DOI: 10.1016/j.heliyon.2020.e05007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/02/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), the pandemic that originated in China has already spread into more than 190 countries, resulting in huge loss of human life and many more are at the stake of losing it; if not intervened with the best therapeutics to contain the disease. For that aspect, various scientific groups are continuously involved in the development of an effective line of treatment to control the novel coronavirus from spreading rapidly. Worldwide scientists are evaluating various biomolecules and synthetic inhibitors against COVID-19; where the nucleic acid-based molecules may be considered as potential drug candidates. These molecules have been proved potentially effective against SARS-CoV, which shares high sequence similarity with SARS-CoV-2. Recent advancements in nucleic acid-based therapeutics are helpful in targeted drug delivery, safely and effectively. The use of nucleic acid-based molecules also known to regulate the level of gene expression inside the target cells. This review mainly focuses on various nucleic acid-based biologically active molecules and their therapeutic potentials in developing vaccines for SARS-CoV-2.
Collapse
Affiliation(s)
- Ravikant Piyush
- School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Keshav Rajarshi
- School of Community Science and Technology (SOCSAT) Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah, West Bengal 711103, India
| | - Aroni Chatterjee
- Indian Council of Medical Research (ICMR)-Virus Research Laboratory, NICED, Kolkata, India
| | - Rajni Khan
- Motihari College of Engineering, Bariyarpur, Motihari, NH 28A, Furshatpur, Motihari, Bihar 845401, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University Motihari, 845401, India
| |
Collapse
|
9
|
Ma L, Kartik S, Liu B, Liu J. From general base to general acid catalysis in a sodium-specific DNAzyme by a guanine-to-adenine mutation. Nucleic Acids Res 2019; 47:8154-8162. [PMID: 31276580 PMCID: PMC6736077 DOI: 10.1093/nar/gkz578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, a few Na+-specific RNA-cleaving DNAzymes were reported, where nucleobases are likely to play critical roles in catalysis. The NaA43 and NaH1 DNAzymes share the same 16-nt Na+-binding motif, but differ in one or two nucleotides in a small catalytic loop. Nevertheless, they display an opposite pH-dependency, implicating distinct catalytic mechanisms. In this work, rational mutation studies locate a catalytic adenine residue, A22, in NaH1, while previous studies found a guanine (G23) to be important for the catalysis of NaA43. Mutation with pKa-perturbed analogs, such as 2-aminopurine (∼3.8), 2,6-diaminopurine (∼5.6) and hypoxanthine (∼8.7) affected the overall reaction rate. Therefore, we propose that the N1 position of G23 (pKa ∼6.6) in NaA43 functions as a general base, while that of A22 (pKa ∼6.3) in NaH1 as a general acid. Further experiments with base analogs and a phosphorothioate-modified substrate suggest that the exocyclic amine in A22 and both of the non-bridging oxygens at the scissile phosphate are important for catalysis for NaH1. This is an interesting example where single point mutations can change the mechanism of cleavage from general base to general acid, and it can also explain this Na+-dependent DNAzyme scaffold being sensitive to a broad range of metal ions and molecules.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sanjana Kartik
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Yang B, Zhang XD, Li J, Tian J, Wu YP, Yu FX, Wang R, Wang H, Zhang DW, Liu Y, Zhou L, Li ZT. In Situ Loading and Delivery of Short Single- and Double-Stranded DNA by Supramolecular Organic Frameworks. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Short DNA represents an important class of biomacromolecules that are widely applied in gene therapy, editing, and modulation. However, the development of simple and reliable methods for their intracellular delivery remains a challenge. Herein, we describe that seven water-soluble, homogeneous supramolecular organic frameworks (SOFs) with a well-defined pore size and high stability in water that can accomplish in situ inclusion of single-stranded (ss) and double-stranded (ds) DNA (21, 23, and 58 nt) and effective intracellular delivery (including two noncancerous and six cancerous cell lines). Fluorescence quenching experiments for single and double end-labeled ss- and ds-DNA support that the DNA sequences can be completely enveloped by the SOFs. Confocal laser scanning microscopy and flow cytometry reveal that five of the SOFs exhibit excellent delivery efficiencies that, in most of the studied cases, outperform the commercial standard Lipo2000, even at low SOF–nucleic acid ratios. In addition to high delivery efficiencies, the water-soluble, self-assembled SOF carriers have a variety of advantages, including convenient preparation, high stability, and in situ DNA inclusion, which are all critical for practical applications in nucleic acid delivery.
Collapse
|
11
|
Khan NH, Bui AA, Xiao Y, Sutton RB, Shaw RW, Wylie BJ, Latham MP. A DNA aptamer reveals an allosteric site for inhibition in metallo-β-lactamases. PLoS One 2019; 14:e0214440. [PMID: 31009467 PMCID: PMC6476477 DOI: 10.1371/journal.pone.0214440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
The hydrolysis of β-lactam antibiotics by β-lactamase enzymes is the most prominent antibiotic resistance mechanism for many pathogenic bacteria. Out of this broad class of enzymes, metallo-β-lactamases are of special clinical interest because of their broad substrate specificities. Several in vitro inhibitors for various metallo-β-lactamases have been reported with no clinical efficacy. Previously, we described a 10-nucleotide single stranded DNA aptamer (10-mer) that inhibits Bacillus cereus 5/B/6 metallo-β-lactamase very effectively. Here, we find that the aptamer shows uncompetitive inhibition of Bacillus cereus 5/B/6 metallo-β-lactamase during cefuroxime hydrolysis. To understand the mechanism of inhibition, we report a 2.5 Å resolution X-ray crystal structure and solution-state NMR analysis of the free enzyme. Chemical shift perturbations were observed in the HSQC spectra for several residues upon titrating with increasing concentrations of the 10-mer. In the X-ray crystal structure, these residues are distal to the active site, suggesting an allosteric mechanism for the aptamer inhibition of the enzyme. HADDOCK molecular docking simulations suggest that the 10-mer docks 26 Å from the active site. We then mutated the three lysine residues in the basic binding patch to glutamine and measured the catalytic activity and inhibition by the 10-mer. No significant inhibition of these mutants was observed by the 10-mer as compared to wild type. Interestingly, mutation of Lys50 (Lys78; according to standard MBL numbering system) resulted in reduced enzymatic activity relative to wild type in the absence of inhibitor, further highlighting an allosteric mechanism for inhibition.
Collapse
Affiliation(s)
- Nazmul H. Khan
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Anthony A. Bui
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Yang Xiao
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - R. Bryan Sutton
- Department of Cell Physiology & Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Robert W. Shaw
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Benjamin J. Wylie
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Michael P. Latham
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
12
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
13
|
Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat Commun 2018; 9:1293. [PMID: 29615605 PMCID: PMC5882967 DOI: 10.1038/s41467-018-03650-w] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/02/2018] [Indexed: 01/23/2023] Open
Abstract
Effective transfection of genetic molecules such as DNA usually relies on vectors that can reversibly uptake and release these molecules, and protect them from digestion by nuclease. Non-viral vectors meeting these requirements are rare due to the lack of specific interactions with DNA. Here, we design a series of four isoreticular metal-organic frameworks (Ni-IRMOF-74-II to -V) with progressively tuned pore size from 2.2 to 4.2 nm to precisely include single-stranded DNA (ssDNA, 11–53 nt), and to achieve reversible interaction between MOFs and ssDNA. The entire nucleic acid chain is completely confined inside the pores providing excellent protection, and the geometric distribution of the confined ssDNA is visualized by X-ray diffraction. Two MOFs in this series exhibit excellent transfection efficiency in mammalian immune cells, 92% in the primary mouse immune cells (CD4+ T cell) and 30% in human immune cells (THP-1 cell), unrivaled by the commercialized agents (Lipo and Neofect). Non-viral vectors are important for transfection but can be limited in the uptake, protection and release of ssDNA. Here, the authors report on the design of metal-organic-framework vectors with precisely controlled pore geometry and demonstrate the vector in the transfection of immune cells.
Collapse
|
14
|
Affiliation(s)
- Ankush Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amit K. Goyal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Goutam Rath
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| |
Collapse
|
15
|
Rozenfeld JHK, Duarte EL, Oliveira TR, Lamy MT. Structural insights on biologically relevant cationic membranes by ESR spectroscopy. Biophys Rev 2017; 9:633-647. [PMID: 28836112 PMCID: PMC5662045 DOI: 10.1007/s12551-017-0304-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/28/2017] [Indexed: 12/26/2022] Open
Abstract
Cationic bilayers have been used as models to study membrane fusion, templates for polymerization and deposition of materials, carriers of nucleic acids and hydrophobic drugs, microbicidal agents and vaccine adjuvants. The versatility of these membranes depends on their structure. Electron spin resonance (ESR) spectroscopy is a powerful technique that employs hydrophobic spin labels to probe membrane structure and packing. The focus of this review is the extensive structural characterization of cationic membranes prepared with dioctadecyldimethylammonium bromide or diC14-amidine to illustrate how ESR spectroscopy can provide important structural information on bilayer thermotropic behavior, gel and fluid phases, phase coexistence, presence of bilayer interdigitation, membrane fusion and interactions with other biologically relevant molecules.
Collapse
Affiliation(s)
- Julio H K Rozenfeld
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil
| | - Evandro L Duarte
- Instituto de Física, Universidade de São Paulo, R. do Matão 1371, São Paulo, SP, 05508-090, Brazil
| | - Tiago R Oliveira
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, R. Arcturus (Jd Antares), São Bernardo do Campo, SP, Brazil
| | - M Teresa Lamy
- Instituto de Física, Universidade de São Paulo, R. do Matão 1371, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
16
|
Federico C, Dugo K, Bruno F, Longo AM, Grillo A, Saccone S. Somatic mosaicism with reversion to normality of a mutated transthyretin allele related to a familial amyloidotic polyneuropathy. Hum Genet 2017; 136:867-873. [DOI: 10.1007/s00439-017-1810-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022]
|
17
|
Fernandes AR, Baptista PV. Gene Silencing Using Multifunctionalized Gold Nanoparticles for Cancer Therapy. Methods Mol Biol 2017; 1530:319-336. [PMID: 28150211 DOI: 10.1007/978-1-4939-6646-2_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multifunctionalized gold nanobeacons (Au-nanobeacon) combine, in a single and unique platform, targeting, detection and silencing providing an effective impact in clinics boosting cancer theranostics. Here, we describe a nano-integrated platform based on Au-nanobeacons able to detect and inhibit gene expression specifically in cancer cells. The surfaces of gold nanoparticles (AuNPs) are functionalized with targeting peptides to enhance tumor cell recognition and uptake, and with fluorescently labeled antisense DNA hairpin oligonucleotides to detect AuNPs. These oligonucleotides, upon recognition and hybridization to the target, open their structure resulting in separating apart the dye and the quencher allowing the fluorophore to emit light and to monitor the intracellular interactions of AuNPs with the target and the specific silencing of gene expression. This strategy allows inhibiting KRAS gene expression in colorectal carcinoma cell lines with no relevant toxicity for healthy fibroblasts. Importantly, this nano-integrated platform can be easily adapted to hybridize with any specific target thus providing real benefits for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
18
|
Recent Advances in the Characterization and Analysis of Therapeutic Oligonucleotides by Analytical Separation Methods Coupling with Mass Spectrometry. ADVANCES IN CHROMATOGRAPHY 2016. [DOI: 10.1201/9781315370385-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Kim JF, Gaffney PRJ, Valtcheva IB, Williams G, Buswell AM, Anson MS, Livingston AG. Organic Solvent Nanofiltration (OSN): A New Technology Platform for Liquid-Phase Oligonucleotide Synthesis (LPOS). Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeong F. Kim
- Department
of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ United Kingdom
| | - Piers R. J. Gaffney
- Department
of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ United Kingdom
| | - Irina B. Valtcheva
- Department
of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ United Kingdom
| | - Glynn Williams
- GlaxoSmithKline
Medicines Research Centre, Gunnels
Wood Road, Stevenage, Herts, SG1 2NY, United Kingdom
| | - Andrew M. Buswell
- GlaxoSmithKline
Medicines Research Centre, Gunnels
Wood Road, Stevenage, Herts, SG1 2NY, United Kingdom
| | - Mike S. Anson
- GlaxoSmithKline
Medicines Research Centre, Gunnels
Wood Road, Stevenage, Herts, SG1 2NY, United Kingdom
| | - Andrew G. Livingston
- Department
of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ United Kingdom
| |
Collapse
|
20
|
Güixens-Gallardo P, Hocek M, Perlíková P. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorg Med Chem Lett 2016; 26:288-291. [PMID: 26707394 DOI: 10.1016/j.bmcl.2015.12.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
A simple and elegant method for inhibition of non-templated nucleotide addition by DNA polymerases and for following DNA 3'-heterogeneity in enzymatic DNA synthesis by primer extension (PEX) is described. When template bearing ortho-twisted intercalating nucleic acid (ortho-TINA) at the 5'-end is used, non-templated nucleotide addition is reduced in both the A- and B-family DNA polymerases (KOD XL, KOD (exo-), Bst 2.0, Therminator, Deep Vent (exo-) and Taq). Formation of a single oligonucleotide product was observed with ortho-TINA modified template and KOD XL, KOD (exo-), Bst 2.0, Deep Vent (exo-) and Taq DNA polymerases. This approach can be applied to the synthesis of both unmodified and base-modified oligonucleotides.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| |
Collapse
|
21
|
Carrette LLG, Gyssels E, De Laet N, Madder A. Furan oxidation based cross-linking: a new approach for the study and targeting of nucleic acid and protein interactions. Chem Commun (Camb) 2016; 52:1539-54. [PMID: 26679922 DOI: 10.1039/c5cc08766j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coming of age story of furan oxidation cross-linking.
Collapse
Affiliation(s)
- L. L. G. Carrette
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - E. Gyssels
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - N. De Laet
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - A. Madder
- Organic and Biomimetic Chemistry Research Group
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
22
|
Rozenfeld JHK, Duarte EL, Barbosa LRS, Lamy MT. The effect of an oligonucleotide on the structure of cationic DODAB vesicles. Phys Chem Chem Phys 2015; 17:7498-506. [PMID: 25706300 DOI: 10.1039/c4cp05652c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of a small single-stranded oligonucleotide (ODN) on the structure of cationic DODAB vesicles was investigated by means of differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and electron spin resonance (ESR) spectroscopy. ODN adsorption induced coalescence of vesicles and formation of multilamellar structures with close contact between lamellae. It also increased the phase transition temperature by 10 °C but decreased transition cooperativity. The ODN rigidified and stabilized the gel phase. In the fluid phase, a simultaneous decrease of ordering close to the bilayer surface and increase in bilayer core rigidity was observed in the presence of the ODN. These effects may be due not only to electrostatic shielding of DODAB head groups but also to superficial dehydration of the bilayers. The data suggest that oligonucleotides may induce the formation of a multilamellar poorly hydrated coagel-like phase below phase transition. These effects should be taken into account when planning ODN delivery employing cationic bilayer carriers.
Collapse
|
23
|
Bao C, Conde J, Curtin J, Artzi N, Tian F, Cui D. Bioresponsive antisense DNA gold nanobeacons as a hybrid in vivo theranostics platform for the inhibition of cancer cells and metastasis. Sci Rep 2015; 5:12297. [PMID: 26189409 PMCID: PMC4507177 DOI: 10.1038/srep12297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022] Open
Abstract
Gold nanobeacons can be used as a powerful tool for cancer theranostics. Here, we proposed a nanomaterial platform based on gold nanobeacons to detect, target and inhibit the expression of a mutant Kras gene in an in vivo murine gastric cancer model. The conjugation of fluorescently-labeled antisense DNA hairpin oligonucleotides to the surface of gold nanoparticles enables using their localized surface plasmon resonance properties to directly track the delivery to the primary gastric tumor and to lung metastatic sites. The fluorescently labeled nanobeacons reports on the interaction with the target as the fluorescent Cy3 signal is quenched by the gold nanoparticle and only emit light following conjugation to the Kras target owing to reorganization and opening of the nanobeacons, thus increasing the distance between the dye and the quencher. The systemic administration of the anti-Kras nanobeacons resulted in approximately 60% tumor size reduction and a 90% reduction in tumor vascularization. More important, the inhibition of the Kras gene expression in gastric tumors prevents the occurrence of metastasis to lung (80% reduction), increasing mice survival in more than 85%. Our developed platform can be easily adjusted to hybridize with any specific target and provide facile diagnosis and treatment for neoplastic diseases.
Collapse
Affiliation(s)
- Chenchen Bao
- Institute of Nano Biomedicine and Engineering, Key Lab. of Thin Film and Microfabrication Technology of Ministry of Education, Department of instrument science and engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, P.R.China
| | - João Conde
- 1] Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts, USA [2] School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - James Curtin
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, Dublin, Ireland
| | - Natalie Artzi
- 1] Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts, USA [2] Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Furong Tian
- Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin, Ireland
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Lab. of Thin Film and Microfabrication Technology of Ministry of Education, Department of instrument science and engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, P.R.China
| |
Collapse
|
24
|
Gyssels E, Carrette LLG, Vercruysse E, Stevens K, Madder A. Triplex crosslinking through furan oxidation requires perturbation of the structured triple-helix. Chembiochem 2015; 16:651-8. [PMID: 25630588 DOI: 10.1002/cbic.201402602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 01/08/2023]
Abstract
Short oligonucleotides can selectively recognize duplexes by binding in the major groove thereby forming triplexes. Based on the success of our recently developed strategy for furan-based crosslinking in DNA duplexes, we here investigated for the first time the use of the furan-oxidation crosslink methodology for the covalent locking of triplex structures by an interstrand crosslink. It was shown that in a triplex context, although crosslinking yields are surprisingly low (to nonexistent) when targeting fully complementary duplexes, selective crosslinking can be achieved towards mismatched duplex sites at the interface of triplex to duplex structures. We show the promising potential of furan-containing probes for the selective detection of single-stranded regions within nucleic acids containing a variety of structural motifs.
Collapse
Affiliation(s)
- Ellen Gyssels
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4, 9000 Gent (Belgium)
| | | | | | | | | |
Collapse
|
25
|
Combining NMR and EPR to Determine Structures of Large RNAs and Protein–RNA Complexes in Solution. Methods Enzymol 2015; 558:279-331. [DOI: 10.1016/bs.mie.2015.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Perlíková P, Ejlersen M, Langkjaer N, Wengel J. Bis-pyrene-modified unlocked nucleic acids: synthesis, hybridization studies, and fluorescent properties. ChemMedChem 2014; 9:2120-7. [PMID: 25044312 DOI: 10.1002/cmdc.201402185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Indexed: 11/08/2022]
Abstract
Efficient synthesis of a building block for the incorporation of a bis-pyrene-modified unlocked nucleic acid (UNA) into oligonucleotides (DNA*) was developed. The presence of bis-pyrene-modified UNA within a duplex leads to duplex destabilization that is more profound in DNA*/RNA and less distinct in DNA*/DNA duplexes. Nevertheless, the destabilization effect of bis-pyrene-modified UNA is weaker than that of unmodified UNA. Some oligonucleotides with bis-pyrene-modified UNA incorporations displayed superior mismatch discrimination capabilities. UV/Vis absorption and molecular modeling studies indicate that the pyrene groups of bis-pyrene-modified UNA are located in the major groove of a duplex. Oligonucleotides containing two bis-pyrene-modified UNA monomers showed low pyrene monomer emission in bulge-containing duplexes, high pyrene monomer emission in fully matched duplexes, and 5-(pyrenyl)uracil:pyrene exciplex emission in the single-stranded form. Such fluorescent properties enable the application of bis-pyrene-modified UNA in the development of fluorescence probes for DNA/RNA detection and for detection of deletions at specific positions.
Collapse
Affiliation(s)
- Pavla Perlíková
- Nucleic Acid Center, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | | | | | | |
Collapse
|
27
|
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2:48. [PMID: 25077142 PMCID: PMC4097105 DOI: 10.3389/fchem.2014.00048] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023] Open
Abstract
In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.
Collapse
Affiliation(s)
- João Conde
- Harvard-MIT Division for Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Jorge T. Dias
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Valeria Grazú
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Maria Moros
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
| | - Pedro V. Baptista
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Jesus M. de la Fuente
- Nanotherapy and Nanodiagnostics Group, Instituto de Nanociencia de Aragon, Universidad de ZaragozaZaragoza, Spain
- Fundacion ARAIDZaragoza, Spain
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Bio-Nano Science and Engineering, Institute of Nano Biomedicine and Engineering, Research Institute of Translation Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
28
|
Abstract
Isolating a particular strand of DNA from a double stranded DNA duplex is an important step in aptamer generation as well as many other biotechnology applications. Here we describe a microfluidic, flow-through, dialysis device for isolating single-stranded DNA (ssDNA) from double-stranded DNA (dsDNA). The device consists of two channels fabricated in polydimethylsiloxane (PDMS) separated by a track etched polycarbonate membrane (800 nm pore size). To isolate ssDNA, dual-biotin labelled dsDNA was immobilized onto streptavidin-coated polystyrene beads. Alkaline treatment was used to denature dsDNA, releasing the non-biotinylated ssDNA. In the flow-through dialysis device the liberated ssDNA was able to cross the membrane and was collected in an outlet channel. The complementary sequence bound to the bead was unable to cross the membrane and was directed to a waste channel. The effect of NaOH concentration and flow rate on purity and yield were compared. >95% ssDNA purity was achieved at 25 mM NaOH. However, lower flow rates were necessary to achieve ssDNA yields approaching the 50% theoretical maximum of the concurrent-flow device. Under optimized conditions the microfluidic isolation achieved even higher purity ssDNA than analogous manual procedures.
Collapse
Affiliation(s)
- Yixiao Sheng
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
29
|
Conde J, Tian F, Baptista PV, de la Fuente JM. Multifunctional Gold Nanocarriers for Cancer Theranostics: From Bench to Bedside and Back Again? NANO-ONCOLOGICALS 2014. [DOI: 10.1007/978-3-319-08084-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Pokrywka A, Kaliszewski P, Majorczyk E, Zembroń-Łacny A. Genes in sport and doping. Biol Sport 2013; 30:155-61. [PMID: 24744482 PMCID: PMC3944571 DOI: 10.5604/20831862.1059606] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques.
Collapse
|
31
|
Wang Y, Zhou F, Liu X, Yuan L, Li D, Wang Y, Chen H. Aptamer-modified micro/nanostructured surfaces: efficient capture of Ramos cells in serum environment. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3816-3823. [PMID: 23540602 DOI: 10.1021/am400469g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For potential applications in the isolation and enrichment of circulating tumor cells (CTCs), we have developed gold nanoparticle layers (GNPLs) of different roughness modified with TD05 aptamers (GNPL-APT). In serum-free binary cell mixtures containing Ramos cancer cells and CEM cells, the density of Ramos cells adherent to highly rough GNPL-APT was 19 times that of CEM cells. However, in serum-containing conditions, the specificity of GNPL-APT for Ramos cells was much reduced. To improve Ramos specificity in the presence of serum, we attached the TD05 aptamer to the layers via poly(oligo(ethylene glycol) methacrylate) (POEGMA) as an antifouling spacer (GNPL-POEGMA-APT). In serum-containing environment GNPL-POEGMA-APT showed an enhanced selectivity for Ramos cells, which increased with increasing surface roughness. The results of this study indicate that surfaces combining appropriate chemical composition and micro/nano roughness structures may be useful for cell separation, including the isolation of cancer cells for diagnosis.
Collapse
Affiliation(s)
- Yanyun Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | | | | | | | | | | | | |
Collapse
|
32
|
Sheng J, Gan J, Huang Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med Res Rev 2013; 33:1119-73. [PMID: 23633219 DOI: 10.1002/med.21278] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.
Collapse
Affiliation(s)
- Jia Sheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
33
|
Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events. Biomaterials 2013; 34:2516-23. [PMID: 23312904 DOI: 10.1016/j.biomaterials.2012.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/15/2012] [Indexed: 12/19/2022]
Abstract
The potential of a single molecular nanoconjugate to intersect all RNA pathways: from gene specific downregulation to silencing the silencers, i.e. siRNA and miRNA pathways, is demonstrated. Gold-nanobeacons are capable of efficiently silencing single gene expression, exogenous siRNA and endogenous miRNAs while yielding a quantifiable fluorescence signal directly proportional to the level of silencing. The silencing potential is comparable to that of traditional siRNA but the same nanoconjugates structure is also capable of reversing the effect of an exogenous siRNA. We further demonstrate the Gold-nanobeacons' efficiency at targeting and silencing miR-21, an endogenous miRNA involved in cancer development, which could become a valid nanotheranostics approach. Again, expression of miR-21 was inhibited with concomitant increase of the Au-nanobeacons' fluorescence that can be used to assess the silencing effect. This way, a single nanostructure can be used to intersect all RNA regulatory pathways while allowing for direct assessment of effective silencing and cell localization via a quantifiable fluorescence signal, making cancer nanotheranostics possible.
Collapse
|
34
|
Lange MJ, Sharma TK, Whatley AS, Landon LA, Tempesta MA, Johnson MC, Burke DH. Robust suppression of HIV replication by intracellularly expressed reverse transcriptase aptamers is independent of ribozyme processing. Mol Ther 2012; 20:2304-14. [PMID: 22948672 DOI: 10.1038/mt.2012.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RNA aptamers that bind human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) also inhibit viral replication, making them attractive as therapeutic candidates and potential tools for dissecting viral pathogenesis. However, it is not well understood how aptamer-expression context and cellular RNA pathways govern aptamer accumulation and net antiviral bioactivity. Using a previously-described expression cassette in which aptamers were flanked by two "minimal core" hammerhead ribozymes, we observed only weak suppression of pseudotyped HIV. To evaluate the importance of the minimal ribozymes, we replaced them with extended, tertiary-stabilized hammerhead ribozymes with enhanced self-cleavage activity, in addition to noncleaving ribozymes with active site mutations. Both the active and inactive versions of the extended hammerhead ribozymes increased inhibition of pseudotyped virus, indicating that processing is not necessary for bioactivity. Clonal stable cell lines expressing aptamers from these modified constructs strongly suppressed infectious virus, and were more effective than minimal ribozymes at high viral multiplicity of infection (MOI). Tertiary stabilization greatly increased aptamer accumulation in viral and subcellular compartments, again regardless of self-cleavage capability. We therefore propose that the increased accumulation is responsible for increased suppression, that the bioactive form of the aptamer is one of the uncleaved or partially cleaved transcripts, and that tertiary stabilization increases transcript stability by reducing exonuclease degradation.
Collapse
Affiliation(s)
- Margaret J Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Pednekar PP, Jadhav KR, Kadam VJ. Aptamer-dendrimer bioconjugate: a nanotool for therapeutics, diagnosis, and imaging. Expert Opin Drug Deliv 2012; 9:1273-88. [PMID: 22897588 DOI: 10.1517/17425247.2012.716421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Aptamers hold great promise as molecular tool in biomedical applications due to the therapeutic utility exhibited by their target specificity and sensitivity. Although current development of aptamer is hindered by its probable in vivo degradation, inefficient immobilization on probe surface, and generation of low detection signal, bioconjugation with nanomaterials can feasibly solve these problems. Nanostructures such as dendrimers, with multivalency and nonimmunogenicity, bioconjugated with aptamers have opened newer vistas for better pharmaceutical applications of aptamers. AREAS COVERED This review covers brief overview of aptamers and dendrimers, with specific focus on recent progresses of aptamer-dendrimer (Apt-D) bioconjugate in areas of targeted drug delivery, diagnosis, and molecular imaging along with the discussion on the currently available conjugates, using their in vitro and in vivo results. EXPERT OPINION The novel Apt-D bioconjugates have led to advances in targeting cancer cell, have amplified biosensing, and offered in vivo cell imaging. Because of the unique properties and applications, Apt-D bioconjugate propose an exciting future. However, further research in synthesis of new target-specific aptamers and their conjugation with dendrimers is required to establish full potential of Apt-D bioconjugate.
Collapse
Affiliation(s)
- Priti P Pednekar
- University of Mumbai, Bharati Vidyapeeth's College of Pharmacy, Department of Pharmaceutics, CBD Belapur, Sector-8, Navi-Mumbai-400614, India.
| | | | | |
Collapse
|
36
|
Gold-nanobeacons for real-time monitoring of RNA synthesis. Biosens Bioelectron 2012; 36:161-7. [DOI: 10.1016/j.bios.2012.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/20/2012] [Accepted: 04/09/2012] [Indexed: 12/20/2022]
|
37
|
Jain ML, Bruice PY, Szabó IE, Bruice TC. Incorporation of positively charged linkages into DNA and RNA backbones: a novel strategy for antigene and antisense agents. Chem Rev 2011; 112:1284-309. [PMID: 22074477 DOI: 10.1021/cr1004265] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Moti L Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
38
|
Jing M, Bowser MT. Isolation of DNA aptamers using micro free flow electrophoresis. LAB ON A CHIP 2011; 11:3703-9. [PMID: 21947169 PMCID: PMC3454500 DOI: 10.1039/c1lc20461k] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A micro free flow electrophoresis (μFFE) device was used to select DNA aptamers for human immunoglobulin E (IgE). The continuous nature of μFFE allowed 1.8 × 10(14) sequences to be introduced over a period of 30 min, a 300-fold improvement in library size over capillary electrophoresis based selections (CE-SELEX). Four rounds of selection were performed within four days. Aptamers with low nM dissociation constants for IgE were identified after a single round of μFFE selection.
Collapse
|
39
|
Noble metal nanoparticles applications in cancer. JOURNAL OF DRUG DELIVERY 2011; 2012:751075. [PMID: 22007307 PMCID: PMC3189598 DOI: 10.1155/2012/751075] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/02/2011] [Indexed: 12/11/2022]
Abstract
Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings.
Collapse
|
40
|
Abstract
Several gene therapy approaches have been designed for the treatment of cardiovascular diseases. A positive finding is that the safety of cardiovascular gene therapy has been excellent even in long-term follow-up. However, several hurdles to this field are still present. A major disappointing feature of the trials is that while preclinical and uncontrolled phase-I gene therapy trials have been positive, none of the randomized controlled phase-II/III cardiovascular gene therapy trials have shown clinically relevant positive effects. Low gene transfer efficiency seems to be associated with several trials. A sophisticated efficient delivery method for cardiovascular applications is still lacking and only low concentrations of the gene product are produced in the target tissues. Only a few gene therapy vectors can be produced in large scale. In addition, inflammatory reactions against vectors and inability to regulate gene expression are still present. Furthermore, a strong placebo effect is affecting the results in gene therapy trials, and long-term trials have become more difficult to conduct because of the multiplicity of therapies applied simultaneously on the patients. This review summarizes advances and obstacles of current cardiovascular clinical gene therapy trials.
Collapse
|
41
|
Pasternak A, Wengel J. Unlocked nucleic acid--an RNA modification with broad potential. Org Biomol Chem 2011; 9:3591-7. [PMID: 21431171 DOI: 10.1039/c0ob01085e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first unlocked nucleic acid (UNA) monomer was described more than a decade ago, but only recent reports have revealed the true potential applications of this acyclic RNA mimic. UNA monomers enable the modulation of the thermodynamic stability of various nucleic acid structures such as RNA and DNA duplexes, quadruplexes or i-motifs. Moreover, UNA monomers were found to be compatible with RNase H activity, a property which is important for single stranded antisense constructs. Notably, UNA monomers can be applied in the design of superior siRNAs, combining potent gene silencing and dramatically reduced off-target effects.
Collapse
Affiliation(s)
- Anna Pasternak
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
42
|
Singh J, Kaur H, Kaushik A, Peer S. A Review of Antisense Therapeutic Interventions for Molecular Biological Targets in Various Diseases. INT J PHARMACOL 2011. [DOI: 10.3923/ijp.2011.294.315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Conde J, de la Fuente JM, Baptista PV. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles. NANOTECHNOLOGY 2010; 21:505101. [PMID: 21098932 DOI: 10.1088/0957-4484/21/50/505101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.
Collapse
Affiliation(s)
- J Conde
- Centro de Investigação em Genética Molecular Humana, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|
44
|
Abstract
Commercially available platforms to stabilize messenger RNA (mRNA) and microRNA are critically designed to optimize and ensure the quality and integrity of those nucleic acids. This is not only essential for gene expression analyses, but would provide technical utility in providing concordant standard operating procedures in preserving the structural integrity of RNA species in multicenter clinical research programs and biobanking of cells or tissues for subsequent isolation of intact RNA. The major challenge is that the presence of degraded samples may adversely influence the interpretation of expression levels on isolated mRNA or microRNA samples and that in the absence of a concordant operating procedure between multiple collaborating research centers would confound data analysis and interpretation. However, in this issue of Biomarker Insights, Weber et al provide a detailed and critical analysis of two common RNA preservation systems, PAXgene and RNAlater. Such studies are lacking in the literature. However, the authors provide compelling evidence that not all conservation platforms are created equal and only one system proves its worth.
Collapse
Affiliation(s)
- Marc A Williams
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
45
|
Berger KL, Randall G. Possibilities for RNA interference in developing hepatitis C virus therapeutics. Viruses 2010; 2:1647-1665. [PMID: 21994699 PMCID: PMC3185727 DOI: 10.3390/v2081647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/04/2010] [Accepted: 08/04/2010] [Indexed: 12/13/2022] Open
Abstract
The discovery and characterization of the RNA interference (RNAi) pathway has been one of the most important scientific developments of the last 12 years. RNAi is a cellular pathway wherein small RNAs control the expression of genes by either degrading homologous RNAs or preventing the translation of RNAs with partial homology. It has impacted basic biology on two major fronts. The first is the discovery of microRNAs (miRNAs), which regulate almost every cellular process and are required for some viral infections, including hepatitis C virus (HCV). The second front is the use of small interfering RNAs (siRNAs) as the first robust tool for mammalian cellular genetics. This has led to the identification of hundreds of cellular genes that are important for HCV infection. There is now a major push to adapt RNAi technology to the clinic. In this review, we explore the impact of RNAi in understanding HCV biology, the progress in design of RNAi-based therapeutics for HCV, and remaining obstacles.
Collapse
Affiliation(s)
| | - Glenn Randall
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-773-702-5673; Fax: +1-773-834-8150
| |
Collapse
|
46
|
Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 2010; 62:592-605. [PMID: 20338204 DOI: 10.1016/j.addr.2010.03.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/03/2010] [Indexed: 12/16/2022]
Abstract
Recent progress in an emerging area of designing aptamer and nanomaterial conjugates as molecular diagnostic and drug delivery agents in biomedical applications is summarized. Aptamers specific for a wide range of targets are first introduced and compared to antibodies. Methods of integrating these aptamers with a variety of nanomaterials, such as gold nanoparticles, quantum dots, carbon nanotubes, and superparamagnetic iron oxide nanoparticles, each with unique optical, magnetic, and electrochemical properties, are reviewed. Applications of these systems as fluorescent, colorimetric, magnetic resonance imaging, and electrochemical sensors in medical diagnostics are given, along with new applications as smart drug delivery agents.
Collapse
|
47
|
Campolongo MJ, Tan SJ, Xu J, Luo D. DNA nanomedicine: Engineering DNA as a polymer for therapeutic and diagnostic applications. Adv Drug Deliv Rev 2010; 62:606-16. [PMID: 20338202 PMCID: PMC7125827 DOI: 10.1016/j.addr.2010.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Accepted: 02/03/2010] [Indexed: 12/12/2022]
Abstract
Nanomedicine, the application of nanotechnology to medicine, encompasses a broad spectrum of fields including molecular detection, diagnostics, drug delivery, gene regulation and protein production. In recent decades, DNA has received considerable attention for its functionality and versatility, allowing it to help bridge the gap between materials science and biological systems. The use of DNA as a structural nanoscale material has opened a new avenue towards the rational design of DNA nanostructures with different polymeric topologies. These topologies, in turn, possess unique characteristics that translate to specific therapeutic and diagnostic strategies within nanomedicine.
Collapse
|
48
|
Lee JB, Campolongo MJ, Kahn JS, Roh YH, Hartman MR, Luo D. DNA-based nanostructures for molecular sensing. NANOSCALE 2010; 2:188-197. [PMID: 20644794 DOI: 10.1039/b9nr00142e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nanotechnology has opened up new avenues towards ultra-sensitive, highly selective detection of biological molecules and toxic agents, as well as for therapeutic targeting and screening. Though the goals may seem singular, there is no universal method to identify or detect a molecular target. Each system is application-specific and must not only identify the target, but also transduce this interaction into a meaningful signal rapidly, reliably, and inexpensively. This review focuses on the current capabilities and future directions of DNA-based nanostructures in sensing and detection.
Collapse
Affiliation(s)
- Jong Bum Lee
- Department of Biological & Environmental Engineering, Cornell University, 226 Riley Robb, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
49
|
Therapeutic Nucleic Acids. Gene Ther 2010. [DOI: 10.1007/978-88-470-1643-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Seio K, Shiraishi M, Utagawa E, Ohkubo A, Sekine M. Synthesis of oligodeoxynucleotides using the oxidatively cleavable 4-methoxytritylthio (MMTrS) group for protection of the 5′-hydroxyl group. NEW J CHEM 2010. [DOI: 10.1039/b9nj00678h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|