1
|
Xie M, Wang Q, Zhou N, Yu S, Zhang G, Yang S, Zhang J. Engineering a novel entomopathogenic strain Pseudomonas chlororaphis for efficient production of double-stranded RNAs and pest control. PEST MANAGEMENT SCIENCE 2025; 81:3263-3272. [PMID: 39921313 DOI: 10.1002/ps.8699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND RNA interference (RNAi)-based pesticides are emerging as the next generation of pest control solutions. We have previously identified Pseudomonas chlororaphis strain R3-3, which exhibits toxicity towards Plagiodera versicolora. RESULTS We engineered a mutant strain derived from R3-3, named P. chlororaphis BM, through knocking out the RNase III gene and incorporating a T7 RNA polymerase expression system to boost dsRNA production. We revealed that P. chlororaphis BM produced comparable amounts of dsRNA to the strain E. coli HT115 (DE3) while maintaining its insecticidal activity. Importantly, insect feeding bioassays demonstrated that P. chlororaphis BM expressing dsRNA targeted β-Actin (encoding β-actin protein) of P. versicolora and Srp54K (encoding signal recognition particle protein 54 k) of Henosepilachna vigintioctopunctata exhibited enhanced insecticidal efficacy compared to E. coli HT115 (DE3). CONCLUSIONS The development of P. chlororaphis BM, a novel dsRNA-expressing bacterium, holds promise for pest management due to its robust dsRNA production and sustained insecticidal activity. This research paves the way for leveraging biocontrol bacteria in RNAi-based pest management strategies. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengmeng Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qinghai Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Niexin Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Saisai Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Guiming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Sheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
2
|
Rana S, Kang C, Ryu S, Woller DA, Kim D, Song H. Assessing nanoparticle-enabled dsRNA delivery for oral RNAi in two orthopteran pests: Schistocerca gregaria and Melanoplus sanguinipes. JOURNAL OF INSECT PHYSIOLOGY 2025:104825. [PMID: 40412647 DOI: 10.1016/j.jinsphys.2025.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 05/18/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Locusts and pest grasshoppers (Orthoptera: Acrididae) cause significant economic losses to agricultural crops and rangeland forage and can even cause humanitarian crises during periodic plagues. Current management methods for these insects rely heavily on broad-spectrum chemical insecticides and growth regulators, which can affect non-target organisms and may eventually develop resistance in the targeted species. Therefore, we assessed the potential of RNA interference (RNAi)-based alternative strategies that could supplement the current management methods. In insects, RNAi efficiency is known to vary with the method of double-stranded RNA (dsRNA) delivery. In this study, we tested two different delivery methods (injection and oral feeding) in the desert locust (Schistocerca gregaria) and the migratory grasshopper (Melanoplus sanguinipes) and showed that both species are sensitive to the injection but not to the oral feeding of dsRNA, likely due to high nuclease activity or poor uptake in the midgut. To address these limitations, we explored the utility of using nanoparticles that are often used for drug delivery in humans as a carrier (poly lactic-co-glycolic acid [PLGA] and poly(L-arginine)-polyethylene glycol [PLA-PEG]) for orally delivering dsRNA to the insect pests. Although the PLGA nanoparticles successfully permeated the digestive system into the hemolymph and the PLA-PEG-dsRNA complexes remained stable in the midgut juice and were detected in the fat body, neither dsRNA-encapsulating nanoparticle elicited gene knockdown upon oral feeding. These results suggest that nanoparticle-based oral delivery improves dsRNA stability and midgut permeation. However, additional barriers must be overcome to achieve efficient oral RNAi in these orthopteran pest species.
Collapse
Affiliation(s)
- Seema Rana
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | - Changsun Kang
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences, Center, Oklahoma City, OK, USA
| | - Seonghyun Ryu
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences, Center, Oklahoma City, OK, USA
| | - Derek A Woller
- USDA-APHIS-PPQ-PEIP-Imports, Regulations, and Manuals, Lexington, KY, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences, Center, Oklahoma City, OK, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Jiang Y, Zong S, Wang X, Zhu-Salzman K, Zhao J, Xiao L, Xu D, Xu G, Tan Y. pH-responsive nanoparticles for oral delivery of RNAi for sustained protection against Spodoptera exigua. Int J Biol Macromol 2025; 306:141763. [PMID: 40049501 DOI: 10.1016/j.ijbiomac.2025.141763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025]
Abstract
To enhance the RNAi efficiency of dsRNA against the Spodoptera exigua through a feeding method, we developed a pH-responsive nanoparticle, chitosan-polyethylene glycol-carboxyl (CS-PEG-COOH). This nanoparticle enhances RNAi efficiency by improving dsRNA stability in the midgut of S. exigua and can intelligently release dsRNA under alkaline conditions. Firstly, the CS-PEG-COOH carrier was prepared via cross-linking reactions, and the mass ratio of dsRNA to CS-PEG-COOH was obtained using electrophoretic mobility. The carrier composite materials were then characterized using isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), atomic force microscopy (AFM), and Zeta potential analysis. The stability and delivery efficiency of the dsRNA/CS-PEG-COOH complex were then verified using electrophoretic mobility and fluorescence labeling methods. Finally, the RNAi efficiency and synergistic mechanism of the complex were analyzed using feeding methods and RNA-seq. The results show that CS-PEG-COOH (40.16 nm size, + 6.44 mV charge) forms a clustered complex with dsRNA through hydrogen bonding and hydrophobic interactions. CS-PEG-COOH significantly enhancing the stability and delivery efficiency of dsRNA in the midgut of S. exigua. Additionally, at pH > 8, dsRNA could be released from dsRNA/CS-PEG-COOH. The RNAi results showed that, dsRNA/CS-PEG-COOH could effectively inhibit the expression of the Acetylcholinesterase (Ace1 + Ace2) gene (65 %), and led to significantly increase mortality (51.82 %), a prolonged developmental period (25 %) and reduced egg production (22.02 %). The physiological and molecular synergistic mechanisms were revealed by RNA-seq analysis. The CS-PEG-COOH-loaded dsACE1 + dsACE2 led to down-regulation of genes related to drug metabolism, hormone synthesis, and stratum corneum biosynthesis, which inhibited insect growth and development. Overall, We developed an appropriate delivery method for dsRNA application in Lepidoptera, providing a basis for developing RNA pesticides with high efficiency and environmental safety.
Collapse
Affiliation(s)
- Yiping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Suman Zong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Xiaofeng Wang
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 210037, Jiangsu Province, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Dejin Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Guangchun Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China.
| |
Collapse
|
4
|
Bansal R, Fernandez E. Injection, soaking, and oral delivery systems induce RNA interference-mediated silencing in the mealybug, Ferrisia gilli Gullan (Hemiptera: Pseudococcidae). PEST MANAGEMENT SCIENCE 2025. [PMID: 40247622 DOI: 10.1002/ps.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND The mealybug Ferrisia gilli Gullan (Hemiptera: Pseudococcidae) has emerged as a major pest on pistachio in California. The indiscriminate use of a select group of chemicals has limited the effectiveness of available options to control F. gilli. RNA interference (RNAi) represents a novel mode-of-action to provide an alternative for F. gilli control. RESULTS This study explored the RNAi functionality in F. gilli using three main delivery methods: injection, soaking, and oral delivery. The αCOP, an essential eukaryotic gene encoding for subunit alpha of coatomer protein complex-I, was targeted. All delivery methods triggered RNAi response measured through a reduction in target gene transcripts; however, RNAi efficacy varied among the three methods. Injection demonstrated superior efficacy, achieving a 76% reduction in transcript levels. By contrast, the soaking delivery exhibited lower efficacy, resulting in a 27% decrease in transcript levels. Owing to its field relevance, the oral delivery employed through the topical-feeding method was standardized and optimized for both nymph and adult stages. Topical-feeding of target gene double-stranded RNA resulted in a reduction in transcript levels as high as 65% and a stage-specific phenotypic response, with a significant reduction in nymphal survival but no impact on adult survival. CONCLUSION Our research demonstrates conclusively that RNAi functions effectively in F. gilli. Successful gene silencing observed via oral delivery supports developing the RNAi for field control of F. gilli. Furthermore, the topical-feeding delivery method established here can be adopted for large-scale gene discovery in subsequent field evaluation. Published 2025. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Raman Bansal
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Esther Fernandez
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| |
Collapse
|
5
|
Mo M, Yang G, Du J, Zhou Y, Khan A, Li S, Hu C. Identification and functional analyses of the CmdsRNase5 and CmdsRNase6 genes in rice leaffolder Cnaphalocrocis medinalis. Int J Biol Macromol 2025; 301:140079. [PMID: 39863202 DOI: 10.1016/j.ijbiomac.2025.140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
RNA interference (RNAi) is a promising method for pest control; however, some studies have showed that the degradation of double-stranded RNA (dsRNA) by dsRNA-degrading nucleases (dsRNases) is one of the factors that may reduce RNAi efficiency in lepidopteran insects. In this study, we cloned two dsRNase genes named CmdsRNase5 and CmdsRNase6 from rice leaffolder Cnaphalocrocis medinalis, a notorious insect pest of rice. Open reading frames (ORFs) of CmdsRNase5 and CmdsRNase6 are 1317 and 1185 bp in length, encoding 438 and 394 amino acids, respectively. These two genes were expressed at the highest level in the third-instar larvae throughout developmental stages and highly expressed in the midgut and hemolymph of C. medinalis. RNAi efficiencies of CmdsRNase5 and CmdsRNase6 were 57.44 % and 63.94 % on day 3, respectively. The RNAi efficiency of a target gene CmCHS (chitin synthase from C. medinalis) was 58.70% on day 5 and this efficiency was 87.63 % after co-silencing of CmCHS + CmdsRNase5 + CmdsRNase6. The findings suggested that co-silencing of CmdsRNases alongside CmCHS mitigated the degradation of dsCmCHS and enhanced the RNAi efficiency in C. medinalis, leading to phenotypic deformities, increased mortality, and a significant reduction in both egg production and hatching rate. Transcriptome analysis indicated CmdsRNase5 or CmdsRNase6 knockdown affected the expression of many important functional genes, thereby hindering the growth and development of C. medinalis. The concurrent silencing of both CHS and dsRNases provides a novel strategy for RNAi-mediated green control of C. medinalis and other lepidopteran pests.
Collapse
Affiliation(s)
- Mengtiao Mo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Guangming Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China; Guizhou Institute of Biology, Guiyang, Guizhou 550027, China
| | - Juan Du
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ying Zhou
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ashraf Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shangwei Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Chaoxing Hu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
6
|
Li Y, Hou P, Li R, Li P, Ma Z, Wu H, Jiang Z. A functional study of the trehalase genes in Tribolium castaneum and their application in the construction of RNAi engineering bacteria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106315. [PMID: 40015907 DOI: 10.1016/j.pestbp.2025.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Tribolium castaneum, belonging to the order Coleoptera, family Tenebrionidae, is a global grain storage pest. The enzyme trehalase can catalyze trehalose decomposition and participate in chitin synthesis, which is of great significance in insect physiology and may be a key target for T. castaneum pest prevention and control. This study focused on T. castaneum and explored the function of its trehalase (TcTre) in test insects' growth and development process. We analyzed the roles of TcTre in different growth stages and tissues of T. castaneum by measuring its spatio and temporal expression patterns. The silencing of TcTre by RNAi technology reduced the transcription level of the target gene, affected the enzyme activity of trehalase, disturbed the sugar balance, blocked the pathway of chitin synthesis, and caused abnormal molting and wing development of the tested insects. Key genes about pest control such as TcTre1-1, TcTre1-3, and TcTre2 were screened, which caused the accumulated mortality of 53.33 %, 56.67 %, and 50.00 % respectively. Subsequently, an engineered bacterium, Tre-L4440-HT115 (DE3), was developed to efficiently express dsRNA and mediate insecticidal activity. The dsRNA produced by the bacterial solution, targeting TcTre1-1, TcTre1-3, and TcTre2 fragments for silencing, could cause the death of 44.44 %, 48.89 %, and 46.67 % of the test insects cumulatively. This advancement was aimed at reducing the production costs of dsRNA and laying a scientific foundation for the industrial development of nucleic acid pesticides for T. castaneum.
Collapse
Affiliation(s)
- Yue Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Puxing Hou
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Ruyu Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Pei Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| | - Zhili Jiang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China; Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
7
|
Kong L, Xu J, Shen W, Zhang S, Xu Z, Zhu KY. Development and evaluation of RNA microsphere-based RNAi approaches for managing the striped flea beetle (Phyllotreta striolata), a globally destructive pest of Cruciferae crops. PEST MANAGEMENT SCIENCE 2025; 81:1529-1538. [PMID: 39584569 DOI: 10.1002/ps.8557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND RNA interference (RNAi) technology has emerged as a promising strategy for species-specific management of agricultural pests. However, the application of this technology has been significantly hindered by the instability of the interfering RNA molecules in the insect body after ingestion leading to variations in the susceptibility to the RNA triggers across different taxonomic groups of insects. Therefore, it is necessary to develop new approaches that will overcome these challenges associated with the use of RNAi-based insect pest management strategies. This study explored the use of RNA microspheres (RMS) synthesized via rolling-circle transcription (RCT) technology as a potential method for managing striped flea beetle (Phyllotreta striolata), a globally destructive pest of Cruciferae crops. RESULTS The synthesized RMS against the genes encoding reticulocalbin (RMS-PsRCN) and ribosomal RNA (RMS-PsrRNA) were highly effective in both silencing their target genes and causing increased P. striolata adult mortality. Relative expression levels of the target genes RMS-PsRCN and RMS-PsrRNA were decreased by 74.9% and 68.92%, respectively, in RMS fed adults, compared with the control adults fed RMS-EGFP. Consequently, the adult mortalities were 81.7% and 73.3% when fed RMS-PsRCN and RMS-PsrRNA, respectively, compared with 8.3% in the control adults. Furthermore, movements of adults fed RMS-PsRCN and RMS-PsrRNA were decreased by 70.2% and 55.7%, respectively, compared with the control adults. CONCLUSIONS This study shows the potential of using RMS to suppress the expression of target genes and subsequently produce significant mortality rates and behavioral changes in RMS-fed adult P. striolata. These findings underscore the promises and viability of using RMS as an effective strategy for gene function studies and species-specific management of agricultural important insect pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linghao Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiazheng Xu
- Laboratory of Artificial Intelligence for Education, School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Weihong Shen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Songhan Zhang
- Agriculture Technology Extension Service Center of Shanghai, Shanghai, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
8
|
Joshi J, Coffin R, Barrett R, Wang-Pruski G. Gene Silencing via Ingestion of Double-Stranded RNA in Wireworm of Agriotes Species. INSECTS 2024; 15:983. [PMID: 39769585 PMCID: PMC11679789 DOI: 10.3390/insects15120983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Wireworms are the most destructive soil insect pests affecting horticultural crops. The damage often renders them unsuitable for commercial purposes, resulting in substantial economic losses. RNA interference (RNAi) has been broadly used to inhibit gene functions to control insect populations. It employs double-stranded RNA (dsRNA) to knockdown essential genes in target organisms, rendering them incapable of development or survival. Although it is a robust approach, the primary challenges are identifying effective target genes and delivering their dsRNA into wireworms. Thus, the present study established a liquid ingestion methodology that efficiently delivers dsRNA into wireworms. We then investigated the effects of four target genes on wireworm mortality. The highest mortality rate reached 50% when the gene encoding vacuolar ATPase subunit A was targeted. Its transcript content in the fed wireworms was also significantly reduced. The mortality rates of the other three target genes of vacuolar ATPase subunit E, beta-actin, and chitin synthase 1 were 28%, 33%, and 35%, respectively. This is the first report demonstrating an efficient feeding methodology and the silencing of target genes in wireworms. Our findings indicate that RNAi is an effective alternative method for controlling the wireworm pest, and can be used to develop field treatment strategies.
Collapse
Affiliation(s)
- Jyoti Joshi
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | | | - Ryan Barrett
- Prince Edward Island Potato Board, Charlottetown, PE C1E 2C6, Canada;
| | - Gefu Wang-Pruski
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| |
Collapse
|
9
|
Chen S, Sun Y, Kuang S, Tang Y, Ding W, He H, Xue J, Gao Q, Gao H, Li Y, Qiu L. Transcription factor E93 regulates vitellogenesis via the vitelline membrane protein 26Ab gene in Chilo Suppressalis. Mol Biol Rep 2024; 52:41. [PMID: 39644360 DOI: 10.1007/s11033-024-10127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Ecdysone-induced protein 93 F (E93, also known as Eip93F) plays a crucial role in the reproductive process of numerous insects. This study aims to delineate the function of E93 in Chilo suppressalis and elucidated the regulatory mechanism by which E93 influences the reproduction of C. suppressalis METHODS AND RESULTS: The results of the bioinformatics analysis indicate that C. suppressalis E93 shows the highest homology with E93 from Bombyx mori. We used qPCR to evaluate the expression profile of CsE93 from different developmental stages and tissues, revealed that CsE93 had the highest expression levels in the head, which peaked during the prepupal stage. Silencing CsE93 resulted in a significant reduction in yolk deposition and abnormal ovarian development. Moreover, the transcriptional levels of vitellogenin (Vg) and E74A, which are related to vitellogenesis and the 20E pathway, were significantly down-regulated in dsE93-treated female pupae. In addition, we identified Vitelline membrane protein 26Ab (VMP26Ab), a downstream gene associated with the integrity of the inner eggshell. The knockdown of VMP26Ab resulted in a significant reduction in the number of eggs and abnormal ovarian development, similar to RNAi E93. Finally, we identified an active promoter fragment (containing GAGA-containing motif) of CsVMP26Ab and demonstrated that CsE93 can bind to it. RESULTS Our results indicate that CsE93 plays an important role in C. suppressalis reproduction. CsE93 modulates the CsVMP26Ab expression by acting on its promoter involve in the reproduction of C. suppressalis finally.
Collapse
Affiliation(s)
- Siyang Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Yingjuan Sun
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Suijie Kuang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Wenbing Ding
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Hongshuai Gao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha, 410128, China
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
10
|
Qiao H, Chen J, Dong M, Shen J, Yan S. Nanocarrier-Based Eco-Friendly RNA Pesticides for Sustainable Management of Plant Pathogens and Pests. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1874. [PMID: 39683262 DOI: 10.3390/nano14231874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
The production of healthy agricultural products has increased the demand for innovative and sustainable plant protection technologies. RNA interference (RNAi), described as post-transcriptional gene silencing, offers great opportunities for developing RNA pesticides for sustainable disease and pest control. Compared with traditional synthesized pesticides, RNA pesticides possess many advantages, such as strong targeting, good environmental compatibility, and an easy development process. In this review, we systematically introduce the development of RNAi technology, highlight the advantages of RNA pesticides, and illustrate the challenges faced in developing high-efficiency RNA pesticides and the benefits of nanocarriers. Furthermore, we introduce the process and mechanism of nanocarrier-mediated RNAi technology, summarize the applications of RNA pesticides in controlling plant pathogens and pests, and finally outline the current challenges and future prospects. The current review provides theoretical guidance for the in-depth research and diversified development of RNA pesticides, which can promote the development and practice of nanocarrier-mediated RNAi.
Collapse
Affiliation(s)
- Heng Qiao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jingyi Chen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Dong
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Wang J, Liao S, Lin H, Wei H, Mao X, Wang Q, Chen H. Fem-1 Gene of Chinese White Pine Beetle ( Dendroctonus armandi): Function and Response to Environmental Treatments. Int J Mol Sci 2024; 25:10349. [PMID: 39408677 PMCID: PMC11477363 DOI: 10.3390/ijms251910349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Dendroctonus armandi (Tsai and Li) (Coleoptera: Curculionidae: Scolytinae) is regarded as the most destructive forest pest in the Qinling and Bashan Mountains of China. The sex determination of Dendroctonus armandi plays a significant role in the reproduction of its population. In recent years, the role of the fem-1 gene in sex determination in other insects has been reported. However, the function and expression of the fem-1 gene in Dendroctonus armandi remain uncertain. In this study, three fem-1 genes were cloned and characterized. These were named Dafem-1A, Dafem-1B, and Dafem-1C, respectively. The expression levels of these three Dafem-1 genes vary at different stages of development and between the sexes. In response to different environmental treatments, including temperature, nutrients, terpenoids, and feeding duration, significant differences were observed between the three Dafem-1 genes at different developmental stages and between males and females. Furthermore, injection of double-stranded RNA (dsRNA) targeting the expressions of the Dafem-1A, Dafem-1B, and Dafem-1C genes resulted in increased mortality, deformity, and decreased emergence rates, as well as an imbalance in the sex ratio. Following the interference with Dafem-1A and Dafem-1C, no notable difference was observed in the expression of the Dafem-1B gene. Similarly, after the interference with the Dafem-1B gene, no significant difference was evident in the expression levels of the Dafem-1A and Dafem-1C genes. However, the interference of either the Dafem-1A or Dafem-1C gene results in the downregulation of the other gene. The aforementioned results demonstrate that the Dafem-1A, Dafem-1B, and Dafem-1C genes play a pivotal role in the regulation of life development and sex determination. Furthermore, it can be concluded that external factors such as temperature, nutrition, terpenoids, and feeding have a significant impact on the expression levels of the Dafem-1A, Dafem-1B, and Dafem-1C genes. This provides a crucial theoretical foundation for further elucidating the sex determination mechanism of Dendroctonus armandi.
Collapse
Affiliation(s)
- Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Songkai Liao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Haoyu Lin
- Forest Protection Research Institute, Fujian Academy of Forestry, Fuzhou 350011, China;
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Qi Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510462, China; (J.W.); (S.L.); (H.W.); (X.M.); (Q.W.)
| |
Collapse
|
12
|
Cheng X, Zhou Q, Xiao J, Qin X, Zhang Y, Li X, Zheng W, Zhang H. Nanoparticle LDH enhances RNAi efficiency of dsRNA in piercing-sucking pests by promoting dsRNA stability and transport in plants. J Nanobiotechnology 2024; 22:544. [PMID: 39237945 PMCID: PMC11378424 DOI: 10.1186/s12951-024-02819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Piercing-sucking pests are the most notorious group of pests for global agriculture. RNAi-mediated crop protection by foliar application is a promising approach in field trials. However, the effect of this approach on piercing-sucking pests is far from satisfactory due to the limited uptake and transport of double strand RNA (dsRNA) in plants. Therefore, there is an urgent need for more feasible and biocompatible dsRNA delivery approaches to better control piercing-sucking pests. Here, we report that foliar application of layered double hydroxide (LDH)-loaded dsRNA can effectively disrupt Panonychus citri at multiple developmental stages. MgAl-LDH-dsRNA targeting Chitinase (Chit) gene significantly promoted the RNAi efficiency and then increased the mortality of P. citri nymphs by enhancing dsRNA stability in gut, promoting the adhesion of dsRNA onto leaf surface, facilitating dsRNA internalization into leaf cells, and delivering dsRNA from the stem to the leaf via the vascular system of pomelo plants. Finally, this delivery pathway based on other metal elements such as iron (MgFe-LDH) was also found to significantly improve the protection against P. citri and the nymphs or larvae of Diaphorina citri and Aphis gossypii, two other important piercing-sucking hemipeteran pests, indicating the universality of nanoparticles LDH in promoting the RNAi efficiency and mortality of piercing-sucking pests. Collectively, this study provides insights into the synergistic mechanism for nano-dsRNA systemic translocation in plants, and proposes a potential eco-friendly control strategy for piercing-sucking pests.
Collapse
Affiliation(s)
- Xiaoqin Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qi Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiedan Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueying Qin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Li YQ, Huang A, Li XJ, Edwards MG, Gatehouse AMR. RNAi targeting Na v and CPR via leaf delivery reduces adult emergence and increases the susceptibility to λ-cyholthin in Tuta absoluta (Meyrick). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106089. [PMID: 39277402 DOI: 10.1016/j.pestbp.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The tomato leafminer, Tuta absoluta (Meyrick), one of the most economically destructive pests of tomato, causes severe yields losses of tomato production globally. Rapid evolution of insecticide resistance requires the development of alternative control strategy for this pest. RNA interference (RNAi) represents a promising, innovative control strategy against key agricultural insect pests, which has recently been licensed for Colorado Potato Beetle control. Here two essential genes, voltage-gated sodium channel (Nav) and NADPH-cytochrome P450 reductase (CPR) were evaluated as targets for RNAi using an ex vivo tomato leaf delivery system. Developmental stage-dependent expression profiles showed TaNav was most abundant in adult stages, whereas TaCPR was highly expressed in larval and adult stages. T. absoluta larvae feeding on tomato leaflets treated with dsRNA targeting TaNav and TaCPR showed significant knockdown of gene expression, leading to reduction in adult emergence. Additionally, tomato leaves treated with dsRNA targeting these two genes were significantly less damaged by larval feeding and mining. Furthermore, bioassay with LC30 doses of λ-cyholthin showed that silencing TaNav and TaCPR increased T. absoluta mortality about 32.2 and 17.4%, respectively, thus indicating that RNAi targeting TaNav and TaCPR could increase the susceptibility to λ-cyholthin in T. absoluta. This study demonstrates the potential of using RNAi targeting key genes, like TaNav and TaCPR, as an alternative technology for the control of this most destructive tomato pests in the future.
Collapse
Affiliation(s)
- Yong-Qiang Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK.
| | - Anqi Huang
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| | - Xiao-Jie Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK.
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle NE1 7RU, UK
| |
Collapse
|
14
|
Li SP, Chen ZX, Gao G, Bao YQ, Fang WY, Zhang YN, Liu WX, Lorenzen M, Wiegmann BM, Xuan JL. Development of an agroinfiltration-based transient hairpin RNA expression system in pak choi leaves (Brassica rapa ssp. chinensis) for RNA interference against Liriomyza sativae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106091. [PMID: 39277418 DOI: 10.1016/j.pestbp.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The vegetable leafminer (Liriomyza sativae) is a devastating invasive pest of many vegetable crops and horticultural plants worldwide, causing serious economic loss. Conventional control strategy against this pest mainly relies on the synthetic chemical pesticides, but widespread use of insecticides easily causes insecticide resistance development and is harmful to beneficial organisms and environment. In this context, a more environmentally friendly pest management strategy based on RNA interference (RNAi) has emerged as a powerful tool to control of insect pests. Here we report a successful oral RNAi in L. sativae after feeding on pak choi (Brassica rapa ssp. chinensis) that transiently express hairpin RNAs targeting vital genes in this pest. First, potentially lethal genes are identified by searching an L. sativae transcriptome for orthologs of the widely used V-ATPase A and actin genes, then expression levels are assessed during different life stages and in different adult tissues. Interestingly, the highest expression levels for V-ATPase A are observed in the adult heads (males and females) and for actin in the abdomens of adult females. We also assessed expression patterns of the target hairpin RNAs in pak choi leaves and found that they reach peak levels 72 h post agroinfiltration. RNAi-mediated knockdown of each target was then assessed by letting adult L. sativae feed on agroinfiltrated pak choi leaves. Relative transcript levels of each target gene exhibit significant reductions over the feeding time, and adversely affect survival of adult L. sativae at 24 h post infestation in genetically unmodified pak choi plants. These results demonstrate that the agroinfiltration-mediated RNAi system has potential for advancing innovative environmentally safe pest management strategies for the control of leaf-mining species.
Collapse
Affiliation(s)
- Shu-Peng Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; Anhui Watermelon and Melon Biological Breeding Engineering Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Zi-Xu Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ge Gao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Qi Bao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Ying Fang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Wiegmann
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jing-Li Xuan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Wu L, Wei G, Yan Y, Zhou X, Zhu X, Zhang Y, Li X. Effects of miR-306 Perturbation on Life Parameters in the English Grain Aphid, Sitobion avenae (Homoptera: Aphididae). Int J Mol Sci 2024; 25:5680. [PMID: 38891867 PMCID: PMC11171923 DOI: 10.3390/ijms25115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNA) play a vital role in insects' growth and development and have significant potential value in pest control. Previously, we identified miR-306 from small RNA libraries within the English grain aphid, Sitobion avenae, a devasting insect pest for wheat. miR-306 not only involves in wing morphogenesis, but also is critically important for aphid survival. Its specific impacts on the life history traits, however, remain unclear. Here, we evaluate the impact of miR-306 perturbation on S. avenae populations using a two-sex life table approach. This comprehensive analysis revealed that miR-306 perturbation significantly prolongs the developmental stages (9.64% and 8.20%) and adult longevity of S. avenae, while decreasing pre-adult survival rate (41.45% and 38.74%) and slightly reducing average fecundity (5.80% and 13.05%). Overall, miR-306 perturbation negatively affects the life table parameters of the aphid population. The population prediction models show a significant decline in the aphid population 60 days post interference, compared to the control groups (98.14% and 97.76%). Our findings highlight the detrimental effects of miR-306 perturbation on S. avenae population growth and suggest potential candidate genes for the development of RNAi-based biopesticides targeted specifically at this pest species.
Collapse
Affiliation(s)
- Linyuan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (G.W.); (Y.Y.); (X.Z.)
| | - Guohua Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (G.W.); (Y.Y.); (X.Z.)
| | - Yi Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (G.W.); (Y.Y.); (X.Z.)
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (G.W.); (Y.Y.); (X.Z.)
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (G.W.); (Y.Y.); (X.Z.)
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (G.W.); (Y.Y.); (X.Z.)
| |
Collapse
|
16
|
Jiang L, Wang Q, Kang ZH, Wen JX, Yang YB, Lu XJ, Guo W, Zhao D. Novel Environmentally Friendly RNAi Biopesticides: Targeting V-ATPase in Holotrichia parallela Larvae Using Layered Double Hydroxide Nanocomplexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11381-11391. [PMID: 38728113 DOI: 10.1021/acs.jafc.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.
Collapse
Affiliation(s)
- Li Jiang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Qian Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhan-Hai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jing-Xin Wen
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yu-Bo Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xiu-Jun Lu
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Wei Guo
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Dan Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| |
Collapse
|
17
|
Pugsley CE, Isaac RE, Warren NJ, Stacey M, Ferguson CTJ, Cappelle K, Dominguez-Espinosa R, Cayre OJ. Effective delivery and selective insecticidal activity of double-stranded RNA via complexation with diblock copolymer varies with polymer block composition. PEST MANAGEMENT SCIENCE 2024; 80:669-677. [PMID: 37759365 DOI: 10.1002/ps.7793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Chemical insecticides are an important tool to control damaging pest infestations. However, lack of species specificity, the rise of resistance and the demand for biological alternatives with improved ecotoxicity profiles means that chemicals with new modes of action are required. RNA interference (RNAi)-based strategies using double-stranded RNA (dsRNA) as a species-specific bio-insecticide offer an exquisite solution that addresses these issues. Many species, such as the fruit pest Drosophila suzukii, do not exhibit RNAi when dsRNA is orally administered due to degradation by gut nucleases and slow cellular uptake pathways. Thus, delivery vehicles that protect and deliver dsRNA are highly desirable. RESULTS In this work, we demonstrate the complexation of D. suzukii-specific dsRNA for degradation of vha26 mRNA with bespoke diblock copolymers. We study the ex vivo protection of dsRNA against enzymatic degradation by gut enzymes, which demonstrates the efficiency of this system. Flow cytometry then investigates the cellular uptake of Cy3-labelled dsRNA, showing a 10-fold increase in the mean fluorescence intensity of cells treated with polyplexes. The polymer/dsRNA polyplexes induced a significant 87% decrease in the odds of survival of D. suzukii larvae following oral feeding only when formed with a diblock copolymer containing a long neutral block length (1:2 cationic block/neutral block). However, there was no toxicity when fed to the closely related Drosophila melanogaster. CONCLUSION We provide evidence that dsRNA complexation with diblock copolymers is a promising strategy for RNAi-based species-specific pest control, but optimisation of polymer composition is essential for RNAi success. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Charlotte E Pugsley
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - R Elwyn Isaac
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nicholas J Warren
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | - Martin Stacey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Calum T J Ferguson
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaat Cappelle
- Syngenta Ghent Innovation Center, Gent-Zwijnaarde, Belgium
| | | | - Olivier J Cayre
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Keppanan R, Karuppannasamy A, Nagaraja BC, Thiruvengadam V, Kesavan S, Dhawane YA, Ramasamy A. Effectiveness of chitosan nanohydrogel mediated encapsulation of EcR dsRNA against the whitefly, Bemisia tabaci Asia-I (Gennedius) (Hemiptera: Aleyordidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105712. [PMID: 38225070 DOI: 10.1016/j.pestbp.2023.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 01/17/2024]
Abstract
Bemisia tabaci is a global invasive pest causing substantial loss on several economically important crops and has developed a very high level of resistance to insecticides making current management practices ineffective. Thus, the novel pest management strategy like RNA interference (RNAi) has emerged as a potential molecular tool in the management of insect pests particularly B. tabaci. The present study investigated RNAi mediated silencing of the Ecdysone Receptor (EcR) gene in B. tabaci Asia-I using biodegradable Chitosan Nanoparticles (CNPs) hydrogel containing EcR dsRNA. The formation of nanohydrogel and dsRNA loading were characterized by gel retardation assay, scanning electron microscopy (SEM); transmission electron microscopy (TEM) and Fourier transform infrared microscopy (FTIR). The stability of CNPs/dsRNA was assessed by exposure to direct sunlight and UV light for different time periods. The CNPs/dsRNA exhibited increased stability over the untreated control and further confirmed by bioassay studies which yielded mortality over 80% and effectively down regulated the expression of the EcR gene as confirmed by qRT-PCR analysis. These investigations provide potential avenues for advancing innovative pest management strategies using biopolymer CNPs hydrogel, which can enhance the efficiency of dsRNA as a safe and targeted solution in the management of whiteflies.
Collapse
Affiliation(s)
- Ravindran Keppanan
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - Ashok Karuppannasamy
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; Tata Institute for Genetics and Society, Bengaluru 560065, Karnataka, India.
| | - Bhargava Chikmagalur Nagaraja
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | | | - Subaharan Kesavan
- ICAR - National Bureau of Agricultural Insect Resources, Bengaluru 560024, Karnataka, India
| | - Yogi Arun Dhawane
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - Asokan Ramasamy
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India.
| |
Collapse
|
19
|
Chen ZL, Li XS, Wei S, Yu TH, Zhao HY, Xu Q, Li XF, Peng H, Tang R. Inundative practice for screening siRNA management candidates against a notorious predatory beetle using olfactory silencing. Int J Biol Macromol 2024; 254:127505. [PMID: 37863136 DOI: 10.1016/j.ijbiomac.2023.127505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Calosoma maximoviczi, a predatory pest beetle, poses a significant threat to wild silk farm production due to its predation on wild silkworms. Given the coexistence of this species with beneficial silkworms in the farm orchards, chemical pesticides are not an ideal solution for controlling its population. In this study, we employed a comprehensive multi-target RNA interference (RNAi) approach to disrupt the olfactory perception of C. maximoviczi through independently silencing 16 odorant receptors (ORs) in the respective genders. Specifically, gene-specific siRNAs were designed to target a panel of ORs, allowing us to investigate the specific interactions between odorant receptors and ligands within this species. Our investigation led to identifying four candidate siOR groups that effectively disrupted the beetle's olfactory tracking of various odorant ligands associated with different trophic levels. Furthermore, we observed sex-specific differences in innate RNAi responses reflected by subsequent gene expression, physiological and behavioral consequences, underscoring the complexity of olfactory signaling and emphasizing the significance of considering species/sex-specific traits when implementing pest control measures. These findings advance our understanding of olfactory coding patterns in C. maximoviczi beetles and establish a foundation for future research in the field of pest management strategies.
Collapse
Affiliation(s)
- Zeng-Liang Chen
- Sericultural Institute of Liaoning Province, 108 Fengshan Road, Fengcheng 118100, China
| | - Xi-Sheng Li
- Sericultural Institute of Liaoning Province, 108 Fengshan Road, Fengcheng 118100, China
| | - Shuang Wei
- Guangzhou Customs Technology Center, Guangzhou 510632, China
| | - Ting-Hong Yu
- Sericultural Institute of Liaoning Province, 108 Fengshan Road, Fengcheng 118100, China
| | - Hong-Yu Zhao
- Sericultural Institute of Liaoning Province, 108 Fengshan Road, Fengcheng 118100, China
| | - Qiang Xu
- Guangzhou Customs Technology Center, Guangzhou 510632, China
| | - Xian-Feng Li
- Guangzhou Customs Technology Center, Guangzhou 510632, China
| | - Hui Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
20
|
Duan S, Wang G. Inducible Expression of dsRNA in Escherichia coli. Methods Mol Biol 2024; 2771:57-64. [PMID: 38285391 DOI: 10.1007/978-1-0716-3702-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Double-stranded RNA (dsRNA) is a valuable tool for reverse genetics research and gene silencing applications. It is also an important management method for pests and diseases in agriculture. It can be synthesized both in vivo and in vitro. The latter presents the drawback of high production cost, the former is less expensive and suitable for scalable production. In general, dsRNAs are obtained in vivo from Escherichia coli heterologous systems that require the IPTG-inducible T7 RNA polymerase. In this report, we describe the construction of an RNAi system for the expression of dsRNA using the HT115 bacterial strain and the L4440 plasmid, and the extraction and identification of dsRNA.
Collapse
Affiliation(s)
- Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, China.
| |
Collapse
|
21
|
Tang Y, Wu S, He H, Gao Q, Ding W, Xue J, Qiu L, Li Y. The CsmiR1579-CsKr-h1 module mediates rice stem borer development and reproduction: An effective target for transgenic insect-resistant rice. Int J Biol Macromol 2024; 254:127752. [PMID: 38287594 DOI: 10.1016/j.ijbiomac.2023.127752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
The rice stem borer (RSB, Chilo suppressalis) is a significant agricultural pest that mainly depends on chemical control. However, it has grown to varied degrees of pesticide resistance, which poses a severe threat to rice production and emphasizes the need for safer, more efficient alternative pest management strategies. Here, in vitro and in vivo experiments analyses reveal miR-1579 binds to the critical transcription factor Krüppel homologue 1 (Kr-h1) and negatively regulates its expression. Overexpression of miR-1579 in larvae with significantly lower levels of Kr-h1 was associated with a decline in larval growth and survival. Furthermore, in female pupae, miR-1579 overexpression led to abnormalities in ovarian development, suggesting that targeting miR-1579 could be a potential management strategy against C. suppressalis. Therefore, we generated transgenic rice expressing miR-1579 and screened three lines that had a single copy of highly abundant mature miR-1579 transcripts. Expectedly, fed with transgenic miR-1579 rice lines were significantly lower survival rates in larvae and high levels of resistance to damage caused by C. suppressalis infestation. These findings suggest that miRNA-mediated RNAi could provide an effective and species-specific strategy for C. suppressalis control.
Collapse
Affiliation(s)
- Yan Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Wu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
22
|
Bansal R, Zhao C, Burks CS, Walse SS, Hunter WB. Characterization and RNA interference-mediated silencing of tryptophan 2,3-dioxygenase gene in Carpophilus hemipterus (L.) (Coleoptera: Nitidulidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22072. [PMID: 38288486 DOI: 10.1002/arch.22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Dried fruit beetle, Carpophilus hemipterus (Linnaeus, 1758) (Coleoptera: Nitidulidae), is a serious pest of ripened fresh fruit in the orchard and dried fruit in postprocessing storage. Despite the economic impact and widespread distribution of C. hemipterus, there is a lack of functional genomics research seeking to elucidate features of molecular physiology for improved pest management. Here, we report the characterization of the gene named Vermilion in C. hemipterus (ChVer) that encodes for tryptophan 2,3-dioxygenase. The Vermilion is frequently used as a visual marker for genomics approaches as tryptophan 2,3-dioxygenase is involved in the biosynthesis of eye coloration pigments in insects. We identified 1628 bp long full-length transcript of ChVer from transcriptomic database of C. hemipterus. The expression analysis among adult body parts revealed peak ChVer expression in head compared to thorax and abdomen, which is consistent with its role. Among the C. hemipterus developmental stages, peak ChVer expression was observed in first instar larva, second instar larva, and adult male stages, whereas the lowest levels of expression were seen in third instar larva, prepupa, and pupa. The nanoinjection of ChVer double-stranded RNA in larval C. hemipterus resulted in a significant reduction in ChVer transcript levels as well as caused a loss of eye color, that is, the white-eyed phenotype in adults. Characterization of visually traceable marker gene and robust RNA interference response seen in this study will enable genomics research is this important pest.
Collapse
Affiliation(s)
- Raman Bansal
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
| | - Chaoyang Zhao
- USDA-ARS, National Soil Dynamics Research Laboratory, Auburn, Alabama, USA
| | - Charles S Burks
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
| | - Spencer S Walse
- USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, California, USA
| | - Wayne B Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, USA
| |
Collapse
|
23
|
Sodnikar K, Kaegi R, Christl I, Schroth MH, Sander M. Transport of double-stranded ribonucleic acids (dsRNA) and deoxyribonucleic acids (DNA) in sand and iron oxide-coated sand columns under varying solution chemistries. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2067-2080. [PMID: 37870439 DOI: 10.1039/d3em00294b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Assessing ecological risks associated with the use of genetically modified RNA interference crops demands an understanding of the fate of crop-released insecticidal double-stranded RNA (dsRNA) molecules in soils. We studied the adsorption of one dsRNA and two double-stranded DNA as model nucleic acids (NAs) during transport through sand- and iron oxide-coated sand (IOCS)-filled columns over a range of solution pH and ionic compositions. Consistent with NA-sand electrostatic repulsion, we observed only slight retention of NAs in sand columns. Conversely, pronounced NA retention in IOCS columns is consistent with strong and irreversible NA adsorption involving electrostatic attraction to and inner-sphere complex formation of NAs with iron oxide coatings. Adsorption of NAs to iron oxides revealed a fast and a slow kinetic adsorption regime, possibly caused by the excluded-area effect. Adsorption of NAs to sand and IOCS increased in the presence of dissolved Mg2+ and with increasing ionic strength, reflecting cation-bridging and screening of repulsive electrostatics, respectively. The co-solute phosphate and a pre-adsorbed dissolved organic matter isolate competitively suppressed dsRNA adsorption to IOCS. Similar adsorption characteristics of dsRNA and similarly sized DNA suggest that existing information on DNA adsorption to soil particles helps in predicting adsorption and fate of dsRNA molecules in soils.
Collapse
Affiliation(s)
- Katharina Sodnikar
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Iso Christl
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Martin Herbert Schroth
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
24
|
Yu C, Li J, Zhang Z, Zong M, Qin C, Mo Z, Sun D, Yang D, Zeng Q, Wang J, Ma K, Li J, Wan H, He S. Metal-Organic Framework-Based Insecticide and dsRNA Codelivery System for Insecticide Resistance Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48495-48505. [PMID: 37787656 DOI: 10.1021/acsami.3c09074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Targeted silencing of resistance-associated genes by specific double-stranded RNA (dsRNA) is an attractive strategy for overcoming insecticide resistance in insect pests. However, silencing target genes of insect pests by feeding on dsRNA transported via plants remains challenging. Herein, a codelivery system of insecticide and dsRNA is designed by encapsulating imidacloprid and dsNlCYP6ER1 within zeolitic imidazolate framework-8 (ZIF-8) nanoparticles to improve the susceptibility of Nilaparvata lugens (Stål) to imidacloprid. With an average particle size of 195 nm and a positive surface charge, the derived imidacloprid/dsNlCYP6ER1@ZIF-8 demonstrates good monodispersity. Survival curve results showed that the survival rates of N. lugens treated with imidacloprid and imidacloprid@ZIF-8 were 82 and 62%, respectively, whereas, in the imidacloprid/dsNlCYP6ER1@ZIF-8 treatment group, the survival rate of N. lugens is only 8%. Pot experiments demonstrate that the survival rate in the imidacloprid/dsNlCYP6ER1@ZIF-8 treatment group was much lower than that in the imidacloprid treatment group, decreasing from 54 to 24%. The identification of NlCYP6ER1 expression and the fluorescence tracking of ZIF-8 demonstrate that ZIF-8 can codeliver dsRNA and insecticide to insects via rice. Safety evaluation results showed that the dsNlCYP6ER1@ZIF-8 nanoparticle had desirable biocompatibility and biosafety to silkworm. This dsRNA and insecticide codelivery system may be extended to additional insecticides with potential resistance problems in the future, greatly enhancing the development of pest resistance management.
Collapse
Affiliation(s)
- Chang Yu
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Jiaqing Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Zhaoyang Zhang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Mao Zong
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Chuwei Qin
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Ziyao Mo
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Dan Sun
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Disi Yang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Qinghong Zeng
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Jiayin Wang
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Kangsheng Ma
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Jianhong Li
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Hu Wan
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430074, China
| |
Collapse
|
25
|
Jeyaraj A, Elango T, Chen X, Zhuang J, Wang Y, Li X. Advances in understanding the mechanism of resistance to anthracnose and induced defence response in tea plants. MOLECULAR PLANT PATHOLOGY 2023; 24:1330-1346. [PMID: 37522519 PMCID: PMC10502868 DOI: 10.1111/mpp.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 08/01/2023]
Abstract
The tea plant (Camellia sinensis) is susceptible to anthracnose disease that causes considerable crop loss and affects the yield and quality of tea. Multiple Colletotrichum spp. are the causative agents of this disease, which spreads quickly in warm and humid climates. During plant-pathogen interactions, resistant cultivars defend themselves against the hemibiotrophic pathogen by activating defence signalling pathways, whereas the pathogen suppresses plant defences in susceptible varieties. Various fungicides have been used to control this disease on susceptible plants, but these fungicide residues are dangerous to human health and cause fungicide resistance in pathogens. The problem-solving approaches to date are the development of resistant cultivars and ecofriendly biocontrol strategies to achieve sustainable tea cultivation and production. Understanding the infection stages of Colletotrichum, tea plant resistance mechanisms, and induced plant defence against Colletotrichum is essential to support sustainable disease management practices in the field. This review therefore summarizes the current knowledge of the identified causative agent of tea plant anthracnose, the infection strategies and pathogenicity of C. gloeosporioides, anthracnose disease resistance mechanisms, and the caffeine-induced defence response against Colletotrichum infection. The information reported in this review will advance our understanding of host-pathogen interactions and eventually help us to develop new disease control strategies.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | | | - Xuan Chen
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jing Zhuang
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yuhua Wang
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xinghui Li
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
26
|
Pathak A, Haq S, Meena N, Dwivedi P, Kothari SL, Kachhwaha S. Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:3126. [PMID: 37687372 PMCID: PMC10490111 DOI: 10.3390/plants12173126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023]
Abstract
The agricultural practices of breeding, farm management and cultivation have improved production, to a great extent, in order to meet the food demands of a growing population. However, the newer challenges of climate change, global warming, and nutritional quality improvement will have to be addressed under a new scenario. Plant biotechnology has emerged as a reliable tool for enhancing crop yields by protecting plants against insect pests and metabolic engineering through the addition of new genes and, to some extent, nutritional quality improvement. Plant tissue culture techniques have provided ways for the accelerated clonal multiplication of selected varieties with the enhanced production of value-added plant products to increase modern agriculture. The in vitro propagation method has appeared as a pre-eminent approach for the escalated production of healthy plants in relatively shorter durations, also circumventing seasonal effects. However, there are various kinds of factors that directly or indirectly affect the efficiency of in vitro regeneration like the concentration and combination of growth regulators, variety/genotype of the mother plant, explant type, age of seedlings and other nutritional factors, and elicitors. Nanotechnology as one of the latest and most advanced approaches in the material sciences, and can be considered to be very promising for the improvement of crop production. Nanomaterials have various kinds of properties because of their small size, such as an enhanced contact surface area, increased reactivity, stability, chemical composition, etc., which can be employed in plant sciences to alter the potential and performance of plants to improve tissue culture practices. Implementing nanomaterials with in vitro production procedures has been demonstrated to increase the shoot multiplication potential, stress adaptation and yield of plant-based products. However, nanotoxicity and biosafety issues are limitations, but there is evidence that implies the promotion and further exploration of nanoparticles in agriculture production. The incorporation of properly designed nanoparticles with tissue culture programs in a controlled manner can be assumed as a new pathway for sustainable agriculture development. The present review enlists different studies in which treatment with various nanoparticles influenced the growth and biochemical responses of seed germination, as well as the in vitro morphogenesis of many crop species. In addition, many studies suggest that nanoparticles can be useful as elicitors for elevating levels of important secondary metabolites in in vitro cultures. Recent advancements in this field also depict the suitability of nanoparticles as a promising carrier for gene transfer, which show better efficiency than traditional Agrobacterium-mediated delivery. This review comprehensively highlights different in vitro studies that will aid in identifying research gaps and provide future directions for unexplored areas of research in important crop species.
Collapse
Affiliation(s)
- Ashutosh Pathak
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Shamshadul Haq
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Neelam Meena
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Pratibha Dwivedi
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India;
| | - Sumita Kachhwaha
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| |
Collapse
|
27
|
Qiao H, Zhao J, Wang X, Xiao L, Zhu-Salzman K, Lei J, Xu D, Xu G, Tan Y, Hao D. An oral dsRNA delivery system based on chitosan induces G protein-coupled receptor kinase 2 gene silencing for Apolygus lucorum control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105481. [PMID: 37532313 DOI: 10.1016/j.pestbp.2023.105481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023]
Abstract
RNA interference (RNAi) is recognized as a new and environmentally friendly pest control strategy due to its high specificity. However, the RNAi efficiency is relatively low in many sucking insect pests, such as Apolygus lucorum. Therefore, there is an urgent need to develop new and effective ways of dsRNA delivery. Bacterially expressed or T7 synthesized dsRNA targeting a G Protein-Coupled Receptor Kinase 2 gene was mixed with chitosan in a 1:2 ratio by mass. The size of the chitosan/dsRNA nanoparticles was 69 ± 12 nm, and the TEM and AFM images showed typical spherical or ellipsoidal structures. The chitosan nanoparticles protected the dsRNA from nuclease activity, and pH and temperature-dependent degradation, and the fluorescently-tagged nanoparticles were found to be stable on the surface of green bean plants (48 h) (Phaseolus vulgaris) and were absorbed by midgut epithelial cells and transported to hemolymph. Once fed to the A. lucorum nymph, chitosan/dsRNA could effectively inhibit the expression of the G protein-coupled receptor kinase 2 gene (70%), and led to significantly increase mortality (50%), reduced weight (26.54%) and a prolonged developmental period (8.04%). The feeding-based and chitosan-mediated dsRNA delivery method could be a new strategy for A. lucorum management, providing an effective tool for gene silencing of piercing-sucking insects.
Collapse
Affiliation(s)
- Heng Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaofeng Wang
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing, China
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Dejin Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guangchun Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Dejun Hao
- College of Forestry, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
28
|
Razzaq MK, Hina A, Abbasi A, Karikari B, Ashraf HJ, Mohiuddin M, Maqsood S, Maqsood A, Haq IU, Xing G, Raza G, Bhat JA. Molecular and genetic insights into secondary metabolic regulation underlying insect-pest resistance in legumes. Funct Integr Genomics 2023; 23:217. [PMID: 37392308 DOI: 10.1007/s10142-023-01141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.
Collapse
Affiliation(s)
- Muhammad Khuram Razzaq
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Aiman Hina
- Ministry of Agriculture (MOA) National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hafiza Javaria Ashraf
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Mohiuddin
- Environmental Management Consultants (EMC) Private Limited, Islamabad, 44000, Pakistan
| | - Sumaira Maqsood
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan
| | - Aqsa Maqsood
- Department of Zoology, University of Central Punjab, Bahawalpur, 63100, Pakistan
| | - Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, China
| | - Guangnan Xing
- Soybean Research Institute & MARA National Centre for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & National Key Laboratory for Crop Genetics and Germplasm Enhancement & Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering Faisalabad, Faisalabad, Pakistan
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
29
|
Shen GM, Ma T, Chen XR, Chen L, Liu GM, Jie LY, Adang M, He L. Retinoid X receptor 1 is a specific lethal RNAi target disturbing chitin metabolism during hatching of Tetranychus cinnabarinus. Int J Biol Macromol 2023:125458. [PMID: 37348587 DOI: 10.1016/j.ijbiomac.2023.125458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
RNA interference (RNAi) can be developed as an alternative method of chemical pesticides for pest control. In this study, we noticed a specifically expressed gene (retinoid X receptor 1, TcRXR1) in the egg stage of T. cinnabarinus. RNAi was applied to investigate the function of TcRXR1. Results showed that with continuous feeding of dsTcRXR1, the larvae of T. cinnabarinus could still successfully develop to adult, which was in accordance with the low expression of TcRXR1 out of egg stage. High mortality of eggs was observed after eggs were treated with dsTcRXR1. To investigate the downstream genes of TcRXR1, the RNA samples after successful RNAi of TcRXR1 were analyzed by transcriptome analysis. According to function annotation of differentially expressed genes, 6 genes were selected for their potential function with the phenotype of dsTcRXR1, and among them, a chitinase gene (TcCHT-E) attained a high expression level in the late stage of egg, peaking just after the expression peak of TcRXR1. Mortality of eggs was observed under the effect of dsTcCHT-E as well as dsTcRXR1. In conclusion, TcRXR1 is a specific RNAi target for control of T. cinnabarinus, and its lethal mechanism might be disturbing chitin metabolism hatching of egg.
Collapse
Affiliation(s)
- Guang-Mao Shen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ting Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xing-Ru Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Li Chen
- College of Plant Protection, Southwest University, Chongqing, China
| | - Guang-Ming Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Luo-Yan Jie
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Michael Adang
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing, China.
| |
Collapse
|
30
|
Xu W, Zhang M, Li Y, He W, Li S, Zhang J. Complete protection from Henosepilachna vigintioctopunctata by expressing long double-stranded RNAs in potato plastids. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1003-1011. [PMID: 36382860 DOI: 10.1111/jipb.13411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
RNA interference (RNAi) has emerged as a powerful technology for pest management. Previously, we have shown that plastid-mediated RNAi (PM-RNAi) can be utilized to control the Colorado potato beetle, an insect pest in the Chrysomelidae family; however, whether this technology is suitable for controlling pests in the Coccinellidae remained unknown. The coccinellid 28-spotted potato ladybird (Henosepilachna vigintioctopunctata; HV) is a serious pest of solanaceous crops. In this study, we identified three efficient target genes (β-Actin, SRP54, and SNAP) for RNAi using in vitro double-stranded RNAs (dsRNAs) fed to HV, and found that dsRNAs targeting β-Actin messenger RNA (dsACT) induced more potent RNAi than those targeting the other two genes. We next generated transplastomic and nuclear transgenic potato (Solanum tuberosum) plants expressing HV dsACT. Long dsACT stably accumulated to up to 0.7% of the total cellular RNA in the transplastomic plants, at least three orders of magnitude higher than in the nuclear transgenic plants. Notably, the transplastomic plants also exhibited a significantly stronger resistance to HV, killing all larvae within 6 d. Our data demonstrate the potential of PM-RNAi as an efficient pest control measure for HV, extending the application range of this technology to Coccinellidae pests.
Collapse
Affiliation(s)
- Wenbo Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Miao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yangcun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wanwan He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
31
|
Wang X, Faucher J, Dhandapani RK, Duan JJ, Palli SR. Potential effects of RNA interference of Asian longhorned beetle on its parasitoid. PEST MANAGEMENT SCIENCE 2023; 79:1557-1565. [PMID: 36529841 DOI: 10.1002/ps.7328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND It is important to understand how non-target insects such as parasitoids may be impacted directly or indirectly by RNA interference with double-stranded RNA (dsRNA) that has emerged as a novel pest control tool. We examined the potential effects of a dsRNA targeting an inhibitor of apoptosis (IAP) of the Asian longhorned beetle Anoplophora glabripennis on its gregarious larval ectoparasitoid Ontsira mellipes, directly on adult wasp's survival via injection of 4 μg of dsIAP per wasp, and indirectly on the detectability and suitability of host larvae injected with 2, 4 or 8 μg of dsIAP per larva. RESULTS Compared with no injection or injection with a control dsGFP targeting a region of gene coding for a green fluorescence protein (GFP), dsIAP did not affect adult wasp's survival. Ontsira mellipes locates hosts in the wood by sensing their movement. Host larvae did not completely cease movement after the injection of dsIAP and were still detected and parasitized. Clutch size was reduced and only 3.8% of the parasitoid offspring developed into adults on host larvae treated at the highest dose. However, clutch size was not affected and 25.5% of the parasitoid offspring developed into adults on host larvae treated at the lowest dose. The fitness of developed wasps (development time, sex ratio, body size, and fecundity) was not affected when compared to the control treatments. No dsIAP was detected in parasitoid larvae. CONCLUSION The results show no direct effect of the dsRNA on its parasitoid, but the potential indirect effect of dsRNA-affected host on the parasitoid, which may be minimized through optimizing dsRNA dosage to promote compatible applications of both management options for this invasive forest pest. © 2022 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Xingeng Wang
- Beneficial Insects Introduction Research Unit, Agricultural Research Service, United States Department of Agriculture, Newark, Delaware, USA
| | - Jessica Faucher
- Beneficial Insects Introduction Research Unit, Agricultural Research Service, United States Department of Agriculture, Newark, Delaware, USA
| | - Ramesh Kumar Dhandapani
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Jian J Duan
- Beneficial Insects Introduction Research Unit, Agricultural Research Service, United States Department of Agriculture, Newark, Delaware, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
32
|
An B, Zhang Y, Yan B, Cai J. RNA interference of PHB1 enhances virulence of Vip3Aa to Sf9 cells and Spodoptera frugiperda larvae. PEST MANAGEMENT SCIENCE 2023. [PMID: 36964944 DOI: 10.1002/ps.7469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In our previous work, we demonstrated that prohibitin 2 (PHB2) on the membrane of Sf9 cells was a receptor for Vip3Aa, and PHB2 in mitochondria contributed to the mitochondrial stability to reduce Vip3Aa toxicity. Prohibitin 1 (PHB1), another prohibitin family member, forms heterodimers with PHB2 to maintain the structure and stability of mitochondria. To explore whether PHB1 impacts the action process of Vip3Aa, we examined the correlation between PHB1 and Vip3Aa virulence. RESULTS We revealed that PHB1 did not colocalize with Vip3Aa in Sf9 cells. The pulldown and CoIP experiments confirmed that PHB1 interacted with neither Vip3Aa nor scavenger receptor-C (another Vip3Aa receptor). Downregulating phb1 expression in Sf9 cells did not affect the internalization of Vip3Aa but increased Vip3Aa toxicity. Further exploration revealed that the decrease of phb1 expression affected mitochondrial function, leading to increased ROS levels and mitochondrial membrane permeability and decreased mitochondrial membrane potential. The increase of mitochondrial cytochrome c release, caspase-3 activity and genomic DNA fragmentation implied that the apoptotic process was also affected. Finally, we applied RNAi to inhibit phb1 expression in Spodoptera frugiperda larvae. As a result, it significantly increased Vip3Aa virulence. CONCLUSION We found that PHB1 was not a receptor for Vip3Aa but played an essential role in mitochondria. The downregulation of phb1 expression in Sf9 cells caused instability of mitochondria, and the cells were more prone to apoptosis when challenged with Vip3Aa. The combined use of Vip3Aa and phb1 RNAi showed a synergistic effect against S. frugiperda larvae. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Colllege of Life Science, Nankai University, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
33
|
Guo H, Long GJ, Liu XZ, Ma YF, Zhang MQ, Gong LL, Dewer Y, Hull JJ, Wang MM, Wang Q, He M, He P. Functional characterization of tyrosine melanin genes in the white-backed planthopper and utilization of a spray-based nanoparticle-wrapped dsRNA technique for pest control. Int J Biol Macromol 2023; 230:123123. [PMID: 36603718 DOI: 10.1016/j.ijbiomac.2022.123123] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
As a significant pest of rice the white-backed planthopper (WBPH) Sogatella furcifera is a focus of pest management. However, traditional chemical-based control methods risk the development of pesticide resistance as well as severe ecological repercussions. Although nanoparticle-encapsulated dsRNAs provide a promising alternative method for sustainable pest management, gene targets specific to WBPH have yet to be optimized. Genes in the tyrosine-melanin pathway impact epidermal melanization and sclerotization, two processes essential for insect development and metabolism, have been proposed as good candidate targets for pest management. Seven genes (aaNAT, black, DDC, ebony, tan, TH, and yellow-y) in this group were identified from WBPH genome and functionally characterized by using RNAi for their impact on WBPH body color, development, and mortality. Knockdown of SfDDC, Sfblack, SfaaNAT, and Sftan caused cuticles to turn black, whereas Sfyellow-y and Sfebony knockdown resulted in yellow coloration. SfTH knockdown resulted in pale-colored bodies and high mortality. Additionally, an Escherichia coli expression system for large-scale dsRNA production was coupled with star polycation nanoparticles to develop a sprayable RNAi method targeting SfTH that induced high WBPH mortality rates on rice seedlings. These findings lay the groundwork for the development of large-scale dsRNA nanoparticle sprays as a WBPH control method.
Collapse
Affiliation(s)
- Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, 12618 Giza, Egypt
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, 85138, USA
| | - Mei-Mei Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Qin Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
34
|
Chen S, Luo X, Nanda S, Yang C, Li Z, Zhang Y, Zhou X, Pan H. RNAi-Based Biopesticides Against 28-Spotted Ladybeetle Henosepilachna vigintioctopunctata Does Not Harm the Insect Predator Propylea japonica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3373-3384. [PMID: 36762732 DOI: 10.1021/acs.jafc.2c08473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
RNA interference (RNAi)-mediated control of the notorious pest Henosepilachna vigintioctopunctata is an emerging environment friendly research area. However, the characterization of key target genes in H. vigintioctopunctata is crucial for this. Additionally, assessing the risk of RNAi to nontarget organisms (NTOs) is necessary for environmental safety. In this study, the potential of RNAi technology in controlling H. vigintioctopunctata infestation has been investigated by the oral delivery of double-stranded RNA (dsRNA). The results revealed that the silencing of six genes, including HvABCH1, HvHel25E, HvProsbeta5, HvProsalpha6, HvProsbeta6, and HvSrp54k, was highly lethal to H. vigintioctopunctata. The LC50 values of the dsRNAs used to silence these six genes were found to be less than 13 ng/μL. Moreover, the use of the bacterially expressed dsRNAs caused high mortality in the lab and field populations of H. vigintioctopunctata. Further, administration of HvHel25E and HvSrp54k dsRNAs in the predatory lady beetle Propylea japonica confirmed no transcriptional or organismal levels effects. This risk-assessment result ensured no off-target RNAi effects on the NTOs. Overall, the findings of the study suggested that HvABCH1, HvHel25E, HvProsbeta5, HvProsalpha6, HvProsbeta6, and HvSrp54k can be novel promising molecular targets with high specificity for H. vigintioctopunctata management with negligible effects on the NTOs.
Collapse
Affiliation(s)
- Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Xuming Luo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Satyabrata Nanda
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi 761200, India
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoyang Li
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
35
|
Zhang J, Li H, Zhong X, Tian J, Segers A, Xia L, Francis F. Silencing an aphid-specific gene SmDSR33 for aphid control through plant-mediated RNAi in wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1100394. [PMID: 36699834 PMCID: PMC9868936 DOI: 10.3389/fpls.2022.1100394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Grain aphid (Sitobion miscanthi) is one of the most dominant and devastating insect pests in wheat, which causes substantial losses to wheat production each year. Engineering transgenic plants expressing double strand RNA (dsRNA) targeting an insect-specific gene has been demonstrated to provide an alternative environmentally friendly strategy for aphid management through plant-mediated RNA interference (RNAi). Here we identified and characterized a novel potential RNAi target gene (SmDSR33) which was a gene encoding a putative salivary protein. We then generated stable transgenic wheat lines expressing dsRNA for targeted silencing of SmDSR33 in grain aphids through plant-mediated RNAi. After feeding on transgenic wheat plants expressing SmDSR33-dsRNA, the attenuated expression levels of SmDSR33 in aphids were observed when compared to aphids feeding on wild-type plants. The decreased SmDSR33 expression levels thus resulted in significantly reduced fecundity and survival, and decreased reproduction of aphids. We also observed altered aphid feeding behaviors such as longer duration of intercellular stylet pathway and shorter duration of passive ingestion in electroneurography assays. Furthermore, both the surviving aphids and their offspring exhibited decreased survival rates and fecundity, indicating that the silencing effect could be persistent and transgenerational in grain aphids. The results demonstrated that SmDSR33 can be selected as an effective RNAi target for wheat aphid control. Silencing of an essential salivary protein gene involved in ingestion through plant-mediated RNAi could be exploited as an effective strategy for aphid control in wheat.
Collapse
Affiliation(s)
- Jiahui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Huiyuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Xue Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Jinfu Tian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Arnaud Segers
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| |
Collapse
|
36
|
Zhao J, Song Y, Jiang X, He L, Wei L, Zhao Z. Synergism of Feeding and Digestion Regulated by the Neuropeptide F System in Ostrinia furnacalis Larvae. Cells 2023; 12:cells12010194. [PMID: 36611986 PMCID: PMC9818795 DOI: 10.3390/cells12010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Feeding is crucial for the growth and survival of animals, including humans, but relatively little is known about how it is regulated. Here, we show that larval feeding in Ostrinia furnacalis is regulated by neuropeptide F (NPF, the homologous peptide of mammalian NPY) via the insulin signalling pathway in the midgut. Furthermore, the genes pi3k and mtor in the insulin pathway positively regulate α-amylase and lipase of the midgut by recruiting the transcription factors c-Myc and PPARγ for binding to the promotors of these two enzymes. Importantly, we find that the feeding behaviour and the digestive system of midgut in O. furnacalis larvae are closely related and interactive in that knocking down α-amylase or lipase induces a reduction in larval feeding, while food-deprived larvae lead to fewer expressions of α-amylase and lipase. Importantly, it is the gut NPF that regulates the α-amylase and lipase, while variations of α-amylase and lipase may feed back to the brain NPF. This current study reveals a molecular feedback mechanism between feeding behaviour and the digestive system that is regulated by the conserved NPF via insulin signalling systems in the midgut of O. furnacalis larvae.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu Song
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuemin Jiang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei He
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding 071002, China
- Correspondence: (L.W.); (Z.Z.)
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (L.W.); (Z.Z.)
| |
Collapse
|
37
|
Bharathi JK, Anandan R, Benjamin LK, Muneer S, Prakash MAS. Recent trends and advances of RNA interference (RNAi) to improve agricultural crops and enhance their resilience to biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:600-618. [PMID: 36529010 DOI: 10.1016/j.plaphy.2022.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Over the last two decades, significant advances have been made using genetic engineering technology to modify genes from various exotic origins and introduce them into plants to induce favorable traits. RNA interference (RNAi) was discovered earlier as a natural process for controlling the expression of genes across all higher species. It aims to enhance precision and accuracy in pest/pathogen resistance, quality improvement, and manipulating the architecture of plants. However, it existed as a widely used technique recently. RNAi technologies could well be used to down-regulate any genes' expression without disrupting the expression of other genes. The use of RNA interference to silence genes in various organisms has become the preferred method for studying gene functions. The establishment of new approaches and applications for enhancing desirable characters is essential in crops by gene suppression and the refinement of knowledge of endogenous RNAi mechanisms in plants. RNAi technology in recent years has become an important and choicest method for controlling insects, pests, pathogens, and abiotic stresses like drought, salinity, and temperature. Although there are certain drawbacks in efficiency of this technology such as gene candidate selection, stability of trigger molecule, choice of target species and crops. Nevertheless, from past decade several target genes has been identified in numerous crops for their improvement towards biotic and abiotic stresses. The current review is aimed to emphasize the research done on crops under biotic and abiotic stress using RNAi technology. The review also highlights the gene regulatory pathways/gene silencing, RNA interference, RNAi knockdown, RNAi induced biotic and abiotic resistance and advancements in the understanding of RNAi technology and the functionality of various components of the RNAi machinery in crops for their improvement.
Collapse
Affiliation(s)
- Jothi Kanmani Bharathi
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
38
|
Kolge H, Kadam K, Ghormade V. Chitosan nanocarriers mediated dsRNA delivery in gene silencing for Helicoverpa armigera biocontrol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105292. [PMID: 36549819 DOI: 10.1016/j.pestbp.2022.105292] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Specific gene silencing by RNA interference (RNAi) involving exogenous double stranded RNA (dsRNA) delivery has potential in Helicoverpa armigera control, a resistant insect pest. Here, ionotropically synthesized cationic chitosan nanoparticles (CNPs, 95 nm size, +36 mV charge) showed efficient dsRNA loading (95 %) and effective protection from insect gut nucleases and pH degradation. The CNPs were tagged with fluorescence and found to be stable on leaf surface (24 h) and were internalized by columnar insect gut cells. A single dose of CNPs:dsRNA complex (containing 0.1 μg dsRNA) ingested by H. armigera larvae via artificial/leaf feed effectively silenced lipase and chitinase target genes (2-2.7 fold downregulation) and suppressed their respective enzyme activities (2-5.3 fold). RNAi caused reduced pupation (5-fold) and impaired moth emergence. RNAi effects correlated significantly with 100% insect mortality (PCA 0.97-0.99). Furthermore, specific dsRNA did not affect non-target insects Spodoptera litura and Drosophila melanogaster. Developed CNPs:dsRNA complexes towards RNAi targets can serve as a safe, targeted insecticide for sustainable crop protection.
Collapse
Affiliation(s)
- Henry Kolge
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Kartiki Kadam
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India.
| |
Collapse
|
39
|
Vasquez DDN, Pinheiro DH, Teixeira LA, Moreira-Pinto CE, Macedo LLP, Salles-Filho ALO, Silva MCM, Lourenço-Tessutti IT, Morgante CV, Silva LP, Grossi-de-Sa MF. Simultaneous silencing of juvenile hormone metabolism genes through RNAi interrupts metamorphosis in the cotton boll weevil. Front Mol Biosci 2023; 10:1073721. [PMID: 36950526 PMCID: PMC10025338 DOI: 10.3389/fmolb.2023.1073721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The cotton boll weevil (CBW) (Anthonomus grandis) is one of the major insect pests of cotton in Brazil. Currently, CBW control is mainly achieved by insecticide application, which is costly and insufficient to ensure effective crop protection. RNA interference (RNAi) has been used in gene function analysis and the development of insect control methods. However, some insect species respond poorly to RNAi, limiting the widespread application of this approach. Therefore, nanoparticles have been explored as an option to increase RNAi efficiency in recalcitrant insects. Herein, we investigated the potential of chitosan-tripolyphosphate (CS-TPP) and polyethylenimine (PEI) nanoparticles as a dsRNA carrier system to improve RNAi efficiency in the CBW. Different formulations of the nanoparticles with dsRNAs targeting genes associated with juvenile hormone metabolism, such as juvenile hormone diol kinase (JHDK), juvenile hormone epoxide hydrolase (JHEH), and methyl farnesoate hydrolase (MFE), were tested. The formulations were delivered to CBW larvae through injection (0.05-2 µg), and the expression of the target genes was evaluated using RT-qPCR. PEI nanoparticles increased targeted gene silencing compared with naked dsRNAs (up to 80%), whereas CS-TPP-dsRNA nanoparticles decreased gene silencing (0%-20%) or led to the same level of gene silencing as the naked dsRNAs (up to 50%). We next evaluated the effects of targeting a single gene or simultaneously targeting two genes via the injection of naked dsRNAs or dsRNAs complexed with PEI (500 ng) on CBW survival and phenotypes. Overall, the gene expression analysis showed that the treatments with PEI targeting either a single gene or multiple genes induced greater gene silencing than naked dsRNA (∼60%). In addition, the injection of dsJHEH/JHDK, either naked or complexed with PEI, significantly affected CBW survival (18% for PEI nanoparticles and 47% for naked dsRNA) and metamorphosis. Phenotypic alterations, such as uncompleted pupation or malformed pupae, suggested that JHEH and JHDK are involved in developmental regulation. Moreover, CBW larvae treated with dsJHEH/JHDK + PEI (1,000 ng/g) exhibited significantly lower survival rate (55%) than those that were fed the same combination of naked dsRNAs (30%). Our findings demonstrated that PEI nanoparticles can be used as an effective tool for evaluating the biological role of target genes in the CBW as they increase the RNAi response.
Collapse
Affiliation(s)
- Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
| | | | - Lays A. Teixeira
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
- Embrapa Café, Brasília, Brazil
| | | | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Alvaro L. O. Salles-Filho
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Federal University of Paraná, Curitiba, Brazil
| | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
| | - Carolina V. Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
- Embrapa SemiArid, Petrolina, Brazil
| | | | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Catholic University of Brasília, Brasília, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Embrapa, Brasília, Brazil
- *Correspondence: Maria F. Grossi-de-Sa,
| |
Collapse
|
40
|
Lu JB, Wang SN, Ren PP, He F, Li Q, Chen JP, Li JM, Zhang CX. RNAi-mediated silencing of an egg-specific gene Nllet1 results in hatch failure in the brown planthopper. PEST MANAGEMENT SCIENCE 2023; 79:415-427. [PMID: 36177946 DOI: 10.1002/ps.7210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The brown planthopper (BPH) is one of the most destructive agricultural pests in Asia. RNA interference (RNAi)-mediated pest management has been under development for years, and the selection of appropriate target genes is important for pest-targeted RNAi. C-type lectins (CTLs) are a class of genes that perform a variety of functions, such as the regulation of growth and development. RESULTS A CTL-S protein named Nllet1, containing a single calcium ion (Ca2+ )-dependent carbohydrate-binding domain (CRD) with a conserved triplet motif QPD was identified and functionally characterized in BPH. Expression profiles at both the transcriptional and translational levels show that Nllet1 accumulates during the serosal cuticle (SC) formation period. Immunofluorescence and immunogold labeling further demonstrated that Nllet1 is located in the serosal endocuticle (en-SC). Maternal RNAi-mediated silencing of Nllet1 disrupted the SC structure, accompanied by a loss of the outward barrier and 100% embryo mortality. Injection of 10 ng dsNllet1 or dsNllet1' per female adult BPH resulted in a total failure of egg hatching. CONCLUSION Nllet1 is essential for SC formation and embryonic development in BPH, which helps us understand the important roles of CTL-Ss. Additionally, BPH eggs show high sensitivity to the depletion of Nllet1. This study indicates that Nllet1 is a promising candidate gene that can be used to develop RNAi-based control strategies at the BPH egg stage, and it can also be used as a target for developing novel ovicides. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Sai-Nan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qiao Li
- Animal and Plant Quarantine Service, Technology Center of Wuhan Customs District, Wuhan, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Gao L, Wang Y, Abbas M, Zhang T, Ma E, Merzendorfer H, Zhu KY, Zhang J. Both LmDicer-1 and two LmDicer-2s participate in siRNA-mediated RNAi pathway and contribute to high gene silencing efficiency in Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103865. [PMID: 36336194 DOI: 10.1016/j.ibmb.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Dicers belong to a class of large RNase III multidomain ribonucleases and are central components of the RNA interference (RNAi) pathways. In insects, Dicer-2 has been known to cleave long double-stranded RNA (dsRNA) in small interfering RNA (siRNA)-mediated-RNAi pathway. However, Dicer-1 is responsible for cleaving precursor microRNAs (pre28 miRNAs) in miRNA-mediated RNAi pathway. In this study, we identified one LmDicer-1 and two LmDicer-2 (LmDicer-2a and LmDicer-2b) genes in Locusta migratoria. The RNAi of RNAi assay showed that knockdown of each of the Dicer genes reduced RNAi efficiency against a target gene (Lmβ-Tubulin), suggesting that all these genes participated in the siRNA-mediated RNAi pathway. Sequence analyses of the siRNAs generated from dsLmβ-Tubulin after silencing each LmDicer gene showed no significant difference in the pattern of siRNAs mapped to dsLmβ-Tubulin. This result indicated that all the three LmDicers are capable of generating siRNAs from the dsRNA. We then generated recombinant proteins consisting of different domains using Escherichia coli expression system and incubated each recombinant protein with dsLmβ-Tubulin. We found that the recombinant Dicer proteins successfully cleaved dsLmβ-Tubulin. However, LmDicer-2a-R lacking dsRBD domain lost activity, suggesting that dsRBD domain is critical for Dicer function. Furthermore, overexpression of these proteins in Drosophila S2 cells improved RNAi efficiency. Our siRNA affinity chromatography and LC-MS/MS analysis identified LmDicer-2a, LmDicer-2b, LmR2D2, LmAgo2a, LmAgo1, LmStaufen and LmTARBP2 as constituents of RNA-induced silencing complex. Taken together, these data show that both LmDicer-1 and two LmDicer-2s all participate in siRNA-mediated RNAi pathway and likely contribute to high RNAi efficiency in L. migratoria.
Collapse
Affiliation(s)
- Lu Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China; College of Life Science, Shanxi University, Taiyuan, China
| | - Yanli Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Tingting Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | | | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS, 66506, USA.
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
42
|
Ribeiro TP, Vasquez DDN, Macedo LLP, Lourenço-Tessutti IT, Valença DC, Oliveira-Neto OB, Paes-de-Melo B, Rodrigues-Silva PL, Firmino AAP, Basso MF, Lins CBJ, Neves MR, Moura SM, Tripode BMD, Miranda JE, Silva MCM, Grossi-de-Sa MF. Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW ( Anthonomus grandis). Int J Mol Sci 2022; 23:13713. [PMID: 36430188 PMCID: PMC9691246 DOI: 10.3390/ijms232213713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cotton is the most important crop for fiber production worldwide. However, the cotton boll weevil (CBW) is an insect pest that causes significant economic losses in infested areas. Current control methods are costly, inefficient, and environmentally hazardous. Herein, we generated transgenic cotton lines expressing double-stranded RNA (dsRNA) molecules to trigger RNA interference-mediated gene silencing in CBW. Thus, we targeted three essential genes coding for chitin synthase 2, vitellogenin, and ecdysis-triggering hormone receptor. The stability of expressed dsRNAs was improved by designing a structured RNA based on a viroid genome architecture. We transformed cotton embryos by inserting a promoter-driven expression cassette that overexpressed the dsRNA into flower buds. The transgenic cotton plants were characterized, and positive PCR transformed events were detected with an average heritability of 80%. Expression of dsRNAs was confirmed in floral buds by RT-qPCR, and the T1 cotton plant generation was challenged with fertilized CBW females. After 30 days, data showed high mortality (around 70%) in oviposited yolks. In adult insects fed on transgenic lines, chitin synthase II and vitellogenin showed reduced expression in larvae and adults, respectively. Developmental delays and abnormalities were also observed in these individuals. Our data remark on the potential of transgenic cotton based on a viroid-structured dsRNA to control CBW.
Collapse
Affiliation(s)
- Thuanne P. Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Biotechnology and Molecular Biology Department, Federal University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - Daniel D. N. Vasquez
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Leonardo L. P. Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Isabela T. Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - David C. Valença
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Osmundo B. Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
- Biochemistry and Molecular Biology Department, Integrated Faculties of the Educational Union of Planalto Central, Brasilia 70675-760, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | - Alexandre A. P. Firmino
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Max Planck Institute Molecular Plant Physiol, 14476 Potsdam, Germany
| | - Marcos F. Basso
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Camila B. J. Lins
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Maysa R. Neves
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
| | - Stefanie M. Moura
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | | | | | - Maria C. M. Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil
- Genetic and Molecular Biology Department, Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
- National Institute of Science and Technology (INCT Plant Stress Biotech), Embrapa, Brasilia 70770-917, DF, Brazil
| |
Collapse
|
43
|
Zhang H, Gao J, Chen J, Peng Y, Han Z. RNA-dependent RNA polymerase could extend the lasting validity period of exogenous dsRNA. PEST MANAGEMENT SCIENCE 2022; 78:4569-4578. [PMID: 35831266 DOI: 10.1002/ps.7076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previous studies have found that pesticide double-stranded (ds)RNA usually has a long-lasting validity period in plants. However, it is uncertain if any factors in plants could extend dsRNA duration. It has been reported that RNA-dependent RNA polymerases (RdRP) in plants and some other eukaryotes could catalyze RNA amplification and be involved in RNAi (interference). Thus, this study evaluated the effect of RdRP on the tissue content, activity, and duration of exogenous dsRNA. RESULTS We found that RdRP knockdown in Arabidopsis thaliana had no significant effect on tissue contents of reporter dsRNA parent molecules (8.91% reduction), but it caused significant decrease in the tissue contents of derived short fragments of 200, 120 and 59 bp tested (51.22%, 52.83% and 59.35%, respectively). Aphid inoculation tests showed that the same dose of insecticidal dsAgZFP exhibited a significantly lower lethal effect (mortality 58.8%) in the plants with RdRP knockdown than in the control plants with normal RdRP (86.0%). For Caenorhabditis elegans, the worms treated simultaneously with dsRdRP and reporter dsRNA had similar body contents to reporter dsRNA parent molecules and its long-fragment derivative (200 bp) as the control (1.28- and 1.07-fold greater, respectively). However, 120- and 59-bp short-fragment derivatives were significantly reduced by 28.78% and 59.84%, respectively, which also diminished faster in the descendants. CONCLUSIONS We conclude that RdRP could significantly enhance the tissue content of dsRNA derivatives by catalyzing amplification, thus improving dsRNA activity and extending its lasting validity period. Otherwise, RNAi by exogenous dsRNA was proven to be noninheritable in A. thaliana. This work confirmed the merit of dsRNA as a plant protectant. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hainan Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jing Gao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jiasheng Chen
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yue Peng
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Han
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Zhang H, Chen J, Gao J, Zhang Q, Liu X, Han Z. New insights into transmission pathways and possible off-target effects of insecticidal dsRNA released by treated plants. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105281. [PMID: 36464336 DOI: 10.1016/j.pestbp.2022.105281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
RNAi has shown great potential in controlling pests and pathogens, and dsRNA-based pesticides have been used in different ways. Due to off-target effects, the transmission pathways and possible impacts of dsRNA on non-target organisms after release should be researched. Here, we tested pathways of dsRNA transmission through the rice-hopper-spider food chain and their efficiency for triggering RNAi. The results revealed five new pathways by which plants transfer dsRNA into the environment through the food chain. We found that ingestion of the tissues or guttation droplets of treated plant could trigger both targeted and off-target RNAi both in consumers and predators. Ingestion of consumer hoppers could also result in localized RNAi in the midguts of the predator spiders. Trace amounts of dsRNA were detected in plant root excretions and in hopper honeydew. Cutting the root tips dramatically increased the levels of dsRNA in root excretions. Host shifting experiments proved that hoppers could transfer a trace amount of dsRNA via vomit. With specially designed dsRNAs, we showed that dsRNA sharing matching sequences of 29 bp or 32 bp in length with non-target genes could trigger off-target RNAi, but that dsRNA sharing 13 bp matching sequences could not. We conclude that field-released pesticidal dsRNA could be transmitted via the hydrophilic transport system in plants, and that this may pose a safety risk to non-target animal consumers that are closely related to target pests. Rational use of pesticidal dsRNAs should involve careful consideration of dsRNA design to manage the biosafety risk.
Collapse
Affiliation(s)
- Hainan Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiasheng Chen
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jing Gao
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Zhang
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhaojun Han
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects/Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Hough J, Howard JD, Brown S, Portwood DE, Kilby PM, Dickman MJ. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides. Front Bioeng Biotechnol 2022; 10:980592. [PMID: 36299286 PMCID: PMC9588923 DOI: 10.3389/fbioe.2022.980592] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 01/09/2023] Open
Abstract
Current crop pest control strategies rely on insecticidal and fungicidal sprays, plant genetic resistance, transgenes and agricultural practices. However, many insects, plant viruses, and fungi have no current means of control or have developed resistance against traditional pesticides. dsRNA is emerging as a novel sustainable method of plant protection as an alternative to traditional chemical pesticides. The successful commercialisation of dsRNA based biocontrols for effective pest management strategies requires the economical production of large quantities of dsRNA combined with suitable delivery methods to ensure RNAi efficacy against the target pest. A number of methods exist for the production and delivery of dsRNA based biocontrols and here we review alternative methods currently employed and emerging new approaches for their production. Additionally, we highlight potential challenges that will need to be addressed prior to widespread adoption of dsRNA biocontrols as novel sustainable alternatives to traditional chemical pesticides.
Collapse
Affiliation(s)
- James Hough
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - John D. Howard
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| | - Stephen Brown
- Sheffield RNAi Screening Facility, School of Biosciences, University of Sheffield, Sheffield, United Kingtom
| | - David E. Portwood
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Peter M. Kilby
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingtom
| |
Collapse
|
46
|
Pallis S, Alyokhin A, Manley B, Rodrigues TB, Buzza A, Barnes E, Narva K. Toxicity of a novel dsRNA-based insecticide to the Colorado potato beetle in laboratory and field trials. PEST MANAGEMENT SCIENCE 2022; 78:3836-3848. [PMID: 35166021 DOI: 10.1002/ps.6835] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) is one of the most notorious pests of the potato, Solanum tuberosum. Potato beetles are capable of developing resistance to various insecticides in relatively few generations. Novel and effective means of controlling Colorado potato beetle populations are constantly required to protect potato crops and prevent loss of yield. The knockdown of gene function through ribonucleic acid interference has been demonstrated in Colorado potato beetles, suggesting the use of this technology as a means of beetle management. A novel double-stranded RNA-based insecticide with the active ingredient, ledprona, has been tested in variable dose laboratory bioassays, followed by field studies. RESULTS Exposure to ledprona resulted in both increased beetle mortality and decreased foliage consumption in all four instars and adult beetles. Effects decreased from earlier to later life stages. No ovicidal activity was detected. Onset of mortality was slower compared with existing chemical insecticides. Nevertheless, field applications of formulated ledprona to potato plots resulted in their protection comparable with that provided by spinosad and chlorantraniliprole. CONCLUSION Based on the results of this study, formulated ledprona has attributes to become a useful tool in controlling Colorado potato beetle populations that is likely to be a good fit in integrated pest management protocols. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Samuel Pallis
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Andrei Alyokhin
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Brian Manley
- GreenLight Biosciences, Research Triangle Park, Research Triangle, NC, USA
| | - Thais B Rodrigues
- GreenLight Biosciences, Research Triangle Park, Research Triangle, NC, USA
| | - Aaron Buzza
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Ethann Barnes
- GreenLight Biosciences, Research Triangle Park, Research Triangle, NC, USA
| | - Kenneth Narva
- GreenLight Biosciences, Research Triangle Park, Research Triangle, NC, USA
| |
Collapse
|
47
|
Spatial Distribution and Retention in Loblolly Pine Seedlings of Exogenous dsRNAs Applied through Roots. Int J Mol Sci 2022; 23:ijms23169167. [PMID: 36012434 PMCID: PMC9409306 DOI: 10.3390/ijms23169167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Exogenously applied double-stranded RNA (dsRNA) can induce potent host specific gene knockdown and mortality in insects. The deployment of RNA-interference (RNAi) technologies for pest suppression is gaining traction in both agriculture and horticulture, but its implementation in forest systems is lagging. While numerous forest pests have demonstrated susceptibility to RNAi mediated gene silencing, including the southern pine beetle (SPB), Dendroctonus frontalis, multiple barriers stand between laboratory screening and real-world deployment. One such barrier is dsRNA delivery. One possible delivery method is through host plants, but an understanding of exogenous dsRNA movement through plant tissues is essential. Therefore, we sought to understand the translocation and persistence of dsRNAs designed for SPB throughout woody plant tissues after hydroponic exposure. Loblolly pine, Pinus taeda, seedlings were exposed to dsRNAs as a root soak, followed by destructive sampling. Total RNA was extracted from different tissue types including root, stem, crown, needle, and meristem, after which gel electrophoresis confirmed the recovery of the exogenous dsRNAs, which were further verified using Sanger sequencing. Both techniques confirmed the presence of the exogenously applied target dsRNAs in each tissue type after 1, 3, 5, and 7 d of dsRNA exposure. These findings suggest that root drench applications of exogenous dsRNAs could provide a viable delivery route for RNAi technology designed to combat tree feeding pests.
Collapse
|
48
|
Qiao JW, Fan YL, Wu BJ, Bai TT, Wang YH, Zhang ZF, Wang D, Liu TX. Downregulation of NADPH-cytochrome P450 reductase via RNA interference increases the susceptibility of Acyrthosiphon pisum to desiccation and insecticides. INSECT SCIENCE 2022; 29:1105-1119. [PMID: 34723412 DOI: 10.1111/1744-7917.12982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is involved in the metabolism of endogenous and exogenous substances, and detoxification of insecticides. RNA interference (RNAi) of CPR in certain insects causes developmental defects and enhanced susceptibility to insecticides. However, the CPR of Acyrthosiphon pisum has not been characterized, and its function is still not understood. In this study, we investigated the biochemical functions of A. pisum CPR (ApCPR). ApCPR was found to be transcribed in all developmental stages and was abundant in the embryo stage, and in the gut, head, and abdominal cuticle. After optimizing the dose and silencing duration of RNAi for downregulating ApCPR, we found that ApCPR suppression resulted in a significant decrease in the production of cuticular and internal hydrocarbon contents, and of cuticular waxy coatings. Deficiency in cuticular hydrocarbons (CHCs) decreased the survival rate of A. pisum under desiccation stress and increased its susceptibility to contact insecticides. Moreover, desiccation stress induced a significant increase in ApCPR mRNA levels. We further confirmed that ApCPR participates in CHC production. These results indicate that ApCPR modulates CHC production, desiccation tolerance, and insecticide susceptibility in A. pisum, and presents a novel target for pest control.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bing-Jin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tian-Tian Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Ying-Hao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
49
|
Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. Sci Rep 2022; 12:10405. [PMID: 35729318 PMCID: PMC9213516 DOI: 10.1038/s41598-022-14667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
RNA interference (RNAi) triggered by exogenous double-stranded RNA (dsRNA) is a powerful tool to knockdown genetic targets crucial for the growth and development of agriculturally important insect pests. Helicoverpa armigera is a pest feeding on more than 30 economically important crops worldwide and a major threat. Resistance to insecticides and Bt toxins has been gradually increasing in the field. RNAi-mediated knockdown of H. armigera genes by producing dsRNAs homologous to genetic targets in bacteria and plants has a high potential for insect management to decrease agricultural loss. The acetylcholinesterase (AChE), ecdysone receptor (EcR) and v-ATPase-A (vAA) genes were selected as genetic targets. Fragments comprising a coding sequence of < 500 bp were cloned into the L4440 vector for dsRNA production in bacteria and in a TRV-VIGS vector in antisense orientation for transient expression of dsRNA in Solanum tuberosum leaves. After ingesting bacterial-expressed dsRNA, the mRNA levels of the target genes were significantly reduced, leading to mortality and abnormal development in larva of H. armigera. Furthermore, the S. tuberosum plants transformed with TRV-VIGS expressing AChE exhibited higher mortality > 68% than the control plants 17%, recorded ten days post-feeding and significant resistance in transgenic (transient) plants was observed. Moreover, larval lethality and molting defects were observed in larva fed on potato plants expressing dsRNA specific to EcR. Analysis of transcript levels by quantitative RT–PCR revealed that larval mortality was attributable to the knockdown of genetic targets by RNAi. The results demonstrated that down-regulation of H. armigera genes involved in ATP hydrolysis, transcriptional stimulation of development genes and neural conduction has aptitude as a bioinsecticide to control H. armigera population sizes and therefore decreases crop loss.
Collapse
|
50
|
Paredes-Montero JR, Arif U, Brown JK. Knockdown of ecdysteroid synthesis genes results in impaired molting and high mortality in Bactericera cockerelli (Hemiptera: Triozidae). PEST MANAGEMENT SCIENCE 2022; 78:2204-2214. [PMID: 35191190 DOI: 10.1002/ps.6848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND RNA-mediated interference (RNAi) has become a promising biopesticide technology with which to direct sequence-specific gene knockdown of key targets in the potato psyllid (PoP) Bactericera cockerelli, resulting in significant mortality. In this study, three strategically selected target genes, ATF4, C7 and D24, essential for the biosynthesis and regulation of ecdysteroids, were evaluated for knockdown and mortality using oral delivery of individual, paired and all three double-stranded RNAs (dsRNAs), in five replicated experiments. Knockdown was determined as the fold-change in gene expression using a quantitative polymerase chain reaction. RESULTS Knockdown of the D24 target, at 39%-45%, resulted in 51% PoP mortality by 10 days post-ingestion (dpi) of dsRNA. Knockdown of C7, at 38%-61%, resulted in 53% mortality by 10 dpi, whereas dsD24 ingestion resulted in 65% mortality by 10 dpi when dsD24 and dsC7 were co-delivered. Three phenotypes, INCOMEC, PREMEC and SWOLLEN, were observed at a frequency of 4%-12%, and are consistent with incomplete ecdysis in immature and/or adult PoP. Adult PoP exhibiting INCOMEC survived for several days but were unable to mate or fly, whereas SWOLLEN and PREMEC were lethal to the immature instars. Knockdown of ATF4 did not result in the mortality or malformations in immature and adult PoP. CONCLUSIONS Compared with knockdown of individual D24 and C7 targets, significantly greater RNAi penetrance was achieved following delivery of combined dsRNAs. The highest knockdown that resulted in incomplete ecdysis and/or mortality was obtained for targets with predicted involvement in the same or interacting pathway(s). Knockdown of ATF4 was apparently "rescued" by uncharacterized compensatory gene(s) or effects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jorge R Paredes-Montero
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Usman Arif
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|