1
|
Ribeiro J, Luís MÂ, Rodrigues B, Santos FM, Mesquita J, Boto R, Tomaz CT. Cryogels and Monoliths: Promising Tools for Chromatographic Purification of Nucleic Acids. Gels 2024; 10:198. [PMID: 38534616 DOI: 10.3390/gels10030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The increasing demand for highly pure biopharmaceuticals has put significant pressure on the biotechnological industry to innovate in production and purification processes. Nucleic acid purification, crucial for gene therapy and vaccine production, presents challenges due to the unique physical and chemical properties of these molecules. Meeting regulatory standards necessitates large quantities of biotherapeutic agents of high purity. While conventional chromatography offers versatility and efficiency, it suffers from drawbacks like low flow rates and binding capacity, as well as high mass transfer resistance. Recent advancements in continuous beds, including monoliths and cryogel-based systems, have emerged as promising solutions to overcome these limitations. This review explores and evaluates the latest progress in chromatography utilizing monolithic and cryogenic supports for nucleic acid purification.
Collapse
Affiliation(s)
- João Ribeiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marco  Luís
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Bruno Rodrigues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Renato Boto
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
2
|
Ferreira PL, Marie H, Berger T, Edelmann B, Rammo O, Sousa F. Evaluation of novel chromatographic prototypes for supercoiled plasmid DNA polishing. Front Bioeng Biotechnol 2024; 11:1296444. [PMID: 38249801 PMCID: PMC10797707 DOI: 10.3389/fbioe.2023.1296444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Since the world first approved gene therapeutics, nucleic acid-based therapies have gained prominence. Several strategies for DNA-based therapy have been approved, and numerous clinical trials for plasmid DNA (pDNA)-based vaccines are currently in development. Due to the rising interest in pDNA for vaccination and gene therapy, plasmid manufacturing must become more effective. One of the most critical steps is downstream processing, involving isolation and purification procedures. To comply with the regulatory guidelines, pDNA must be available as a highly purified, homogeneous preparation of supercoiled pDNA (sc pDNA). This process undertakes several challenges, primarily due to the diversity of molecules derived from the producer organism. In this study, different resins were tested for the adsorption and selective polishing of sc pDNA. To identify optimal pDNA adsorption conditions, batch and column assays were performed with different resins while promoting electrostatic and hydrophobic interactions. The effect of ionic strength, pH, and contact time were evaluated and optimized. Additionally, static and dynamic binding capacities were determined for the selected resins. Analytical chromatography and agarose gel electrophoresis were used to assess the selectivity of the most promising resins toward sc pDNA isoform. Also, genomic DNA, endotoxins, and proteins were quantified to characterize the final sc pDNA quality. At the same time, the recovery and purity yields were evaluated by quantification of sc pDNA after the purification procedure. Overall, the results of the chromatographic assays using agmatine- and arginine-based resins have shown promising potential for sc pDNA polishing. Both resins demonstrated excellent binding capacity for pDNA, with agmatine outperforming arginine-based resin in terms of capacity. However, arginine-based resin exhibited a superior pDNA recovery yield, reaching a notable 52.2% recovery compared to 10.09% from agmatine. Furthermore, both resins exhibited high relative purity levels above 90% for the sc pDNA. The comprehensive characterization of the recovered sc pDNA also revealed a significant reduction in gDNA levels, reinforcing the potential of these prototypes for obtaining high-quality and pure sc pDNA. These findings highlight the promising applications of both resins in scalable pDNA purification processes for gene therapy and biopharmaceutical applications.
Collapse
Affiliation(s)
- Pedro L. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Tim Berger
- Merck Life Science KGaA, Darmstadt, Germany
| | | | | | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
3
|
Carapito R, Bernardo SC, Pereira MM, Neves MC, Freire MG, Sousa F. Multimodal ionic liquid-based chromatographic supports for an effective RNA purification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
4
|
Oligonucleotides Isolation and Separation—A Review on Adsorbent Selection. Int J Mol Sci 2022; 23:ijms23179546. [PMID: 36076941 PMCID: PMC9455468 DOI: 10.3390/ijms23179546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotides have many important applications, including as primers in polymerase chain reactions and probes for DNA sequencing. They are proposed as a diagnostic and prognostic tool for various diseases and therapeutics in antisense therapy. Accordingly, it is necessary to develop liquid chromatography and solid phase extraction methods to separate oligonucleotides and isolate them from biological samples. Many reviews have been written about the determination of these compounds using the separation technique or sample preparation for their isolation. However, presumably, there are no articles that critically review the adsorbents used in liquid chromatography or solid phase extraction. The present publication reviews the literature from the last twenty years related to supports (silica, polymers, magnetic nanoparticles) and their modifications. The discussed issues concern reversed phase (alkyl, aromatic, cholesterol, mixed ligands), ion-exchange (strong and weak ones), polar (silica, polyhydroxy, amide, zwitterionic), and oligonucleotide-based adsorbents.
Collapse
|
5
|
Abstract
Membrane chromatography (MC) is an emerging bioseparation technology combining the principles of membrane filtration and chromatography. In this process, one type of molecule is adsorbed in the stationary phase, whereas the other type of molecule is passed through the membrane pores without affecting the adsorbed molecule. In subsequent the step, the adsorbed molecule is recovered by an elution buffer with a unique ionic strength and pH. Functionalized microfiltration membranes are usually used in radial flow, axial flow, and lateral flow membrane modules in MC systems. In the MC process, the transport of a solute to a stationary phase is mainly achieved through convection and minimum pore diffusion. Therefore, mass transfer resistance and pressure drop become insignificant. Other characteristics of MC systems are a minimum clogging tendency in the stationary phase, the capability of operating with a high mobile phase flow rate, and the disposable (short term) application of stationary phase. The development and application of MC systems for the fractionation of individual proteins from whey for investigation and industrial-scale production are promising. A significant income from individual whey proteins together with the marketing of dairy foods may provide a new commercial outlook in dairy industry. In this review, information about the development of a MC system and its applications for the fractionation of individual protein from whey are presented in comprehensive manner.
Collapse
|
6
|
Fonseca AA, Laguardia-Nascimento M, Scotá Ferreira AP, Pinto CA, Pereira Freitas TR, Rivetti Júnior AV, Ferreira Homem VS, Camargos MF. Detection of megalocytivirus in Oreochromis niloticus and Pseudoplatystoma corruscans in Brazil. DISEASES OF AQUATIC ORGANISMS 2022; 149:25-32. [PMID: 35510818 DOI: 10.3354/dao03657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The infectious spleen and kidney necrosis virus (ISKNV) belongs to the genus Megalocytivirus (MCV), a group of double-stranded DNA genome viruses. The aim of this study was to retrospectively analyze samples from suspected foci of MCV infection in freshwater fish in Brazil. Samples were collected from infected fish between 2017 and 2021. Phylogenetic analysis revealed 2 groups of MCV circulating in the country. A genetically homogeneous group formed a clade with ISKNV samples from different parts of the world. Only 2 of the sequences from the state of Goiás showed a small genetic distance when compared to the larger group in the same clade. This study describes the validation of 3 qPCR methods and the presence of MCV in Brazil since 2017, including a genotype not previously described.
Collapse
Affiliation(s)
- Antônio Augusto Fonseca
- Ministério da Agricultura, Pecuária e Abastecimento, LFDA-MG/MAPA, 33600-000 Pedro Leopoldo, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gökoğlu E, Kıpçak F, Taskin-Tok T, Duyar H, Seferoğlu Z. Structural analysis and calf thymus DNA/HSA binding properties of new carbazole derivative containing piperazine. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Černigoj U, Vidič J, Ferjančič A, Sinur U, Božič K, Mencin N, Martinčič Celjar A, Gagnon P, Štrancar A. Guanidine improves DEAE anion exchange-based analytical separation of plasmid DNA. Electrophoresis 2021; 42:2619-2625. [PMID: 34569093 DOI: 10.1002/elps.202100210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Elution of strong and weak anion exchangers with sodium chloride gradients is commonly employed for analysis of sample mixtures containing different isomers of plasmid DNA. Gradient elution of a weak anion exchanger (diethylaminoethyl) in the presence of guanidine hydrochloride (Gdn) roughly doubles resolution between open-circular (oc) and supercoiled (sc) isomers. It also improves resolution among sc, linear, and multimeric/aggregated forms. Sharper elution peaks with less tailing increase sensitivity about 30%. However, elution with an exclusively Gdn gradient to 900 mM causes more than 10% loss of plasmid. Elution with a sodium chloride gradient while maintaining Gdn at a level concentration of 300 mM achieves close to 100% recovery of sc plasmid while maintaining the separation improvements achieved by exclusively Gdn elution. Corresponding improvements in separation performance are not observed on a strong (quaternary amine) anion exchanger. Other chaotropic salts do not produce a favorable result on either exchanger, nor does the inclusion of surfactants or EDTA. Selectivity of the diethylaminoethyl-Gdn method is orthogonal to electrophoresis, but with better quantification than agarose electrophoresis, better quantitative accuracy than CE, and resolution approaching CE.
Collapse
Affiliation(s)
- Urh Černigoj
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Jana Vidič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Ana Ferjančič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Urša Sinur
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Klemen Božič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Nina Mencin
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | | | - Pete Gagnon
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Aleš Štrancar
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| |
Collapse
|
9
|
Studzińska S, Zawadzka E, Bocian S, Szumski M. Synthesis and application of stationary phase for DNA-affinity chromatographic analysis of unmodified and antisense oligonucleotide. Anal Bioanal Chem 2021; 413:5109-5119. [PMID: 34165593 PMCID: PMC8405468 DOI: 10.1007/s00216-021-03473-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
The goal of the research was the synthesis and application of an oligonucleotide immobilized stationary phase for the analysis of unmodified and antisense oligonucleotides. The method for attaching these molecules to aminopropyl silica modified with pentanedioic acid was developed. Each step of the synthesis was carefully controlled with the application of spectroscopic, elemental, and chromatographic analyses. The oligonucleotide-based stationary phase was applied for the retention studies. Unmodified oligonucleotides of different complementarity to the molecule attached as a stationary phase, as well as antisense oligonucleotides, were tested. The comparative study upon complex optimization of oligonucleotide analysis in different liquid chromatography modes was performed. Results have shown that this stationary phase may be applied for oligonucleotide analysis in hydrophilic interaction liquid chromatography and ion exchange chromatography, but no unique sequence-based selectivity was obtained. Contrary results were observed for affinity chromatography, which allowed for specific separation of the complementary strands based on hydrogen bonding and stacking interactions, where the temperature was the main factor influencing the selectivity of the separation. Furthermore, the oligonucleotide-based stationary phase may be applied for comparative antisense oligonucleotide hybridization studies to a specific RNA sequence. All of the results have shown that affinity chromatography with oligonucleotide-based stationary phases is a powerful technique for the specific base recognition of polynucleotides.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100, Toruń, Poland.
| | - Ewelina Zawadzka
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100, Toruń, Poland
| | - Szymon Bocian
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100, Toruń, Poland
| | - Michał Szumski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| |
Collapse
|
10
|
Alves CPA, Prazeres DMF, Monteiro GA. Minicircle Biopharmaceuticals–An Overview of Purification Strategies. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.612594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Minicircles are non-viral delivery vectors with promising features for biopharmaceutical applications. These vectors are plasmid-derived circular DNA molecules that are obtained in vivo in Escherichia coli by the intramolecular recombination of a parental plasmid, which generates a minicircle containing the eukaryotic therapeutic cassette of interest and a miniplasmid containing the prokaryotic backbone. The production process results thus in a complex mixture, which hinders the isolation of minicircle molecules from other DNA molecules. Several strategies have been proposed over the years to meet the challenge of purifying and obtaining high quality minicircles in compliance with the regulatory guidelines for therapeutic use. In minicircle purification, the characteristics of the strain and parental plasmid used have a high impact and strongly affect the purification strategy that can be applied. This review summarizes the different methods developed so far, focusing not only on the purification method itself but also on its dependence on the upstream production strategy used.
Collapse
|
11
|
Valente JFA, Queiroz JA, Sousa F. Dilemma on plasmid DNA purification: binding capacity vs selectivity. J Chromatogr A 2020; 1637:461848. [PMID: 33421679 DOI: 10.1016/j.chroma.2020.461848] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Plasmid DNA chromatography is a powerful field in constant development and evolution. The use of this technique is considered mandatory in the production of an efficient and safe formulation to be applied for plasmid-mediated gene therapy. Concerning this, the search for an ideal chromatographic support/ligand combination motivated scientist to pursue a continuous improvement on the plasmid chromatography performance, looking for a progression on the ligands and supports used. The present review explores the different approaches used over time to purify plasmid DNA, ambitioning both high recovery and high purity levels. Overall, it is presented a critical discussion relying on the relevance of the binding capacity versus selectivity of the supports.
Collapse
Affiliation(s)
- J F A Valente
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506Covilhã, Portugal; CDRSP-IPLEIRIA - Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, Rua de Portugal - Zona Industrial, 2430-028Marinha Grande, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506Covilhã, Portugal
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506Covilhã, Portugal.
| |
Collapse
|
12
|
Almeida AM, Costa D, Simões AR, Queiroz JA, Sousa F, Sousa Â. Enhancement of a biotechnological platform for the purification and delivery of a human papillomavirus supercoiled plasmid DNA vaccine. N Biotechnol 2020; 59:1-9. [PMID: 32622863 DOI: 10.1016/j.nbt.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023]
Abstract
New biotechnological strategies are being explored, aimed at rapid and economic manufacture of large quantities of DNA vaccines with the required purity for therapeutic applications, as well as their correct delivery as biopharmaceuticals to target cells. This report describes the purification of supercoiled (sc) HPV-16 E6/E7 plasmid DNA (pDNA) vaccine from a bacterial lysate, using an arginine-based monolith, presenting a spacer arm in its configuration. To enhance the performance of the purification process, monolith modification with the spacer arm can improve accessibility of the arginine ligand. By using a low NaCl concentration at pH 7.0, a condition to eliminate the RNA impurity directly in the flow through was established. The pH increase to 7.5 allowed the elimination of non-functional pDNA isoforms, the sc pDNA being recovered by increasing the ionic strength. As well as a binding capacity of 2.53 mg/mL obtained with a pre-purified sc pDNA sample, the column also purified sc pDNA from high lysate loading, with capacities above 1 mg/mL. Due to the sample displacement phenomena, non-functional pDNA isoforms were eliminated throughout column loading, favoring the degree of purity of final sc pDNA of 93.3%-98.5%. Thereafter, purified sc pDNA was successfully encapsulated into CaCO3-gelatin nano-complexes. Delivery of the pDNA-carriers to THP-1 cells was assessed through pDNA cellular uptake evaluation and correct E6 expression was verified by mRNA and protein detection. A biotechnological platform was established for sc pDNA purification and delivery to dendritic cells, stimulating further in vivo studies.
Collapse
Affiliation(s)
- Ana M Almeida
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana R Simões
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
13
|
Effect of Chromatographic Conditions on Supercoiled Plasmid DNA Stability and Bioactivity. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dysfunction of the tumor suppressor gene TP53 has been associated with the pathogenesis of the majority of the cases of cancer reported to date, leading the cell to acquire different features known as the cancer hallmarks. In normal situations, the protein p53 protects the cells against tumorigenesis. By detecting metabolic stress or DNA damage in response to stress, p53 can lead the cell to senescence, autophagy, cell cycle arrest, DNA repair, and apoptosis. Thus, in the case of p53 mutations, it is reasonable to assume that the reestablishment of its function, may restrain the proliferation of cancer cells. The concept of cancer gene therapy can be based on this assumption, and suitable biotechnological approaches must be explored to assure the preparation of gene-based biopharmaceuticals. Although numerous procedures have already been established to purify supercoiled plasmid DNA (sc pDNA), the therapeutic application is highly dependent on the biopharmaceutical’s activity, which can be affected by the chromatographic conditions used. Thus, the present work aims at comparing quality and in vitro activity of the supercoiled (sc) isoform of the p53 encoding plasmid purified by three different amino acids-based chromatographic strategies, involving histidine–agarose, arginine–macroporous, and histidine–monolith supports. The B-DNA topology was maintained in all purified pDNA samples, but their bioactivity, related to the induction of protein p53 expression and apoptosis in cancer cells, was higher with arginine–macroporous support, followed by histidine–monolith and histidine–agarose. Despite the purity degree of 92% and recovery yield of 43% obtained with arginine–macroporous, the sc pDNA sample led to a higher expression level of the therapeutic p53 protein (58%) and, consequently, induced a slightly higher apoptotic effect (27%) compared with sc pDNA samples obtained with histidine–monolithic support (26%) and histidine–agarose support (24%). This behavior can be related to the mild chromatographic conditions used with arginine–macroporous support, which includes the use of low salt concentrations, at neutral pH and lower temperatures, when compared to the high ionic strength of ammonium sulfate and acidic pH used with histidine-based supports. These results can contribute to field of biopharmaceutical preparation, emphasizing the need to control several experimental conditions while adapting and selecting the methodologies that enable the use of milder conditions as this can have a significant impact on pDNA stability and biological activity.
Collapse
|
14
|
Almeida AM, Queiroz JA, Sousa F, Sousa A. Minicircle DNA purification: Performance of chromatographic monoliths bearing lysine and cadaverine ligands. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:7-16. [PMID: 31005775 DOI: 10.1016/j.jchromb.2019.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/11/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022]
Abstract
Minicircle DNA (mcDNA) technology is in the vanguard of vectors designed for gene therapy, since the absence of prokaryotic sequences confers to mcDNA higher biosafety in comparison to other DNA vectors. However, the presence of other isoforms and non-recombined parental molecules hampers the isolation of supercoiled (sc) mcDNA with the chromatographic methods already established for plasmid purification. In this work, two monolithic supports were modified with lysine and its decarboxylated derivative, cadaverine, to explore their performance in the sc mcDNA purification. Increasing NaCl gradients and different pH values (from 6 to 9) were tested in both modified monoliths. In general, cadaverine modified support established stronger interactions with mcDNA than lysine modified monolith, at acidic pH. For instance, at pH 6.0 the retention time for RNA and DNA molecules in lysine modified monolith was 11.58 and 14.59, respectively, while for cadaverine modified monolith was 20.32 and 27.12, respectively. The lysine modified monolith was able to successfully isolate sc mcDNA from the lysate sample. However, recovery yield was significantly sacrificed to guarantee high purity levels of sc mcDNA. The cadaverine modified monolith showed better selectivity than the previous monolith, achieving the successful sc mcDNA isolation from the lysate sample. The final sc mcDNA sample, obtained by the column that showed the best performance, was characterized by real-time PCR, presenting 98.4% purity and 78.6% recovery yield. The impurities content, namely genomic DNA, proteins and endotoxins, was found within the criteria established by regulatory agencies. Overall, a simple and practical chromatographic strategy to purify sc mcDNA was for the first time implemented by exploring a modified monolithic column, with no significant reduction on the purity and recovery and without resorting to backbone modification or specific enzymatic digestion. Such features will surely be crucial in the industrial scale-up of this chromatographic strategy since it will not be associated with significant cost-increase.
Collapse
Affiliation(s)
- A M Almeida
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - F Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - A Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
15
|
Valente JFA, Sousa A, Queiroz JA, Sousa F. DoE to improve supercoiled p53-pDNA purification by O-phospho-l-tyrosine chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1105:184-192. [PMID: 30597418 DOI: 10.1016/j.jchromb.2018.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/05/2018] [Accepted: 12/02/2018] [Indexed: 02/08/2023]
Abstract
P53 is implicated in various cellular functions and several studies have shown that transfection of cancer cells with wild-type p53-expressing plasmids could directly drive cells into growth arrest and/or apoptosis. In the present work, the 6.07 kbp pcDNA3-FLAG-p53 plasmid, which encodes the p53 tumor suppressor, was produced and recovered from a recombinant cell culture of Escherichia coli DH5α. Following plasmid biosynthesis, the O-phospho-l-tyrosine chromatographic matrix was explored to purify the supercoiled p53-encoding plasmid. In order to quickly determine the optimal chromatographic performance and to obtain the required purity degree, maximizing the recovery yield of the supercoiled plasmid DNA, the Composite Central Face design was applied. The model revealed to be statistically significant (p-value < 0.05), with coefficient of determination of 0.9434 for the recovery yield and 0.9581 for purity and the central point was successfully validated. After the chromatographic process optimization by using the design of experiments tool, 49.7% of the supercoiled p53-encoding plasmid was recovered with 98.2% of purity, when a decreasing ammonium sulphate gradient was applied. The dynamic binding capacity of the O-phospho-l-tyrosine agarose column was 0.35 ± 0.02 mg pDNA/mL matrix at 50% of the breakthrough. Finally, the purified sample was analysed to assess the content of endotoxins, proteins and genomic DNA, showing that all these impurity levels were below the recommendations of the regulatory agencies.
Collapse
Affiliation(s)
- J F A Valente
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - A Sousa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
16
|
Lin KN, Grandhi TSP, Goklany S, Rege K. Chemotherapeutic Drug-Conjugated Microbeads Demonstrate Preferential Binding to Methylated Plasmid DNA. Biotechnol J 2018; 13:e1700701. [DOI: 10.1002/biot.201700701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kevin N. Lin
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| | - Taraka Sai Pavan Grandhi
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University; Tempe AZ 85287 USA
| | - Sheba Goklany
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| | - Kaushal Rege
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| |
Collapse
|
17
|
Santos T, Brito A, Boto R, Sousa P, Almeida P, Cruz C, Tomaz C. Influenza DNA vaccine purification using pHEMA cryogel support. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Synthesis and characterization of Ag+-decorated poly(glycidyl methacrylate) microparticle design for the adsorption of nucleic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:1-7. [DOI: 10.1016/j.jchromb.2018.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/05/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
|
19
|
Almeida AM, Tomás J, Pereira P, Queiroz JA, Sousa F, Sousa Â. HPV-16 targeted DNA vaccine expression: The role of purification. Biotechnol Prog 2018; 34:546-551. [PMID: 29314780 DOI: 10.1002/btpr.2603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/23/2017] [Indexed: 12/11/2022]
Abstract
DNA vaccines have come to light in the last decades as an alternative method to prevent many infectious diseases, but they can also be used for the treatment of specific diseases, such as cervical cancer caused by Human Papillomavirus (HPV). This virus produces E6 and E7 oncoproteins, which alter the cell cycle regulation and can interfere with the DNA repairing system. These features can ultimately lead to the progression of cervical cancer, after cell infection by HPV. Thus, the development of a DNA vaccine targeting both proteins arises as an interesting option in the treatment of this pathology. Nonetheless, before evaluating its therapeutic potential, the purity levels of a biopharmaceutical must meet the regulatory agency specifications. Previously, our research group successfully purified the supercoiled isoform of the recombinant HPV-16 E6/E7 DNA vaccine with virtual 100% purity by affinity chromatography. The present work was designed to evaluate the effect that pDNA sample purity levels may exert in the expression of a target protein. Thus, in vitro studies were performed to assess the vaccine ability to produce the target proteins and to compare the expression efficiency between the pDNA sample obtained by affinity chromatography, which only presents the sc isoform and fulfils the regulatory agency recommendations, and the same DNA vaccine retrieved by a commercial purification kit, which contains different pDNA isoforms. Our achievements suggest that the E6/E7 DNA vaccine purified by affinity chromatography promotes higher E6 and E7 mRNA and protein expression levels than the DNA vaccine purified with the commercial kit. Overall, these results underline the importance that a purification strategy may present in the therapeutic outcome of recombinant DNA vaccines, envisaging their further application as biopharmaceuticals. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:546-551, 2018.
Collapse
Affiliation(s)
- Ana M Almeida
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Joana Tomás
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Patrícia Pereira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - João A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Fani Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Ângela Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal
| |
Collapse
|
20
|
Santos T, Proença Z, Queiroz J, Tomaz C, Cruz C. Plasmid purification by using a new naphthalene tripodal support. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.06.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Ferreira J, Santos T, Pereira P, Corvo MC, Queiroz JA, Sousa F, Cruz C. Naphthalene amine support for G-quadruplex isolation. Analyst 2017; 142:2982-2994. [DOI: 10.1039/c7an00648a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The selective isolation of G-quadruplex (G4) using affinity ligands that bind tightly and selectively is a valuable strategy for discovering new G4 binders for the separation of G4 from duplexes or the discrimination of G4 structures.
Collapse
Affiliation(s)
- João Ferreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Patrícia Pereira
- CICS-UBI - Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Marta C. Corvo
- CENIMAT
- i3N
- Departamento de Ciência dos Materiais
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
- 2829-516 Caparica
| | - João A. Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Fani Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| |
Collapse
|
22
|
Franco-Medrano DI, Guerrero-Germán P, Montesinos-Cisneros RM, Ortega-López J, Tejeda-Mansir A. Plasmid pVAX1-NH36 purification by membrane and bead perfusion chromatography. Bioprocess Biosyst Eng 2016; 40:463-471. [PMID: 27913884 DOI: 10.1007/s00449-016-1714-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 11/25/2016] [Indexed: 11/28/2022]
Abstract
The demand for plasmid DNA (pDNA) has increased in response to the rapid advances in vaccines applications to prevent and treat infectious diseases caused by virus, bacteria or parasites, such as Leishmania species. The immunization protocols require large amounts of supercoiled plasmid DNA (sc-pDNA) challenging the development of efficient and profitable processes for capturing and purified pDNA molecules from large volumes of lysates. A typical bioprocess involves four steps: fermentation, primary recovery, intermediate recovery and final purification. Ion-exchange chromatography is one of the key operations in the purification schemes of pDNA owing the chemical structure of these macromolecules. The goal of this research was to compare the performance of the final purification step of pDNA using ion-exchange chromatography on columns packed with Mustang Q membranes or perfusive beads POROS 50 HQ. The experimental results showed that both matrixes could separate the plasmid pVAX1-NH36 (3936 bp) from impurities in clarified Escherichia coli lysates with an adequate resolution. In addition, a 24- and 21-fold global purification factor was obtained. An 88 and 63% plasmid recuperation was achieved with ion-exchange membranes and perfusion beads, respectively. A better understanding of perfusion-based matrices for the purification of pDNA was developed in this research.
Collapse
Affiliation(s)
- Diana Ivonne Franco-Medrano
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, SON, México
| | - Patricia Guerrero-Germán
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, SON, México.
| | | | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalAv. Instituto Politécnico Nacional # 2508, Cd. De, 07360, México, México
| | - Armando Tejeda-Mansir
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Encinas s/n, 83000, Hermosillo, SON, México
| |
Collapse
|
23
|
Pereira P, Queiroz JA, Figueiras A, Sousa F. Current progress on microRNAs-based therapeutics in neurodegenerative diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27882692 DOI: 10.1002/wrna.1409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs)-based therapy has recently emerged as a promising strategy in the treatments of neurodegenerative diseases. Thus, in this review, the most recent and important challenges and advances on the development of miRNA therapeutics for brain targeting are discussed. In particular, this review highlights current knowledge and progress in the field of manufacturing, recovery, isolation, purification, and analysis of these therapeutic oligonucleotides. Finally, the available miRNA delivery systems are reviewed and an analysis is presented in what concerns to the current challenges that have to be addressed to ensure their specificity and efficacy. Overall, it is intended to provide a perspective on the future of miRNA-based therapeutics, focusing the biotechnological approach to obtain miRNAs. WIREs RNA 2017, 8:e1409. doi: 10.1002/wrna.1409 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Patrícia Pereira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Figueiras
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Coimbra, Coimbra, Portugal
| | - Fani Sousa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
24
|
Affinity approaches in RNAi-based therapeutics purification. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:45-56. [DOI: 10.1016/j.jchromb.2016.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
|
25
|
|
26
|
Lima MDA, Freitas MDFMD, Gonçalves LRB, Silva Junior IJD. Recovery and purification of a Kluyvermyces lactis β-galactosidase by Mixed Mode Chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1015-1016:181-191. [PMID: 26927878 DOI: 10.1016/j.jchromb.2016.01.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 11/25/2022]
Abstract
Mixed Mode Chromatography (MMC) is a potential separation technique that allows simultaneous ionic and hydrophobic interactions between the adsorbent and the adsorbate. The aim of this work was to assess the recovery and purification of a Kluyveromyces lactis β-galactosidase employing MMC. Protein precipitation and dialysis were performed in order to concentrate the enzyme of interest and eliminate cell debris and other interferences inherent in the fermentation medium. The best conditions for both adsorption and desorption were attained by a non-factorial Central Composite Experimental Design and employed in the chromatographic runs with resin CAPTO MMC. Fermentation yielded mean values of total enzyme concentration of 0.44 mg/mL, enzymatic activity (employing lactose as a substrate) of 74 U/mL and specific activity of 168 U/mg. The Purification Factor (PF) obtained was of 1.17. After precipitation and dialysis, the subsequent chromatographic run resulted in recovery values of 41.0 and 48.2% of total protein concentration and enzymatic activity, respectively. SDS-PAGE electrophoresis confirmed the purification evolution throughout the unit operations employed, attesting the feasibility of the technique to obtain enzymes with not only considerable degree of purity but also possessing high-added value.
Collapse
Affiliation(s)
- Micael de Andrade Lima
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, S/N-Bloco 709-CEP, Ramal 206, 60455-760 Fortaleza, CE, Brazil
| | - Maria de Fátima Matos de Freitas
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, S/N-Bloco 709-CEP, Ramal 206, 60455-760 Fortaleza, CE, Brazil
| | - Luciana Rocha Barros Gonçalves
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, S/N-Bloco 709-CEP, Ramal 206, 60455-760 Fortaleza, CE, Brazil
| | - Ivanildo José da Silva Junior
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, S/N-Bloco 709-CEP, Ramal 206, 60455-760 Fortaleza, CE, Brazil.
| |
Collapse
|
27
|
p53-Encoding pDNA Purification by Affinity Chromatography for Cancer Therapy. Methods Mol Biol 2016; 1317:109-24. [PMID: 26072404 DOI: 10.1007/978-1-4939-2727-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The gene therapy approach based on reestablishment of p53 tumor suppressor, which acts as a prevailing guardian against malignant cell transformation, is raising new prospects on the outcome of an effective anticancer treatment. It is well known that the success of gene transfer to cells and subsequent expression is strictly affected by the vector manufacturing process. Therefore, several downstream methods have been proposed to achieve high quantities of supercoiled plasmid DNA with pharmaceutical grade purity. Affinity chromatography with amino acids as ligands has recently yielded interesting results because these ligands take advantage of their biological function or chemical structure to promote specific interactions with different nucleic acids. Here, we describe detailed procedures for the preparation and purification of supercoiled plasmid DNA, with the purity degree required by regulatory agencies, by using arginine affinity chromatography. With this methodology pure pDNA is obtained, efficient on eukaryotic cell transfection and biologically active, resulting in the reestablishment of the p53 protein levels in cancer cell lines.
Collapse
|
28
|
Santos T, Carvalho J, Corvo MC, Cabrita EJ, Queiroz JA, Cruz C. L-tryptophan and dipeptide derivatives for supercoiled plasmid DNA purification. Int J Biol Macromol 2016; 87:385-96. [PMID: 26952704 DOI: 10.1016/j.ijbiomac.2016.02.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
The present study focus on the preparation of chromatography supports for affinity-based chromatography of supercoiled plasmid purification. Three l-tryptophan based supports are prepared through immobilization on epoxy-activated Sepharose and characterized by HR-MAS NMR. The SPR is employed for a fast screening of l-tryptophan derivatives, as potential ligands for the biorecognition of supercoiled isoform, as well as, to establish the suitable experimental conditions for the chromatography. The results reveal that the overall affinity is high (KD=10(-9) and 10(-8)M) and the conditions tested show that the use of HEPES 100mM enables the separation and purification of supercoiled at T=10°C. The STD-NMR is performed to accomplish the epitope mapping of the 5'-mononucleotides bound to l-tryptophan derivatives supports. The data shows that the interactions between the three supports and the 5'-mononucleotides are mainly hydrophobic and π-π stacking. The chromatography experiments are performed with l-tryptophan support and plasmids pVAX-LacZ and pPH600. The supercoiled isoform separation is achieved at T=10°C by decreasing the concentration of (NH4)2SO4 from 2.7 to 0M in HEPES for pVAX-LacZ and 2.65M to 0M in HEPES for pPH600. Overall, l-tryptophan derivatives can be a promising strategy to purify supercoiled for pharmaceutical applications.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Marta C Corvo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - J A Queiroz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
29
|
Bicho D, Caramelo-Nunes C, Sousa A, Sousa F, Queiroz J, Tomaz C. Purification of influenza deoxyribonucleic acid-based vaccine using agmatine monolith. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1012-1013:153-61. [DOI: 10.1016/j.jchromb.2015.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 01/04/2023]
|
30
|
Bicho D, Santos B, Caramelo-Nunes C, Sousa A, Sousa F, Queiroz J, Tomaz C. Application of ethylenediamine monolith to purify a hemagglutinin influenza deoxyribonucleic acid-based vaccine. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Purification of Membrane-Bound Catechol-O-Methyltransferase by Arginine-Affinity Chromatography. Chromatographia 2015. [DOI: 10.1007/s10337-015-2970-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Amorim LFA, Sousa F, Queiroz JA, Cruz C, Sousa Â. Screening ofl-histidine-based ligands to modify monolithic supports and selectively purify the supercoiled plasmid DNA isoform. J Mol Recognit 2015; 28:349-58. [DOI: 10.1002/jmr.2449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Lúcia F. A. Amorim
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Av. Infante D. Henrique Covilhã 6200-506 Portugal
| | - Fani Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Av. Infante D. Henrique Covilhã 6200-506 Portugal
| | - João A. Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Av. Infante D. Henrique Covilhã 6200-506 Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Av. Infante D. Henrique Covilhã 6200-506 Portugal
| | - Ângela Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Av. Infante D. Henrique Covilhã 6200-506 Portugal
| |
Collapse
|
33
|
Silva MS, Graça VC, Reis LV, Santos PF, Silvestre S, Granadeiro L, Almeida P, Queiroz JA, Sousa F. 3,3'-Diamino-N-methyldipropylamine as a versatile affinity ligand. J Sep Sci 2015; 38:732-40. [PMID: 25556997 DOI: 10.1002/jssc.201400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/07/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022]
Abstract
Currently, in biomedicine and biotechnology fields, there is a growing need to develop and produce biomolecules with a high degree of purity. To accomplish this goal, new purification methods are being developed looking for higher performance, efficiency, selectivity, and cost-effectiveness. Affinity chromatography is considered one of the most highly selective methods for biomolecules purification. The purpose of this work is to explore a new type of a structurally simple ligand immobilized onto an agarose matrix to be used in affinity chromatography. The ligand in this study, 3,3'-diamino-N-methyldipropylamine has shown low toxicity and low cost of preparation. Moreover, the ability of the ligand to be used in affinity chromatography to purify proteins and nucleic acids was verified. An increasing sodium chloride gradient, using salt concentrations up to 500 mM, was suitable to accomplish the purification of these biomolecules, meaning that the new support allows the recovery of target biomolecules under mild conditions. Thus, the 3,3'-diamino-N-methyldipropylamine ligand is shown to be a useful and versatile tool in chromatographic experiments, with very good results either for proteins or supercoiled plasmid isoform purification.
Collapse
Affiliation(s)
- Marta S Silva
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Caramelo-Nunes C, Tomaz CT. Specific recognition of supercoiled plasmid DNA by affinity chromatography using a synthetic aromatic ligand. Methods Mol Biol 2015; 1286:47-54. [PMID: 25749945 DOI: 10.1007/978-1-4939-2447-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Liquid chromatography is the method of choice for the purification of plasmid DNA (pDNA), since it is simple, robust, versatile, and highly reproducible. The most important features of a chromatographic procedure are the use of suitable stationary phases and ligands. As conventional purification protocols are being replaced by more sophisticated and selective procedures, the focus changes toward designing and selecting ligands of high affinity and specificity. In fact, the chemical composition of the chromatographic supports determines the interactions established with the target molecules, allowing their preferential retention over the undesirable ones. Here it is described the selective recognition and purification of supercoiled pDNA by affinity chromatography, using an intercalative molecule (3,8-diamino-6-phenylphenanthridine) as ligand.
Collapse
Affiliation(s)
- Catarina Caramelo-Nunes
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | | |
Collapse
|
35
|
Almeida AM, Queiroz JA, Sousa F, Sousa A. Optimization of supercoiled HPV-16 E6/E7 plasmid DNA purification with arginine monolith using design of experiments. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 978-979:145-50. [PMID: 25544011 DOI: 10.1016/j.jchromb.2014.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/07/2014] [Accepted: 12/06/2014] [Indexed: 12/20/2022]
Abstract
The progress of DNA vaccines is dependent on the development of suitable chromatographic procedures to successfully purify genetic vectors, such as plasmid DNA. Human Papillomavirus is associated with the development of tumours due to the oncogenic power of E6 and E7 proteins, produced by this virus. The supercoiled HPV-16 E6/E7 plasmid-based vaccine was recently purified with the arginine monolith, with 100% of purity, but only 39% of recovery was achieved. Therefore, the present study describes the application of experimental design tools, a newly explored methodology in preparative chromatography, in order to improve the supercoiled plasmid DNA recovery with the arginine monolith, maintaining the high purity degree. In addition, the importance and influence of pH in the pDNA retention to the arginine ligand was also demonstrated. The Composite Central Face design was validated and the recovery of the target molecule was successfully improved from 39% to 83.5%, with an outstanding increase of more than double, while maintaining 100% of purity.
Collapse
Affiliation(s)
- A M Almeida
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - F Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - A Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
36
|
Mota É, Sousa F, Queiroz JA, Cruz C. Quantitative analysis of the interaction between l-methionine derivative and oligonucleotides. J Biochem 2014; 157:261-70. [PMID: 25425656 DOI: 10.1093/jb/mvu073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study explores the use of l-methionine derivative as a potential affinity ligand for nucleic acids purification. The l-methionine derivative is synthesized by activation of the carboxylic acid group with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide follow by immobilization on amine sensor surface, previously activated and treated with ethylenediamine. Their affinity towards oligonucleotides has been determined by surface plasmon resonance biosensor. The highest affinity is found for cytosine and thymine, followed by adenine, whereas the lowest affinity is found for guanine. For hetero-oligonucleotides the affinity order is CCCTTT > CCCAAA ≈ AAATTT > GGGTTT, showing that nucleotides with cytosine have the highest affinity, and the presence of guanine reduces the affinity, corroborating with the results obtained with homo-oligonucleotides.
Collapse
Affiliation(s)
- Élia Mota
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Fani Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - João A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
37
|
Pereira P, Sousa Â, Queiroz JA, Figueiras A, Sousa F. Pharmaceutical-grade pre-miR-29 purification using an agmatine monolithic support. J Chromatogr A 2014; 1368:173-82. [DOI: 10.1016/j.chroma.2014.09.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/14/2014] [Accepted: 09/27/2014] [Indexed: 02/08/2023]
|
38
|
Grandhi TSP, Mallik A, Lin KN, Miryala B, Potta T, Tian Y, Rege K. Aminoglycoside antibiotic-derived anion-exchange microbeads for plasmid DNA binding and in situ DNA capture. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18577-89. [PMID: 25314226 DOI: 10.1021/am503240q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plasmid DNA (pDNA) therapeutics are being investigated for gene therapy and DNA vaccines against diseases including cancer, cystic fibrosis and AIDS. In addition, several applications in modern biotechnology require pDNA for transient protein production. Here, we describe the synthesis, characterization, and evaluation of microbeads ("Amikabeads") derived from the aminoglycoside antibiotic amikacin for pDNA binding and in situ DNA capture from mammalian cells. The parental aminoglycoside-derived microbeads (Amikabeads-P) acted as anion-exchange materials, and demonstrated high capacities for binding pDNA. Binding of pDNA was significantly enhanced following quaternization of the amines on the microbeads (Amikabeads-Q). Amikabeads were further employed for the disruption and extraction of DNA from mammalian cells, indicating their utility for in situ DNA capture. Our results indicate that Amikabeads are a novel material, with multiple reactive groups for further conjugation, and can have several applications in plasmid DNA biotechnology.
Collapse
Affiliation(s)
- Taraka Sai Pavan Grandhi
- Harrington Biomedical Engineering, School of Biological and Health Systems Engineering ‡Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | | | |
Collapse
|
39
|
Kuhn H, Sahu B, Rapireddy S, Ly DH, Frank-Kamenetskii MD. Sequence specificity at targeting double-stranded DNA with a γ-PNA oligomer modified with guanidinium G-clamp nucleobases. ARTIFICIAL DNA, PNA & XNA 2014; 1:45-53. [PMID: 21687526 DOI: 10.4161/adna.1.1.12444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 05/19/2010] [Accepted: 05/24/2010] [Indexed: 11/19/2022]
Abstract
γ-PNA, a new class of peptide nucleic acids, promises to overcome previous sequence limitations of double-stranded DNA (dsDNA) targeting with PNA. To check the potential of γ-PNA, we have synthesized a biotinylated, pentadecameric γ-PNA of mixed sequence carrying three guanidinium G-clamp nucleobases. We have found that strand invasion reactions of the γ-PNA oligomer to its fully complementary target within dsDNA occurs with significantly higher binding rates than to targets containing single mismatches. Association of the PNA oligomer to mismatched targets does not go to completion but instead reaches a stationary level at or below 60%, even at conditions of very low ionic strength. Initial binding rates to both matched and mismatched targets experience a steep decrease with increasing salt concentration. We demonstrate that a linear DNA target fragment with the correct target sequence can be purified from DNA mixtures containing mismatched target or unrelated genomic DNA by affinity capture with streptavidin-coated magnetic beads. Similarly, supercoiled plasmid DNA is obtained with high purity from an initial sample mixture that included a linear DNA fragment with the fully complementary sequence. Based on the results obtained in this study we believe that γ-PNA has a great potential for specific targeting of chosen duplex DNA sites in a sequence-unrestricted fashion.
Collapse
Affiliation(s)
- Heiko Kuhn
- Center for Advanced Biotechnology; Department of Biomedical Engineering; Boston University; Boston, MA USA
| | | | | | | | | |
Collapse
|
40
|
Sousa Â, Pereira P, Sousa F, Queiroz JA. Binding mechanisms for histamine and agmatine ligands in plasmid deoxyribonucleic acid purifications. J Chromatogr A 2014; 1366:110-9. [DOI: 10.1016/j.chroma.2014.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/01/2014] [Accepted: 09/13/2014] [Indexed: 02/02/2023]
|
41
|
Sousa A, Almeida A, Černigoj U, Sousa F, Queiroz J. Histamine monolith versatility to purify supercoiled plasmid deoxyribonucleic acid from Escherichia coli lysate. J Chromatogr A 2014; 1355:125-33. [DOI: 10.1016/j.chroma.2014.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/28/2022]
|
42
|
Martins R, Queiroz J, Sousa F. Ribonucleic acid purification. J Chromatogr A 2014; 1355:1-14. [DOI: 10.1016/j.chroma.2014.05.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/24/2022]
|
43
|
Selective purification of supercoiled p53-encoding pDNA with l-methionine–agarose matrix. Anal Biochem 2014; 459:61-9. [DOI: 10.1016/j.ab.2014.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/05/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
|
44
|
Purification of pre-miR-29 by a new O-phospho-l-tyrosine affinity chromatographic strategy optimized using design of experiments. J Chromatogr A 2014; 1343:119-27. [DOI: 10.1016/j.chroma.2014.03.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/14/2014] [Accepted: 03/27/2014] [Indexed: 01/01/2023]
|
45
|
Matos T, Senkbeil S, Mendonça A, Queiroz JA, Kutter JP, Bulow L. Nucleic acid and protein extraction from electropermeabilized E. coli cells on a microfluidic chip. Analyst 2014; 138:7347-53. [PMID: 24162237 DOI: 10.1039/c3an01576a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Due to the extensive use of nucleic acid and protein analysis of bacterial samples, there is a need for simple and rapid extraction protocols for both plasmid DNA and RNA molecules as well as reporter proteins like the green fluorescent protein (GFP). In this report, an electropermeability technique has been developed which is based on exposing E. coli cells to low voltages to allow extraction of nucleic acids and proteins. The flow-through electropermeability chip used consists of a microfluidic channel with integrated gold electrodes that promote cell envelope channel formation at low applied voltages. This will allow small biomolecules with diameters less than 30 A to rapidly diffuse from the permeabilized cells to the surrounding solution. By controlling the applied voltage, partial and transient to complete cell opening can be obtained. By using DC voltages below 0.5 V, cell lysis can be avoided and the transiently formed pores can be closed again and the cells survive. This method has been used to extract RNA and GFP molecules under conditions of electropermeability. Plasmid DNA could be recovered when the applied voltage was increased to 2 V, thus causing complete cell lysis.
Collapse
Affiliation(s)
- T Matos
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, PO BOX 124, S-221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
46
|
Gonçalves A, Rocha L, Dias J, Passarinha L, Sousa A. Optimization of a chromatographic stationary phase based on gellan gum using central composite design. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 957:46-52. [DOI: 10.1016/j.jchromb.2014.02.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/17/2014] [Accepted: 02/10/2014] [Indexed: 01/27/2023]
|
47
|
Pereira P, Sousa Â, Queiroz J, Correia I, Figueiras A, Sousa F. Purification of pre-miR-29 by arginine-affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 951-952:16-23. [DOI: 10.1016/j.jchromb.2014.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/12/2014] [Accepted: 01/14/2014] [Indexed: 11/26/2022]
|
48
|
Pereira P, Sousa Â, Queiroz J, Figueiras A, Sousa F. New approach for purification of pre-miR-29 using lysine-affinity chromatography. J Chromatogr A 2014; 1331:129-32. [DOI: 10.1016/j.chroma.2014.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 11/29/2022]
|
49
|
Negative pseudo-affinity chromatography for plasmid DNA purification using berenil as ligand. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 944:39-42. [DOI: 10.1016/j.jchromb.2013.10.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/03/2013] [Accepted: 10/29/2013] [Indexed: 01/04/2023]
|
50
|
Ongkudon CM, Danquah MK. Analysis of Endotoxins Removal from Clarified Cell Lysates by Divalent Metal Cations-Induced Aggregation. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.835825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|