1
|
Yao TT, Chen L, Du Y, Jiang ZY, Cheng Y. MicroRNAs as Regulators, Biomarkers, and Therapeutic Targets in Autism Spectrum Disorder. Mol Neurobiol 2025; 62:5039-5056. [PMID: 39503812 DOI: 10.1007/s12035-024-04582-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 03/05/2025]
Abstract
The pathogenesis of autism spectrum disorder (ASD) is complex and is mainly influenced by genetic and environmental factors. Some research has indicated that environmental aspects may interplay with genetic aspects to enhance the risk, and microRNAs (miRNAs) are probably factors in explaining this link between heredity and the environment. MiRNAs are single-stranded noncoding RNAs that can regulate gene expression at the posttranscriptional level. Some research has indicated that miRNAs are closely linked to neurological diseases. Many aberrantly expressed miRNAs have been observed in autism, and these dysregulated miRNAs are expected to be potential biomarkers and provide new strategies for the treatment of this disease. This article reviews the research progress of miRNAs in autism, including their biosynthesis and function. It is found that some miRNAs show aberrant expression patterns in brain tissue and peripheral blood of autistic patients, which may serve as biomarkers of the disease. In addition, the article explores the novel role of exosomes as carriers of miRNAs with the ability to cross the blood-brain barrier and unique expression profiles, offering new possibilities for diagnostic and therapeutic interventions in ASD. The potential of miRNAs in exosomes as diagnostic markers for ASD is specifically highlighted, as well as the prospect of using engineered exosome-encapsulated miRNAs for targeted therapies.
Collapse
Affiliation(s)
- Tong-Tong Yao
- Center On Translational Neuroscience, Institute of National Security, Minzu University of China, 27th South Zhongguancun Avenue, Beijing, 100081, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zhong-Yong Jiang
- Department of Medical Laboratory, Affiliated Cancer Hospital of Chengdu Medical College, Chengdu Seventh People's Hospital, Chengdu, China.
| | - Yong Cheng
- Center On Translational Neuroscience, Institute of National Security, Minzu University of China, 27th South Zhongguancun Avenue, Beijing, 100081, China.
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
2
|
Sun Y, Zhang Y, Chen Y, Peng H, Cheng T, Sun X, Liu J, Xu C. MeCP2 Modulates Depression-Like Behaviors Comorbid to Chronic Pain by Regulating Adult Hippocampal Neurogenesis. CNS Neurosci Ther 2025; 31:e70311. [PMID: 40193046 PMCID: PMC11974449 DOI: 10.1111/cns.70311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 04/10/2025] Open
Abstract
AIMS Although previous studies have revealed the association between chronic pain-induced depression and defective adult hippocampal neurogenesis (AHN), the underlying molecular mechanism remains elusive. This study aims to examine the association between AHN and depression-like behaviors, and to reveal the underlying mechanisms. METHODS The chronic neuropathic pain model was established using mice with the spared nerve injury (SNI) surgery. The depression-like behaviors were evaluated by using the sucrose preference test (SPT), the tail suspension test (TST), the forced swimming test (FST), and the open field test (OFT). The expression of Methyl-CpG-binding protein 2 (MeCP2) was modulated by injecting the adeno-associated virus (AAV) with the DIO system into the ventral DG of the Nes-CreERT2 mice. The miRNAs in hippocampal neural stem cells (NSCs) of mice with chronic pain were analyzed via miRNA sequencing. RESULTS We found that MeCP2, an epigenetic factor that plays a key role in the development of neurons, was significantly down-regulated in NSCs in the dentate gyrus (DG) of the hippocampus in adult mice with chronic pain and comorbid depression, suggesting a role of MeCP2 in the regulation of depression-like behavior induced by chronic neuropathic pain. MeCP2 expression levels in hippocampal NSCs were closely related to AHN and chronic pain comorbid depression, and miR-199b-3p specifically targeted and inhibited MeCP2 expression by directly interacting with its 3'-UTR sequence. Furthermore, we demonstrated that the increased level of miR-199b-3p in NSCs after the occurrence of chronic pain was responsible for AHN inhibition and comorbid depression. CONCLUSION Chronic neuropathic pain may result in an increased level of miR-199b-3p in hippocampal NSCs, which in turn targeted the Mecp2 gene and inhibited its transcription. Inhibited MeCP2 expression in NSCs contributes to AHN inhibition and depression-like behaviors.
Collapse
Affiliation(s)
- Yanting Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Ying Zhang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Yexiang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Huisheng Peng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Tiantian Cheng
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Xiujian Sun
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Jing‐Gen Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityZhejiangHangzhouChina
| | - Chi Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Affiliated Hospital of Zhejiang Chinese Medical UniversityZhejiangHangzhouChina
| |
Collapse
|
3
|
Cignarella A, Boscaro C, Albiero M, Bolego C, Barton M. Post-Transcriptional and Epigenetic Regulation of Estrogen Signaling. J Pharmacol Exp Ther 2023; 386:288-297. [PMID: 37391222 DOI: 10.1124/jpet.123.001613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Post-translational and epigenetic regulation are important mechanisms controlling functions of genes and proteins. Although the "classic" estrogen receptors (ERs) have been acknowledged to function in mediating estrogen effects via transcriptional mechanisms, estrogenic agents modulate the turnover of several proteins via post-transcriptional and post-translational pathways including epigenetics. For instance, the metabolic and angiogenic action of G-protein coupled estrogen receptor (GPER) in vascular endothelial cells has been recently elucidated. By interacting with GPER, 17β-estradiol and the GPER agonist G1 enhance endothelial stability of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and capillary tube formation by increasing ubiquitin-specific peptidase 19 levels, thereby reducing PFKFB3 ubiquitination and proteasomal degradation. In addition to ligands, the functional expression and trafficking of ERs can be modulated by post-translational modification, including palmitoylation. MicroRNAs (miRNAs), the most abundant form of endogenous small RNAs in humans, regulate multiple target genes and are at the center of the multi-target regulatory network. This review also discusses the emerging evidence of how miRNAs affect glycolytic metabolism in cancer, as well as their regulation by estrogens. Restoring dysregulated miRNA expression represents a promising strategy to counteract the progression of cancer and other disease conditions. Accordingly, estrogen post-transcriptional regulatory and epigenetic mechanisms represent novel targets for pharmacological and nonpharmacological intervention for the treatment and prevention of hormone-sensitive noncommunicable diseases, including estrogen-sensitive cancers of the reproductive system in women. SIGNIFICANCE STATEMENT: The effects of estrogen are mediated by several mechanisms that are not limited to the transcriptional regulation of target genes. Slowing down the turnover of master regulators of metabolism by estrogens allows cells to rapidly adapt to environmental cues. Identification of estrogen-targeted microRNAs may lead to the development of novel RNA therapeutics that disrupt pathological angiogenesis in estrogen-dependent cancers.
Collapse
Affiliation(s)
- Andrea Cignarella
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Carlotta Boscaro
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Mattia Albiero
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Chiara Bolego
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Matthias Barton
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| |
Collapse
|
4
|
Zhang Y, Fan H, Zou C, Wei F, Sun J, Shang Y, Chen L, Wang X, Hu B. Screening seven hub genes associated with prognosis and immune infiltration in glioblastoma. Front Genet 2022; 13:924802. [PMID: 36035134 PMCID: PMC9412194 DOI: 10.3389/fgene.2022.924802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Diagnostic and therapeutic challenges have been raised because of poor prognosis. Gene expression profiles of GBM and normal brain tissue samples from GSE68848, GSE16011, GSE7696, and The Cancer Genome Atlas (TCGA) were downloaded. We identified differentially expressed genes (DEGs) by differential expression analysis and obtained 3,800 intersected DEGs from all datasets. Enrichment analysis revealed that the intersected DEGs were involved in the MAPK and cAMP signaling pathways. We identified seven different modules and 2,856 module genes based on the co-expression analysis. Module genes were used to perform Cox and Kaplan-Meier analysis in TCGA to obtain 91 prognosis-related genes. Subsequently, we constructed a random survival forest model and a multivariate Cox model to identify seven hub genes (KDELR2, DLEU1, PTPRN, SRBD1, CRNDE, HPCAL1, and POLR1E). The seven hub genes were subjected to the risk score and survival analyses. Among these, CRNDE may be a key gene in GBM. A network of prognosis-related genes and the top three differentially expressed microRNAs with the largest fold-change was constructed. Moreover, we found a high infiltration of plasmacytoid dendritic cells and T helper 17 cells in GBM. In conclusion, the seven hub genes were speculated to be potential prognostic biomarkers for guiding immunotherapy and may have significant implications for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Yesen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, GD, China
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huasheng Fan
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Feng Wei
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Jiwei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuchun Shang
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, GD, China
- *Correspondence: Xiangyu Wang, ; Beiquan Hu,
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
- *Correspondence: Xiangyu Wang, ; Beiquan Hu,
| |
Collapse
|
5
|
Liao XQ, Yu HC, Diao LM, Lu L, Li H, Zhou YY, Qin HL, Huang QL, Lv TT, Huang XM. Differentially expressed circRNA and functional pathways in the hippocampus of epileptic mice based on next-generation sequencing. Kaohsiung J Med Sci 2021; 37:803-811. [PMID: 34110683 DOI: 10.1002/kjm2.12404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/25/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022] Open
Abstract
Epilepsy is a clinical syndrome caused by the highly synchronized abnormal discharge of brain neurons. It has the characteristics of paroxysmal, transient, repetitive, and stereotyped. Circular RNAs (circRNAs) are a recently discovered type of noncoding RNA with diverse cellular functions related to their excellent stability; additionally, some circRNAs can bind and regulate microRNAs (miRNAs). The present study was designed to screen the differentially expressed circRNA in an acute seizure model of epilepsy in mice, analyze the related miRNA and mRNA, and study their participating functions and enrichment pathways. In order to obtain the differential expression of circRNA in epilepsy and infer their function, we used next-generation sequencing and found significantly different transcripts. CIRI (circRNA identifier) software was used to predict circRNA from the hippocampus cDNA, EdgeR was applied for the differential circRNA analysis between samples, and Cytoscape 3.7.2 software was used to draw the network diagram. A total of 10,388 differentially expressed circRNAs were identified, of which 34 were upregulated and 66 were downregulated. Among them, mm9_circ_008777 and mm9_circ_004424 were the key upregulated genes, and their expression in the epilepsy group was verified using Quantitative real-time PCR (QPCR). The analysis indicated that the extracted gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were closely related to several epilepsy-associated processes. This study determined that mm9_circ_008777 and mm9_circ_004424 are potential biomarkers of epilepsy, which play important roles in epilepsy-related pathways. These results could help improve the understanding of the biological mechanisms of circRNAs and epilepsy treatments.
Collapse
Affiliation(s)
- Xian-Qiu Liao
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hai-Chun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, China
| | - Li-Mei Diao
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Lu
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Huan Li
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan-Ying Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Hong-Ling Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Qi-Liu Huang
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ting-Ting Lv
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiao-Mei Huang
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
6
|
Xing Y, Wang Z, Lu Z, Xia J, Xie Z, Jiao M, Liu R, Chu Y. MicroRNAs: immune modulators in cancer immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 1:ltab006. [PMID: 35919742 PMCID: PMC9327120 DOI: 10.1093/immadv/ltab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
Summary
MicroRNA (miRNA) is a class of endogenous small non-coding RNA of 18–25 nucleotides and plays regulatory roles in both physiological and pathological processes. Emerging evidence support that miRNAs function as immune modulators in tumors. MiRNAs as tumor suppressors or oncogenes are also found to be able to modulate anti-tumor immunity or link the crosstalk between tumor cells and immune cells surrounding. Based on the specific regulating function, miRNAs can be used as predictive, prognostic biomarkers, and therapeutic targets in immunotherapy. Here, we review new findings about the role of miRNAs in modulating immune responses, as well as discuss mechanisms underlying their dysregulation, and their clinical potentials as indicators of tumor prognosis or to sensitize cancer immunotherapy.
Collapse
Affiliation(s)
- Yun Xing
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhou Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Jie Xia
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Zhangjuan Xie
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Mengxia Jiao
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Ronghua Liu
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Yiwei Chu
- Shanghai Fifth People’s Hospital and Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
7
|
Alimoradi N, Firouzabadi N, Fatehi R. How metformin affects various malignancies by means of microRNAs: a brief review. Cancer Cell Int 2021; 21:207. [PMID: 33849540 PMCID: PMC8045276 DOI: 10.1186/s12935-021-01921-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Metformin known as the first-line orally prescribed drug for lowering blood glucose in type II diabetes (T2DM) has recently found various therapeutic applications including in cancer. Metformin has been studied for its influences in prevention and treatment of cancer through multiple mechanisms such as microRNA (miR) regulation. Alteration in the expression of miRs by metformin may play an important role in the treatment of various cancers. MiRs are single-stranded RNAs that are involved in gene regulation. By binding to the 3'UTR of target mRNAs, miRs influence protein levels. Irregularities in the expression of miRs that control the expression of oncogenes and tumor suppressor genes are associated with the onset and progression of cancer. Metformin may possess an effect on tumor prevention and progression by modifying miR expression and downstream pathways. Here, we summarize the effect of metformin on different types of cancer by regulating the expression of various miRs and the associated downstream molecules.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Overexpression of hsa_circ_0002874 promotes resistance of non-small cell lung cancer to paclitaxel by modulating miR-1273f/MDM2/p53 pathway. Aging (Albany NY) 2021; 13:5986-6009. [PMID: 33612481 PMCID: PMC7950269 DOI: 10.18632/aging.202521] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/19/2020] [Indexed: 12/24/2022]
Abstract
Background: This study aimed to investigate the aberrant expression of hsa_circ_0002874 in non-small cell lung cancer (NSCLC) and elucidate associated molecular mechanisms that influence apoptosis and induce paclitaxel (PTX) resistance. Methods: Inhibitors were used to downregulate circRNA or miRNA expression. pCDNA plasmid transfection and mimics were used to upregulate circRNA or miRNA expression. Dual-luciferase reporter assays were conducted to evaluate interactions between miR1273f and MDM2. Xenograft tumor models were used to assess the effect of hsa_circ_0002874 and miR1273f on tumor growth. NSCLC tissues and matched non-cancerous tissues were also collected for correlation analysis. Results: hsa_circ_0002874 acts as a sponge for miR1273f which targets MDM2/P53. The stability of the hsa_circ_0002874/miR1273f/MDM2/P53 pathway was verified by upregulating and downregulating the expression of hsa_circ_0002874 and miR1273f. hsa_circ_0002874 downregulation or miR1273f upregulation reversed the resistance of the A549/Taxol cells in xenograft models. The expression of hsa_circ_0002874 was high, and the level of MDM2 was low in NSCLC tissues. P53 was only weakly expressed in NSCLC tissues with high expression of MDM2. Conclusions: hsa_circ_0002874 is strongly expressed in NSCLC tissues and maybe a potential marker for PTX resistance. hsa_circ_0002874 downregulation could regulate miR1273f/MDM2/P53 signaling pathway to reverse the PTX resistance of NSCLC and induce apoptosis in vitro and vivo.
Collapse
|
9
|
Exosomes and exosomal RNAs in breast cancer: A status update. Eur J Cancer 2021; 144:252-268. [DOI: 10.1016/j.ejca.2020.11.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
|
10
|
Choppavarapu L, Kandi SM. Circulating MicroRNAs as Potential Biomarkers in Glioma: A Mini-Review. Endocr Metab Immune Disord Drug Targets 2020; 21:195-202. [PMID: 32744979 DOI: 10.2174/1871530320666200730230422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
Glioma comprises of a group of heterogeneous brain tumors originating from glial cells. Primary glioblastoma is among the most common glial cells that have a characteristic clinical and molecular profile. Advancement in the field of cancer research and inventions of various clinical methodologies could not improve the median survival of this deadly tumor from 12 months. The development of a non-invasive prognostic biomarker in blood would be a revolution in the diagnosis and therapeutic monitoring of this tumor. Extracellular vesicles (Evs) are released from the tumor microenvironment into the blood, which contains the genetic material that represents the genetics of tumor cells. It is also seen that these Evs contain a variety of RNA populations, including miRNAs. Several studies identified that circulating cell-free miRNAs, either free or present in Evs, could be considered as a potential biomarker in early diagnosis and prognosis of glioblastoma. Micro RNA studies in glioblastoma have found to be promising, as it reveals the biological pathway behind pathogenesis and helps in predicting the treatment targets. The literature says that various treatment methods change the type and quantity of miRNAs in biological fluids, which can be used to monitor the therapy. This review paper focuses on the role of circulating miRNAs as potential biomarkers in the diagnosis and clinical management of glioma patients.
Collapse
Affiliation(s)
| | - Sibin M Kandi
- Department of Biochemistry, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
11
|
Circ-HIPK3 plays an active role in regulating myoblast differentiation. Int J Biol Macromol 2020; 155:1432-1439. [DOI: 10.1016/j.ijbiomac.2019.11.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/19/2023]
|
12
|
Song J, Shi W, Gao Z, Liu X, Wang W. Downregulation of circRNA_100876 Inhibited Progression of NSCLC In Vitro via Targeting miR-636. Technol Cancer Res Treat 2020; 19:1533033820951817. [PMID: 33030101 PMCID: PMC7549163 DOI: 10.1177/1533033820951817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Non-small cell lung carcinoma (NSCLC) is a common malignant tumor with poor prognosis. CircRNA-100876 has been considered to be involved in NSCLC. However, the mechanism by which circRNA_100876 mediated the progression of NSCLC remains unclear. METHODS CCK8 assay and immunofluorescence were used to detect cell proliferation. Flow cytometry and transwell assay were performed to analyze cell apoptosis, migration and invasion, respectively. Verification of possible target for circRNA_100876 and related miR-636 were done using luciferase assay. In addition, western blot was performed to detect the protein expressions in NSCLC cells. RESULTS Silencing of circRNA_100876 notably inhibited the proliferation of NSCLC cells. Moreover, downregulation of circRNA_100876 significantly induce the apoptosis of NSCLC cells via mediation of apoptosis-related proteins. In addition, silencing of circRNA_100876 significantly inhibited migration and invasion of NSCLC cells. MiR-636 was the downstream target of circRNA_100876. Meanwhile, RET was the direct target of miR-636. Finally, circRNA_100876 shRNA2 notably suppressed the progression of NSCLC through PI3K/Akt signaling. CONCLUSION CircRNA_100876 knockdown notably suppressed the progression of NSCLC through regulation of miR-636/RET axis, which may serve as a potential target for treatment of NSCLC.
Collapse
Affiliation(s)
- Jianxiang Song
- Department of Cardio-Thoracic Surgery, Yancheng Third People’s
Hospital (The Affiliated Yancheng Hospital of Southeast University Medical College),
Yancheng, Jiangsu, China
| | - Woda Shi
- Department of Cardio-Thoracic Surgery, Yancheng Third People’s
Hospital (The Affiliated Yancheng Hospital of Southeast University Medical College),
Yancheng, Jiangsu, China
| | - Zhengya Gao
- Department of Cardio-Thoracic Surgery, Yancheng Third People’s
Hospital (The Affiliated Yancheng Hospital of Southeast University Medical College),
Yancheng, Jiangsu, China
| | - Xingchen Liu
- Department of Cardio-Thoracic Surgery, Yancheng Third People’s
Hospital (The Affiliated Yancheng Hospital of Southeast University Medical College),
Yancheng, Jiangsu, China
| | - Wencai Wang
- Department of Cardio-Thoracic Surgery, Yancheng Third People’s
Hospital (The Affiliated Yancheng Hospital of Southeast University Medical College),
Yancheng, Jiangsu, China
| |
Collapse
|
13
|
Zhao B, Chen Y, Hu S, Yang N, Wang M, Liu M, Li J, Xiao Y, Wu X. Systematic Analysis of Non-coding RNAs Involved in the Angora Rabbit ( Oryctolagus cuniculus) Hair Follicle Cycle by RNA Sequencing. Front Genet 2019; 10:407. [PMID: 31130985 PMCID: PMC6509560 DOI: 10.3389/fgene.2019.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
The hair follicle (HF) cycle is a complicated and dynamic process in mammals, associated with various signaling pathways and gene expression patterns. Non-coding RNAs (ncRNAs) are RNA molecules that are not translated into proteins but are involved in the regulation of various cellular and biological processes. This study explored the relationship between ncRNAs and the HF cycle by developing a synchronization model in Angora rabbits. Transcriptome analysis was performed to investigate ncRNAs and mRNAs associated with the various stages of the HF cycle. One hundred and eleven long non-coding RNAs (lncRNAs), 247 circular RNAs (circRNAs), 97 microRNAs (miRNAs), and 1,168 mRNAs were differentially expressed during the three HF growth stages. Quantitative real-time PCR was used to validate the ncRNA transcriptome analysis results. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses provided information on the possible roles of ncRNAs and mRNAs during the HF cycle. In addition, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA networks were constructed to investigate the underlying relationships between ncRNAs and mRNAs. LNC_002919 and novel_circ_0026326 were found to act as ceRNAs and participated in the regulation of the HF cycle as miR-320-3p sponges. This research comprehensively identified candidate regulatory ncRNAs during the HF cycle by transcriptome analysis, highlighting the possible association between ncRNAs and the regulation of hair growth. This study provides a basis for systematic further research and new insights on the regulation of the HF cycle.
Collapse
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Manman Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Ming Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yeyi Xiao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Allas L, Boumédiene K, Baugé C. Epigenetic dynamic during endochondral ossification and articular cartilage development. Bone 2019; 120:523-532. [PMID: 30296494 DOI: 10.1016/j.bone.2018.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022]
Abstract
Within the last decade epigenetics has emerged as fundamental regulator of numerous cellular processes, including those orchestrating embryonic and fetal development. As such, epigenetic factors play especially crucial roles in endochondral ossification, the process by which bone tissue is created, as well during articular cartilage formation. In this review, we summarize the recent discoveries that characterize how DNA methylation, histone post-translational modifications and non-coding RNA (e.g., miRNA and lcnRNA) epigenetically regulate endochondral ossification and chondrogenesis.
Collapse
Affiliation(s)
- Lyess Allas
- Normandie Univ, UNICAEN, EA7451 BioConnecT, Caen, France
| | | | | |
Collapse
|
15
|
Córdova-Rivas S, Fraire-Soto I, Mercado-Casas Torres A, Servín-González LS, Granados-López AJ, López-Hernández Y, Reyes-Estrada CA, Gutiérrez-Hernández R, Castañeda-Delgado JE, Ramírez-Hernández L, Varela-Silva JA, López JA. 5p and 3p Strands of miR-34 Family Members Have Differential Effects in Cell Proliferation, Migration, and Invasion in Cervical Cancer Cells. Int J Mol Sci 2019; 20:E545. [PMID: 30696040 PMCID: PMC6387060 DOI: 10.3390/ijms20030545] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/24/2022] Open
Abstract
The micro RNA (miR)-34 family is composed of 5p and 3p strands of miR-34a, miR-34b, and miR-34c. The 5p strand's expression and function is studied in cervical cancer. The 3p strand's function and regulation remain to be elucidated. To study the function of the passenger strands of miR-34 family members, we overexpressed 5p and 3p strands using a synthetic miRNA in cervical cell lines. Cell proliferation was evaluated using crystal violet. Migration and invasion were tested using transwell assays, Western blot, and zymography. Possible specific targets and cell signaling were investigated for each strand. We found that miR-34a-5p inhibited proliferation, migration, and cell invasion accompanied by matrix metalloproteinase 9 (MMP9) activity and microtubule-associated protein 2 (MAP2) protein reduction. We also found that miR-34b-5p and miR-34c-5p inhibit proliferation and migration, but not invasion. In contrast, miR-34c-5p inhibits MMP9 activity and MAP2 protein, while miR-34b-5p has no effect on these genes. Furthermore, miR-34a-3p and miR-34b-3p inhibit proliferation and migration, but not invasion, despite the later reducing MMP2 activity, while miR-34c-3p inhibit proliferation, migration, and cell invasion accompanied by MMP9 activity and MAP2 protein inhibition. The difference in cellular processes, MMP2 and MMP9 activity, and MAP2 protein inhibition by miR-34 family members suggests the participation of other regulated genes. This study provides insights into the roles of passenger strands (strand*) of the miR-34 family in cervical cancer.
Collapse
Affiliation(s)
- Sergio Córdova-Rivas
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Ixamail Fraire-Soto
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Andrea Mercado-Casas Torres
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | | | - Angelica Judith Granados-López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Yamilé López-Hernández
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
- Laboratorio de Metabolómica de la Unidad Académica de Ciencias Biológicas, CONACyT, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Claudia Araceli Reyes-Estrada
- Laboratorio de Patología e Inmunohistoquímica de la Unidad Académica de Medicina Humana de la Universidad Autónoma de Zacatecas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Rosalinda Gutiérrez-Hernández
- Laboratorio de Etnofarmacología Nutrición de la Unidad Académica de Enfermería de la Universidad Autónoma de Zacatecas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Julio Enrique Castañeda-Delgado
- Catedrático-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas CP 98000, Mexico.
| | - Leticia Ramírez-Hernández
- Unidad Académica de Matemáticas de la Universidad Autónoma de Zacatecas Av. Preparatoria S/N, Zacatecas 98066, México.
| | - José Antonio Varela-Silva
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Jesús Adrián López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| |
Collapse
|
16
|
DeVaux RS, Herschkowitz JI. Beyond DNA: the Role of Epigenetics in the Premalignant Progression of Breast Cancer. J Mammary Gland Biol Neoplasia 2018; 23:223-235. [PMID: 30306389 PMCID: PMC6244889 DOI: 10.1007/s10911-018-9414-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Ductal Carcinoma in Situ (DCIS) is an early breast cancer lesion that is considered a nonobligate precursor to development of invasive ductal carcinoma (IDC). Although only a small subset of DCIS lesions are predicted to progress into a breast cancer, distinguishing innocuous from minacious DCIS lesions remains a clinical challenge. Thus, patients diagnosed with DCIS will undergo surgery with the potential for radiation and hormone therapy. This has led to a current state of overdiagnosis and overtreatment. Interrogating the transcriptome alone has yet to define clear functional determinants of progression from DCIS to IDC. Epigenetic changes, critical for imprinting and tissue specific development, in the incorrect context can lead to global signaling rewiring driving pathological phenotypes. Epigenetic signaling pathways, and the molecular players that interpret and sustain their signals, are critical to understanding the underlying pathology of breast cancer progression. The types of epigenetic changes, as well as the molecular players, are expanding. In addition to DNA methylation, histone modifications, and chromatin remodeling, we must also consider enhancers as well as the growing field of noncoding RNAs. Herein we will review the epigenetic interactions that have been uncovered in early stage lesions that impact breast cancer progression, and how these players may be utilized as biomarkers to mitigate overdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Rebecca S DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA.
| |
Collapse
|
17
|
Zhong L, Zheng C, Fang H, Xu M, Chen B, Li C. MicroRNA-1270 is associated with poor prognosis and its inhibition yielded anticancer mechanisms in human osteosarcoma. IUBMB Life 2018; 70:625-632. [PMID: 29774985 DOI: 10.1002/iub.1753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Lei Zhong
- Department of Orthopedics; The Second Hospital of Jilin University; Changchun Jilin China
| | - Changjun Zheng
- Department of Orthopedics; The Second Hospital of Jilin University; Changchun Jilin China
| | - Hongjuan Fang
- Department of Electrical diagnose; The Fourth Hospital of Jilin University; Changchun Jilin China
| | - Meng Xu
- Department of Orthopedics; The Second Hospital of Jilin University; Changchun Jilin China
| | - Bingpeng Chen
- Department of Orthopedics; The Second Hospital of Jilin University; Changchun Jilin China
| | - Chen Li
- Department of Orthopedics; The Second Hospital of Jilin University; Changchun Jilin China
| |
Collapse
|
18
|
Chen S, Zhang L, Su Y, Zhang X. Screening potential biomarkers for colorectal cancer based on circular RNA chips. Oncol Rep 2018; 39:2499-2512. [PMID: 29658599 PMCID: PMC5983920 DOI: 10.3892/or.2018.6372] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to screen colorectal cancer (CRC) tissue and adjacent tissue for differences in circular RNA (circRNA) expression, to analyze the related miRNAs and messenger RNAs (mRNAs), and to investigate the circRNA expression in CRC and its function. The circRNA expression profile was generated using CapitalBio microarray technology. The differentially expressed circRNAs were identified with GeneSpring 12.5 software. Subsequently, the related mRNAs of the differentially expressed circRNAs were annotated with the molecule annotation system (MAS) 3.0, and the diseases, pathways and functional enrichment analysis of these mRNAs were performed using the KEGG orthology-based annotation system (KOBAS) 3.0. In addition, the target miRNAs of differentially expressed circRNAs were screened using the miRanda algorithm. The circRNA/miRNA network was constructed for the top 8 most significant differentially expressed circRNAs with Cytoscape software 3.4.0. A total of 10,245 differentially expressed circRNAs were identified, including 6,264 upregulated ones, and 3,981 downregulated ones. The related mRNAs were enriched in 462 KEGG diseases, 411 FunDO, 669 NHGRI GWAS catalog, and 845 OMIM; and 1,334 Reactomes, 281 KEGG pathways, 117 PANTHER and 193 BioCyc; and 11,606 Gene Ontology (GO) terms. A total of 133 circRNA/miRNA pairs were involved in the circRNA/miRNA network. hsa_circ_0126897_CBC1 may be a potential biomarker for CRC, and the cell cycle was closely associated with the occurrence and development of CRC.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Anal and Intestinal Surgery, Tianjin Union Medical Center (Nankai University Affiliated Hospital), Tianjin 300000, P.R. China
| | - Lin Zhang
- Department of Anal and Intestinal Surgery, Tianjin Union Medical Center (Nankai University Affiliated Hospital), Tianjin 300000, P.R. China
| | - Yinan Su
- Department of Anal and Intestinal Surgery, Tianjin Union Medical Center (Nankai University Affiliated Hospital), Tianjin 300000, P.R. China
| | - Xipeng Zhang
- Department of Anal and Intestinal Surgery, Tianjin Union Medical Center (Nankai University Affiliated Hospital), Tianjin 300000, P.R. China
| |
Collapse
|
19
|
Di Liegro CM, Schiera G, Di Liegro I. Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information. Genes (Basel) 2017; 8:genes8100240. [PMID: 28937658 PMCID: PMC5664090 DOI: 10.3390/genes8100240] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5'- and 3'-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell's epigenome.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo,I-90127 Palermo,Italy.
| |
Collapse
|
20
|
Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, Aldahmash A, Alajez NM. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis 2017; 8:e3045. [PMID: 28880270 PMCID: PMC5636984 DOI: 10.1038/cddis.2017.440] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising biomarker, given the ease with which miRNAs can be isolated and their structural stability under different conditions of sample processing and isolation. In this review, we provide current state-of-the-art of miRNA biogenesis, function and discuss the advantages, limitations, as well as pitfalls of using circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management.
Collapse
Affiliation(s)
- Rimi Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Dana Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,McGill University Health Centre and RI-MUHC, Montreal, Canada
| | - Khalid A Alsaleh
- Medical Oncology Unit, Department of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,KMEB, Department of Endocrinology, University of Southern Denmark, Odense, Denmark.,Institute of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Waleed Zaher
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,College of Medicine Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nehad M Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Abstract
Organ damage and resulting pathologies often involve multiple deregulated pathways. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate a multitude of genes at the post-transcriptional level. Since their discovery over two decades ago, miRNAs have been established as key players in the molecular mechanisms of mammalian biology including the maintenance of normal homeostasis and the regulation of disease pathogenesis. In recent years, there has been substantial progress in innovative techniques to measure miRNAs along with advances in targeted delivery of agents modulating their expression. This has expanded the scope of miRNAs from being important mediators of cell signaling to becoming viable quantitative biomarkers and therapeutic targets. Currently, miRNA therapeutics are in clinical trials for multiple disease areas and vast numbers of patents have been filed for miRNAs involved in various pathological states. In this review, we summarize miRNAs involved in organ injury and repair, specifically with regard to organs that are the most susceptible to injury: the liver, heart and kidney. In addition, we review the current state of knowledge on miRNA biology, miRNA biomarkers and nucleotide-based therapeutics designed to target miRNAs to prevent organ injury and promote repair.
Collapse
Affiliation(s)
- Cory V Gerlach
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vishal S Vaidya
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Institutes of Medicine, Room 562, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Xavier RM, Vorderstrasse A. Genetic Basis of Positive and Negative Symptom Domains in Schizophrenia. Biol Res Nurs 2017; 19:559-575. [PMID: 28691507 DOI: 10.1177/1099800417715907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a highly heritable disorder, the genetic etiology of which has been well established. Yet despite significant advances in genetics research, the pathophysiological mechanisms of this disorder largely remain unknown. This gap has been attributed to the complexity of the polygenic disorder, which has a heterogeneous clinical profile. Examining the genetic basis of schizophrenia subphenotypes, such as those based on particular symptoms, is thus a useful strategy for decoding the underlying mechanisms. This review of literature examines the recent advances (from 2011) in genetic exploration of positive and negative symptoms in schizophrenia. We searched electronic databases PubMed, Web of Science, and Cumulative Index to Nursing and Allied Health Literature using key words schizophrenia, symptoms, positive symptoms, negative symptoms, cognition, genetics, genes, genetic predisposition, and genotype in various combinations. We identified 115 articles, which are included in the review. Evidence from these studies, most of which are genetic association studies, identifies shared and unique gene associations for the symptom domains. Genes associated with neurotransmitter systems and neuronal development/maintenance primarily constitute the shared associations. Needed are studies that examine the genetic basis of specific symptoms within the broader domains in addition to functional mechanisms. Such investigations are critical to developing precision treatment and care for individuals afflicted with schizophrenia.
Collapse
Affiliation(s)
| | - Allison Vorderstrasse
- 2 Duke Center for Applied Genomics and Precision Medicine, Duke University School of Nursing, Durham, NC, USA
| |
Collapse
|
23
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
24
|
Letelier P, Riquelme I, Hernández AH, Guzmán N, Farías JG, Roa JC. Circulating MicroRNAs as Biomarkers in Biliary Tract Cancers. Int J Mol Sci 2016; 17:ijms17050791. [PMID: 27223281 PMCID: PMC4881607 DOI: 10.3390/ijms17050791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers (BTCs) are a group of highly aggressive malignant tumors with a poor prognosis. The current diagnosis is based mainly on imaging and intraoperative exploration due to brush cytology havinga low sensitivity and the standard markers, such as carcinoembryonic antigen (CEA) and carbohydrate 19-9 (CA19-9), not having enough sensitivity nor specificity to be used in a differential diagnosis and early stage detection. Thus, better non-invasive methods that can distinguish between normal and pathological tissue are needed. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules of ~20–22 nucleotides that regulate relevant physiological mechanisms and can also be involved in carcinogenesis. Recent studies have demonstrated that miRNAs are detectable in multiple body fluids, showing great stability, either free or trapped in circulating microvesicles, such as exosomes. miRNAs are ideal biomarkers that may be used in screening and prognosis in biliary tract cancers, aiding also in the clinical decisions at different stages of cancer treatment. This review highlights the progress in the analysis of circulating miRNAs in serum, plasma and bile as potential diagnostic and prognostic markers of BTCs.
Collapse
Affiliation(s)
- Pablo Letelier
- School of Health Sciences, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile.
| | - Ismael Riquelme
- Molecular Pathology Laboratory, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Avenida Alemania 0458, 3rd Floor, 4810296 Temuco, Chile.
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, Casilla, 54-D Temuco, Chile.
| | - Alfonso H Hernández
- School of Health Sciences, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile.
| | - Neftalí Guzmán
- School of Health Sciences, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile.
| | - Jorge G Farías
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, 54-D Temuco, Chile.
| | - Juan Carlos Roa
- Department of Pathology, Centre for Investigational Oncology (CITO), Advanced Centre for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Marcoleta 377, 7rd Floor, 8330024 Santiago, Chile.
| |
Collapse
|
25
|
Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice. Int J Mol Sci 2015; 16:27058-71. [PMID: 26569237 PMCID: PMC4661859 DOI: 10.3390/ijms161126001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022] Open
Abstract
Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin− cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin−c-Kit+ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs.
Collapse
|
26
|
Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG. Leukemia 2015; 30:229-37. [PMID: 26174629 DOI: 10.1038/leu.2015.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
Aberrant post-transcriptional regulation by microRNAs (miRNAs) has been shown to be involved in the pathogenesis of acute myeloid leukemia (AML). In a previous study, we performed a large functional screen using a retroviral barcoded miRNA expression library. Here, we report that overexpression of miR-9/9* in myeloid 32D cell line (32D-miR-9/9*) had profound impact on granulocyte colony-stimulating factor-induced differentiation. Further in vitro studies showed that enforced expression of miR-9/9* blocked normal neutrophil development in 32D and in primary murine lineage-negative bone marrow cells. We examined the expression of miR-9/9* in a cohort of 647 primary human AMLs. In most cases, miR-9 and miR-9* were significantly upregulated and their expression levels varied according to AML subtype, with the highest expression in MLL-related leukemias harboring 11q23 abnormalities and the lowest expression in AML cases with t(8;21) and biallelic mutations in CEBPA. Gene expression profiling of AMLs with high expression of miR-9/9* and 32D-miR-9/9* identified ETS-related gene (Erg) as the only common potential target. Upregulation of ERG in 32D cells rescued miR-9/9*-induced block in neutrophil differentiation. Taken together, this study demonstrates that miR-9/9* are aberrantly expressed in most of AML cases and interfere with normal neutrophil differentiation by downregulation of ERG.
Collapse
|
27
|
Shukla A, Sehgal M, Singh TR. Hydroxymethylation and its potential implication in DNA repair system: A review and future perspectives. Gene 2015; 564:109-18. [DOI: 10.1016/j.gene.2015.03.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 12/22/2022]
|
28
|
Mirihana Arachchilage G, Dassanayake AC, Basu S. A potassium ion-dependent RNA structural switch regulates human pre-miRNA 92b maturation. ACTA ACUST UNITED AC 2015; 22:262-72. [PMID: 25641166 DOI: 10.1016/j.chembiol.2014.12.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/11/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are an important set of oligonucleotide sequences with a biogenesis that involves Dicer-mediated cleavage as a critical step. Dicer cleaves the precursor miRNA (pre-miRNA) stem-loop structure to produce the mature miRNA. Using bioinformatics analysis, we discovered the presence of putative G-quadruplex (GQ)-forming sequences in about 16% of pre-miRNAs. We report the existence of a GQ as an alternative to the canonical stem-loop structure in the clinically important human pre-miRNA 92b. GQ formation led to unwinding of the stem-loop structure imparting resistance to Dicer-mediated cleavage both in vitro and in vivo. A potential K(+) ion-dependent equilibrium between GQ and the stem-loop structure has the ability to regulate the Dicer-mediated maturation of pre-miRNA 92b, which consequently affects target gene silencing. These findings unravel a new mechanism of regulation in pre-miRNA maturation, albeit at the RNA structure level.
Collapse
Affiliation(s)
| | - Arosha C Dassanayake
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
29
|
Song HT, Sun XY, Zhang L, Zhao L, Guo ZM, Fan HM, Zhong AF, Niu W, Dai YH, Zhang LY, Shi Z, Liu XP, Lu J. A preliminary analysis of association between the down-regulation of microRNA-181b expression and symptomatology improvement in schizophrenia patients before and after antipsychotic treatment. J Psychiatr Res 2014; 54:134-40. [PMID: 24694668 DOI: 10.1016/j.jpsychires.2014.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 12/25/2022]
Abstract
Despite the growing evidences on the relation of altered expression of miRNAs and schizophrenia, most schizophrenia subjects have an extensive antipsychotic treatment history and the pharmacological effects on miRNA expression are largely unknown. This study aimed to investigate the change of plasma microRNA-181b level and improvement of symptomatology before and after six-week antipsychotic treatment in schizophrenia patients, and explore their association. A total of 20 schizophrenia patients absent of antipsychotics and 20 age-and gender-matched normal controls were enrolled, and tested for 9 schizophrenia-associated microRNA (miR-30e, miR-34a, miR-181b, miR-195, miR-346, miR-432, miR-7, miR-132 and miR-212) expression levels in plasma using quantitative RT-PCR and for symptomatology improvement using Positive And Negative Syndrome Scale (PANSS) before and after treatment (olanzapine, quetiapine, ziprasidone and risperidone) for the patients only. Compared with the normal control group, the expression levels of miRNA-181b, miRNA-30e, miRNA-34a and miRNA-7 of the patients group were significantly higher (p < 0.05). Compared with those before treatment in the patient group, the symptomatology scores were significantly lower (p < 0.001), and the expression level of microRNA-181b was significantly down-regulated after treatment (p < 0.05). The change of miRNA-181b expression was positively correlated with the improvement of negative symptoms and lack of response symptoms (r = 0.502 and 0.557, P < 0.05, accounting for 20.2% and 26.4% respectively), and their therapeutic effects with OR being 11.283 and 5.119 respectively. We conclude that miRNA-181b, miRNA-30e, miRNA-34a and miRNA-7 are probably involved in pathogenesis of SZ, and the significant down-regulation of miRNA-181b expression predicts improvement of negative symptoms to treatment, and thus can serve as a potential plasmamolecular marker for antipsychotic responses.
Collapse
Affiliation(s)
- Hong-tao Song
- Department of Psychiatric Medicine, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Xin-yang Sun
- Department of Psychology and Psychiatry, Second Military Medical University, Shanghai, People's Republic of China; Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, North Peace Road 55, Changzhou 213003, Jiangsu, People's Republic of China
| | - Liang Zhang
- First Center for Mental Health of Civil Affairs Bureau, Minhang District, Shanghai, People's Republic of China
| | - Lin Zhao
- Department of Psychiatry, Guangji Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Zhong-min Guo
- GoPath Laboratories LLC, 1351 Barclay Blvd, Buffalo Grove, IL 60089, USA
| | - Hui-min Fan
- Department of Psychology and Psychiatry, Second Military Medical University, Shanghai, People's Republic of China
| | - Ai-fang Zhong
- Department of Laboratory, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, People's Republic of China
| | - Wei Niu
- Department of Rehabilitation, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, People's Republic of China
| | - Yun-hua Dai
- GoPath Laboratories LLC, 1351 Barclay Blvd, Buffalo Grove, IL 60089, USA
| | - Li-yi Zhang
- Prevention and Treatment Center for Psychological Diseases, No. 102 Hospital of Chinese People's Liberation Army, North Peace Road 55, Changzhou 213003, Jiangsu, People's Republic of China.
| | - Zheng Shi
- Department of Laboratory, No. 102 Hospital of Chinese People's Liberation Army, Changzhou, Jiangsu, People's Republic of China
| | - Xiao-ping Liu
- GoPath Laboratories LLC, 1351 Barclay Blvd, Buffalo Grove, IL 60089, USA
| | - Jim Lu
- GoPath Laboratories LLC, 1351 Barclay Blvd, Buffalo Grove, IL 60089, USA.
| |
Collapse
|
30
|
Zinovyeva AY, Bouasker S, Simard MJ, Hammell CM, Ambros V. Mutations in conserved residues of the C. elegans microRNA Argonaute ALG-1 identify separable functions in ALG-1 miRISC loading and target repression. PLoS Genet 2014; 10:e1004286. [PMID: 24763381 PMCID: PMC3998888 DOI: 10.1371/journal.pgen.1004286] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, our results suggest that ALG-1(anti) proteins may sequester microRNAs in immature and functionally deficient microRNA Induced Silencing Complexes (miRISCs), and hence compete with ALG-2 for access to functional microRNAs. Immunoprecipitation experiments show that ALG-1(anti) proteins display an increased association with Dicer and a decreased association with AIN-1/GW182. These findings suggest that alg-1(anti) mutations impair the ability of ALG-1 miRISC to execute a transition from Dicer-associated microRNA processing to AIN-1/GW182 associated effector function, and indicate an active role for ALG/Argonaute in mediating this transition. microRNAs are small non-coding RNAs that function in diverse processes by post-transcriptionally regulating gene expression. Argonautes form the core of the microRNA Induced Silencing Complex (miRISC) and are required for microRNA biogenesis and function. Here we describe the identification and characterization of a novel set of mutations in alg-1, a Caenorhabditis elegans microRNA specific Argonaute. This new class of alg-1 mutations causes phenotypes more severe than the complete loss of alg-1. Interestingly, the mutant ALG-1 proteins are able to promote microRNA biogenesis, but are defective in mediating microRNA target gene repression. We found that mutant ALG-1 associates more with Dicer, but less with miRISC effector AIN-1, compared to wild type ALG-1. We propose that these mutant ALG-1 proteins assemble nonfunctional complexes that effectively compete with the paralogous ALG-2 for critical miRISC components, including mature microRNAs. This new class of Argonaute mutants highlights the role of Argonaute in mediating a functional transition for miRISC from microRNA processing phase to target repression phase.
Collapse
Affiliation(s)
- Anna Y. Zinovyeva
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Samir Bouasker
- St-Patrick Research Group in Basic Oncology, Hôtel-Dieu de Québec (Centre Hospitalier Universitaire de Québec), Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | - Martin J. Simard
- St-Patrick Research Group in Basic Oncology, Hôtel-Dieu de Québec (Centre Hospitalier Universitaire de Québec), Laval University Cancer Research Centre, Quebec City, Québec, Canada
| | | | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Goodfellow M, Phillips NE, Manning C, Galla T, Papalopulu N. microRNA input into a neural ultradian oscillator controls emergence and timing of alternative cell states. Nat Commun 2014; 5:3399. [PMID: 24595054 PMCID: PMC3959193 DOI: 10.1038/ncomms4399] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/06/2014] [Indexed: 12/14/2022] Open
Abstract
Progenitor maintenance, timed differentiation and the potential to enter quiescence are three fundamental processes that underlie the development of any organ system. In the nervous system, progenitor cells show short-period oscillations in the expression of the transcriptional repressor Hes1, while neurons and quiescent progenitors show stable low and high levels of Hes1, respectively. Here we use experimental data to develop a mathematical model of the double-negative interaction between Hes1 and a microRNA, miR-9, with the aim of understanding how cells transition from one state to another. We show that the input of miR-9 into the Hes1 oscillator tunes its oscillatory dynamics, and endows the system with bistability and the ability to measure time to differentiation. Our results suggest that a relatively simple and widespread network of cross-repressive interactions provides a unifying framework for progenitor maintenance, the timing of differentiation and the emergence of alternative cell states. Hes1 is an important regulator of progenitor maintenance and timed differentiation, which shows oscillatory expression. Here, the authors combine experimental data and mathematical modelling to show that the interaction between miRNA-9 and Hes1 can predict progenitor transition from one cell state to another, as well as the timing of this transition.
Collapse
Affiliation(s)
- Marc Goodfellow
- 1] Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK [2] Present address: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon EX4 4QF, UK
| | - Nicholas E Phillips
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cerys Manning
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Tobias Galla
- Theoretical Physics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
32
|
Aure MR, Leivonen SK, Fleischer T, Zhu Q, Overgaard J, Alsner J, Tramm T, Louhimo R, Alnæs GIG, Perälä M, Busato F, Touleimat N, Tost J, Børresen-Dale AL, Hautaniemi S, Troyanskaya OG, Lingjærde OC, Sahlberg KK, Kristensen VN. Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol 2013; 14:R126. [PMID: 24257477 PMCID: PMC4053776 DOI: 10.1186/gb-2013-14-11-r126] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/20/2013] [Indexed: 01/31/2023] Open
Abstract
Background The global effect of copy number and epigenetic alterations on miRNA expression in cancer is poorly understood. In the present study, we integrate genome-wide DNA methylation, copy number and miRNA expression and identify genetic mechanisms underlying miRNA dysregulation in breast cancer. Results We identify 70 miRNAs whose expression was associated with alterations in copy number or methylation, or both. Among these, five miRNA families are represented. Interestingly, the members of these families are encoded on different chromosomes and are complementarily altered by gain or hypomethylation across the patients. In an independent breast cancer cohort of 123 patients, 41 of the 70 miRNAs were confirmed with respect to aberration pattern and association to expression. In vitro functional experiments were performed in breast cancer cell lines with miRNA mimics to evaluate the phenotype of the replicated miRNAs. let-7e-3p, which in tumors is found associated with hypermethylation, is shown to induce apoptosis and reduce cell viability, and low let-7e-3p expression is associated with poorer prognosis. The overexpression of three other miRNAs associated with copy number gain, miR-21-3p, miR-148b-3p and miR-151a-5p, increases proliferation of breast cancer cell lines. In addition, miR-151a-5p enhances the levels of phosphorylated AKT protein. Conclusions Our data provide novel evidence of the mechanisms behind miRNA dysregulation in breast cancer. The study contributes to the understanding of how methylation and copy number alterations influence miRNA expression, emphasizing miRNA functionality through redundant encoding, and suggests novel miRNAs important in breast cancer.
Collapse
|
33
|
Tamura M, Uyama M, Sugiyama Y, Sato M. Canonical Wnt signaling activates miR-34 expression during osteoblastic differentiation. Mol Med Rep 2013; 8:1807-11. [PMID: 24100761 DOI: 10.3892/mmr.2013.1713] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/16/2013] [Indexed: 11/05/2022] Open
Abstract
The canonical Wnt signaling pathway is crucial for the regulation of bone mass in humans and for the development of osteoblasts. MicroRNAs (miRs) represent a class of non‑coding RNAs, ~22 nucleotides in length, that regulate gene expression by targeting mRNAs for cleavage or translational repression. Several previous studies have demonstrated the involvement of miRNAs in modulating gene expression in osteoblasts and regulating osteoblast differentiation. In the present study, microRNA profiling was conducted using Wnt3a‑C2C12 cells; C2C12 cells were transfected with a Wnt3a expression plasmid to activate canonical Wnt signaling. miR‑34b‑5p and miR‑34c were identified to be upregulated by the activation of canonical Wnt signaling in C2C12 cells. Expression of mature miR‑34b/c increased from low levels at day 0 to maximum levels at day 28 of MC3T3‑E1 cell differentiation. To analyze the effects of these miRNAs on osteoblast differentiation, an antisense inhibitor was transfected into MC3T3‑E1 cells and osteoblast‑related gene expression was investigated. Knockdown of miR34b/c enhanced osteocalcin mRNA expression; however, alkaline phosphatase mRNA expression and activity were decreased by miR34b/c inhibition. These results indicated that miR‑34b/c regulates gene expression by targeting regulators of the osteogenic pathways and thereby contributes to osteoblast differentiation.
Collapse
Affiliation(s)
- Masato Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Kita‑ku, Sapporo 060-8586, Japan
| | | | | | | |
Collapse
|
34
|
Pitchiaya S, Krishnan V, Custer TC, Walter NG. Dissecting non-coding RNA mechanisms in cellulo by Single-molecule High-Resolution Localization and Counting. Methods 2013; 63:188-99. [PMID: 23820309 PMCID: PMC3797162 DOI: 10.1016/j.ymeth.2013.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/28/2022] Open
Abstract
Non-coding RNAs (ncRNAs) recently were discovered to outnumber their protein-coding counterparts, yet their diverse functions are still poorly understood. Here we report on a method for the intracellular Single-molecule High-Resolution Localization and Counting (iSHiRLoC) of microRNAs (miRNAs), a conserved, ubiquitous class of regulatory ncRNAs that controls the expression of over 60% of all mammalian protein coding genes post-transcriptionally, by a mechanism shrouded by seemingly contradictory observations. We present protocols to execute single particle tracking (SPT) and single-molecule counting of functional microinjected, fluorophore-labeled miRNAs and thereby extract diffusion coefficients and molecular stoichiometries of micro-ribonucleoprotein (miRNP) complexes from living and fixed cells, respectively. This probing of miRNAs at the single molecule level sheds new light on the intracellular assembly/disassembly of miRNPs, thus beginning to unravel the dynamic nature of this important gene regulatory pathway and facilitating the development of a parsimonious model for their obscured mechanism of action.
Collapse
Affiliation(s)
| | - Vishalakshi Krishnan
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thomas C. Custer
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nils G. Walter
- Single Molecule Analysis in Real-Time (SMART) Center, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
35
|
Cheng K, Rai P, Plagov A, Lan X, Subrati A, Husain M, Malhotra A, Singhal PC. MicroRNAs in HIV-associated nephropathy (HIVAN). Exp Mol Pathol 2012; 94:65-72. [PMID: 23085312 DOI: 10.1016/j.yexmp.2012.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) play a critical role in multiple biological and metabolic processes. Recent studies suggested that miRNAs are critical in the maintenance of glomerular homeostasis in both physiological and pathological states. However, the role of miRNAs in the pathogenesis of HIV-associated nephropathy (HIVAN) has not been studied. In the present study, we have used a microarray-based approach in combination with real-time PCR to profile the miRNA expression patterns in HIV-1 transgenic mice (Tg26). Our results showed that 13 miRNAs, which belong to 11 miRNA families, were downregulated in HIVAN when compared with control mice. These miRNAs were classified into 20 functional categories. In in vitro studies, we examined the expression of specific miRNAs in HIV-1 transduced human podocytes. Our results showed that HIV-1 downregulated miRNA expression, specifically of miR-200 and miR-33. These studies suggest that miRNAs contributed to the development of the proliferative phenotype of HIVAN. Further functional analysis of these miRNAs in HIVAN animal model will not only enhance understanding of the pathogenesis but would also lead to the development of therapeutic strategies for HIVAN patients.
Collapse
Affiliation(s)
- Kang Cheng
- Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Xiao J, Gong AY, Eischeid AN, Chen D, Deng C, Young CYF, Chen XM. miR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate 2012; 72:1514-22. [PMID: 22314666 DOI: 10.1002/pros.22501] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/12/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND Aberrant expressions of microRNAs, including upregulation of miR-141, are closely associated with the tumorigenesis of prostate cancer (PCa). The orphan receptor small heterodimer partner (Shp) is a co-repressor to androgen receptor (AR) and represses AR-regulated transcriptional activity. METHODS Here, we investigated the correlation of Shp expression with the cellular level of miR-141 and its effects on AR transcriptional activity in non-malignant and malignant human prostate epithelial cell lines. RESULTS We found that Shp was downregulated in multiple PCa cell lines. The mature form of miR-141 was upregulated in PCa cells. miR-141 could target 3'-untranslated region of Shp mRNA resulting in translational suppression and RNA degradation. Moreover, enforced expression of Shp or inhibition of miR-141 function by anti-miR-141 attenuated AR-regulated transcriptional activity in AR-responsive LNCaP cells. Phenethyl isothiocyanate, a natural constituent of many edible cruciferous vegetables, increased Shp expression, downregulated miR-141, and inhibited AR transcriptional activity in LNCaP cells. CONCLUSIONS Shp is a target for miR-141 and it is downregulated in cultured human PCa cells with the involvement of upregulation of miR-141, which promotes AR transcriptional activity. Moreover, Shp and miR-141 could be targets for chemoprevention for PCa.
Collapse
MESH Headings
- Blotting, Western
- Cell Line, Tumor
- Down-Regulation
- Gene Expression Regulation, Neoplastic
- Humans
- Isothiocyanates/pharmacology
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA/genetics
- RNA/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Jing Xiao
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Song FJ, Chen KX. Single-nucleotide polymorphisms among microRNA: big effects on cancer. CHINESE JOURNAL OF CANCER 2012; 30:381-91. [PMID: 21627860 PMCID: PMC4013412 DOI: 10.5732/cjc.011.10142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the transcriptional or posttranscriptional level. Many miRNAs are found to play a significant role in cancer development either as tumor suppressor genes or as oncogenes. Examination of tumor-specific miRNA expression profiles in diverse cancers has revealed widespread deregulation of these molecules, whose loss and overexpression respectively have diagnostic and prognostic significance. Genetic variations, mostly single-nucleotide polymorphisms (SNPs) within miRNA sequences or their target sites, have been found to be associated with many kinds of cancers. In this review, we summarize the current knowledge of miRNAs including their biogenesis and role in cancer development, and finally, how SNPs among miRNAs affect miRNA biogenesis and contribute to cancer.
Collapse
Affiliation(s)
- Feng-Ju Song
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, Tianjin 300060, People's Republic of China
| | | |
Collapse
|
38
|
García-López J, del Mazo J. Expression dynamics of microRNA biogenesis during preimplantation mouse development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:847-54. [DOI: 10.1016/j.bbagrm.2012.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 01/07/2023]
|
39
|
Taipaleenmäki H, Bjerre Hokland L, Chen L, Kauppinen S, Kassem M. Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 2012; 166:359-71. [PMID: 22084154 DOI: 10.1530/eje-11-0646] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, a novel class of regulatory factors termed micro-RNAs (miRNAs) has been identified as playing an important role in the regulation of many aspects of osteoblast biology including proliferation, differentiation, metabolism and apoptosis. Also, preliminary data from animal disease models suggest that targeting miRNAs in bone can be a novel approach to increase bone mass. This review highlights the current knowledge of miRNA biology and their role in bone formation and discusses their potential use in future therapeutic applications for metabolic bone diseases.
Collapse
Affiliation(s)
- Hanna Taipaleenmäki
- Molecular Endocrinology Laboratory, KMEB, Department of Endocrinology and Metabolism, Medical Biotechnology Center, Odense University Hospital, University of Southern Denmark, SDU, DK-5000 Odense C, Denmark
| | | | | | | | | |
Collapse
|
40
|
Wanet A, Tacheny A, Arnould T, Renard P. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 2012; 40:4742-53. [PMID: 22362752 PMCID: PMC3367188 DOI: 10.1093/nar/gks151] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During the last two decades, microRNAs (miRNAs) emerged as critical regulators of gene expression. By modulating the expression of numerous target mRNAs mainly at the post-transcriptional level, these small non-coding RNAs have been involved in most, if not all, biological processes as well as in the pathogenesis of a number of diseases. miR-132 and miR-212 are tandem miRNAs whose expression is necessary for the proper development, maturation and function of neurons and whose deregulation is associated with several neurological disorders, such as Alzheimer's disease and tauopathies (neurodegenerative diseases resulting from the pathological aggregation of tau protein in the human brain). Although their involvement in neuronal functions is the most described, evidences point towards a role of these miRNAs in many other biological processes, including inflammation and immune functions. Incidentally, miR-132 was recently classified as a ‘neurimmiR’, a class of miRNAs operating within and between the neural and immune compartments. In this review, we propose an outline of the current knowledge about miR-132 and miR-212 functions in neurons and immune cells, by describing the signalling pathways and transcription factors regulating their expression as well as their putative or demonstrated roles and validated mRNA targets.
Collapse
Affiliation(s)
- Anaïs Wanet
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (FUNDP), 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | |
Collapse
|
41
|
Shi W, Du J, Qi Y, Liang G, Wang T, Li S, Xie S, Zeshan B, Xiao Z. Aberrant expression of serum miRNAs in schizophrenia. J Psychiatr Res 2012; 46:198-204. [PMID: 22094284 DOI: 10.1016/j.jpsychires.2011.09.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/18/2011] [Accepted: 09/21/2011] [Indexed: 12/20/2022]
Abstract
The circulating miRNAs are sufficiently stable and detectable to serve as clinical biomarkers as recent studies have revealed that the aberrant expression of circulating miRNAs can directly reflect disease status. Based on the analysis of the data (using miRanda software, TargetScan software and SOLID high-throughput sequencing) obtained from the literature, Schizophrenia Gene database, NCBI database, the quantification of the nine miRNAs in the serum samples of 115 patients suffering from schizophrenia and 40 healthy individuals using qRT-PCR and semi-nested qRT-PCR was conducted. The results suggested that the miR-181b, miR-219-2-3p, miR-346, miR-195, miR-1308, miR-92a, miR-17, miR-103 and let-7g are the key players to reflect the schizophrenia illnesses status and may serve as candidate biomarkers for diagnosis of schizophrenia. In addition, we also found that the risperidone improved the serum miR-346 level of schizophrenia significantly, and therefore may not be an effective drug in regulating serum miR-346 level of schizophrenia. Furthermore, the expression level of serum miRNAs levels and schizophrenia patients were regardless of family history subtypes, ages, and gender. Collectively, these findings suggested that the serum miRNAs have strong potential to reflect schizophrenia disease status. To the best of our knowledge, this is the first report demonstrating the analysis of the circulating miRNAs in schizophrenia.
Collapse
Affiliation(s)
- Wenting Shi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vaksman O, Stavnes HT, Kaern J, Trope CG, Davidson B, Reich R. miRNA profiling along tumour progression in ovarian carcinoma. J Cell Mol Med 2011; 15:1593-602. [PMID: 20716115 PMCID: PMC3823203 DOI: 10.1111/j.1582-4934.2010.01148.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that exert a regulatory effect post-transcriptionally by binding target mRNAs and inhibiting gene translation. miRNA expression is deregulated in cancer. The aim of this study was to characterize the differences in miRNA expression pattern and the miRNA-regulating machinery between ovarian carcinoma (OC) cells in primary tumours versus effusions. Using miRNA array platforms, we analysed a set of 21 tumours (13 effusions, 8 primary carcinomas) and identified three sets of miRNAs, one that is highly expressed in both primary carcinomas and effusions, one overexpressed in primary carcinomas and one overexpressed in effusions. Levels of selected miRNAs were analysed using quantitative PCR in an independent set of 45 additional tumours (30 effusions, 15 primary carcinomas). Reduced miR-145 and miR-214 and elevated let-7f, miR-182, miR-210, miR-200c, miR-222 and miR-23a levels were found in effusions in both sets. In silico target prediction programs identified potential target genes for some of the differentially expressed miRNAs. Expression of zinc finger E-box binding homeobox (ZEB)1 and c-Myc, targets of miR-200c, as well as of p21 protein (Cdc42/Rac)-activated kinase (PAK)1 and phosphatase and tensin homologue deleted on chromosome 10 (PTEN), predicted targets of miR-222, were analysed. Inverse correlations between expression levels of the indicated miRNAs and of the predicted target genes were found. In addition, higher expression of the miRNA-processing molecules Ago1, Ago2 and Dicer was observed in effusions compared to primary carcinomas. In conclusion, our data are the first to document different miRNA expression and regulation profiles in primary and metastatic OC, suggesting a role for these molecules in tumour progression.
Collapse
Affiliation(s)
- Olga Vaksman
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Zhou R, O'Hara SP, Chen XM. MicroRNA regulation of innate immune responses in epithelial cells. Cell Mol Immunol 2011; 8:371-9. [PMID: 21725335 DOI: 10.1038/cmi.2011.19] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mucosal surface epithelial cells are equipped with several defense mechanisms that guard against pathogens. Recent studies indicate that microRNAs (miRNAs) mediate post-transcriptional gene suppression and may be a critical component of the complex regulatory networks in epithelial immune responses. Transcription of miRNA genes in epithelial cells can be elaborately controlled through pathogen recognition receptors, such as Toll-like receptors (TLRs), and associated nuclear factor kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, and ultimately nuclear transcription factor associated-transactivation and transrepression. Activation of these intracellular signaling pathways may also modulate the process of miRNA maturation. Functionally, miRNAs may modulate epithelial immune responses at every step of the innate immune network, including production and release of cytokines/chemokines, expression of adhesion and costimulatory molecules, shuttling of miRNAs through release of exosomes and feedback regulation of immune homeostasis. Therefore, miRNAs act as critical regulators to the fine-tuning of epithelial immune responses.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | | | | |
Collapse
|
44
|
Fu SW, Chen L, Man YG. miRNA Biomarkers in Breast Cancer Detection and Management. J Cancer 2011; 2:116-22. [PMID: 21479130 PMCID: PMC3072617 DOI: 10.7150/jca.2.116] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/23/2011] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is considered as a heterogeneous disease comprising various types of neoplasms, which involves different profile changes in both mRNA and micro-RNA (miRNA) expression. Extensive studies on mRNA expression in breast tumor have yielded some very interesting findings, some of which have been validated and used in clinic. Recent miRNA research advances showed great potential for the development of novel biomarkers and therapeutic targets. miRNAs are a new class of small non-coding regulatory RNAs that are involved in regulating gene expression at the posttranscriptional level. It has been demonstrated that miRNA expression is frequently deregulated in breast cancer, which warrants further in-depth investigation to decipher their precise regulatory role in tumorigenesis. We address briefly the regulatory mechanism of miRNA, the expression of miRNAs in tumorigenesis, and their potential use as breast cancer biomarkers for early disease diagnosis and prognosis. In addition, we discuss the use of the Formalin-Fixed, Paraffin-Embedded (FFPE) tissue as an invaluable source for breast cancer biomarker discovery and validation, and the potential use of circulating miRNAs in blood for early breast cancer detection. We envision the potential use of miRNAs in breast cancer management in the near future, particularly in improving the early diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Sidney W Fu
- 1. Department of Medicine, Division of Genomic Medicine, and Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC 20037, USA
| | | | | |
Collapse
|
45
|
Simões MC, Lee J, Djikeng A, Cerqueira GC, Zerlotini A, da Silva-Pereira RA, Dalby AR, LoVerde P, El-Sayed NM, Oliveira G. Identification of Schistosoma mansoni microRNAs. BMC Genomics 2011; 12:47. [PMID: 21247453 PMCID: PMC3034697 DOI: 10.1186/1471-2164-12-47] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 01/19/2011] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) constitute a class of single-stranded RNAs which play a crucial role in regulating development and controlling gene expression by targeting mRNAs and triggering either translation repression or messenger RNA (mRNA) degradation. miRNAs are widespread in eukaryotes and to date over 14,000 miRNAs have been identified by computational and experimental approaches. Several miRNAs are highly conserved across species. In Schistosoma, the full set of miRNAs and their expression patterns during development remain poorly understood. Here we report on the development and implementation of a homology-based detection strategy to search for miRNA genes in Schistosoma mansoni. In addition, we report results on the experimental detection of miRNAs by means of cDNA cloning and sequencing of size-fractionated RNA samples. Results Homology search using the high-throughput pipeline was performed with all known miRNAs in miRBase. A total of 6,211 mature miRNAs were used as reference sequences and 110 unique S. mansoni sequences were returned by BLASTn analysis. The existing mature miRNAs that produced these hits are reported, as well as the locations of the homologous sequences in the S. mansoni genome. All BLAST hits aligned with at least 95% of the miRNA sequence, resulting in alignment lengths of 19-24 nt. Following several filtering steps, 15 potential miRNA candidates were identified using this approach. By sequencing small RNA cDNA libraries from adult worm pairs, we identified 211 novel miRNA candidates in the S. mansoni genome. Northern blot analysis was used to detect the expression of the 30 most frequent sequenced miRNAs and to compare the expression level of these miRNAs between the lung stage schistosomula and adult worm stages. Expression of 11 novel miRNAs was confirmed by northern blot analysis and some presented a stage-regulated expression pattern. Three miRNAs previously identified from S. japonicum were also present in S. mansoni. Conclusion Evidence for the presence of miRNAs in S. mansoni is presented. The number of miRNAs detected by homology-based computational methods in S. mansoni is limited due to the lack of close relatives in the miRNA repository. In spite of this, the computational approach described here can likely be applied to the identification of pre-miRNA hairpins in other organisms. Construction and analysis of a small RNA library led to the experimental identification of 14 novel miRNAs from S. mansoni through a combination of molecular cloning, DNA sequencing and expression studies. Our results significantly expand the set of known miRNAs in multicellular parasites and provide a basis for understanding the structural and functional evolution of miRNAs in these metazoan parasites.
Collapse
Affiliation(s)
- Mariana C Simões
- Graduate Program in Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Small RNA discovery and characterisation in eukaryotes using high-throughput approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:239-54. [PMID: 21915794 DOI: 10.1007/978-1-4614-0332-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA silencing is a mechanism of genetic regulation that is mediated by short noncoding RNAs, or small RNAs (sRNAs). Regulatory interactions are established based on nucleotide sequence complementarity between the sRNAs and their targets. The development of new high-throughput sequencing technologies has accelerated the discovery of sRNAs in a variety of plants and animals. The use of these and other high-throughput technologies, such as microarrays, to measure RNA and protein concentrations of gene products potentially regulated by sRNAs has also been important for their functional characterisation. mRNAs targeted by sRNAs can produce new sRNAs or the protein encoded by the target mRNA can regulate other mRNAs. In either case the targeting sRNAs are parts of complex RNA networks therefore identifying and characterising sRNAs contribute to better understanding of RNA networks. In this chapter we will review RNA silencing, the different types of sRNAs that mediate it and the computational methods that have been developed to use high-throughput technologies in the study of sRNAs and their targets.
Collapse
|
48
|
When Cellular Networks Run Out of Control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:165-242. [DOI: 10.1016/b978-0-12-415795-8.00006-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features. BMC Bioinformatics 2010; 11 Suppl 11:S11. [PMID: 21172046 PMCID: PMC3024864 DOI: 10.1186/1471-2105-11-s11-s11] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background MicroRNAs (simply miRNAs) are derived from larger hairpin RNA precursors and play essential regular roles in both animals and plants. A number of computational methods for miRNA genes finding have been proposed in the past decade, yet the problem is far from being tackled, especially when considering the imbalance issue of known miRNAs and unidentified miRNAs, and the pre-miRNAs with multi-loops or higher minimum free energy (MFE). This paper presents a new computational approach, miRenSVM, for finding miRNA genes. Aiming at better prediction performance, an ensemble support vector machine (SVM) classifier is established to deal with the imbalance issue, and multi-loop features are included for identifying those pre-miRNAs with multi-loops. Results We collected a representative dataset, which contains 697 real miRNA precursors identified by experimental procedure and other computational methods, and 5428 pseudo ones from several datasets. Experiments showed that our miRenSVM achieved a 96.5% specificity and a 93.05% sensitivity on the dataset. Compared with the state-of-the-art approaches, miRenSVM obtained better prediction results. We also applied our method to predict 14 Homo sapiens pre-miRNAs and 13 Anopheles gambiae pre-miRNAs that first appeared in miRBase13.0, MiRenSVM got a 100% prediction rate. Furthermore, performance evaluation was conducted over 27 additional species in miRBase13.0, and 92.84% (4863/5238) animal pre-miRNAs were correctly identified by miRenSVM. Conclusion MiRenSVM is an ensemble support vector machine (SVM) classification system for better detecting miRNA genes, especially those with multi-loop secondary structure.
Collapse
|
50
|
Elyakim E, Sitbon E, Faerman A, Tabak S, Montia E, Belanis L, Dov A, Marcusson EG, Bennett CF, Chajut A, Cohen D, Yerushalmi N. hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. Cancer Res 2010; 70:8077-87. [PMID: 20924108 DOI: 10.1158/0008-5472.can-10-1313] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is generally a fatal disease due to a paucity of effective treatment options. The identification of oncogenic microRNAs that exert pleiotropic effects in HCC cells may offer new therapeutic targets. In this study, we have identified the human microRNA miR-191 as a potential target for HCC therapy. Inhibition of miR-191 decreased cell proliferation and induced apoptosis in vitro and significantly reduced tumor masses in vivo in an orthotopic xenograft mouse model of HCC. Additionally, miR-191 was found to be upregulated by a dioxin, a known liver carcinogen, and was found to be a regulator of a variety of cancer-related pathways. Our findings offer a preclinical proof of concept for miR-191 targeting as a rational strategy to pursue for improving HCC treatment.
Collapse
|