1
|
Zeng K, Liu L, Zheng N, Yu Y, Xu S, Yao H. Iron at the helm: Steering arsenic speciation through redox processes in soils. ENVIRONMENTAL RESEARCH 2025; 274:121327. [PMID: 40058542 DOI: 10.1016/j.envres.2025.121327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The toxicity and bioavailability of arsenic (As) in soils are largely determined by its speciation. Iron (Fe) is widely present in soils with a strong affinity for As, and therefore the environmental behaviors of As and Fe oxides (including oxides, hydrates and hydrated oxides) are closely correlated with each other. The redox fluctuations of Fe driven by changes in the environment can significantly affect As speciation and its fate in soils. The interaction between Fe and As has garnered widespread attention, and the adsorption mechanisms of As by Fe oxides have also been well-documented. However, there is still a lack of systematic understanding of how Fe redox dynamics affects As speciation depending on the soil environmental conditions. In this review, we summarize the mechanisms for As speciation transformation and redistribution, as well as the role of environmental factors in the main Fe redox processes in soils. These processes include the biotic Fe oxidation mediated by Fe-oxidizing bacteria, abiotic Fe oxidation by oxygen or manganese oxides, dissimilatory Fe reduction mediated by Fe-reducing bacteria, and Fe(II)-catalyzed transformation of Fe oxides. This review contributes to a deeper understanding of the environmental behaviors of Fe and As in soils, and provides theoretical guidance for the development of remediation strategies for As-contaminated soils.
Collapse
Affiliation(s)
- Keman Zeng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lihu Liu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shengwen Xu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
2
|
Kneuer L, Wurst R, Gescher J. Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39579226 DOI: 10.1007/10_2024_272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.
Collapse
Affiliation(s)
- Lukas Kneuer
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - René Wurst
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Huang Y, Huangfu X, Ma C, Liu Z. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment. CHEMOSPHERE 2023; 329:138594. [PMID: 37030347 DOI: 10.1016/j.chemosphere.2023.138594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms can oxidize Mn(II) to biogenic Mn oxides (BioMnOx), through enzyme-mediated processes and non-enzyme-mediated processes, which are generally considered as the source and sink of heavy metals due to highly reactive to sequestrate and oxidize heavy metals. Hence, the summary of interactions between Mn(II) oxidizing microorganisms (MnOM) and heavy metals is benefit for further work on microbial-mediated self-purification of water bodies. This review comprehensively summarizes the interactions between MnOM and heavy metals. The processes of BioMnOx production by MnOM has been firstly discussed. Moreover, the interactions between BioMnOx and various heavy metals are critically discussed. On the one hand, modes for heavy metals adsorbed on BioMnOx are summarized, such as electrostatic attraction, oxidative precipitation, ion exchange, surface complexation, and autocatalytic oxidation. On the other hand, adsorption and oxidation of representative heavy metals based on BioMnOx/Mn(II) are also discussed. Thirdly, the interactions between MnOM and heavy metals are also focused on. Finally, several perspectives which will contribute to future research are proposed. This review provides insight into the sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms. It might be helpful to understand the geochemical fate of heavy metals in the aquatic environment and the process of microbial-mediated water self-purification.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource, and Environment, School of Municipal, and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Ziqiang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Zhu P, Pu Y, Wang M, Wu W, Qin H, Shi J. MnOOH-Catalyzed Autoxidation of Glutathione for Reactive Oxygen Species Production and Nanocatalytic Tumor Innate Immunotherapy. J Am Chem Soc 2023; 145:5803-5815. [PMID: 36848658 DOI: 10.1021/jacs.2c12942] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The antioxidant system, signed with reduced glutathione (GSH) overexpression, is the key weapon for tumor to resist the attack by reactive oxygen species (ROS). Counteracting the ROS depletion by GSH is an effective strategy to guarantee the antitumor efficacy of nanocatalytic therapy. However, simply reducing the concentration of GSH does not sufficiently improve tumor response to nanocatalytic therapy intervention. Herein, a well-dispersed MnOOH nanocatalyst is developed to catalyze GSH autoxidation and peroxidase-like reaction concurrently and respectively to promote GSH depletion and H2O2 decomposition to produce abundant ROS such as hydroxyl radical (·OH), thereby generating a highly effective superadditive catalytic therapeutic efficacy. Such a therapeutic strategy that transforms endogenous "antioxidant" into "oxidant" may open a new avenue for the development of antitumor nanocatalytic medicine. Moreover, the released Mn2+ can activate and sensitize the cGAS-STING pathway to the damaged intratumoral DNA double-strands induced by the produced ROS to further promote macrophage maturation and M1-polarization, which will boost the innate immunotherapeutic efficacy. Resultantly, the developed simple MnOOH nanocatalytic medicine capable of simultaneously catalyzing GSH depletion and ROS generation, and mediating innate immune activation, holds great potential in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Piao Zhu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Yinying Pu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Wencheng Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Huanlong Qin
- Department of Gastrointestinal Surgey, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China.,State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
5
|
Zhang N, Gao F, Cheng S, Xie H, Hu Z, Zhang J, Liang S. Mn oxides enhanced pyrene removal with both rhizosphere and non-rhizosphere microorganisms in subsurface flow constructed wetlands. CHEMOSPHERE 2022; 307:135821. [PMID: 35944687 DOI: 10.1016/j.chemosphere.2022.135821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) are substantial wastewater pollutants emitted mostly by petroleum refineries and petrochemical industries, and their environmental fate has been of increasing concern among the public. Consequently, subsurface flow constructed wetlands (SFCWs) filled with Mn oxides (W-CW) or without Mn oxides (K-CW) were established to investigate the performance and mechanisms of pyrene (PYR) removal. The average removal rates of PYR in W-CW and K-CW were 96.00% and 92.33%, respectively. The PYR removal via other pathways (microbial degradation, photolysis, volatilisation, etc.) occupied a sizeable proportion, while the total PYR content in K-CW plant roots was significantly higher than that of W-CW. The microorganisms on the root surface and rhizosphere played an important role in PYR degradation in W-CW and K-CW and were higher in W-CW than that in K-CW in all matrix zones. The microorganisms between the 10-16 cm zone from the bottom of W-CW filled with Mn oxides (W-16) were positively correlated with PYR-degrading microorganisms, aerobic bacteria and facultative anaerobes, whereas K-16 without birnessite-coated sand was negatively correlated with these microorganisms.
Collapse
Affiliation(s)
- Ning Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, China
| | - Fuwei Gao
- Zhongke Hualu Soil Remediation Engineering Co., Ltd, Dezhou, 253000, China
| | - Shiyi Cheng
- Jiangsu Ecological Environmental Monitoring Co., Ltd, Nanjing, 320100, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan, 250100, China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
6
|
Aoki M, Miyashita Y, Miwa T, Watari T, Yamaguchi T, Syutsubo K, Hayashi K. Manganese oxidation and prokaryotic community analysis in a polycaprolactone-packed aerated biofilm reactor operated under seawater conditions. 3 Biotech 2022; 12:187. [PMID: 35875177 PMCID: PMC9304527 DOI: 10.1007/s13205-022-03250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Biogenic manganese oxides (BioMnOx) have been receiving increasing attention for the removal of environmental contaminants and recovery of minor metals from water environments. However, the enrichment of heterotrophic Mn(II)-oxidizing microorganisms for BioMnOx production in the presence of fast-growing coexisting heterotrophs is challenging. In our previous work, we revealed that polycaprolactone (PCL), a biodegradable aliphatic polyester, can serve as an effective solid organic substrate to enrich Mn-oxidizing microbial communities under seawater conditions. However, marine BioMnOx-producing bioreactor systems utilizing PCL have not yet been established. Therefore, a laboratory-scale continuous-flow PCL-packed aerated biofilm (PAB) reactor was operated for 238 days to evaluate its feasibility for BioMnOx production under seawater conditions. After the start-up of the reactor, the average dissolved Mn removal rates of 0.4-2.3 mg/L/day, likely caused by Mn(II) oxidation, were confirmed under different influent dissolved Mn concentrations (2.5-14.0 mg/L on average) and theoretical hydraulic retention time (0.19-0.77 day) conditions. The 16S rRNA gene amplicon sequencing analysis suggested the presence of putative Mn(II)-oxidizing and PCL-degrading bacterial lineages in the reactor. Two highly dominant operational units (OTUs) in the packed PCL-associated biofilm were assigned to the genera Marinobacter and Pseudohoeflea, whereas the genus Lewinella and unclassified Alphaproteobacteria OTUs were highly dominant in the MnOx-containing black/dark brown precipitate-associated biofilm formed in the reactor. Excitation-emission matrix fluorescence spectroscopy analysis revealed the production of tyrosine- and tryptophane-like components, which may serve as soluble heterotrophic organic substrates in the reactor. Our findings indicate that PAB reactors are potentially applicable to BioMnOx production under seawater conditions.
Collapse
Affiliation(s)
- Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| | - Yukina Miyashita
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| | - Toru Miwa
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Hayashi
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama Japan
| |
Collapse
|
7
|
Liu N, Liu J, Wang H, Li S, Zhang WX. Microbes team with nanoscale zero-valent iron: A robust route for degradation of recalcitrant pollutants. J Environ Sci (China) 2022; 118:140-146. [PMID: 35305763 DOI: 10.1016/j.jes.2021.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Integrating nanoscale zero-valent iron (nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano- and bio-technologies. nZVI and microbes can perform in coalition in direct contact and act simultaneously, or be maintained in separate reactors and operated sequentially. Both modes can generate enhanced performance for wastewater treatment and environmental remediation. nZVI scavenges and eliminates toxic metals, and enhances biodegradability of some recalcitrant contaminants while bioprocesses serve to mineralize organic compounds and further remove impurities from wastewater. This has been demonstrated in a number of recent works that nZVI can substantially augment the performance of conventional biological treatment for wastewaters from textile and nonferrous metal industries. Our recent laboratory and field tests show that COD of the industrial effluents can be reduced to a record-low of 50 ppm. Recent literature on the theory and applications of the nZVI-bio system is highlighted in this mini review.
Collapse
Affiliation(s)
- Nuo Liu
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Liu
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaolin Li
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Bashir MS, Ramzan N, Najam T, Abbas G, Gu X, Arif M, Qasim M, Bashir H, Shah SSA, Sillanpää M. Metallic nanoparticles for catalytic reduction of toxic hexavalent chromium from aqueous medium: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154475. [PMID: 35278543 DOI: 10.1016/j.scitotenv.2022.154475] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The ever increasing concentration of toxic and carcinogenic hexavalent chromium (Cr (VI)) in various environmental mediums including water-bodies due to anthropogenic activities with rapid civilization and industrialization have become the major issue throughout the globe during last few decades. Therefore, developing new strategies for the treatment of Cr(VI) contaminated wastewaters are in great demand and have become a topical issue in academia and industry. To date, various techniques have been used for the remediation of Cr(VI) contaminated wastewaters including solvent extraction, adsorption, catalytic reduction, membrane filtration, biological treatment, coagulation, ion exchange and photo-catalytic reduction. Among these methods, the transformation of highly toxic Cr(VI) to benign Cr(III) catalyzed by metallic nanoparticles (M-NPs) with reductant has gained increasing attention in the past few years, and is considered to be an effective approach due to the superior catalytic performance of M-NPs. Thus, it is a timely topic to review this emerging technique for Cr(VI) reduction. Herein, recent development in synthesis of M-NPs based non-supported, supported, mono-, bi- and ternary M-NPs catalysts, their characterization and performance for the reduction of Cr(VI) to Cr(III) are reviewed. The role of supporting host to stabilize the M-NPs and leading to enhance the reduction of Cr(VI) are discussed. The Cr(VI) reduction mechanism, kinetics, and factors affecting the kinetics are overviewed to collect the wealthy kinetics data. Finally, the challenges and perspective in Cr(VI) reduction catalyzed by M-NPs are proposed. We believe that this review will assist the researchers who are working to develop novel M-NPs catalysts for the reduction of Cr(VI).
Collapse
Affiliation(s)
- Muhammad Sohail Bashir
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Naveed Ramzan
- Department of Chemical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Tayyaba Najam
- Institute for Advanced Study and Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Ghulam Abbas
- Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan
| | - Xiangling Gu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Muhammad Arif
- Department of Chemical Engineering, University of Engineering & Information Technology Abu Dhabi Road, Rahim Yar Khan, 64200 Pakistan
| | - Muhammad Qasim
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Humaira Bashir
- Department of Botany, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Pakistan
| | - Syed Shoaib Ahmad Shah
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China.
| |
Collapse
|
9
|
Jeyaraj A, Subramanian S. Synthesis, optimization, and characterization of biogenic manganese oxide (BioMnOx) by bacterial isolates from mangrove soils with sorbents property towards different toxic metals. Biometals 2022; 35:429-449. [PMID: 35357611 DOI: 10.1007/s10534-022-00378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Abstract
Manganese oxidizing bacteria, Bacillus mycoides and Bacillus subtilis were isolated from mangrove soils and optimized for the removal of Mn(II) with simultaneous production of biogenic manganese oxide (BioMnOx). The removal rate of Mn(II) was 90% in 48 h for B. mycoides and 72 h for B. subtilis under the optimized conditions at pH 7, temperature 37 °C, 120 rpm, with 1% inoculum containing 10 mM MnCl2. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X-Ray analysis (EDAX), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the synthesized biogenic manganese oxide. BioMnOx by Bacillus mycoides and Bacillus subtilis were identified as Bixbyite (Mn2O3) and Hausmannite (Mn3O4), respectively, with nano-sized monocrystalline nature. BioMnOx of Bacillus subtilis strain was more efficient in the removal of metals Zn and Co than BioMnOx of Bacillus mycoides except for mercury. The removal property of synthesized BioMnOx could be applied to treat multi-metal containing wastewater.
Collapse
Affiliation(s)
- Anitha Jeyaraj
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Sangeetha Subramanian
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
10
|
Du Z, Zhang Y, Xu A, Pan S, Zhang Y. Biogenic metal nanoparticles with microbes and their applications in water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3213-3229. [PMID: 34734337 DOI: 10.1007/s11356-021-17042-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Due to their unique characteristics, nanomaterials are widely used in many applications including water treatment. They are usually synthesized via physiochemical methods mostly involving toxic chemicals and extreme conditions. Recently, the biogenic metal nanoparticles (Bio-Me-NPs) with microbes have triggered extensive exploration. Besides their environmental-friendly raw materials and ambient biosynthesis conditions, Bio-Me-NPs also exhibit the unique surface properties and crystalline structures, which could eliminate various contaminants from water. Recent findings in the synthesis, morphology, composition, and structure of Bio-Me-NPs have been reviewed here, with an emphasis on the metal elements of Fe, Mn, Pd, Au, and Ag and their composites which are synthesized by bacteria, fungi, and algae. Furthermore, the mechanisms of eliminating organic and inorganic contaminants with Bio-Me-NPs are elucidated in detail, including adsorption, oxidation, reduction, and catalysis. The scale-up applicability of Bio-Me-NPs is also discussed.
Collapse
Affiliation(s)
- Zhiling Du
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
- School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Shunlong Pan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
11
|
Era Y, Dennis JA, Wallace S, Horsfall LE. Micellar catalysis of the Suzuki Miyaura reaction using biogenic Pd nanoparticles from Desulfovibrio alaskensis. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:8886-8890. [PMID: 34912180 PMCID: PMC8593813 DOI: 10.1039/d1gc02392f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/22/2021] [Indexed: 06/02/2023]
Abstract
Microorganisms produce metal nanoparticles (MNPs) upon exposure to toxic metal ions. However, the catalytic activity of biosynthesised MNPs remains underexplored, despite the potential of these biological processes to be used for the sustainable recovery of critical metals, including palladium. Herein we report that biogenic palladium nanoparticles generated by the sulfate-reducing bacterium Desulfovibrio alaskensis G20 catalyse the ligand-free Suzuki Miyaura reaction of abiotic substrates. The reaction is highly efficient (>99% yield, 0.5 mol% Pd), occurs under mild conditions (37 °C, aqueous media) and can be accelerated within biocompatible micelles at the cell membrane to yield products containing challenging biaryl bonds. This work highlights how native metabolic processes in anaerobic bacteria can be combined with green chemical technologies to produce highly efficient catalytic reactions for use in sustainable organic synthesis.
Collapse
Affiliation(s)
- Yuta Era
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
| | - Jonathan A Dennis
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
- School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road King's Buildings Edinburgh EH9 3F UK
| | - Stephen Wallace
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
| | - Louise E Horsfall
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
| |
Collapse
|
12
|
Arsenate and Arsenite Sorption Using Biogenic Iron Compounds: Treatment of Real Polluted Waters in Batch and Continuous Systems. METALS 2021. [DOI: 10.3390/met11101608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Arsenic pollution in waters is due to natural and anthropogenic sources. Human exposure to arsenic is associated with acute health problems in areas with high concentrations of this element. Nanometric iron compounds with large specific surface areas and higher binding energy produced by some anaerobic microorganisms are thus expected to be more efficient adsorbents for the removal of harmful metals and metalloids than chemically produced iron oxides. In this study, a natural consortium from an abandoned mine site containing mainly Clostridium species was used to biosynthesize solid Fe(II) compounds, siderite (FeCO3) and iron oxides. Biogenic precipitates were used as adsorbents in contact with solutions containing arsenate and arsenite. The adsorption of As(V) fitted to the Langmuir model (qmax = 0.64 mmol/g, KL = 0.019 mmol/L) at the optimal pH value (pH 2), while the As(III) adsorption mechanism was better represented by the Freundlich model (KF = 0.476 L/g, n = 2.13) at pH 10. Water samples from the Caracarani River (Chile) with high contents of arsenic and zinc were treated with a biogenic precipitate encapsulated in alginate beads in continuous systems. The optimal operation conditions were low feed flow rate and the up-flow system, which significantly improved the contaminant uptake. This study demonstrates the feasibility of the application of biogenic iron compounds in the treatment of polluted waters.
Collapse
|
13
|
Shobnam N, Sun Y, Mahmood M, Löffler FE, Im J. Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125987. [PMID: 34229371 DOI: 10.1016/j.jhazmat.2021.125987] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), a chemical of environmental concern, is recalcitrant under anoxic conditions, but is susceptible to oxidative degradation by manganese(IV)-oxide (MnO2). Microbial Mn(II)-oxidation generates MnO2-bio; however, BPA degradation in cultures of Mn(II)-oxidizing bacteria has not been explored. We assessed MnO2-bio-mediated BPA degradation using three Mn(II)-oxidizing bacteria, Roseobacter sp. AzwK-3b, Erythrobacter sp. SD-21, and Pseudomonas putida GB-1. In cultures of all three strains, enhanced BPA degradation was evident in the presence of Mn(II) compared to replicate incubations without Mn(II), suggesting MnO2-bio mediated BPA degradation. Increased Mn(II) concentrations up to 100 µM resulted in more MnO2-bio formation but the highest BPA degradation rates were observed with 10 µM Mn(II). Compared to abiotic BPA degradation with 10 μM synthetic MnO2, live cultures of strain GB-1 amended with 10 μM Mn(II) consumed 9-fold more BPA at about 5-fold higher rates. Growth of strain AzwK-3b was sensitive to BPA and the organism showed increased tolerance against BPA in the presence of Mn(II), suggesting MnO2-bio alleviated the inhibition by mediating BPA degradation. The findings demonstrate that Mn(II)-oxidizing bacteria contribute to BPA degradation but organism-specific differences exist, and for biologically-mediated-abiotic-degradation (BMAD), Mn-flux, rather than the absolute amount of MnO2-bio, is the key determinant for oxidation activity.
Collapse
Affiliation(s)
- Nusrat Shobnam
- Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA
| | - Maheen Mahmood
- Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Jeongdae Im
- Department of Civil Engineering, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
14
|
Soldatova AV, Fu W, Romano CA, Tao L, Casey WH, Britt RD, Tebo BM, Spiro TG. Metallo-inhibition of Mnx, a bacterial manganese multicopper oxidase complex. J Inorg Biochem 2021; 224:111547. [PMID: 34403930 DOI: 10.1016/j.jinorgbio.2021.111547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
The manganese oxidase complex, Mnx, from Bacillus sp. PL-12 contains a multicopper oxidase (MCO) and oxidizes dissolved Mn(II) to form insoluble manganese oxide (MnO2) mineral. Previous kinetic and spectroscopic analyses have shown that the enzyme's mechanism proceeds through an activation step that facilitates formation of a series of binuclear Mn complexes in the oxidation states II, III, and IV on the path to MnO2 formation. We now demonstrate that the enzyme is inhibited by first-row transition metals in the order of the Irving-Williams series. Zn(II) strongly (Ki ~ 1.5 μM) inhibits both activation and turnover steps, as well as the rate of Mn(II) binding. The combined Zn(II) and Mn(II) concentration dependence establishes that the inhibition is non-competitive. This result is supported by electron paramagnetic resonance (EPR) spectroscopy, which reveals unaltered Mnx-bound Mn(II) EPR signals, both mono- and binuclear, in the presence of Zn(II). We infer that inhibitory metals bind at a site separate from the substrate sites and block the conformation change required to activate the enzyme, a case of allosteric inhibition. The likely biological role of this inhibitory site is discussed in the context of Bacillus spore physiology. While Cu(II) inhibits Mnx strongly, in accord with the Irving-Williams series, it increases Mnx activation at low concentrations, suggesting that weakly bound Cu, in addition to the four canonical MCO-Cu, may support enzyme activity, perhaps as an electron transfer agent.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Wen Fu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - William H Casey
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States; Earth and Planetary Sciences Department, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States.
| |
Collapse
|
15
|
Martínez-Ruiz EB, Cooper M, Barrero-Canosa J, Haryono MAS, Bessarab I, Williams RBH, Szewzyk U. Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation. BMC Genomics 2021; 22:464. [PMID: 34157973 PMCID: PMC8218464 DOI: 10.1186/s12864-021-07766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Myriel Cooper
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Jimena Barrero-Canosa
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ulrich Szewzyk
- Chair of Environmental Microbiology, Technische Universität Berlin, Institute of Environmental Technology, Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
16
|
Zhang N, Li C, Xie H, Yang Y, Hu Z, Gao M, Liang S, Feng K. Mn oxides changed nitrogen removal process in constructed wetlands with a microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144761. [PMID: 33736424 DOI: 10.1016/j.scitotenv.2020.144761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Intensified Mn redox cycling could enhance nutrient removal in constructed wetlands (CWs). In this study, Mn oxides (birnessite-coated sand) were used as the matrix in horizontal flow CWs (HFCWs) with a microbial electrolysis cell (MEC) (E-B-CW) or without an MEC (B-CW). The model CWs were developed to investigate the capacities and mechanisms of nitrogen removal with increased Mn redox cycling. The results showed that E-B-CW had the highest average removal efficiencies for NH4-N, NO3-N and TN, followed by B-CW and control HFCW (C-CW). The Mn(III) oxides (MnOOH or Mn2O3) and the Mn(IV) oxide (MnO2) were all detected in E-B-CW and B-CW, while the matrix in E-B-CW had much more Mn(IV) oxides than B-CW. Interestingly, clustering heat map showed that ammonification and nitrate reduction were related to Mn-oxidizing bacteria and the relative abundance of Mn-oxidizing bacteria in E-B-CW was highest due to the re-oxidation of Mn(II) by the MEC.
Collapse
Affiliation(s)
- Ning Zhang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Chaoyu Li
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Yixiao Yang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Mingming Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Kuishuang Feng
- Institute of Blue and Green Development, Weihai Institute of Interdisciplinary Research, Shandong University, Weihai 264209, China
| |
Collapse
|
17
|
Batch and Continuous Chromate and Zinc Sorption from Electroplating Effluents Using Biogenic Iron Precipitates. MINERALS 2021. [DOI: 10.3390/min11040349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nanoparticles of iron precipitates produced by a microbial consortium are a suitable adsorbent for metal removal from electroplating industry wastewaters. Biogenic iron precipitates were utilized as adsorbents for chromate and zinc in batch conditions. Furthermore, the iron precipitates were embedded in alginate beads for metal removal in fixed-bed columns, and their performance was evaluated in a continuous system by varying different operational parameters such as flow rate, bed height, and feeding system (down- and up-flows). The influence of different adsorption variables in the saturation time, the amount of adsorbed potentially toxic metals, and the column performance was investigated, and the shape of the breakthrough curves was analyzed. The optimal column performance was achieved by increasing bed height and by decreasing feed flow rate and inlet metal concentration. The up-flow system significantly improved the metal uptake, avoiding the preferential flow channels.
Collapse
|
18
|
Aoki M, Miyashita Y, Tran PT, Okuno Y, Watari T, Yamaguchi T. Enrichment of marine manganese-oxidizing microorganisms using polycaprolactone as a solid organic substrate. Biotechnol Lett 2021; 43:813-823. [PMID: 33496920 DOI: 10.1007/s10529-021-03088-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Heterotrophic manganese (Mn)-oxidizing microorganisms responsible for biogenic manganese oxide (Bio-MnOx) production are fastidious. Their enrichment is not easily accomplished by merely adding a soluble organic substrate to non-sterile mixed cultures. The objective of this study was to evaluate polycaprolactone (PCL), an aliphatic polyester, as an effective solid organic substrate for the enrichment of marine Mn-oxidizing microorganisms. RESULTS We successfully obtained marine microbial enrichment with the capacity for dissolved Mn removal and MnOx production using PCL as a solid organic substrate. The removal of dissolved Mn by the Mn-oxidizing enrichment culture followed first-order kinetics with a rate constant of 0.014 h-1. 16S rRNA gene amplicon sequencing analysis revealed that the Mn-oxidizing enrichment culture was highly dominated by operational taxonomic units related to the bacterial phyla Cyanobacteria, Planctomycetes, and Proteobacteria. CONCLUSIONS Our data demonstrate that PCL can serve as a potential substrate to enrich Mn-oxidizing microorganisms with the ability to produce MnOx under marine conditions.
Collapse
Affiliation(s)
- Masataka Aoki
- Department of Civil Engineering, National Institute of Technology, Wakayama College, 77 Noshima, Nada, Gobo, Wakayama, 644-0023, Japan.
| | - Yukina Miyashita
- Department of Civil Engineering, National Institute of Technology, Wakayama College, 77 Noshima, Nada, Gobo, Wakayama, 644-0023, Japan
| | - P Thao Tran
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yoshiharu Okuno
- Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan.,Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
19
|
Su J, Zhang S, Zheng Z, Xue L. Application of biogenic iron precipitation by strain H117 for tetracycline removal: mechanism of adsorption and activation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4815-4826. [PMID: 32949365 DOI: 10.1007/s11356-020-10857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
To date, biogenic metals have opened up a window for new applications in adsorption of contaminants. But there is still little attention to be paid in the removal of tetracycline (TC) by biogenic iron precipitation (BIP). In this paper, the BIP, from iron-based mixotrophic denitrification batch reactor, was estimated for its adsorption property of TC under various parameters to simulate the behavior in aquatic environment. The maximum adsorption capacity for TC was 195.336 mg g-1. Analyses of spectrum verified the existence of Fe3O4 and FeOOH in BIP, which was the main reason for the removal of TC. The adsorption kinetic and isotherm of TC were well fitted to Elovich and Langmuir isotherm models, respectively, indicating that the adsorption process was mainly controlled by chemical adsorption. Furthermore, we proposed a potential mechanism of adsorption: a combination of cation-π, hydrogen bonding (H-bonding), and electrostatic interaction. Additionally, the activation experiment showed that BIP could enhance the degradation of TC (more than 98.00% removal within 1.0 h) by advanced oxidation process (AOP), due to the existence of FeOOH and Fe3O4. Considering its effectiveness in both adsorption and activation performance, BIP is highlighted as an economical and eco-friendly material for TC removal and offers a promising method to resolve sludge disposal in biological treatment of iron-rich groundwater.
Collapse
Affiliation(s)
- Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Xue
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
20
|
Thongpitak J, Pumas P, Pumas C. Paraquat Degradation by Biological Manganese Oxide (BioMnO x ) Catalyst Generated From Living Microalga Pediastrum duplex AARL G060. Front Microbiol 2020; 11:575361. [PMID: 33042090 PMCID: PMC7522373 DOI: 10.3389/fmicb.2020.575361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Paraquat is a non-selective fast-acting herbicide used to control weeds in agricultural crops. Many years of extensive use has caused environmental pollution and food toxicity. This agrochemical degrades slowly in nature, adsorbs onto clay lattices, and may require environmental remediation. Studies have shown that biosynthesized manganese oxide (BioMnOx) successfully degraded toxic synthetic compounds such as bis-phenol A and diclofenac, thus it has potential for paraquat degradation. In this experiment, P. duplex AARL G060 generated low (9.03 mg/L) and high (42.41 mg/L) concentrations of BioMnOx. The precipitated BioMnOx was observed by scanning electron microscopy (SEM), and the elemental composition was identified as Mn and O by energy-dispersive x-ray spectroscopy (EDS). The potential for BioMnOx to act as a catalyst in the degradation of paraquat was evaluated under three treatments: (1) a negative control (deionized water), (2) living alga with low BioMnOx plus hydrogen peroxide, and (3) living alga with high BioMnOx plus hydrogen peroxide. The results indicate that BioMnOx served as a catalyst in the Fenton-like reaction that could degrade more than 50% of the paraquat within 72 h. A kinetic study indicated that paraquat degradation by Fenton-like reactions using BioMnOx as a catalyst can be described by pseudo-first and pseudo-second order models. The pH level of the BioMnOx catalyst was neutral at the end of the experiment. In conclusion, BioMnOx is a viable and environmentally friendly catalyst to accelerate degradation of paraquat and other toxic chemicals.
Collapse
Affiliation(s)
- Jakkapong Thongpitak
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pamon Pumas
- Department of Environmental Science, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
21
|
Martínez-Ruiz EB, Cooper M, Al-Zeer MA, Kurreck J, Adrian L, Szewzyk U. Manganese-oxidizing bacteria form multiple cylindrospermopsin transformation products with reduced human liver cell toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138924. [PMID: 32361450 DOI: 10.1016/j.scitotenv.2020.138924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Cylindrospermopsin (CYN) is a toxic alkaloid highly persistent in aquatic environments. Biological removal of CYN was described previously. However, no transformation products formed by biological processes could be identified so far. Here, we describe that various manganese-oxidizing bacteria (MOB) transform CYN completely at an initial mean concentration of 7 mg L-1 (17 μM) within 3 to 34 days. Regardless of the strain, and transformation rate, transformation of CYN by MOB led to the same seven transformation products identified by mass spectrometry, which suggests that the removal of CYN by MOB follows a similar mechanism. Oxidation was the main transformation process, and the uracil moiety was the most susceptible part of the CYN molecule. In vitro cytotoxicity tests with the transformation products of CYN formed by one of the tested strains against the two human liver cell lines HepG2 and HepaRG, revealed that the transformation products were substantially less toxic than pure CYN for both cell lines. The results suggest that incubation with MOB might be an option for water treatment to remove CYN and may allow more detailed studies on the fate of CYN in the environment.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Technische Universität Berlin, Institute of Environmental Technology, Chair of Environmental Microbiology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Myriel Cooper
- Technische Universität Berlin, Institute of Environmental Technology, Chair of Environmental Microbiology, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Munir A Al-Zeer
- Technische Universität Berlin, Institute of Biotechnology, Chair of Applied Biochemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jens Kurreck
- Technische Universität Berlin, Institute of Biotechnology, Chair of Applied Biochemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Lorenz Adrian
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig, Germany; Technische Universität Berlin, Institute of Biotechnology, Chair of Geobiotechnology, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ulrich Szewzyk
- Technische Universität Berlin, Institute of Environmental Technology, Chair of Environmental Microbiology, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
22
|
Molecular Cloning and Heterologous Expression of Manganese(II)-Oxidizing Enzyme from Acremonium strictum Strain KR21-2. Catalysts 2020. [DOI: 10.3390/catal10060686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diverse ascomycete fungi oxidize manganese(II) [Mn(II)] and produce Mn(III, IV) oxides in terrestrial and freshwater environments. Although multicopper oxidase (MCO) is considered to be a key catalyst in mediating Mn(II) oxidation in ascomycetes, the responsible gene and its product have not been identified. In this study, a gene, named mco1, encoding Mn(II)-oxidizing MCO from Acremonium strictum strain KR21-2 was cloned and heterologously expressed in the methylotrophic yeast Pichia pastoris. Based on the phylogenetic relationship, similarity of putative copper-binding motifs, and homology modeling, the gene product Mco1 was assigned to a bilirubin oxidase. Mature Mco1 was predicted to be composed of 565 amino acids with a molecular mass of 64.0 kDa. The recombinant enzyme oxidized Mn(II) to yield spherical Mn oxides, several micrometers in diameter. Zinc(II) ions added to the reaction mixture were incorporated by the Mn oxides at a Zn/Mn molar ratio of 0.36. The results suggested that Mco1 facilitates the growth of the micrometer-sized Mn oxides and affects metal sequestration through Mn(II) oxidation. This is the first report on heterologous expression and identification of the Mn(II) oxidase enzyme in Mn(II)-oxidizing ascomycetes. The cell-free, homogenous catalytic system with recombinant Mco1 could be useful for understanding Mn biomineralization by ascomycetes and the sequestration of metal ions in the environment
Collapse
|
23
|
Romano-Armada N, Yañez-Yazlle MF, Irazusta VP, Rajal VB, Moraga NB. Potential of Bioremediation and PGP Traits in Streptomyces as Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture. Pathogens 2020; 9:E117. [PMID: 32069867 PMCID: PMC7169405 DOI: 10.3390/pathogens9020117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022] Open
Abstract
Environmental limitations influence food production and distribution, adding up to global problems like world hunger. Conditions caused by climate change require global efforts to be improved, but others like soil degradation demand local management. For many years, saline soils were not a problem; indeed, natural salinity shaped different biomes around the world. However, overall saline soils present adverse conditions for plant growth, which then translate into limitations for agriculture. Shortage on the surface of productive land, either due to depletion of arable land or to soil degradation, represents a threat to the growing worldwide population. Hence, the need to use degraded land leads scientists to think of recovery alternatives. In the case of salt-affected soils (naturally occurring or human-made), which are traditionally washed or amended with calcium salts, bio-reclamation via microbiome presents itself as an innovative and environmentally friendly option. Due to their low pathogenicity, endurance to adverse environmental conditions, and production of a wide variety of secondary metabolic compounds, members of the genus Streptomyces are good candidates for bio-reclamation of salt-affected soils. Thus, plant growth promotion and soil bioremediation strategies combine to overcome biotic and abiotic stressors, providing green management options for agriculture in the near future.
Collapse
Affiliation(s)
- Neli Romano-Armada
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
| | - María Florencia Yañez-Yazlle
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ciencias Naturales, UNSa, Salta 4400, Argentina
| | - Verónica P. Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ciencias Naturales, UNSa, Salta 4400, Argentina
| | - Verónica B. Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Norma B. Moraga
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
| |
Collapse
|
24
|
Biodegradation of the Endocrine-Disrupting Chemical 17α-Ethynylestradiol (EE2) by Rhodococcus zopfii and Pseudomonas putida Encapsulated in Small Bioreactor Platform (SBP) Capsules. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we present an innovative new bio-treatment approach for 17α-ethynyestradiol (EE2). Our solution for EE2 decontamination was accomplished by using the SBP (Small Bioreactor Platform) macro-encapsulation method for the encapsulation of two bacterial cultures, Rhodococcus zopfii (R. zopfii ) and Pseudomonas putida F1 (P. putida). Our results show that the encapsulated R. zopffi presented better biodegradation capabilities than P. putida F1. After 24 h of incubation on minimal medium supplemented with EE2 as a sole carbon source, EE2 biodegradation efficacy was 73.8% and 86.5% in the presence of encapsulated P. putida and R. zopfii, respectively. In the presence of additional carbon sources, EE2 biodegradation efficacy was 75% and 56.1% by R. zopfii and P. putida, respectively, indicating that the presence of other viable carbon sources might slightly reduce the EE2 biodegradation efficiency. Nevertheless, in domestic secondary effluents, EE2 biodegradation efficacy was similar to the minimal medium, indicating good adaptation of the encapsulated cultures to sanitary effluents and lack of a significant effect of the presence of other viable carbon sources on the EE2 biodegradation by the two encapsulated cultures. Our findings demonstrate that SBP-encapsulated R. zopfii and P. putida might present a practical treatment for steroidal hormones removal in wastewater treatment processes.
Collapse
|
25
|
Martínez-Ruiz EB, Cooper M, Fastner J, Szewzyk U. Manganese-oxidizing bacteria isolated from natural and technical systems remove cylindrospermopsin. CHEMOSPHERE 2020; 238:124625. [PMID: 31466008 DOI: 10.1016/j.chemosphere.2019.124625] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The cyanotoxin cylindrospermopsin was discovered during a drinking water-related outbreak of human poisoning in 1979. Knowledge about the degradation of cylindrospermopsin in waterbodies is limited. So far, only few cylindrospermopsin-removing bacteria have been described. Manganese-oxidizing bacteria remove a variety of organic compounds. However, this has not been assessed for cyanotoxins yet. We investigated cylindrospermopsin removal by manganese-oxidizing bacteria, isolated from natural and technical systems. Cylindrospermopsin removal was evaluated under different conditions. We analysed the correlation between the amount of oxidized manganese and the cylindrospermopsin removal, as well as the removal of cylindrospermopsin by sterile biogenic oxides. Removal rates in the range of 0.4-37.0 μg L-1 day-1 were observed. When MnCO3 was in the media Pseudomonas sp. OF001 removed ∼100% of cylindrospermopsin in 3 days, Comamonadaceae bacterium A210 removed ∼100% within 14 days, and Ideonella sp. A288 and A226 removed 65% and 80% within 28 days, respectively. In the absence of Mn2+, strain A288 did not remove cylindrospermopsin, while the other strains removed 5-16%. The amount of manganese oxidized by the strains during the experiment did not correlate with the amount of cylindrospermopsin removed. However, the mere oxidation of Mn2+ was indispensable for cylindrospermopsin removal. Cylindrospermopsin removal ranging from 0 to 24% by sterile biogenic oxides was observed. Considering the efficient removal of cylindrospermopsin by the tested strains, manganese-oxidizing bacteria might play an important role in cylindrospermopsin removal in the environment. Besides, manganese-oxidizing bacteria could be promising candidates for biotechnological applications for cylindrospermopsin removal in water treatment plants.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Technische Universität Berlin, Chair of Environmental Microbiology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany.
| | - Myriel Cooper
- Technische Universität Berlin, Chair of Environmental Microbiology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Jutta Fastner
- German Environment Agency, Section Drinking Water Treatment and Resource Protection, Schichauweg 58, D-12307, Berlin, Germany
| | - Ulrich Szewzyk
- Technische Universität Berlin, Chair of Environmental Microbiology, Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| |
Collapse
|
26
|
Kiskira K, Papirio S, Mascolo MC, Fourdrin C, Pechaud Y, van Hullebusch ED, Esposito G. Mineral characterization of the biogenic Fe(III)(hydr)oxides produced during Fe(II)-driven denitrification with Cu, Ni and Zn. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:401-412. [PMID: 31212147 DOI: 10.1016/j.scitotenv.2019.06.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The recovery of iron and other heavy metals by the formation of Fe(III) (hydr)oxides is an important application of microbially-driven processes. The mineral characterization of the precipitates formed during Fe(II)-mediated autotrophic denitrification with and without the addition of Cu, Ni, and Zn by four different microbial cultures was investigated by X-ray fluorescence (XRF), Raman spectroscopy, scanning electron microscopy equipped with energy dispersive X-Ray analyzer (SEM-EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray Powder Diffraction (XRD) analyses. Fe(II)-mediated autotrophic denitrification resulted in the formation of a mixture of Fe(III) (hydr)oxides composed of amorphous phase, poorly crystalline (ferrihydrite) and crystalline phases (hematite, akaganeite and maghemite). The use of a Thiobacillus-dominated mixed culture enhanced the formation of akaganeite, while activated sludge enrichment and the two pure cultures of T. denitrificans and Pseudogulbenkiania strain 2002 mainly resulted in the formation of maghemite. The addition of Cu, Ni and Zn led to similar Fe(III) (hydr)oxides precipitates, probably due to the low metal concentrations. However, supplementing Ni and Zn slightly stimulated the formation of maghemite. A thermal post-treatment performed at 650 °C enhanced the crystallinity of the precipitates and favored the formation of hematite and some other crystalline forms of Fe associated with P, Na and Ca.
Collapse
Affiliation(s)
- Kyriaki Kiskira
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR, Italy; Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Maria Cristina Mascolo
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043 Cassino, FR, Italy
| | - Chloé Fourdrin
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France
| | - Yoan Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France; IHE Delft Institute for Water Education, Department of Environmental Engineering and Water Technology, P.O. Box 3015, 2601, DA, Delft, the Netherlands
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
27
|
Ng CK, Karahan HE, Loo SCJ, Chen Y, Cao B. Biofilm-Templated Heteroatom-Doped Carbon-Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24018-24026. [PMID: 31251015 DOI: 10.1021/acsami.9b04095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we report an interdisciplinary and novel strategy toward biofilm engineering for the development of a biofilm-templated heteroatom-doped catalytic system through bioreduction and biofilm matrix-facilitated immobilization of the in situ-formed catalytic nanoparticles followed by controlled pyrolysis. We showed that (i) even under room temperature and bulk aerobic conditions, Shewanella oneidensis MR-1 biofilms reduced Pd(II) to form Pd(0) nanocrystals (∼10 to 20 nm) that were immobilized in the biofilm matrix and in cellular membranes, (ii) the MR-1 biofilms with the immobilized Pd(0) nanocrystals exhibited nanocatalytic activity, (iii) exposure to Pd(II) greatly increased the rate of cell detachment from the biofilm and posed a risk of biofilm dispersal, (iv) controlled pyrolysis (carbonization) of the biofilm led to the formation of a stable heteroatom-doped carbon-palladium (C-Pd) nanocomposite catalyst, and (v) the biofilm-templated C-Pd nanocomposite catalyst exhibited a high Cr(VI) reduction activity and maintained a high reduction rate over multiple catalytic cycles. Considering that bacteria are capable of synthesizing a wide range of metal and metalloid nanoparticles, the biofilm-templated approach for the fabrication of the catalytic C-Pd nanocomposite we have demonstrated here should prove to be widely applicable for the production of different nanocomposites that are of importance to various environmental applications.
Collapse
Affiliation(s)
- Chun Kiat Ng
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School , Nanyang Technological University , 637551 Singapore
- Department of Engineering Science , University of Oxford , Oxford OX1 3PJ , United Kingdom
| | - H Enis Karahan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637459 Singapore
| | - Say Chye Joachim Loo
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School , Nanyang Technological University , 637551 Singapore
| | - Yuan Chen
- The University of Sydney, School of Chemical and Biomolecular Engineering , Sydney , New South Wales 2006 , Australia
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School , Nanyang Technological University , 637551 Singapore
| |
Collapse
|
28
|
Environmental Application of Biogenic Magnetite Nanoparticles to Remediate Chromium(III/VI)-Contaminated Water. MINERALS 2019. [DOI: 10.3390/min9050260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The physicochemical characteristics of biogenic minerals, such as high specific surface areas and high reactivity and the presence of a bacterial carrier matrix, make them promising for various applications. For instance, catalysts, adsorbents, oxidants, and reductants. The objective of this study is to examine the efficiency of biogenic magnetite nanoparticles (BMNs) that are produced by metal-reducing bacteria for removing chromium. Interactions between ionic chromium (Cr III/VI) and BMNs were examined under different pH values (ranging from pH 2 to pH 12) by using different doses of BMN (0–6 g/L). Chemically synthesized magnetite nanoparticles (CMNs) were used in the experiments for the purpose of comparing them to the BMNs. The results showed that the BMNs had higher Cr(VI) removal efficiency (100%) than the CMNs (82%) after a two-week reaction time. A lower pH and longer reaction time in the Cr-contaminated solution led to a higher Cr(VI) removal efficiency. The Cr(VI) removal efficiency by the BMNs in the Cr-contaminated groundwater was about 94% after a reaction time of two weeks. The BMNs that were coated with organic matter were more effective than the CMNs in leading to adsorption of Cr(III) with electrostatic interactions (82% versus 13%) and in preventing Fe(II) oxidation within the magnetite structure. These results indicate that the BMNs could be used to decontaminate ionic Cr in environmental remediation technologies.
Collapse
|
29
|
Gautam PK, Singh A, Misra K, Sahoo AK, Samanta SK. Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:734-748. [PMID: 30408767 DOI: 10.1016/j.jenvman.2018.10.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/02/2018] [Accepted: 10/28/2018] [Indexed: 05/02/2023]
Abstract
The continuous increase in water pollution by various organic & inorganic contaminants has become a major issue of concern worldwide. Furthermore, the anthropogenic activities for the manufacturing of various products have boosted this problem manifold. To overcome this serious issue, nanotechnology has initiated to explore various proficient strategies to treat waste water in a more precise and accurate way with the support of various nanomaterials. In recent times, nanosized materials have proved their applicability to provide clean and affordable water treatment technologies. The exclusive features such as high surface area and mechanical properties, greater chemical reactivity, lower cost and energy, efficient regeneration for reuse allow the nanomaterials perfect for water remediation. But the conventional routes of synthesis of nanomaterials encompass the involvement of hazardous and volatile chemicals; therefore the use of nanomaterials further creates the secondary pollution. This issue has intrigued the scientists to develop biogenic pathways and procedures which are environmentally safer and inexpensive. It has led to the new trends that involve developing bio-inspired nano-scale adsorbents and catalysts for the removal and degradation of a wide range of water pollutants. Carbohydrates, proteins, polymers, flavonoids, alkaloids and several antioxidants obtained from plants, bacteria, fungi, and algae have proven their effectiveness as capping and stabilizing agents during manufacture of nanomaterials. Application of biogenic nanomaterials for waste water treatment is relatively newer but rapidly escalating area of research. In the present review, promises and challenges for the synthesis of various biogenic nanomaterials and their potential applications in waste water treatment and/or water purification have been discussed.
Collapse
Affiliation(s)
- Pavan Kumar Gautam
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Krishna Misra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, India.
| |
Collapse
|
30
|
Ali I, Peng C, Khan ZM, Naz I, Sultan M, Ali M, Abbasi IA, Islam T, Ye T. Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:128-150. [PMID: 30286344 DOI: 10.1016/j.jenvman.2018.09.073] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/14/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Treatment of toxic and emerging pollutants (T&EPs) is increasing the threats to the survival of conventional wastewater treatment (WWTs) technologies. The high installation and operational costs of advanced treatment technologies have shifted the research interest to the development of economical and reliable technology for management of T&EPs. Thus, recently biogenic nanoparticles (BNPs) fabricated using microbes/microorganisms are getting tremendous research interest due to their unique properties (i.e. high specific surface area, desired morphology, catalytic reactivity) for the biodegradation and biosorption of T&EPs. In addition, BNPs can be manufactured using metal contaminated water which indicates a hidden potential for resource recovery and utilization. Therefore, the present study discusses the adsorptive and catalytic performance of BNPs in the removal of T&EPs from water (W) and wastewater (WW). In addition, inspired by the superior performance of BNPs in advance WWT, a model of BNPs based WWT resource recovery and utilization process is also proposed. Finally, main issues i.e. mass production, leaching, poisoning/toxicity, regeneration, reusability and fabrication costs and process optimization are discussed which are main hinders in the transfer of BNPs based WWT technologies from laboratory to commercial scale.
Collapse
Affiliation(s)
- Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Zahid M Khan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Bosan Road, Multan 60800, Pakistan
| | - Iffat Naz
- Department of Biology, Qassim University, Buraidah 51452, Saudi Arabia
| | - Muhammad Sultan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Bosan Road, Multan 60800, Pakistan.
| | - Mohsin Ali
- Department of Environmental Engineering, Middle East Technical University, Ankara 0600, Turkey
| | - Irfan A Abbasi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tariqul Islam
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tong Ye
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
31
|
Amirnia S, Asaeda T, Takeuchi C, Kaneko Y. Manganese-mediated immobilization of arsenic by calcifying macro-algae, Chara braunii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:661-669. [PMID: 30059926 DOI: 10.1016/j.scitotenv.2018.07.275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
The restoration capability of charophyte Chara braunii was studied in arsenic-polluted water in the context of biogenic calcium and manganese depositions on the plant. In addition to calcite encrustation, formation of craterlike shape deposits of manganese oxides (MnOx) with diameters of 5-10 μm was detected on the cell walls of the plants grown in Mn-rich media. Relative proportions of arsenic taken up by the plant biomass to those incorporated into the calcium and manganese biominerals were determined using a modified sequential chemical extraction method. The mean total arsenic recovery from water reached its highest value at 375 mg kg-1 in treatment with HCO3- and high concentrations of Ca and Mn (40 and 2 mg L-1, respectively). The percentage of arsenic associated with the manganese deposits in the plants exposed to 0.5 mg L-1 As(III) increased from 16.3% to 51.7% of the total arsenic accumulation at low and high Mn levels (<0.05 and 2 mg L-1, respectively), that accounted for the highest Mn-bound arsenic contribution. Surface oxidation of As(III) by MnOx and subsequent precipitation-adsorption of the formed As(V) onto the evolving structure of MnOx could be a plausible mechanism for arsenic removal. The presence, and in some cases dominance of arsenic bound to the biogenic Ca and Mn deposits on the studied aquatic plant may contribute to preservation of arsenic in sediments in a less bioavailable form upon its senescence and decomposition.
Collapse
Affiliation(s)
- Shahram Amirnia
- Department of Environmental Science, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama City 338-8570, Japan.
| | - Takashi Asaeda
- Department of Environmental Science, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama City 338-8570, Japan.
| | - Chihiro Takeuchi
- Department of Environmental Science, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama City 338-8570, Japan
| | - Yasuko Kaneko
- Faculty of Education, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama City 338-8570, Japan
| |
Collapse
|
32
|
Xie H, Yang Y, Liu J, Kang Y, Zhang J, Hu Z, Liang S. Enhanced triclosan and nutrient removal performance in vertical up-flow constructed wetlands with manganese oxides. WATER RESEARCH 2018; 143:457-466. [PMID: 29986254 DOI: 10.1016/j.watres.2018.05.061] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Limited concentrations of oxygen in constructed wetlands (CWs) have inhibited their ability to remove emerging organic contaminants (EOCs) at μg/L or ng/L levels. Manganese (Mn) oxides were proposed as a solution, as they are powerful oxidants with strong adsorptive capabilities. In the present study, triclosan (TCS) was selected as a typical EOC, and CW microcosms with Mn oxides (birnessite) coated sand (B-CWs) and without (C-CWs) were developed to test the removal capacities of TCS and common nutrients. We found that the addition of Mn oxides coated sand significantly improved removal efficiencies of TCS, NH4-N, COD, NO3-N and TP (P < 0.05). The average concentration of Mn(II) effluent was 0.036 mg L-1, mostly lower than the drinking water limit. To gain insight into the mechanisms of pollution removal, Mn transformation, dissolved oxygen (DO) distribution, bacterial abundance, and microbial community composition were also investigated. Maximum Mn(II) was detected at 20 cm height of the B-CWs in anoxic zone. Although Mn-oxidizing bacteria existed in the layer of 30-50 cm with 103-104 CFU g-1 dry substate, Mn oxides were only detected at height from 40 to 50 cm with rich oxygen in B-CW. The quantities of bacterial 16S rRNA, amoA, narG and nosZ were not significantly different between two systems (P > 0.05), while Illumina high-throughput sequencing analysis revealed that the abundance of denitrifying bacteria was significant higher in B-CWs, and the abundance of Gammaproteobacteria that have a recognized role in Mn transformation were significantly increased. The results indicated that Mn oxides could enhance TCS and common pollutants removal in both anoxic and aerobic areas through the recycling of Mn between Mn(II) and biogenic Mn oxides.
Collapse
Affiliation(s)
- Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, PR China.
| | - Yixiao Yang
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | - Junhua Liu
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | - Yan Kang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| |
Collapse
|
33
|
Liu W, Langenhoff AAM, Sutton NB, Rijnaarts HHM. Biological regeneration of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of pharmaceuticals from water. CHEMOSPHERE 2018; 208:122-130. [PMID: 29864703 DOI: 10.1016/j.chemosphere.2018.05.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Applying manganese(IV)- or iron(III)-(hydr)oxides to remove pharmaceuticals from water could be attractive, due to the capacity of these metal oxides to remove pharmaceuticals and be regenerated. As pharmaceutical removal under anaerobic conditions is foreseen, Mn(IV) or Fe(III) regeneration under anaerobic conditions, or with minimum oxygen dosage, is preferred. In this study, batch experiments are performed to investigate (1) Mn(IV) and Fe(III) regeneration from Mn(II) and Fe(II); (2) the pharmaceutical removal during biological Mn(IV) and Fe(III) regeneration; and (3) anaerobic abiotic pharmaceutical removal with different Mn(IV) or Fe(III) species. Results show that biological re-oxidation of reduced Mn(II) to Mn(IV) occurs under oxygen-limiting conditions. Biological re-oxidation of Fe(II) to Fe(III) is obtained with nitrate under anaerobic conditions. Both bio-regenerated Mn(IV)-oxides and Fe(III)-hydroxides are amorphous. The pharmaceutical removal is insignificant by Mn(II)- or Fe(II)-oxidizing bacteria during regeneration. Finally, pharmaceutical removal is investigated with various Mn(IV) and Fe(III) sources. Anaerobic abiotic removal using Mn(IV) produced from drinking water treatment plants results in 23% metoprolol and 44% propranolol removal, similar to chemically synthesized Mn(IV). In contrast, Fe(III) from drinking water treatment plants outperformed chemically or biologically synthesized Fe(III); Fe (III) from drinking water treatment can remove 31-43% of propranolol via anaerobic abiotic process. In addition, one of the Fe(III)-based sorbents tested, FerroSorp®RW, can also remove propranolol (20-25%). Biological regeneration of Mn(IV) and Fe(III) from the reduced species Mn(II) and Fe(II) could be more effective in terms of cost and treatment efficiency.
Collapse
Affiliation(s)
- Wenbo Liu
- Sub-department of Environmental Technology, Wageningen University & Research, 6708WG, Wageningen, the Netherlands
| | - Alette A M Langenhoff
- Sub-department of Environmental Technology, Wageningen University & Research, 6708WG, Wageningen, the Netherlands.
| | - Nora B Sutton
- Sub-department of Environmental Technology, Wageningen University & Research, 6708WG, Wageningen, the Netherlands
| | - Huub H M Rijnaarts
- Sub-department of Environmental Technology, Wageningen University & Research, 6708WG, Wageningen, the Netherlands
| |
Collapse
|
34
|
Park S, Lee JH, Shin TJ, Hur HG, Kim MG. Adsorption and Incorporation of Arsenic to Biogenic Lepidocrocite Formed in the Presence of Ferrous Iron during Denitrification by Paracoccus denitrificans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9983-9991. [PMID: 30111094 DOI: 10.1021/acs.est.8b02101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate adsorption and partial incorporation of arsenic, in its soluble form, either as arsenite or arsenate into lepidocrocite (γ-FeOOH), which was formed through nitrite-driven Fe(II) oxidation by Paracoccus denitrificans under nitrate-reducing conditions. Fe and As K-edge XANES and radial distribution functions of Fourier-transformed EXAFS spectra showed that portions of As were found to be incorporated in the biogenic lepidocrocite, in addition to higher portions of adsorbed As. We suggest that denitrifying bacteria such as Paracoccus denitrificans, studied here, could facilitate decrease of aqueous arsenic As(III) and/or As(V) through indirect Fe(II) oxidation to solid phase iron minerals, here as lepidocrocite, by the denitrification product nitrite in the presence of nitrate, ferrous iron, and arsenic, under certain environmental conditions where these materials could be found, such as in As-contaminated paddy soils and wetlands.
Collapse
Affiliation(s)
- Sunhwa Park
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry , Chonbuk National University , Jeonju 54896 , Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities & School of Natural Science , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , 123 Cheomdan-gwagiro , Buk-gu, Gwangju 61005 , Republic of Korea
| | - Min Gyu Kim
- Pohang Accelerator Laboratory (PAL) , Pohang University of Science and Technology , Pohang 37673 , Republic of Korea
| |
Collapse
|
35
|
Zhang J, Feng Y, Mi J, Shen Y, Tu Z, Liu L. Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:121-130. [PMID: 28826054 DOI: 10.1016/j.jhazmat.2017.07.053] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Photothermal lysis is an effective method for fast removal of pathogenic bacteria from bacterial contaminated environments and human body, irrespective of bacterial drug resistance. In the present work, a highly effective photothermal agent, Au@Pt nanorods (NRs), was prepared by modification of Pt nanodots with particle size of 5nm on the surface of Au NRs with a length of ca. 41nm and a width of ca. 13nm. The LSPR absorbance band of Au@Pt NRs could be tuned from 755 to 845nm by changing the Pt loading from 0.05 to 0.2, as compared to Au NRs. The photothermal conversion efficiency of Au@Pt NRs depended on the Pt loading, Au@Pt NRs concentration, and power density. Under NIR irradiation, the Au@Pt0.1 NRs exhibited the highest efficiency in photothermal lysis of both gram-positive and gram-negative bacteria. The introduction of Pt nanodots on the surface of Au@Pt NRs not only enhanced their photothermal conversions but also enhanced their affinity to bacteria and significantly decreased their cytotoxicity. The photothermal lysis of bacteria over Au@Pt NRs caused the damage onto the cell walls of bacteria, implying that the killing of bacteria probably went through the thermal ablation mechanism.
Collapse
Affiliation(s)
- Jie Zhang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Yonghai Feng
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| | - Jianli Mi
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Yanting Shen
- Institute of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Zhigang Tu
- Institute of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
36
|
Wang R, Wang S, Tai Y, Tao R, Dai Y, Guo J, Yang Y, Duan S. Biogenic manganese oxides generated by green algae Desmodesmus sp. WR1 to improve bisphenol A removal. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:310-319. [PMID: 28658640 DOI: 10.1016/j.jhazmat.2017.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 06/05/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Biogenic manganese oxides (BioMnOx) have attracted considerable attention as active oxidants, adsorbents, and catalysts. This study investigated the characteristics of algae-generated BioMnOx and determined its oxidative activity towards bisphenol A (BPA), an endocrine disrupter. Amorphous nanoparticles with a primary Mn valency of +3 were found in BioMnOx produced by Desmodesmus sp. WR1. The mechanism might be that algal growth created conditions favorable to Mn oxidation through increasing DO and pH. Initial Mn2+ concentrations of 6, 30, and 50mgL-1 produced a maximum of 5, 13, and 11mgL-1 of BioMnOx, respectively. Mn2+-enriched cultures exhibited the highest BPA removal efficiency (∼78%), while controls only reached about 27%. BioMnOx may significantly promote BPA oxidation in algae culture, enhancing the accumulation of substrates for glycosylation. Moreover, continuous BioMnOx increase and Mn2+ decrease during BPA oxidation confirmed Mn oxide regeneration. In conclusion, Mn oxide formation by microalgae has the potential to be used for environmental remediation.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Sai Wang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yiping Tai
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Ran Tao
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yunv Dai
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Jingjing Guo
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Shunshan Duan
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
37
|
Kato S, Miyazaki M, Kikuchi S, Kashiwabara T, Saito Y, Tasumi E, Suzuki K, Takai K, Cao LTT, Ohashi A, Imachi H. Biotic manganese oxidation coupled with methane oxidation using a continuous-flow bioreactor system under marine conditions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:1781-1795. [PMID: 28991793 DOI: 10.2166/wst.2017.365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biogenic manganese oxides (BioMnOx) can be applied for the effective removal and recovery of trace metals from wastewater because of their high adsorption capacity. Although a freshwater continuous-flow system for a nitrifier-based Mn-oxidizing microbial community for producing BioMnOx has been developed so far, a seawater continuous-flow bioreactor system for BioMnOx production has not been established. Here, we report BioMnOx production by a methanotroph-based microbial community by using a continuous-flow bioreactor system. The bioreactor system was operated using a deep-sea sediment sample as the inoculum with methane as the energy source for over 2 years. The BioMnOx production became evident after 370 days of reactor operation. The maximum Mn oxidation rate was 11.4 mg L-1 day-1. An X-ray diffraction analysis showed that the accumulated BioMnOx was birnessite. 16S rRNA gene-based clone analyses indicated that methanotrophic bacterial members were relatively abundant in the system; however, none of the known Mn-oxidizing bacteria were detected. A continuous-flow bioreactor system coupled with nitrification was also run in parallel for 636 days, but no BioMnOx production was observed in this bioreactor system. The comparative experiments indicated that the methanotroph-based microbial community, rather than the nitrifier-based community, was effective for BioMnOx production under the marine environmental conditions.
Collapse
Affiliation(s)
- Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan; Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan E-mail:
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), JAMSTEC, 2-15 Natsuhima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Sakiko Kikuchi
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan; Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan E-mail:
| | - Teruhiko Kashiwabara
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan; Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan E-mail:
| | - Yumi Saito
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), JAMSTEC, 2-15 Natsuhima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), JAMSTEC, 2-15 Natsuhima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan; Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan E-mail:
| | - Ken Takai
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan; Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan E-mail: ; Department of Subsurface Geobiological Analysis and Research (D-SUGAR), JAMSTEC, 2-15 Natsuhima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Linh Thi Thuy Cao
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Hiroyuki Imachi
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan E-mail: ; Department of Subsurface Geobiological Analysis and Research (D-SUGAR), JAMSTEC, 2-15 Natsuhima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
38
|
Chen A, Contreras LM, Keitz BK. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans. Appl Environ Microbiol 2017; 83:e00798-17. [PMID: 28687649 PMCID: PMC5583488 DOI: 10.1128/aem.00798-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation.IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms have been utilized for nanoparticle formation. The extremophile D. radiodurans, which can withstand significant environmental stresses and therefore is more robust for metal reduction applications, has yet to be exploited for this purpose. Thus, this work improves our understanding of the impact of environmental stresses on biogenic nanoparticle morphology and composition during metal reduction processes in this organism. This work also contributes to enhancing the controlled synthesis of nanoparticles with specific attributes and functions using biological systems.
Collapse
Affiliation(s)
- Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
39
|
Oaki Y. Morphology Design of Crystalline and Polymer Materials from Nanoscopic to Macroscopic Scales. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170098] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| |
Collapse
|
40
|
Liang X, Gadd GM. Metal and metalloid biorecovery using fungi. Microb Biotechnol 2017; 10:1199-1205. [PMID: 28696059 PMCID: PMC5609339 DOI: 10.1111/1751-7915.12767] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
Bioleaching is a proven bioprocess for metal recovery by solution from solid matrices, while a bioprecipitation or biomineralization approach is of potential for biorecovery from solution. Fungi can directly and indirectly mediate the formation of many kinds of minerals, including oxides, phosphates, carbonates and oxalates, as well as elemental forms of metals and metalloids such as Ag, Se and Te. Fungal capabilities may offer a potentially useful contribution to biotechnological and physico‐chemical methods for metal recovery.![]()
Collapse
Affiliation(s)
- Xinjin Liang
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
41
|
Freidman BL, Northcott KA, Thiel P, Gras SL, Snape I, Stevens GW, Mumford KA. From urban municipalities to polar bioremediation: the characterisation and contribution of biogenic minerals for water treatment. JOURNAL OF WATER AND HEALTH 2017; 15:385-401. [PMID: 28598343 DOI: 10.2166/wh.2017.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Minerals of biological origin have shown significant potential for the separation of contaminants from water worldwide. This study details the contribution of biologically derived minerals to water treatment operations, with a focus on filtration media from urban municipalities and remote cold regions. The results support biofilm-embedded iron and manganese to be the building blocks of biogenic mineral development on activated carbon and nutrient-amended zeolites. The presence of similar iron and manganese oxidising bacterial species across all filter media supports the analogous morphologies of biogenic minerals between sites and suggests that biological water treatment processes may be feasible across a range of climates. This is the first time the stages of biogenic mineral formation have been aligned with comprehensive imaging of the biofilm community and bacterial identification; especially with respect to cold regions. Where biogenic mineral formation occurs on filter media, the potential exists for enhanced adsorption for a range of organic and inorganic contaminants and improved longevity of filter media beyond the adsorption or exchange capacities of the raw material.
Collapse
Affiliation(s)
- Benjamin L Freidman
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail: ; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kathy A Northcott
- Veolia Australia and New Zealand, Kangaroo Flat, VIC 3555, Australia
| | - Peta Thiel
- Research Laboratory Services, Eltham, VIC 3095, Australia
| | - Sally L Gras
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail: ; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia; The ARC Dairy Innovation Hub, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ian Snape
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia
| | - Geoff W Stevens
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail:
| | - Kathryn A Mumford
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail:
| |
Collapse
|
42
|
Duckworth OW, Rivera NA, Gardner TG, Andrews MY, Santelli CM, Polizzotto ML. Morphology, structure, and metal binding mechanisms of biogenic manganese oxides in a superfund site treatment system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:50-58. [PMID: 27942631 DOI: 10.1039/c6em00525j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Manganese oxides, which may be biogenically produced in both pristine and contaminated environments, have a large affinity for many trace metals. In this study, water and Mn oxide-bearing biofilm samples were collected from the components of a pump and treat remediation system at a superfund site. To better understand the factors leading to their formation and their effects on potentially toxic metal fate, we conducted a chemical, microscopic, and spectroscopic characterization of these biofilm samples. Scanning electron microscopy revealed the presence of Mn oxides in close association with biological structures with morphologies consistent with fungi. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) revealed the oxides to be a mixture of layer and tunnel structure Mn(iv) oxides. In addition, XAS suggested that Ba, Co, and Zn all primarily bind to oxides in the biofilm in a manner that is analogous to synthetic or laboratory grown bacteriogenic Mn oxides. The results indicate that Mn oxides produced by organisms in the system may effectively scavenge metals, thus highlighting the potential utility of these organisms in designed remediation systems.
Collapse
Affiliation(s)
- O W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - N A Rivera
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA. and Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - T G Gardner
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - M Y Andrews
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - C M Santelli
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - M L Polizzotto
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
43
|
Martins M, Mourato C, Sanches S, Noronha JP, Crespo MTB, Pereira IAC. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. WATER RESEARCH 2017; 108:160-168. [PMID: 27817891 DOI: 10.1016/j.watres.2016.10.071] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceutical products (PhP) are one of the most alarming emergent pollutants in the environment. Therefore, it is of extreme importance to investigate efficient PhP removal processes. Biologic synthesis of platinum nanoparticles (Bio-Pt) has been reported, but their catalytic activity was never investigated. In this work, we explored the potential of cell-supported platinum (Bio-Pt) and palladium (Bio-Pd) nanoparticles synthesized with Desulfovibrio vulgaris as biocatalysts for removal of four PhP: ciprofloxacin, sulfamethoxazole, ibuprofen and 17β-estradiol. The catalytic activity of the biological nanoparticles was compared with the PhP removal efficiency of D. vulgaris whole-cells. In contrast with Bio-Pd, Bio-Pt has a high catalytic activity in PhP removal, with 94, 85 and 70% removal of 17β-estradiol, sulfamethoxazole and ciprofloxacin, respectively. In addition, the estrogenic activity of 17β-estradiol was strongly reduced after the reaction with Bio-Pt, showing that this biocatalyst produces less toxic effluents. Bio-Pt or Bio-Pd did not act on ibuprofen, but this could be completely removed by D. vulgaris whole-cells, demonstrating that sulfate-reducing bacteria are among the microorganisms capable of biotransformation of ibuprofen in anaerobic environments. This study demonstrates for the first time that Bio-Pt has a high catalytic activity, and is a promising catalyst to be used in water treatment processes for the removal of antibiotics and endocrine disrupting compounds, the most problematic PhP.
Collapse
Affiliation(s)
- Mónica Martins
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier/ Universidade Nova de Lisboa, Av. da Republica-EAN, 2780-157 Oeiras, Portugal.
| | - Cláudia Mourato
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier/ Universidade Nova de Lisboa, Av. da Republica-EAN, 2780-157 Oeiras, Portugal
| | - Sandra Sanches
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - João Paulo Noronha
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - M T Barreto Crespo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier/ Universidade Nova de Lisboa, Av. da Republica-EAN, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Inês A C Pereira
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier/ Universidade Nova de Lisboa, Av. da Republica-EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
44
|
Zhang S, Tang Y, Vlahovic B. A Review on Preparation and Applications of Silver-Containing Nanofibers. NANOSCALE RESEARCH LETTERS 2016; 11:80. [PMID: 26858162 PMCID: PMC4747935 DOI: 10.1186/s11671-016-1286-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/28/2016] [Indexed: 06/02/2023]
Abstract
Silver-containing nanofibers are of great interest recently because of the dual benefits from silver particles and nanofibers. Silver nanoparticles are extensively used for biomedical applications due to the antibacterial and antiviral properties. In addition, silver nanoparticles can excite resonance effect of light trapping when pairing with dielectric materials, such as polymer. Comparing to the traditional fabrics, polymer nanofibers can provide larger number of reaction sites and higher permeability contributed to their high surface-to-volume ratio and high porosity. By embedding the silver nanoparticles into polymer nanofiber matrix, the composite is promising candidates for biomaterials, photovoltaic materials, and catalysts. This work demonstrates and evaluates the methods employed to synthesize silver nanoparticle-containing nanofibers and their potential applications.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Mathematics and Physics, North Carolina Central University, Durham, NC, 27707, USA
| | - Yongan Tang
- Department of Mathematics and Physics, North Carolina Central University, Durham, NC, 27707, USA.
| | - Branislav Vlahovic
- Department of Mathematics and Physics, North Carolina Central University, Durham, NC, 27707, USA
| |
Collapse
|
45
|
Kadukova J. Surface sorption and nanoparticle production as a silver detoxification mechanism of the freshwater alga Parachlorella kessleri. BIORESOURCE TECHNOLOGY 2016; 216:406-413. [PMID: 27262095 DOI: 10.1016/j.biortech.2016.05.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
SEM, EDS, TEM, FTIR and UV-vis analysis were used to investigate the biosorption, bioaccumulation and bioreduction of silver by the freshwater green alga Parachlorella kessleri. The dead algal biomass showed high potential for silver removal; 75% of silver was removed within 2min. Surface sorption was the main mechanism; bioreduction contributed to the biosorption only to a small extent. In the presence of living P. kessleri cells a 68% decrease of silver concentration was observed within 24h, but subsequently the majority of silver was released back into the solution within the next 14days. According to UV-vis spectrometry, silver nanoparticles were formed in that time. The nanoparticles produced by the alga exhibited a lower toxicity against algal cells than silver ions at the same silver concentrations. The study demonstrated that living algal cells used a combination of two main mechanisms (sorption and reduction) for silver detoxification in their environment.
Collapse
Affiliation(s)
- Jana Kadukova
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, Srobarova 2, 04154 Kosice, Slovakia.
| |
Collapse
|
46
|
Production of Manganese Oxide Nanoparticles by Shewanella Species. Appl Environ Microbiol 2016; 82:5402-9. [PMID: 27342559 DOI: 10.1128/aem.00663-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Several species of the bacterial genus Shewanella are well-known dissimilatory reducers of manganese under anaerobic conditions. In fact, Shewanella oneidensis is one of the most well studied of all metal-reducing bacteria. In the current study, a number of Shewanella strains were tested for manganese-oxidizing capacity under aerobic conditions. All were able to oxidize Mn(II) and to produce solid dark brown manganese oxides. Shewanella loihica strain PV-4 was the strongest oxidizer, producing oxides at a rate of 20.3 mg/liter/day and oxidizing Mn(II) concentrations of up to 9 mM. In contrast, S. oneidensis MR-1 was the weakest oxidizer tested, producing oxides at 4.4 mg/liter/day and oxidizing up to 4 mM Mn(II). Analysis of products from the strongest oxidizers, i.e., S loihica PV-4 and Shewanella putrefaciens CN-32, revealed finely grained, nanosize, poorly crystalline oxide particles with identical Mn oxidation states of 3.86. The biogenic manganese oxide products could be subsequently reduced within 2 days by all of the Shewanella strains when culture conditions were made anoxic and an appropriate nutrient (lactate) was added. While Shewanella species were detected previously as part of manganese-oxidizing consortia in natural environments, the current study has clearly shown manganese-reducing Shewanella species bacteria that are able to oxidize manganese in aerobic cultures. IMPORTANCE Members of the genus Shewanella are well known as dissimilatory manganese-reducing bacteria. This study shows that a number of species from Shewanella are also capable of manganese oxidation under aerobic conditions. Characterization of the products of the two most efficient oxidizers, S. loihica and S. putrefaciens, revealed finely grained, nanosize oxide particles. With a change in culture conditions, the manganese oxide products could be subsequently reduced by the same bacteria. The ability of Shewanella species both to oxidize and to reduce manganese indicates that the genus plays a significant role in the geochemical cycling of manganese. Due to the high affinity of manganese oxides for binding other metals, these bacteria may also contribute to the immobilization and release of other metals in the environment.
Collapse
|
47
|
Zhu N, Cao Y, Shi C, Wu P, Ma H. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7627-7638. [PMID: 26739993 DOI: 10.1007/s11356-015-6033-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).
Collapse
Affiliation(s)
- Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, People's Republic of China.
| | - Yanlan Cao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Chaohong Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, People's Republic of China
| | - Haiqin Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
48
|
Zhou C, Ontiveros-Valencia A, Wang Z, Maldonado J, Zhao HP, Krajmalnik-Brown R, Rittmann BE. Palladium Recovery in a H2-Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Autocatalytic Reductions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2546-2555. [PMID: 26883809 DOI: 10.1021/acs.est.5b05318] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recovering palladium (Pd) from waste streams opens up the possibility of augmenting the supply of this important catalyst. We evaluated Pd reduction and recovery as a novel application of a H2-based membrane biofilm reactor (MBfR). At steady states, over 99% of the input soluble Pd(II) was reduced through concomitant enzymatic and autocatalytic processes at acidic or near neutral pHs. Nanoparticulate Pd(0), at an average crystallite size of 10 nm, was recovered with minimal leaching and heterogeneously associated with microbial cells and extracellular polymeric substances in the biofilm. The dominant phylotypes potentially responsible for Pd(II) reduction at circumneutral pH were denitrifying β-proteobacteria mainly consisting of the family Rhodocyclaceae. Though greatly shifted by acidic pH, the biofilm microbial community largely bounced back when the pH was returned to 7 within 2 weeks. These discoveries infer that the biofilm was capable of rapid adaptive evolution to stressed environmental change, and facilitated Pd recovery in versatile ways. This study demonstrates the promise of effective microbially driven Pd recovery in a single MBfR system that could be applied for the treatment of the waste streams, and it documents the role of biofilms in this reduction and recovery process.
Collapse
Affiliation(s)
- Chen Zhou
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Aura Ontiveros-Valencia
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Zhaocheng Wang
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University , Changsha, China
| | - Juan Maldonado
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou, China
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Bruce E Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
49
|
|
50
|
Zhang C, Hu Z, Deng B. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. WATER RESEARCH 2016; 88:403-427. [PMID: 26519626 DOI: 10.1016/j.watres.2015.10.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 10/05/2015] [Accepted: 10/17/2015] [Indexed: 05/22/2023]
Abstract
Nanosilver (silver nanoparticles or AgNPs) has unique physiochemical properties and strong antimicrobial activities. This paper provides a comprehensive review of the physicochemical behavior (e.g., dissolution and aggregation) and antimicrobial mechanisms of nanosilver in aquatic environments. The inconsistency in calculating the Gibbs free energy of formation of nanosilver [ΔGf(AgNPs)] in aquatic environments highlights the research needed to carefully determine the thermodynamic stability of nanosilver. The dissolutive release of silver ion (Ag(+)) in the literature is often described using a pseudo-first-order kinetics, but the fit is generally poor. This paper proposes a two-stage model that could better predict silver ion release kinetics. The theoretical analysis suggests that nanosilver dissolution could occur under anoxic conditions and that nanosilver may be sulfidized to form silver sulfide (Ag2S) under strict anaerobic conditions, but more investigation with carefully-designed experiments is required to confirm the analysis. Although silver ion release is likely the main antimicrobial mechanism of nanosilver, the contributions of (ion-free) AgNPs and reactive oxygen species (ROS) generation to the overall toxicity of nanosilver must not be neglected. Several research directions are proposed to better understand the dissolution kinetics of nanosilver and its antimicrobial mechanisms under various aquatic environmental conditions.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Baolin Deng
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|