1
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2025; 26:298-319. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Tennakoon A, Galahitigama H, Samarakoon SMABK, Perera IJJUN, Thakshila GPGI, Thiruketheeswaranathan S, Roshana MR, Sandamal S, Sewwandi GPGSM, Bellanthudawa BKA. Remediating contaminated environmental systems: the role of plants in cadmium removal. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:896-915. [PMID: 39912381 DOI: 10.1080/15226514.2025.2456095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Cadmium (Cd) is one of the most harmful heavy metals in the environment, negatively impacting plant growth and development. However, phytoremediation which is an environmentally friendly and cost-effective technique can be used to treat Cd contaminated environments. It effectively removes Cd from polluted soil and water through processes, such as phytoextraction, phytostabilization, phytostimulation, phytofiltration, and phytotransformation. Numerous research has shown evidences that biological, physical, chemical, agronomic, and genetic methods are being utilized to improve phytoremediation. A special group of plants known as hyperaccumulator plants further enhance Cd removal, turning polluted areas into productive land. These plants accumulate Cd in root cell vacuoles and aerial parts. Despite the morphological and genetic variations, different plant species remediate Cd at different rates using either one or multiple mechanisms. To improve the effectiveness of phytoremediation, it is essential to thoroughly understand the mechanisms that control the accumulation and persistence of Cd in plants, including absorption, translocation, and elimination processes. However, what missing in understanding is in depth of idea on how the limitations of phytoremediation can be overcome. The limitations of phytoremediation can be addressed through various strategies, including natural and chemical amendments, genetic engineering, and natural microbial stimulation, broadly categorized into soil amelioration and plant capacity enhancement approaches. This review presents a concise overview of the latest research on various plants utilized in Cd phytoremediation and the different methods employed to enhance this process. Moreover, this review also underscores the creditability of phytoremediation technique to remediate Cd pollution as it offers a promising approach for eliminating Cd from contaminated sites and restoring their productivity. Additionally, we recommend directing future research toward enhancing the biochemical capabilities of plants for remediation purposes, elucidating the molecular mechanisms underlying the damage caused by Cd in plants, and understanding the fundamental principles regulating the enrichment of Cd in plants.
Collapse
Affiliation(s)
- Asanka Tennakoon
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Harshana Galahitigama
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - S M A B K Samarakoon
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - I J J U N Perera
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - G P G I Thakshila
- Department of Applied Sciences, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
- University of Chinese Academy of Sciences, Beijing, China
| | - Suthajini Thiruketheeswaranathan
- School of Environment, Tsinghua University, Beijing, China
- Department of Biosystems Technology, Faculty of Technology, Eastern University, Chenkalady, Sri Lanka
| | - M R Roshana
- Department of Biosystems Technology, Faculty of Technology, Eastern University, Chenkalady, Sri Lanka
| | - Salinda Sandamal
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - B K A Bellanthudawa
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
- University of Chinese Academy of Sciences, Beijing, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Padhy P, Zaman MA, Jensen MA, Cheng YT, Huang Y, Wu M, Galambos L, Davis RW, Hesselink L. Dielectrophoretic bead-droplet reactor for solid-phase synthesis. Nat Commun 2024; 15:6159. [PMID: 39039069 PMCID: PMC11263596 DOI: 10.1038/s41467-024-49284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
Solid-phase synthesis underpins many advances in synthetic and combinatorial chemistry, biology, and material science. The immobilization of a reacting species on the solid support makes interfacing of reagents an important challenge in this approach. In traditional synthesis columns, this leads to reaction errors that limit the product yield and necessitates excess consumption of the mobile reagent phase. Although droplet microfluidics can mitigate these problems, its adoption is fundamentally limited by the inability to controllably interface microbeads and reagent droplets. Here, we introduce Dielectrophoretic Bead-Droplet Reactor as a physical method to implement solid-phase synthesis on individual functionalized microbeads by encapsulating and ejecting them from microdroplets by tuning the supply voltage. Proof-of-concept demonstration of the enzymatic coupling of fluorescently labeled nucleotides onto the bead using this reactor yielded a 3.2-fold higher fidelity over columns through precise interfacing of individual microreactors and beads. Our work combines microparticle manipulation and droplet microfluidics to address a long-standing problem in solid-phase synthesis with potentially wide-ranging implications.
Collapse
Affiliation(s)
- Punnag Padhy
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Mohammad Asif Zaman
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Michael Anthony Jensen
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Yao-Te Cheng
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yogi Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Mo Wu
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ludwig Galambos
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ronald Wayne Davis
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Lambertus Hesselink
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Wang B, Liu Y, Bai X, Tian H, Wang L, Feng M, Xia H. In vitro generation of genetic diversity for directed evolution by error-prone artificial DNA synthesis. Commun Biol 2024; 7:628. [PMID: 38789612 PMCID: PMC11126579 DOI: 10.1038/s42003-024-06340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Generating genetic diversity lies at the heart of directed evolution which has been widely used to engineer genetic parts and gene circuits in synthetic biology. With the ever-expanding application of directed evolution, different approaches of generating genetic diversity are required to enrich the traditional toolbox. Here we show in vitro generation of genetic diversity for directed evolution by error-prone artificial DNA synthesis (epADS). This approach comprises a three-step process which incorporates base errors randomly generated during chemical synthesis of oligonucleotides under specific conditions into the target DNA. Through this method, 200 ~ 4000 folds of diversification in fluorescent strength have been achieved in genes encoding fluorescent proteins. EpADS has also been successfully used to diversify regulatory genetic parts, synthetic gene circuits and even increase microbial tolerance to carbenicillin in a short time period. EpADS would be an alternative tool for directed evolution which may have useful applications in synthetic biology.
Collapse
Affiliation(s)
- Baowei Wang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Yang Liu
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xuelian Bai
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huijuan Tian
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lina Wang
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Miao Feng
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Hairong Xia
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
5
|
Ma Y, Zhang Z, Jia B, Yuan Y. Automated high-throughput DNA synthesis and assembly. Heliyon 2024; 10:e26967. [PMID: 38500977 PMCID: PMC10945133 DOI: 10.1016/j.heliyon.2024.e26967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
DNA synthesis and assembly primarily revolve around the innovation and refinement of tools that facilitate the creation of specific genes and the manipulation of entire genomes. This multifaceted process encompasses two fundamental steps: the synthesis of lengthy oligonucleotides and the seamless assembly of numerous DNA fragments. With the advent of automated pipetting workstations and integrated experimental equipment, a substantial portion of repetitive tasks in the field of synthetic biology can now be efficiently accomplished through integrated liquid handling workstations. This not only reduces the need for manual labor but also enhances overall efficiency. This review explores the ongoing advancements in the oligonucleotide synthesis platform, automated DNA assembly techniques, and biofoundries. The development of accurate and high-throughput DNA synthesis and assembly technologies presents both challenges and opportunities.
Collapse
Affiliation(s)
- Yuxin Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaoyang Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Semashko TA, Fisunov GY, Tsoy EA, Kharrasov DR, Chudinov IK, Evsyutina DV, Shevelev GY, Govorun VM. Modern Approaches to de novo Synthesis of Extended DNA Fragments: Assembly of a Wide Repertoire of Sequences. Acta Naturae 2024; 16:77-85. [PMID: 38738632 PMCID: PMC11062099 DOI: 10.32607/actanaturae.27362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/28/2024] [Indexed: 05/14/2024] Open
Abstract
The standardization of DNA fragment assembly methods for many tasks of synthetic biology is crucial. This is necessary for synthesizing a wider repertoire of sequences, as well as for further automation and miniaturization of such reactions. In this work, we proposed conditions for the assembly of DNA fragments from chemically synthesized oligonucleotides and we identified the errors occurring in the sequence under these conditions. Additionally, we proposed conditions for further combining synthetic fragments into larger DNA fragments. We showed that the optimized conditions are suitable for the assembly of a wide range of sequences.
Collapse
Affiliation(s)
- T. A. Semashko
- Research Institute for Systems Biology and Medicine, Moscow, 117246 Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435 Russian Federation
| | - G. Y. Fisunov
- Research Institute for Systems Biology and Medicine, Moscow, 117246 Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435 Russian Federation
| | - E. A. Tsoy
- Research Institute for Systems Biology and Medicine, Moscow, 117246 Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435 Russian Federation
| | - D. R. Kharrasov
- Research Institute for Systems Biology and Medicine, Moscow, 117246 Russian Federation
| | - I. K. Chudinov
- Research Institute for Systems Biology and Medicine, Moscow, 117246 Russian Federation
| | - D. V. Evsyutina
- Research Institute for Systems Biology and Medicine, Moscow, 117246 Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435 Russian Federation
| | - G. Y. Shevelev
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090 Russian Federation
| | - V. M. Govorun
- Research Institute for Systems Biology and Medicine, Moscow, 117246 Russian Federation
| |
Collapse
|
7
|
Gómez-Martín C, Aparicio-Puerta E, van Eijndhoven MA, Medina JM, Hackenberg M, Pegtel DM. Reassessment of miRNA variant (isomiRs) composition by small RNA sequencing. CELL REPORTS METHODS 2023; 3:100480. [PMID: 37323569 PMCID: PMC10261927 DOI: 10.1016/j.crmeth.2023.100480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023]
Abstract
IsomiRs, sequence variants of mature microRNAs, are usually detected and quantified using high-throughput sequencing. Many examples of their biological relevance have been reported, but sequencing artifacts identified as artificial variants might bias biological inference and therefore need to be ideally avoided. We conducted a comprehensive evaluation of 10 different small RNA sequencing protocols, exploring both a theoretically isomiR-free pool of synthetic miRNAs and HEK293T cells. We calculated that, with the exception of two protocols, less than 5% of miRNA reads can be attributed to library preparation artifacts. Randomized-end adapter protocols showed superior accuracy, with 40% of true biological isomiRs. Nevertheless, we demonstrate concordance across protocols for selected miRNAs in non-templated uridyl additions. Notably, NTA-U calling and isomiR target prediction can be inaccurate when using protocols with poor single-nucleotide resolution. Our results highlight the relevance of protocol choice for biological isomiRs detection and annotation, which has key potential implications for biomedical applications.
Collapse
Affiliation(s)
- Cristina Gómez-Martín
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan, 1117 Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | | | - Monique A.J. van Eijndhoven
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan, 1117 Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - José M. Medina
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain
- Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain
- Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain
| | - D. Michiel Pegtel
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan, 1117 Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Cui M, Zhao X, Reddavide FV, Gaillez MP, Heiden S, Mannocci L, Thompson M, Zhang Y. Nonlinear manipulation and analysis of large DNA datasets. Nucleic Acids Res 2022; 50:8974-8985. [PMID: 35947747 PMCID: PMC9410889 DOI: 10.1093/nar/gkac672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Information processing functions are essential for organisms to perceive and react to their complex environment, and for humans to analyze and rationalize them. While our brain is extraordinary at processing complex information, winner-take-all, as a type of biased competition is one of the simplest models of lateral inhibition and competition among biological neurons. It has been implemented as DNA-based neural networks, for example, to mimic pattern recognition. However, the utility of DNA-based computation in information processing for real biotechnological applications remains to be demonstrated. In this paper, a biased competition method for nonlinear manipulation and analysis of mixtures of DNA sequences was developed. Unlike conventional biological experiments, selected species were not directly subjected to analysis. Instead, parallel computation among a myriad of different DNA sequences was carried out to reduce the information entropy. The method could be used for various oligonucleotide-encoded libraries, as we have demonstrated its application in decoding and data analysis for selection experiments with DNA-encoded chemical libraries against protein targets.
Collapse
Affiliation(s)
| | | | | | - Michelle Patino Gaillez
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Yixin Zhang
- To whom correspondence should be addressed. Tel: +49 351 463 43040;
| |
Collapse
|
9
|
Choi H, Choi Y, Choi J, Lee AC, Yeom H, Hyun J, Ryu T, Kwon S. Purification of multiplex oligonucleotide libraries by synthesis and selection. Nat Biotechnol 2022; 40:47-53. [PMID: 34326548 DOI: 10.1038/s41587-021-00988-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Complex oligonucleotide (oligo) libraries are essential materials for diverse applications in synthetic biology, pharmaceutical production, nanotechnology and DNA-based data storage. However, the error rates in synthesizing complex oligo libraries can be substantial, leading to increment in cost and labor for the applications. As most synthesis errors arise from faulty insertions and deletions, we developed a length-based method with single-base resolution for purification of complex libraries containing oligos of identical or different lengths. Our method-purification of multiplex oligonucleotide libraries by synthesis and selection-can be performed either step-by-step manually or using a next-generation sequencer. When applied to a digital data-encoded library containing oligos of identical length, the method increased the purity of full-length oligos from 83% to 97%. We also show that libraries encoding the complementarity-determining region H3 with three different lengths (with an empirically achieved diversity >106) can be simultaneously purified in one pot, increasing the in-frame oligo fraction from 49.6% to 83.5%.
Collapse
Affiliation(s)
- Hansol Choi
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yeongjae Choi
- Nano Systems Institute, Seoul National University, Seoul, Republic of Korea.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jaewon Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea
| | - Amos Chungwon Lee
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Huiran Yeom
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Jinwoo Hyun
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea. .,Nano Systems Institute, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Filges S, Mouhanna P, Ståhlberg A. Digital Quantification of Chemical Oligonucleotide Synthesis Errors. Clin Chem 2021; 67:1384-1394. [PMID: 34459892 DOI: 10.1093/clinchem/hvab136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Chemically synthesized oligonucleotides are vital to most nucleic acids-based technologies and several applications are sensitive to oligonucleotide sequence errors. However, it is challenging to identify and quantify the types and amount of errors in synthetic oligonucleotides. METHODS We applied a digital sequencing approach using unique molecular identifiers to quantify errors in chemically synthesized oligonucleotides from multiple manufacturers with different synthesis strategies, purity grades, batches, and sequence context. RESULTS We detected both deletions and substitutions in chemical oligonucleotide synthesis, but deletions were 7 times more common. We found that 97.2% of all analyzed oligonucleotide molecules were intact across all manufacturers and purity grades, although the number of oligonucleotide molecules with deletions ranged between 0.2% and 11.7% for different types. Different batches of otherwise identical oligonucleotide types also varied significantly, and batch effect can impact oligonucleotide quality more than purification. We observed a bias of increased deletion rates in chemically synthesized oligonucleotides toward the 5'-end for 1 out of 2 sequence configurations. We also demonstrated that the performance of sequencing assays depends on oligonucleotide quality. CONCLUSIONS Our data demonstrate that manufacturer, synthesis strategy, purity, batch, and sequence context all contribute to errors in chemically synthesized oligonucleotides and need to be considered when choosing and evaluating oligonucleotides. High-performance oligonucleotides are essential in numerous molecular applications, including clinical diagnostics.
Collapse
Affiliation(s)
- Stefan Filges
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenberg, Sweden
| | - Pia Mouhanna
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenberg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenberg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
11
|
Currin A, Parker S, Robinson CJ, Takano E, Scrutton NS, Breitling R. The evolving art of creating genetic diversity: From directed evolution to synthetic biology. Biotechnol Adv 2021; 50:107762. [PMID: 34000294 PMCID: PMC8299547 DOI: 10.1016/j.biotechadv.2021.107762] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
The ability to engineer biological systems, whether to introduce novel functionality or improved performance, is a cornerstone of biotechnology and synthetic biology. Typically, this requires the generation of genetic diversity to explore variations in phenotype, a process that can be performed at many levels, from single molecule targets (i.e., in directed evolution of enzymes) to whole organisms (e.g., in chassis engineering). Recent advances in DNA synthesis technology and automation have enhanced our ability to create variant libraries with greater control and throughput. This review highlights the latest developments in approaches to create such a hierarchy of diversity from the enzyme level to entire pathways in vitro, with a focus on the creation of combinatorial libraries that are required to navigate a target's vast design space successfully to uncover significant improvements in function.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.
| | - Steven Parker
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Christopher J Robinson
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S Scrutton
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
12
|
Matange K, Tuck JM, Keung AJ. DNA stability: a central design consideration for DNA data storage systems. Nat Commun 2021; 12:1358. [PMID: 33649304 PMCID: PMC7921107 DOI: 10.1038/s41467-021-21587-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 11/09/2022] Open
Abstract
Data storage in DNA is a rapidly evolving technology that could be a transformative solution for the rising energy, materials, and space needs of modern information storage. Given that the information medium is DNA itself, its stability under different storage and processing conditions will fundamentally impact and constrain design considerations and data system capabilities. Here we analyze the storage conditions, molecular mechanisms, and stabilization strategies influencing DNA stability and pose specific design configurations and scenarios for future systems that best leverage the considerable advantages of DNA storage.
Collapse
Affiliation(s)
- Karishma Matange
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - James M Tuck
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA.
| | - Albert J Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
13
|
Fantoni NZ, El-Sagheer AH, Brown T. A Hitchhiker's Guide to Click-Chemistry with Nucleic Acids. Chem Rev 2021; 121:7122-7154. [PMID: 33443411 DOI: 10.1021/acs.chemrev.0c00928] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Click chemistry is an immensely powerful technique for the fast and efficient covalent conjugation of molecular entities. Its broad scope has positively impacted on multiple scientific disciplines, and its implementation within the nucleic acid field has enabled researchers to generate a wide variety of tools with application in biology, biochemistry, and biotechnology. Azide-alkyne cycloadditions (AAC) are still the leading technology among click reactions due to the facile modification and incorporation of azide and alkyne groups within biological scaffolds. Application of AAC chemistry to nucleic acids allows labeling, ligation, and cyclization of oligonucleotides efficiently and cost-effectively relative to previously used chemical and enzymatic techniques. In this review, we provide a guide to inexperienced and knowledgeable researchers approaching the field of click chemistry with nucleic acids. We discuss in detail the chemistry, the available modified-nucleosides, and applications of AAC reactions in nucleic acid chemistry and provide a critical view of the advantages, limitations, and open-questions within the field.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
14
|
Jeon BJ, Nguyen DT, Saleh OA. Sequence-Controlled Adhesion and Microemulsification in a Two-Phase System of DNA Liquid Droplets. J Phys Chem B 2020; 124:8888-8895. [PMID: 32960601 DOI: 10.1021/acs.jpcb.0c06911] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane-less organelles, the liquid droplets formed via liquid-liquid phase separation (LLPS) of biomolecules in cells, act to organize intracellular components into multiple compartments. As a model for this process, and as a potential vehicle for in vitro exploitation of its properties, we explore here a synthetic multiphase LLPS system consisting of a mixture of self-assembled DNA particles. The particles, termed "DNA nanostars" (NSs), consist of four double-stranded DNA arms that each terminate in a single-stranded overhang. NSs condense into droplets due to overhang hybridization. Using two types of NSs with orthogonal overhangs enables the creation of two types of immiscible DNA droplets. Adhesion between the droplets can be tuned by the addition of "cross-linker NSs" that have two overhang sequences of each type. We find that increasing the amount of the cross-linker NSs decreases the droplet/droplet surface tension until a microemulsion transition occurs. Controlled droplet adhesion can also be achieved, without cross-linkers, using overhangs that can weakly hybridize. Finally, we show that solutes can be specifically targeted to the DNA phases by labeling them with appropriate sticky-ends. Overall, our findings demonstrate the ability to create a multiphase LLPS system, and to control its mesoscale configuration, via sequence design of the component molecules.
Collapse
Affiliation(s)
- Byoung-Jin Jeon
- Materials Department, University of California, Santa Barbara, California 93110, United States
| | - Dan T Nguyen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93110, United States
| | - Omar A Saleh
- Materials Department, University of California, Santa Barbara, California 93110, United States.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93110, United States
| |
Collapse
|
15
|
Thompson AS, Barrett SE, Weiden AG, Venkatesh A, Seto MKC, Gottlieb SZP, Leconte AM. Accurate and Efficient One-Pot Reverse Transcription and Amplification of 2'-Fluoro-Modified Nucleic Acids by Commercial DNA Polymerases. Biochemistry 2020; 59:2833-2841. [PMID: 32659079 DOI: 10.1021/acs.biochem.0c00494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA is a foundational tool in biotechnology and synthetic biology but is limited by sensitivity to DNA-modifying enzymes. Recently, researchers have identified DNA polymerases that can enzymatically synthesize long oligonucleotides of modified DNA (M-DNA) that are resistant to DNA-modifying enzymes. Most applications require M-DNA to be reverse transcribed, typically using a RNA reverse transcriptase, back into natural DNA for sequence analysis or further manipulation. Here, we tested commercially available DNA-dependent DNA polymerases for their ability to reverse transcribe and amplify M-DNA in a one-pot reaction. Three of the six polymerases chosen (Phusion, Q5, and Deep Vent) could reverse transcribe and amplify synthetic 2'F M-DNA in a single reaction with <5 × 10-3 error per base pair. We further used Q5 DNA polymerase to reverse transcribe and amplify M-DNA synthesized by two candidate M-DNA polymerases (SFP1 and SFM4-6), allowing for quantification of the frequency, types, and locations of errors made during M-DNA synthesis. From these studies, we identify SFP1 as one of the most accurate M-DNA polymerases identified to date. Collectively, these studies establish a simple, robust method for the conversion of 2'F M-DNA to DNA in <1 h using commercially available materials, significantly improving the ease of use of M-DNA.
Collapse
Affiliation(s)
- Arianna S Thompson
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Susanna E Barrett
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Aurora G Weiden
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Ananya Venkatesh
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Madison K C Seto
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Simone Z P Gottlieb
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Aaron M Leconte
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| |
Collapse
|
16
|
Zhang J, Wang Y, Chai B, Wang J, Li L, Liu M, Zhao G, Yao L, Gao X, Yin Y, Xu J. Efficient and Low-Cost Error Removal in DNA Synthesis by a High-Durability MutS. ACS Synth Biol 2020; 9:940-952. [PMID: 32135061 DOI: 10.1021/acssynbio.0c00079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzyme-based error correction is a key step in de novo DNA synthesis, yet the inherent instability of error-correction enzymes such as MutS has hindered the throughput and efficiency of DNA synthesis workflows. Here we introduce a process called Improved MICC (iMICC), in which all error-correction steps of oligos and fragments within a complete gene-synthesis cycle are completed in a simple, efficient, and low-cost manner via a MutS protein engineered for high durability. By establishing a disulfide bond of L157C-G233C, full-activity shelf life of E. coli MutS (eMutS) was prolonged from 7 to 49 days and was further extended to 63 days via cellulose-bound 4 °C storage. In synthesis of 10 Cas9 homologues in-solution and 10 xylose reductase (XR) homologues on-chip, iMICC reduced error frequency to 0.64/Kb and 0.41/Kb, respectively, with 72.1% and 86.4% of assembled fragments being error-free. By elevating base accuracy by 37.6-fold while avoiding repetitive preparation of fresh enzymes, iMICC is more efficient and robust than the wild-type eMutS, and it is 6.6-fold more accurate and 26.7-fold cheaper than CorrectASE. These advantages promise its broad applications in industrial DNA synthesis.
Collapse
Affiliation(s)
- Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yefei Wang
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Baihui Chai
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jichao Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Li
- LC-BIO Technologies CO., LTD., Hangzhou 310018, China
| | - Min Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolian Gao
- LC-BIO Technologies CO., LTD., Hangzhou 310018, China
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004-5001, United States
| | - Yifeng Yin
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory of Marine Science and Technology, Qingdao, Shandong 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Choi GCG, Zhou P, Yuen CTL, Chan BKC, Xu F, Bao S, Chu HY, Thean D, Tan K, Wong KH, Zheng Z, Wong ASL. Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9. Nat Methods 2019; 16:722-730. [PMID: 31308554 DOI: 10.1038/s41592-019-0473-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
The combined effect of multiple mutations on protein function is hard to predict; thus, the ability to functionally assess a vast number of protein sequence variants would be practically useful for protein engineering. Here we present a high-throughput platform that enables scalable assembly and parallel characterization of barcoded protein variants with combinatorial modifications. We demonstrate this platform, which we name CombiSEAL, by systematically characterizing a library of 948 combination mutants of the widely used Streptococcus pyogenes Cas9 (SpCas9) nuclease to optimize its genome-editing activity in human cells. The ease with which the editing activities of the pool of SpCas9 variants can be assessed at multiple on- and off-target sites accelerates the identification of optimized variants and facilitates the study of mutational epistasis. We successfully identify Opti-SpCas9, which possesses enhanced editing specificity without sacrificing potency and broad targeting range. This platform is broadly applicable for engineering proteins through combinatorial modifications en masse.
Collapse
Affiliation(s)
- Gigi C G Choi
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Peng Zhou
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Chaya T L Yuen
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Becky K C Chan
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Feng Xu
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Siyu Bao
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Hoi Yee Chu
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Dawn Thean
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau, China
- Institute of Translational Medicine, University of Macau, Macau, China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Alan S L Wong
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Cho N, Seo HN, Ryu T, Kwon E, Huh S, Noh J, Yeom H, Hwang B, Ha H, Lee JH, Kwon S, Bang D. High-throughput construction of multiple cas9 gene variants via assembly of high-depth tiled and sequence-verified oligonucleotides. Nucleic Acids Res 2019. [PMID: 29529247 PMCID: PMC5961255 DOI: 10.1093/nar/gky112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Selective retrieval of sequence-verified oligonucleotides (oligos) from next-generation sequencing (NGS) flow cells, termed megacloning, promises accurate and reliable gene synthesis. However, gene assembly requires a complete collection of overlapping sense and nonsense oligos, and megacloning does not typically guarantee the complete production of sequence-verified oligos. Therefore, missing oligos must be provided via repetitive rounds of megacloning, which introduces a bottleneck for scaled-up efforts at gene assembly. Here, we introduce the concept of high-depth tiled oligo design to successfully utilize megacloned oligos for gene synthesis. Using acquired oligos from a single round of the megacloning process, we assembled 72 of 81 target Cas9-coding gene variants. We further validated 62 of these cas9 constructs, and deposited the plasmids to Addgene for subsequent functional characterization by the scientific community. This study demonstrates the utility of using sequence-verified oligos for DNA assembly and provides a practical and reliable optimized method for high-throughput gene synthesis.
Collapse
Affiliation(s)
- Namjin Cho
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Na Seo
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Taehoon Ryu
- Celemics Inc., 371-17, Gasan-dong, Geumcheongu, Seoul 153-718, Republic of Korea
| | - Euijin Kwon
- Celemics Inc., 371-17, Gasan-dong, Geumcheongu, Seoul 153-718, Republic of Korea
| | - Sunghoon Huh
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Huiran Yeom
- Department of Electrical and Computer Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byungjin Hwang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Heejeong Ha
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Institute of Entrepreneurial Bio Convergence, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Seoul National University Hospital Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro Jongno-gu, Seoul, 03080, Republic of Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
19
|
Shevelev GY, Pyshnyi DV. Modern approaches to artificial gene synthesis: aspects of oligonucleotide synthesis, enzymatic assembly, sequence verification and error correction. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Xie Y, Yang YT, Shi W, Ai X, Xi XG. Construction, expression, and characterization of AG1 1-843 and AG1 1-1581. Protein Expr Purif 2018; 152:71-76. [PMID: 29870801 DOI: 10.1016/j.pep.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
AG1, a member of the DUF1220 protein family, exhibits the most extreme human lineage-specific copy number expansion of any protein-coding sequence in the genome. These variations in copy number have been linked to both brain evolution among primates and brain size in humans. Unfortunately, our current understanding of the structure and function of these proteins is limited because current cloning and expression techniques fail to consistently produce recombinant protein for in vitro studies. The present work describes a method for amino acid and DNA sequence optimization and synthesis, recombinant protein expression and analysis of two AG1 fragments, AG11-843 and AG11-1581. It was first necessary to modify the nucleotide sequence, while holding the GC content at 52.9%. The genes were then sectionally synthesized by overlap PCR. The resulting segments were cloned into the pET-15 b-sumo expression vector and subsequently transformed into BL21 (DE3) cells. After inducing their expression, the AG11-843 and AG11-1581 proteins were isolated and purified. Furthermore, using dynamic light scattering and gel filtration analysis, AG11-843 and AG11-1581 were shown to be present in tetrameric and dimeric forms in solution. To our knowledge, this is the first study to synthesize and express fragments of the DUF1220 protein family for in vitro analysis. Taken together, the proven utility and versatility of this method indicate that it can be used as an effective technique to construct and express other proteins with complicated sequences, thus providing the means to study their function and structure in vitro.
Collapse
Affiliation(s)
- Yan Xie
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan-Tao Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xia Ai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normals Supérieure de Cachan, CNRS, 61 Avenue du Président Wilson, 94235, Cachan, France.
| |
Collapse
|
21
|
Khilko Y, Weyman PD, Glass JI, Adams MD, McNeil MA, Griffin PB. DNA assembly with error correction on a droplet digital microfluidics platform. BMC Biotechnol 2018; 18:37. [PMID: 29859085 PMCID: PMC5984785 DOI: 10.1186/s12896-018-0439-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/24/2018] [Indexed: 12/02/2022] Open
Abstract
Background Custom synthesized DNA is in high demand for synthetic biology applications. However, current technologies to produce these sequences using assembly from DNA oligonucleotides are costly and labor-intensive. The automation and reduced sample volumes afforded by microfluidic technologies could significantly decrease materials and labor costs associated with DNA synthesis. The purpose of this study was to develop a gene assembly protocol utilizing a digital microfluidic device. Toward this goal, we adapted bench-scale oligonucleotide assembly methods followed by enzymatic error correction to the Mondrian™ digital microfluidic platform. Results We optimized Gibson assembly, polymerase chain reaction (PCR), and enzymatic error correction reactions in a single protocol to assemble 12 oligonucleotides into a 339-bp double- stranded DNA sequence encoding part of the human influenza virus hemagglutinin (HA) gene. The reactions were scaled down to 0.6-1.2 μL. Initial microfluidic assembly methods were successful and had an error frequency of approximately 4 errors/kb with errors originating from the original oligonucleotide synthesis. Relative to conventional benchtop procedures, PCR optimization required additional amounts of MgCl2, Phusion polymerase, and PEG 8000 to achieve amplification of the assembly and error correction products. After one round of error correction, error frequency was reduced to an average of 1.8 errors kb− 1. Conclusion We demonstrated that DNA assembly from oligonucleotides and error correction could be completely automated on a digital microfluidic (DMF) platform. The results demonstrate that enzymatic reactions in droplets show a strong dependence on surface interactions, and successful on-chip implementation required supplementation with surfactants, molecular crowding agents, and an excess of enzyme. Enzymatic error correction of assembled fragments improved sequence fidelity by 2-fold, which was a significant improvement but somewhat lower than expected compared to bench-top assays, suggesting an additional capacity for optimization. Electronic supplementary material The online version of this article (10.1186/s12896-018-0439-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuliya Khilko
- Stanford Genome Technology Center, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA.,Department of Biomedical, Chemical and Materials Engineering, San Jose State University, 1 Washington Sq, San Jose, CA, 95192, USA
| | - Philip D Weyman
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - John I Glass
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Mark D Adams
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Melanie A McNeil
- Department of Biomedical, Chemical and Materials Engineering, San Jose State University, 1 Washington Sq, San Jose, CA, 95192, USA
| | - Peter B Griffin
- Stanford Genome Technology Center, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
22
|
Sequeira AF, Brás JLA, Fernandes VO, Guerreiro CIPD, Vincentelli R, Fontes CMGA. A Novel Platform for High-Throughput Gene Synthesis to Maximize Recombinant Expression in Escherichia coli. Methods Mol Biol 2018; 1620:113-128. [PMID: 28540703 DOI: 10.1007/978-1-4939-7060-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. Here, we describe a high-throughput platform to design and produce multiple synthetic genes (<500 bp) for recombinant expression in Escherichia coli. This pipeline includes an innovative codon optimization algorithm that designs DNA sequences to maximize heterologous protein production in different hosts. The platform is based on a simple gene synthesis method that uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides. This technology incorporates an accurate, automated and cost-effective ligase-independent cloning step to directly integrate the synthetic genes into an effective E. coli expression vector. High-throughput production of synthetic genes is of increasing relevance to allow exploring the biological function of the extensive genomic and meta-genomic information currently available from various sources.
Collapse
Affiliation(s)
- Ana Filipa Sequeira
- Faculdade de Medicina Veterinária, Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal. .,NZYTech Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, r/c, 1649-038, Lisbon, Portugal.
| | - Joana L A Brás
- Faculdade de Medicina Veterinária, Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,NZYTech Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, r/c, 1649-038, Lisbon, Portugal
| | - Vânia O Fernandes
- Faculdade de Medicina Veterinária, Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,NZYTech Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, r/c, 1649-038, Lisbon, Portugal
| | - Catarina I P D Guerreiro
- NZYTech Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, r/c, 1649-038, Lisbon, Portugal
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Architecture et Fonction des Macromolécules Biologiques (AFMB), Centre National de la Recherche Scientifique (CNRS) - Aix-Marseille Université, Campus de Luminy, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Carlos M G A Fontes
- Faculdade de Medicina Veterinária, Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.,NZYTech Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E, r/c, 1649-038, Lisbon, Portugal
| |
Collapse
|
23
|
Lau YH, Stirling F, Kuo J, Karrenbelt MAP, Chan YA, Riesselman A, Horton CA, Schäfer E, Lips D, Weinstock MT, Gibson DG, Way JC, Silver PA. Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Res 2017; 45:6971-6980. [PMID: 28499033 PMCID: PMC5499800 DOI: 10.1093/nar/gkx415] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023] Open
Abstract
The ability to rewrite large stretches of genomic DNA enables the creation of new organisms with customized functions. However, few methods currently exist for accumulating such widespread genomic changes in a single organism. In this study, we demonstrate a rapid approach for rewriting bacterial genomes with modified synthetic DNA. We recode 200 kb of the Salmonella typhimurium LT2 genome through a process we term SIRCAS (stepwise integration of rolling circle amplified segments), towards constructing an attenuated and genetically isolated bacterial chassis. The SIRCAS process involves direct iterative recombineering of 10–25 kb synthetic DNA constructs which are assembled in yeast and amplified by rolling circle amplification. Using SIRCAS, we create a Salmonella with 1557 synonymous leucine codon replacements across 176 genes, the largest number of cumulative recoding changes in a single bacterial strain to date. We demonstrate reproducibility over sixteen two-day cycles of integration and parallelization for hierarchical construction of a synthetic genome by conjugation. The resulting recoded strain grows at a similar rate to the wild-type strain and does not exhibit any major growth defects. This work is the first instance of synthetic bacterial recoding beyond the Escherichia coli genome, and reveals that Salmonella is remarkably amenable to genome-scale modification.
Collapse
Affiliation(s)
- Yu Heng Lau
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Finn Stirling
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - James Kuo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Michiel A P Karrenbelt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Yujia A Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Adam Riesselman
- Program in Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Connor A Horton
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Elena Schäfer
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - David Lips
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Matthew T Weinstock
- Synthetic Genomics, Inc., 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniel G Gibson
- Synthetic Genomics, Inc., 11149 North Torrey Pines Road, La Jolla, CA 92037, USA.,Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Alpert 536, Boston, MA 02115, USA
| |
Collapse
|
24
|
Holden MT, Carter MCD, Ting SK, Lynn DM, Smith LM. Parallel DNA Synthesis on Poly(ethylene terephthalate). Chembiochem 2017; 18:1914-1916. [PMID: 28763573 PMCID: PMC5644289 DOI: 10.1002/cbic.201700321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/12/2022]
Abstract
The fabrication of DNA arrays directly on aminolyzed sheets of poly(ethylene terephthalate) (PET) is described. Array surfaces typically employ bifunctional linkers or layers of covalently attached polymers to provide substrate hydroxy groups as synthesis attachment points. An amine treatment is used here to expose hydroxy groups on films of PET. These hydroxy groups can then be used to couple phosphoramidites and initiate the array synthesis without further functionalization steps. Arrays fabricated on these substrates with a maskless array synthesizer are tolerant of the high number of chemical exposure steps required to synthesize relatively long oligonucleotides. The results might be of the greatest use to the synthetic biology community, for whom a flexible and robust substrate could enable new strategies to enhance the throughput of oligonucleotide synthesis.
Collapse
Affiliation(s)
- Matthew T Holden
- Department of Chemistry, University of Wisconsin at Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Matthew C D Carter
- Department of Chemistry, University of Wisconsin at Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Shannon K Ting
- Department of Chemistry, University of Wisconsin at Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - David M Lynn
- Department of Chemistry, University of Wisconsin at Madison, 1101 University Avenue, Madison, WI, 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin at Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin at Madison, 1101 University Avenue, Madison, WI, 53706, USA
- Genome Center of Wisconsin, University of Wisconsin at Madison, 425 Henry Mall, Madison, WI, 53706, USA
| |
Collapse
|
25
|
Lubock NB, Zhang D, Sidore AM, Church GM, Kosuri S. A systematic comparison of error correction enzymes by next-generation sequencing. Nucleic Acids Res 2017; 45:9206-9217. [PMID: 28911123 PMCID: PMC5587813 DOI: 10.1093/nar/gkx691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
Gene synthesis, the process of assembling gene-length fragments from shorter groups of oligonucleotides (oligos), is becoming an increasingly important tool in molecular and synthetic biology. The length, quality and cost of gene synthesis are limited by errors produced during oligo synthesis and subsequent assembly. Enzymatic error correction methods are cost-effective means to ameliorate errors in gene synthesis. Previous analyses of these methods relied on cloning and Sanger sequencing to evaluate their efficiencies, limiting quantitative assessment. Here, we develop a method to quantify errors in synthetic DNA by next-generation sequencing. We analyzed errors in model gene assemblies and systematically compared six different error correction enzymes across 11 conditions. We find that ErrASE and T7 Endonuclease I are the most effective at decreasing average error rates (up to 5.8-fold relative to the input), whereas MutS is the best for increasing the number of perfect assemblies (up to 25.2-fold). We are able to quantify differential specificities such as ErrASE preferentially corrects C/G transversions whereas T7 Endonuclease I preferentially corrects A/T transversions. More generally, this experimental and computational pipeline is a fast, scalable and extensible way to analyze errors in gene assemblies, to profile error correction methods, and to benchmark DNA synthesis methods.
Collapse
Affiliation(s)
- Nathan B. Lubock
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Di Zhang
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angus M. Sidore
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
26
|
Abstract
Naturally occurring DNA is encoded by the four nucleobases adenine, cytosine, guanine and thymine. Yet minor chemical modifications to these bases, such as methylation, can significantly alter DNA function, and more drastic changes, such as replacement with unnatural base pairs, could expand its function. In order to realize the full potential of DNA in therapeutic and synthetic biology applications, our ability to 'write' long modified DNA in a controlled manner must be improved. This review highlights methods currently used for the synthesis of moderately long chemically modified nucleic acids (up to 1000 bp), their limitations and areas for future expansion.
Collapse
|
27
|
Dolgova AS, Stukolova OA. High-fidelity PCR enzyme with DNA-binding domain facilitates de novo gene synthesis. 3 Biotech 2017; 7:128. [PMID: 28573398 PMCID: PMC5453909 DOI: 10.1007/s13205-017-0745-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/30/2017] [Indexed: 11/30/2022] Open
Abstract
Nowadays enzymatic synthesis of genes is the most powerful tool for fast resolution of the various tasks in the field of basic and applied biological research. PCR-based gene assembly from overlapping oligonucleotides has become a widely used strategy. However, all the methods described in the literature are not perfect and need an extra processing step. In this study we are verifying Phusion high-fidelity polymerase as a tool to reduce nucleotide mismatches in de novo gene synthesis, thus facilitating subsequent cloning. To test the efficiency of the polymerase, we selected Fel d 4 gene, which is a 581 bp DNA sequence encoding the lipocalin allergen protein, one of the major cat allergens. The approach described here, therefore, would be useful in DNA sequences creation.
Collapse
Affiliation(s)
- A S Dolgova
- Federal Budget Institution of Science "Central Research Institute of Epidemiology" of The Federal Service on Customers' Rights Protection and Human Well-being Surveillance, 3A, Novogireyevskaya st, Moscow, 111123, Russia.
| | - O A Stukolova
- Federal Budget Institution of Science "Central Research Institute of Epidemiology" of The Federal Service on Customers' Rights Protection and Human Well-being Surveillance, 3A, Novogireyevskaya st, Moscow, 111123, Russia
- Federal Budget Institution of Science "Research Institute of Occupational Health", Prospect Budennogo 31, Moscow, 105275, Russia
| |
Collapse
|
28
|
Mohammadi-Kambs M, Hölz K, Somoza MM, Ott A. Hamming Distance as a Concept in DNA Molecular Recognition. ACS OMEGA 2017; 2:1302-1308. [PMID: 28474009 PMCID: PMC5410656 DOI: 10.1021/acsomega.7b00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
DNA microarrays constitute an in vitro example system of a highly crowded molecular recognition environment. Although they are widely applied in many biological applications, some of the basic mechanisms of the hybridization processes of DNA remain poorly understood. On a microarray, cross-hybridization arises from similarities of sequences that may introduce errors during the transmission of information. Experimentally, we determine an appropriate distance, called minimum Hamming distance, in which the sequences of a set differ. By applying an algorithm based on a graph-theoretical method, we find large orthogonal sets of sequences that are sufficiently different not to exhibit any cross-hybridization. To create such a set, we first derive an analytical solution for the number of sequences that include at least four guanines in a row for a given sequence length and eliminate them from the list of candidate sequences. We experimentally confirm the orthogonality of the largest possible set with a size of 23 for the length of 7. We anticipate our work to be a starting point toward the study of signal propagation in highly competitive environments, besides its obvious application in DNA high throughput experiments.
Collapse
Affiliation(s)
- Mina Mohammadi-Kambs
- Biological
Experimental Physics, Saarland University, Campus B2.1, 66123 Saarbrücken, Germany
| | - Kathrin Hölz
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Mark M. Somoza
- Institute
of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14 (UZA II), 1090 Vienna, Austria
| | - Albrecht Ott
- Biological
Experimental Physics, Saarland University, Campus B2.1, 66123 Saarbrücken, Germany
| |
Collapse
|
29
|
Chan HF, Ma S, Tian J, Leong KW. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets. NANOSCALE 2017; 9:3485-3495. [PMID: 28239692 PMCID: PMC5428077 DOI: 10.1039/c6nr08224f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The rapid advances in synthetic biology and biotechnology are increasingly demanding high-throughput screening technology, such as screening of the functionalities of synthetic genes for optimization of protein expression. Compartmentalization of single cells in water-in-oil (W/O) emulsion droplets allows screening of a vast number of individualized assays, and recent advances in automated microfluidic devices further help realize the potential of droplet technology for high-throughput screening. However these single-emulsion droplets are incompatible with aqueous phase analysis and the inner droplet environment cannot easily communicate with the external phase. We present a high-throughput, miniaturized screening platform for microchip-synthesized genes using microfluidics-generated water-in-oil-in-water (W/O/W) double emulsion (DE) droplets that overcome these limitations. Synthetic gene variants of fluorescent proteins are synthesized with a custom-built microarray inkjet synthesizer, which are then screened for expression in Escherichia coli (E. coli) cells. Bacteria bearing individual fluorescent gene variants are encapsulated as single cells into DE droplets where fluorescence signals are enhanced by 100 times within 24 h of proliferation. Enrichment of functionally-correct genes by employing an error correction method is demonstrated by screening DE droplets containing fluorescent clones of bacteria with the red fluorescent protein (rfp) gene. Permeation of isopropyl β-d-1-thiogalactopyranoside (IPTG) through the thin oil layer from the external solution initiates target gene expression. The induced expression of the synthetic fluorescent proteins from at least ∼100 bacteria per droplet generates detectable fluorescence signals to enable fluorescence-activated cell sorting (FACS) of the intact droplets. This technology obviates time- and labor-intensive cell culture typically required in conventional bulk experiment.
Collapse
Affiliation(s)
- H F Chan
- Department of Biomedical Engineering, Duke University, Durham, 27705, USA. and Department of Biomedical Engineering, Columbia University, New York, 10027, USA
| | - S Ma
- Department of Biomedical Engineering, Duke University, Durham, 27705, USA. and General Biosystems, Inc. Morrisville, 27560 USA
| | - J Tian
- Department of Biomedical Engineering, Duke University, Durham, 27705, USA. and General Biosystems, Inc. Morrisville, 27560 USA and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - K W Leong
- Department of Biomedical Engineering, Duke University, Durham, 27705, USA. and Department of Biomedical Engineering, Columbia University, New York, 10027, USA and Department of Systems Biology, Columbia University, New York, 10027, USA
| |
Collapse
|
30
|
Turchetto J, Sequeira AF, Ramond L, Peysson F, Brás JLA, Saez NJ, Duhoo Y, Blémont M, Guerreiro CIPD, Quinton L, De Pauw E, Gilles N, Darbon H, Fontes CMGA, Vincentelli R. High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery. Microb Cell Fact 2017; 16:6. [PMID: 28095880 PMCID: PMC5242012 DOI: 10.1186/s12934-016-0617-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Animal venoms are complex molecular cocktails containing a wide range of biologically active disulphide-reticulated peptides that target, with high selectivity and efficacy, a variety of membrane receptors. Disulphide-reticulated peptides have evolved to display improved specificity, low immunogenicity and to show much higher resistance to degradation than linear peptides. These properties make venom peptides attractive candidates for drug development. However, recombinant expression of reticulated peptides containing disulphide bonds is challenging, especially when associated with the production of large libraries of bioactive molecules for drug screening. To date, as an alternative to artificial synthetic chemical libraries, no comprehensive recombinant libraries of natural venom peptides are accessible for high-throughput screening to identify novel therapeutics. RESULTS In the accompanying paper an efficient system for the expression and purification of oxidized disulphide-reticulated venom peptides in Escherichia coli is described. Here we report the development of a high-throughput automated platform, that could be adapted to the production of other families, to generate the largest ever library of recombinant venom peptides. The peptides were produced in the periplasm of E. coli using redox-active DsbC as a fusion tag, thus allowing the efficient formation of correctly folded disulphide bridges. TEV protease was used to remove fusion tags and recover the animal venom peptides in the native state. Globally, within nine months, out of a total of 4992 synthetic genes encoding a representative diversity of venom peptides, a library containing 2736 recombinant disulphide-reticulated peptides was generated. The data revealed that the animal venom peptides produced in the bacterial host were natively folded and, thus, are putatively biologically active. CONCLUSIONS Overall this study reveals that high-throughput expression of animal venom peptides in E. coli can generate large libraries of recombinant disulphide-reticulated peptides of remarkable interest for drug discovery programs.
Collapse
Affiliation(s)
- Jeremy Turchetto
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Ana Filipa Sequeira
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038 Lisbon, Portugal
| | - Laurie Ramond
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Fanny Peysson
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Joana L. A. Brás
- NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038 Lisbon, Portugal
| | - Natalie J. Saez
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072 Australia
| | - Yoan Duhoo
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Marilyne Blémont
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | | | - Loic Quinton
- Mass Spectrometry Laboratory, B6c University of Liège, MolSys-Quartier Agora, Allée du six Aout 11, 4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, B6c University of Liège, MolSys-Quartier Agora, Allée du six Aout 11, 4000 Liège, Belgium
| | - Nicolas Gilles
- CEA/DRF/iBiTecS, Service d’Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Hervé Darbon
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Carlos M. G. A. Fontes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- NZYtech Genes & Enzymes, Campus do Lumiar, Estrada do paço do Lumiar, 1649-038 Lisbon, Portugal
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| |
Collapse
|
31
|
Determination of a Screening Metric for High Diversity DNA Libraries. PLoS One 2016; 11:e0167088. [PMID: 27930689 PMCID: PMC5145166 DOI: 10.1371/journal.pone.0167088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022] Open
Abstract
The fields of antibody engineering, enzyme optimization and pathway construction rely increasingly on screening complex variant DNA libraries. These highly diverse libraries allow researchers to sample a maximized sequence space; and therefore, more rapidly identify proteins with significantly improved activity. The current state of the art in synthetic biology allows for libraries with billions of variants, pushing the limits of researchers' ability to qualify libraries for screening by measuring the traditional quality metrics of fidelity and diversity of variants. Instead, when screening variant libraries, researchers typically use a generic, and often insufficient, oversampling rate based on a common rule-of-thumb. We have developed methods to calculate a library-specific oversampling metric, based on fidelity, diversity, and representation of variants, which informs researchers, prior to screening the library, of the amount of oversampling required to ensure that the desired fraction of variant molecules will be sampled. To derive this oversampling metric, we developed a novel alignment tool to efficiently measure frequency counts of individual nucleotide variant positions using next-generation sequencing data. Next, we apply a method based on the "coupon collector" probability theory to construct a curve of upper bound estimates of the sampling size required for any desired variant coverage. The calculated oversampling metric will guide researchers to maximize their efficiency in using highly variant libraries.
Collapse
|
32
|
Sequeira AF, Guerreiro CIPD, Vincentelli R, Fontes CMGA. T7 Endonuclease I Mediates Error Correction in Artificial Gene Synthesis. Mol Biotechnol 2016; 58:573-84. [PMID: 27334914 DOI: 10.1007/s12033-016-9957-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Efficacy of de novo gene synthesis largely depends on the quality of overlapping oligonucleotides used as template for PCR assembly. The error rate associated with current gene synthesis protocols limits the efficient and accurate production of synthetic genes, both in the small and large scales. Here, we analysed the ability of different endonuclease enzymes, which specifically recognize and cleave DNA mismatches resulting from incorrect impairments between DNA strands, to remove mutations accumulated in synthetic genes. The gfp gene, which encodes the green fluorescent protein, was artificially synthesized using an integrated protocol including an enzymatic mismatch cleavage step (EMC) following gene assembly. Functional and sequence analysis of resulting artificial genes revealed that number of deletions, insertions and substitutions was strongly reduced when T7 endonuclease I was used for mutation removal. This method diminished mutation frequency by eightfold relative to gene synthesis not incorporating an error correction step. Overall, EMC using T7 endonuclease I improved the population of error-free synthetic genes, resulting in an error frequency of 0.43 errors per 1 kb. Taken together, data presented here reveal that incorporation of a mutation-removal step including T7 endonuclease I can effectively improve the fidelity of artificial gene synthesis.
Collapse
Affiliation(s)
- Ana Filipa Sequeira
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- NZYTech Genes & Enzymes, Campus do Lumiar, Estrada do Paço do Lumiar, 1649-038, Lisbon, Portugal
| | - Catarina I P D Guerreiro
- NZYTech Genes & Enzymes, Campus do Lumiar, Estrada do Paço do Lumiar, 1649-038, Lisbon, Portugal
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Campus de Luminy, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Carlos M G A Fontes
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
- NZYTech Genes & Enzymes, Campus do Lumiar, Estrada do Paço do Lumiar, 1649-038, Lisbon, Portugal.
| |
Collapse
|
33
|
Guido N, Starostina E, Leake D, Saaem I. Improved PCR Amplification of Broad Spectrum GC DNA Templates. PLoS One 2016; 11:e0156478. [PMID: 27271574 PMCID: PMC4896431 DOI: 10.1371/journal.pone.0156478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10-90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content.
Collapse
Affiliation(s)
- Nicholas Guido
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Elena Starostina
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Devin Leake
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Ishtiaq Saaem
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| |
Collapse
|
34
|
Wang F, Zhang H, Gao J, Chen F, Chen S, Zhang C, Peng G. Rapid and accurate synthesis of TALE genes from synthetic oligonucleotides. Biotechniques 2016; 60:299-305. [PMID: 27286807 DOI: 10.2144/000114422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/08/2016] [Indexed: 11/23/2022] Open
Abstract
Custom synthesis of transcription activator-like effector (TALE) genes has relied upon plasmid libraries of pre-fabricated TALE-repeat monomers or oligomers. Here we describe a novel synthesis method that directly incorporates annealed synthetic oligonucleotides into the TALE-repeat units. Our approach utilizes iterative sets of oligonucleotides and a translational frame check strategy to ensure the high efficiency and accuracy of TALE-gene synthesis. TALE arrays of more than 20 repeats can be constructed, and the majority of the synthesized constructs have perfect sequences. In addition, this novel oligonucleotide-based method can readily accommodate design changes to the TALE repeats. We demonstrated an increased gene targeting efficiency against a genomic site containing a potentially methylated cytosine by incorporating non-conventional repeat variable di-residue (RVD) sequences.
Collapse
Affiliation(s)
- Fenghua Wang
- Institutes of Brain Sciences, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Hefei Zhang
- Institutes of Brain Sciences, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Jingxia Gao
- Institutes of Brain Sciences, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Fengjiao Chen
- Institutes of Brain Sciences, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Sijie Chen
- Institutes of Brain Sciences, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Cuizhen Zhang
- Institutes of Brain Sciences, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Gang Peng
- Institutes of Brain Sciences, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications. Sci Rep 2016; 6:26572. [PMID: 27220405 PMCID: PMC4879669 DOI: 10.1038/srep26572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 11/23/2022] Open
Abstract
Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology.
Collapse
|
36
|
Tang NC, Chilkoti A. Combinatorial codon scrambling enables scalable gene synthesis and amplification of repetitive proteins. NATURE MATERIALS 2016; 15:419-24. [PMID: 26726995 PMCID: PMC4809025 DOI: 10.1038/nmat4521] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/25/2015] [Indexed: 05/08/2023]
Abstract
Most genes are synthesized using seamless assembly methods that rely on the polymerase chain reaction (PCR). However, PCR of genes encoding repetitive proteins either fails or generates nonspecific products. Motivated by the need to efficiently generate new protein polymers through high-throughput gene synthesis, here we report a codon-scrambling algorithm that enables the PCR-based gene synthesis of repetitive proteins by exploiting the codon redundancy of amino acids and finding the least-repetitive synonymous gene sequence. We also show that the codon-scrambling problem is analogous to the well-known travelling salesman problem, and obtain an exact solution to it by using De Bruijn graphs and a modern mixed integer linear programme solver. As experimental proof of the utility of this approach, we use it to optimize the synthetic genes for 19 repetitive proteins, and show that the gene fragments are amenable to PCR-based gene assembly and recombinant expression.
Collapse
Affiliation(s)
- Nicholas C Tang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
37
|
|
38
|
Birla BS, Chou HH. Rational Design of High-Number dsDNA Fragments Based on Thermodynamics for the Construction of Full-Length Genes in a Single Reaction. PLoS One 2015; 10:e0145682. [PMID: 26716828 PMCID: PMC4696799 DOI: 10.1371/journal.pone.0145682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Gene synthesis is frequently used in modern molecular biology research either to create novel genes or to obtain natural genes when the synthesis approach is more flexible and reliable than cloning. DNA chemical synthesis has limits on both its length and yield, thus full-length genes have to be hierarchically constructed from synthesized DNA fragments. Gibson Assembly and its derivatives are the simplest methods to assemble multiple double-stranded DNA fragments. Currently, up to 12 dsDNA fragments can be assembled at once with Gibson Assembly according to its vendor. In practice, the number of dsDNA fragments that can be assembled in a single reaction are much lower. We have developed a rational design method for gene construction that allows high-number dsDNA fragments to be assembled into full-length genes in a single reaction. Using this new design method and a modified version of the Gibson Assembly protocol, we have assembled 3 different genes from up to 45 dsDNA fragments at once. Our design method uses the thermodynamic analysis software Picky that identifies all unique junctions in a gene where consecutive DNA fragments are specifically made to connect to each other. Our novel method is generally applicable to most gene sequences, and can improve both the efficiency and cost of gene assembly.
Collapse
Affiliation(s)
- Bhagyashree S. Birla
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Hui-Hsien Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
39
|
Ben Yehezkel T, Rival A, Raz O, Cohen R, Marx Z, Camara M, Dubern JF, Koch B, Heeb S, Krasnogor N, Delattre C, Shapiro E. Synthesis and cell-free cloning of DNA libraries using programmable microfluidics. Nucleic Acids Res 2015; 44:e35. [PMID: 26481354 PMCID: PMC4770201 DOI: 10.1093/nar/gkv1087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/03/2015] [Indexed: 11/12/2022] Open
Abstract
Microfluidics may revolutionize our ability to write synthetic DNA by addressing several fundamental limitations associated with generating novel genetic constructs. Here we report the first de novo synthesis and cell-free cloning of custom DNA libraries in sub-microliter reaction droplets using programmable digital microfluidics. Specifically, we developed Programmable Order Polymerization (POP), Microfluidic Combinatorial Assembly of DNA (M-CAD) and Microfluidic In-vitro Cloning (MIC) and applied them to de novo synthesis, combinatorial assembly and cell-free cloning of genes, respectively. Proof-of-concept for these methods was demonstrated by programming an autonomous microfluidic system to construct and clone libraries of yeast ribosome binding sites and bacterial Azurine, which were then retrieved in individual droplets and validated. The ability to rapidly and robustly generate designer DNA molecules in an autonomous manner should have wide application in biological research and development.
Collapse
Affiliation(s)
- Tuval Ben Yehezkel
- Applied Mathematics and Computer Science and Biological Chemistry, Weizmann institute of science, Rehovot, Israel
| | | | - Ofir Raz
- Applied Mathematics and Computer Science and Biological Chemistry, Weizmann institute of science, Rehovot, Israel
| | - Rafael Cohen
- Applied Mathematics and Computer Science and Biological Chemistry, Weizmann institute of science, Rehovot, Israel
| | - Zipora Marx
- Applied Mathematics and Computer Science and Biological Chemistry, Weizmann institute of science, Rehovot, Israel
| | - Miguel Camara
- Centre for Bio-molecular Sciences, University of Nottingham, Nottingham, UK
| | | | - Birgit Koch
- School of Computing Science, Claremont Tower, Newcastle University, Newcastle, UK
| | - Stephan Heeb
- Centre for Bio-molecular Sciences, University of Nottingham, Nottingham, UK
| | - Natalio Krasnogor
- School of Computing Science, Claremont Tower, Newcastle University, Newcastle, UK
| | | | - Ehud Shapiro
- Applied Mathematics and Computer Science and Biological Chemistry, Weizmann institute of science, Rehovot, Israel
| |
Collapse
|
40
|
Yazdi SMHT, Kiah HM, Garcia-Ruiz E, Ma J, Zhao H, Milenkovic O. DNA-Based Storage: Trends and Methods. ACTA ACUST UNITED AC 2015. [DOI: 10.1109/tmbmc.2016.2537305] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Zampini M, Stevens PR, Pachebat JA, Kingston-Smith A, Mur LAJ, Hayes F. RapGene: a fast and accurate strategy for synthetic gene assembly in Escherichia coli. Sci Rep 2015; 5:11302. [PMID: 26062748 PMCID: PMC4462754 DOI: 10.1038/srep11302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/18/2015] [Indexed: 01/12/2023] Open
Abstract
The ability to assemble DNA sequences de novo through efficient and powerful DNA fabrication methods is one of the foundational technologies of synthetic biology. Gene synthesis, in particular, has been considered the main driver for the emergence of this new scientific discipline. Here we describe RapGene, a rapid gene assembly technique which was successfully tested for the synthesis and cloning of both prokaryotic and eukaryotic genes through a ligation independent approach. The method developed in this study is a complete bacterial gene synthesis platform for the quick, accurate and cost effective fabrication and cloning of gene-length sequences that employ the widely used host Escherichia coli.
Collapse
Affiliation(s)
- Massimiliano Zampini
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Pauline Rees Stevens
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Justin A Pachebat
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Alison Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - Finbarr Hayes
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
42
|
Screening of accurate clones for gene synthesis in yeast. J Biosci Bioeng 2015; 119:251-9. [DOI: 10.1016/j.jbiosc.2014.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 11/24/2022]
|
43
|
Currin A, Swainston N, Day PJ, Kell DB. SpeedyGenes: an improved gene synthesis method for the efficient production of error-corrected, synthetic protein libraries for directed evolution. Protein Eng Des Sel 2014; 27:273-80. [PMID: 25108914 PMCID: PMC4140418 DOI: 10.1093/protein/gzu029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The de novo synthesis of genes is becoming increasingly common in synthetic biology studies. However, the inherent error rate (introduced by errors incurred during oligonucleotide synthesis) limits its use in synthesising protein libraries to only short genes. Here we introduce SpeedyGenes, a PCR-based method for the synthesis of diverse protein libraries that includes an error-correction procedure, enabling the efficient synthesis of large genes for use directly in functional screening. First, we demonstrate an accurate gene synthesis method by synthesising and directly screening (without pre-selection) a 747 bp gene for green fluorescent protein (yielding 85% fluorescent colonies) and a larger 1518 bp gene (a monoamine oxidase, producing 76% colonies with full catalytic activity, a 4-fold improvement over previous methods). Secondly, we show that SpeedyGenes can accommodate multiple and combinatorial variant sequences while maintaining efficient enzymatic error correction, which is particularly crucial for larger genes. In its first application for directed evolution, we demonstrate the use of SpeedyGenes in the synthesis and screening of large libraries of MAO-N variants. Using this method, libraries are synthesised, transformed and screened within 3 days. Importantly, as each mutation we introduce is controlled by the oligonucleotide sequence, SpeedyGenes enables the synthesis of large, diverse, yet controlled variant sequences for the purposes of directed evolution.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Neil Swainston
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK School of Computer Science, The University of Manchester, Manchester M13 9PL, UK
| | - Philip J Day
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK Faculty of Medical and Human Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
44
|
Jensen M, Roberts L, Johnson A, Fukushima M, Davis R. Next generation 1536-well oligonucleotide synthesizer with on-the-fly dispense. J Biotechnol 2013; 171:76-81. [PMID: 24355807 DOI: 10.1016/j.jbiotec.2013.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022]
Abstract
Here we report the development of our Next Generation Automated Multiplexed Oligonucleotide Synthesizer (NG-1536-AMOS), capable of producing 1536 samples in a single run using a multi-well filtered titer plate. With the potential to synthesize up to 3456 samples per plate, we converted the BioRAPTR Flying Reagent Dispenser into an open-well system where spent reagents are drained to waste under vacuum. During synthesis, reagents are delivered on-the-fly to each micro-titer well at volumes ≤5 μl with plate speeds up to 150 mm/s. Using gas-phase cleavage and deprotection, a full plate of 1536 60 mers may be processed with same-day turnaround with an average yield per well at 3.5 nmol. Final product at only $0.00277/base is eluted into a low-volume collection plate for immediate use in downstream application (e.g. Biomek FX for versatile sample handling). Also, crude oligonucleotide quality is comparable to that of commercial synthesis instrumentation, with an error rate on the NG-1536-AMOS platform of 1.53/717 bases. Furthermore, mass spectral analysis on strands synthesized up to 80 bases showed high purity with an average coupling efficiency of 99.5%.
Collapse
Affiliation(s)
- Michael Jensen
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA.
| | - Lester Roberts
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | | | - Marilyn Fukushima
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Ronald Davis
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
45
|
Gillings MR, Westoby M. DNA technology and evolution of the Central Dogma. Trends Ecol Evol 2013; 29:1-2. [PMID: 24148293 DOI: 10.1016/j.tree.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Affiliation(s)
| | - Mark Westoby
- Biological Sciences, Macquarie University, Sydney, NSW 2019, Australia
| |
Collapse
|
46
|
|
47
|
A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations. Proc Natl Acad Sci U S A 2013; 110:6055-60. [PMID: 23530242 DOI: 10.1073/pnas.1303834110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of an antimalarial subunit vaccine inducing protective cytotoxic T lymphocyte (CTL)-mediated immunity could pave the way for malaria eradication. Experimental immunization with sporozoites induces this type of protective response, but the extremely large number of proteins expressed by Plasmodium parasites has so far prohibited the identification of sufficient discrete T-cell antigens to develop subunit vaccines that produce sterile immunity. Here, using mice singly immunized with Plasmodium yoelii sporozoites and high-throughput screening, we identified a unique CTL response against the parasite ribosomal L3 protein. Unlike CTL responses to the circumsporozoite protein (CSP), the population of L3-specific CTLs was not expanded by multiple sporozoite immunizations. CSP is abundant in the sporozoite itself, whereas L3 expression does not increase until the liver stage. The response induced by a single immunization with sporozoites reduces the parasite load in the liver so greatly during subsequent immunizations that L3-specific responses are only generated during the primary exposure. Functional L3-specific CTLs can, however, be expanded by heterologous prime-boost regimens. Thus, although repeat sporozoite immunization expands responses to preformed antigens like CSP that are present in the sporozoite itself, this immunization strategy may not expand CTLs targeting parasite proteins that are synthesized later. Heterologous strategies may be needed to increase CTL responses across the entire spectrum of Plasmodium liver-stage proteins.
Collapse
|
48
|
|
49
|
Schwartz JJ, Lee C, Shendure J. Accurate gene synthesis with tag-directed retrieval of sequence-verified DNA molecules. Nat Methods 2012; 9:913-5. [PMID: 22886093 PMCID: PMC3433648 DOI: 10.1038/nmeth.2137] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/02/2012] [Indexed: 11/09/2022]
Abstract
We present dial-out PCR, a highly parallel method for retrieving accurate DNA molecules for gene synthesis. A complex library of DNA molecules is modified with unique flanking tags before massively parallel sequencing. Tag-directed primers then enable the retrieval of molecules with desired sequences by PCR. Dial-out PCR enables multiplex in vitro clone screening and is a compelling alternative to in vivo cloning and Sanger sequencing for accurate gene synthesis.
Collapse
Affiliation(s)
- Jerrod J Schwartz
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
50
|
Kim H, Han H, Ahn J, Lee J, Cho N, Jang H, Kim H, Kwon S, Bang D. 'Shotgun DNA synthesis' for the high-throughput construction of large DNA molecules. Nucleic Acids Res 2012; 40:e140. [PMID: 22705793 PMCID: PMC3467036 DOI: 10.1093/nar/gks546] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We developed a highly scalable ‘shotgun’ DNA synthesis technology by utilizing microchip oligonucleotides, shotgun assembly and next-generation sequencing technology. A pool of microchip oligonucleotides targeting a penicillin biosynthetic gene cluster were assembled into numerous random fragments, and tagged with 20 bp degenerate barcode primer pairs. An optimal set of error-free fragments were identified by high-throughput DNA sequencing, selectively amplified using the barcode sequences, and successfully assembled into the target gene cluster.
Collapse
Affiliation(s)
- Hwangbeom Kim
- Department of Chemistry, Yonsei University, Shinchon 134, Seoul 120749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|