1
|
Leščić Ašler I, Radman K, Jelić Matošević Z, Bertoša B, Weiss VU, Marchetti-Deschmann M. Exploring the manganese-dependent interaction between a transcription factor and its corresponding DNA: insights from gas-phase electrophoresis on a nES GEMMA instrument. Anal Bioanal Chem 2024; 416:5377-5386. [PMID: 39172237 PMCID: PMC11416365 DOI: 10.1007/s00216-024-05473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Manganese ion homeostasis is vital for bacteria and is achieved via manganese-dependent transcription factors. Manganese mediation of transcription factor attachment to the corresponding oligonucleotide sequences can be investigated, e.g. via electrophoretic mobility shift assays (EMSA). Formation of specific biocomplexes leads to differences in the migration pattern upon gel electrophoresis. Focusing on electrophoresis in the gas-phase, applying a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) also known as nES differential mobility analyzer (nES DMA), and on transcription factors (MntR proteins) from Bacillus subtilis and Mycobacterium tuberculosis, we took interest in the gas-phase electrophoresis of the corresponding biospecific complexes. We compared nES GEMMA, separating analytes in the nanometer regime (a few to several hundred nm in diameter) in the gas-phase in their native state according to particle size, to EMSA data. Indeed we were able to demonstrate manganese-mediated attachment of MntR to target genomic sequences with both analytical techniques. Despite some inherent pitfalls of the nES GEMMA method like analyte/instrument surface interactions, we were able to detect the target complexes. Moreover, we were able to calculate the molecular weight (MW) of the obtained species by application of a correlation function based on nES GEMMA obtained data. As gas-phase electrophoresis also offers the possibility of offline hyphenation to orthogonal analysis techniques, we are confident that nES GEMMA measurements are not just complementary to EMSA, but will offer the possibility of further in-depth characterization of biocomplexes in the future.
Collapse
Affiliation(s)
- Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Radman
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zoe Jelić Matošević
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9-164 CTA, 1060, Vienna, Austria.
| | | |
Collapse
|
2
|
Mi W, Zhang X, Tian X, Sun R, Ma S, Hu Z, Dai X. Development of a potential primary method for protein quantification via electrospray differential mobility analysis. Talanta 2024; 266:124797. [PMID: 37541009 DOI: 10.1016/j.talanta.2023.124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 08/06/2023]
Abstract
Accurate protein quantification is the basis for establishing the metrological traceability of in vitro diagnostics or drug products. In this study, we established and validated a potential primary method for protein quantification based on electrospray-differential mobility analysis coupled with a condensation particle counter (ES-DMA-CPC). The analytical performance of this method was assessed using the certified reference material NIMCmAb, and the uncertainty of measurement was evaluated. The method was applied to the quantification of three other protein reference materials and one highly purified protein, including myoglobin, bovine serum albumin, IgG monoclonal antibody, and one highly purified fibrinogen, with a molecular weight range between 17 kDa and 340 kDa. In addition, when compared with isotope dilution mass spectrometry (IDMS) and UV‒VIS spectrophotometry approaches, the ES-DMA-CPC method showed good agreement with IDMS method for the quantification of these protein reference materials. Our proposed method provided an accurate quantification of proteins, especially those with large molecular weights. Moreover, our method could be a potential primary method for protein quantification and serve as a complement to IDMS method.
Collapse
Affiliation(s)
- Wei Mi
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinyi Zhang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Xiangrong Tian
- College of Biology and Environmental Science, JiShou University, Renming South Road 120, Jishou, Hunan, 416000, China
| | - Ruixue Sun
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Shangying Ma
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Zhishang Hu
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinhua Dai
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| |
Collapse
|
3
|
nES-DMA with Charge-reduction based on Soft X-ray Radiation: Analysis of a Recombinant Monoclonal Antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122925. [PMID: 34543886 DOI: 10.1016/j.jchromb.2021.122925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Due to the fast growing importance of monoclonal antibodies in biomedical research, bioanalytics and human therapy, sensitive, fast and reliable methods are needed to monitor their production, target their characteristics, and for their final quality control. Application of a nano electrospray (nES) with soft X-ray radiation (SXR) based charge reduction and differential mobility analysis (DMA, aka nano electrospray gas-phase electrophoretic mobility molecular analysis, nES GEMMA) allows the size-separation and detection of macromolecules and (bio-)nanoparticles from a few nm up to several hundreds of nm in diameter in a native-like environment. The current study focuses on the analysis of a 148 kDa recombinant monoclonal antibody (rmAb) with the above mentioned instrumental setup and applying an universal detector, i.e. a water-based condensation particle detector (CPC). Next to the intact rmAb, its aggregates and fragment products after digestion with IdeS protease were analyzed. Additionally, influence of temperature treatment and pH variation on the stability of the rmAb was monitored. In this context, changes in electrophoretic mobility diameter (EMD) values, peak shape, and signal intensity based on particle numbers were of interest. Molecular weights calculated by application of a correlation derived from respective standard protein compounds were compared to mass spectrometric values and were found to be in good accordance. To conclude, we demonstrate that nES-DMA is a valuable tool in the characterization and quality control of rmABs.
Collapse
|
4
|
White N, Seelig JD, Loyalka SK. Computation of drag and diffusion coefficient for coronavirus: I. JOURNAL OF AEROSOL SCIENCE 2021; 157:105806. [PMID: 33976456 PMCID: PMC8103743 DOI: 10.1016/j.jaerosci.2021.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Monte Carlo simulations and integral equation techniques allow for the flexible and efficient computation of drag and diffusion coefficients for virus mimetic particles. We highlight a Monte Carlo method that is useful for computing the drag on biomimetic particles in the free-molecular regime and a numerical technique to solve a boundary integral equation (related to the Stokes equation) in the hydrodynamic limit. The free-molecular and the continuum results allow the construction of an approximation for the drag applicable over the full range of Knudsen numbers. Finally, we outline how this work will be useful in modeling viral transport in air and fluids and in viral morphology measurements and in viral separations via electrospray-differential mobility analyzers (ES-DMA).
Collapse
Affiliation(s)
- Nathan White
- Department of Mechanical & Aerospace Engineering, Lafferre Hall, University of Missouri, Columbia, MO, 65211, USA
| | | | - Sudarshan K Loyalka
- Department of Mechanical & Aerospace Engineering, Lafferre Hall, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
5
|
Gimpel AL, Katsikis G, Sha S, Maloney AJ, Hong MS, Nguyen TNT, Wolfrum J, Springs SL, Sinskey AJ, Manalis SR, Barone PW, Braatz RD. Analytical methods for process and product characterization of recombinant adeno-associated virus-based gene therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:740-754. [PMID: 33738328 PMCID: PMC7940698 DOI: 10.1016/j.omtm.2021.02.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The optimization of upstream and downstream processes for production of recombinant adeno-associated virus (rAAV) with consistent quality depends on the ability to rapidly characterize critical quality attributes (CQAs). In the context of rAAV production, the virus titer, capsid content, and aggregation are identified as potential CQAs, affecting the potency, purity, and safety of rAAV-mediated gene therapy products. Analytical methods to measure these attributes commonly suffer from long turnaround times or low throughput for process development, although rapid, high-throughput methods are beginning to be developed and commercialized. These methods are not yet well established in academic or industrial practice, and supportive data are scarce. Here, we review both established and upcoming analytical methods for the quantification of rAAV quality attributes. In assessing each method, we highlight the progress toward rapid, at-line characterization of rAAV. Furthermore, we identify that a key challenge for transitioning from traditional to newer methods is the scarcity of academic and industrial experience with the latter. This literature review serves as a guide for the selection of analytical methods targeting quality attributes for rapid, high-throughput process characterization during process development of rAAV-mediated gene therapies.
Collapse
Affiliation(s)
- Andreas L Gimpel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Georgios Katsikis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sha Sha
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew John Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Moo Sun Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tam N T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacqueline Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
7
|
Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol 2020; 38:1066-1098. [PMID: 32564882 PMCID: PMC7302792 DOI: 10.1016/j.tibtech.2020.05.012] [Citation(s) in RCA: 311] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer membrane-enclosed structures containing RNAs, proteins, lipids, metabolites, and other molecules, secreted by various cells into physiological fluids. EV-mediated transfer of biomolecules is a critical component of a variety of physiological and pathological processes. Potential applications of EVs in novel diagnostic and therapeutic strategies have brought increasing attention. However, EV research remains highly challenging due to the inherently complex biogenesis of EVs and their vast heterogeneity in size, composition, and origin. There is a need for the establishment of standardized methods that address EV heterogeneity and sources of pre-analytical and analytical variability in EV studies. Here, we review technologies developed for EV isolation and characterization and discuss paths toward standardization in EV research.
Collapse
Affiliation(s)
- Srujan Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Xianyi Su
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Jacqueline Wood
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Angela L Nocera
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Sarath Chandra Alli
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alan Zimmerman
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Weiss VU, Frank J, Piplits K, Szymanski WW, Allmaier G. Bipolar Corona Discharge-Based Charge Equilibration for Nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analysis of Bio- and Polymer Nanoparticles. Anal Chem 2020; 92:8665-8669. [PMID: 32519840 PMCID: PMC7467421 DOI: 10.1021/acs.analchem.0c01904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Separation
of polydisperse, single-charged analytes in the nanometer
size range in a high laminar sheath flow of particle-free ambient
air and a tunable electric field based on the respective particle
electrophoretic mobility diameter (EMD) can be achieved via gas-phase
electrophoresis. In order to transfer analytes from a volatile electrolyte
solution to the gas-phase as a single-charged species, a nano electrospray
(nES) process followed by drying of nanodroplets and charge conditioning
reaching Boltzmann charge equilibrium is a necessary prerequisite.
In the case of a so-called nES gas-phase electrophoretic mobility
molecular analyzer (nES GEMMA, also known as nES differential mobility
analyzer, nES DMA), charge equilibration is based on bionanoparticle
interaction with a bipolar atmosphere induced, e.g., by a radioactive
α-particle emitter like 210Po. It was the aim of
our investigation to examine whether such a radioactive source can
be easily replaced in the same nES housing by a nonradioactive one,
i.e., by an AC corona discharge unit. The latter would be significantly
easier to handle when compared to radioactive material in laboratory
day-to-day business, waste disposal, as well as regulatory confinements.
Indeed, we were able to combine a standard nES unit of our nES GEMMA
instrument with a commercially available AC corona discharge device
in a novel setup via an adapter. Our results show that this replacement
yields very good results for a number of chemically different nanoparticles,
an exemplary protein, a noncovalent protein complex, a virus-like
particle, a polymer, and a liposome sample, when compared to a 210Po based bipolar charge equilibration device.
Collapse
Affiliation(s)
- Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | - Johannes Frank
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | - Kurt Piplits
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| | | | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien, A-1060 Vienna, Austria
| |
Collapse
|
9
|
Fernández-García J, Compton S, Wick D, Fernandez de la Mora J. Virus Size Analysis by Gas-Phase Mobility Measurements: Resolution Limits. Anal Chem 2019; 91:12962-12970. [PMID: 31509389 DOI: 10.1021/acs.analchem.9b03023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrospraying (ES) dissolved viral particles, followed by charge reduction and size analysis with a differential mobility analyzer (DMA), offers a flexible size-analysis tool for small particles in solution. The technique relies on pioneering work by Kaufman and colleagues, commercialized by TSI, and often referred to as GEMMA. However, viral studies with TSI's GEMMA have suffered from limited resolving power, possibly because of imperfections in either the instrument (DMA or charge reduction) or the sample solution preparation. Here, we explore the limits of the resolution achievable by GEMMA, taking advantage of (i) cleaner charge reduction methods and (ii) DMAs of higher resolving power. Analysis of the literature provides indications that mobility peak widths (fwhm) of 2% or less may be achieved by combining careful sample preparation with improved instrumentation. Working with purified PP7 bacteriophage particles small enough to be classifiable by existing high-resolution DMAs, we confirm that fairly narrow viral mobility peaks may be obtained (relative full width at half-maximum fwhm <5%). Comparison of spectra of a given apian virus sample obtained with TSI's GEMMA and our improved instrumentation confirms that one critical limitation is the DMA. This is further verified by narrow peaks from murine parvovirus, norovirus, and encephalomyelitis virus samples, obtained in our improved GEMMA with little sample preparation, directly from infected cell cultures. Classification of purified large (60 nm) coliphage PR772 particles leads to broad peaks, due to both viral degradation and limited intrinsic resolution of the DMAs used to cover the range of such large particles. We conclude that improved DMAs suitable for high-resolution analysis of particles larger than 30 nm need to be developed to determine the intrinsic mobility width of viral particles.
Collapse
Affiliation(s)
- J Fernández-García
- Yale University , Department of Mechanical Engineering , New Haven , Connecticut 06520 , United States
| | - S Compton
- Yale University , School of Medicine , New Haven , Connecticut 06520 , United States
| | - D Wick
- BVS, Inc. , Stevensville , Montana 59870 , United States
| | - J Fernandez de la Mora
- Yale University , Department of Mechanical Engineering , New Haven , Connecticut 06520 , United States
| |
Collapse
|
10
|
Weiss VU, Pogan R, Zoratto S, Bond KM, Boulanger P, Jarrold MF, Lyktey N, Pahl D, Puffler N, Schelhaas M, Selivanovitch E, Uetrecht C, Allmaier G. Virus-like particle size and molecular weight/mass determination applying gas-phase electrophoresis (native nES GEMMA). Anal Bioanal Chem 2019; 411:5951-5962. [PMID: 31280479 PMCID: PMC6706367 DOI: 10.1007/s00216-019-01998-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 02/04/2023]
Abstract
(Bio-)nanoparticle analysis employing a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (native nES GEMMA) also known as nES differential mobility analyzer (nES DMA) is based on surface-dry analyte separation at ambient pressure. Based on electrophoretic principles, single-charged nanoparticles are separated according to their electrophoretic mobility diameter (EMD) corresponding to the particle size for spherical analytes. Subsequently, it is possible to correlate the (bio-)nanoparticle EMDs to their molecular weight (MW) yielding a corresponding fitted curve for an investigated analyte class. Based on such a correlation, (bio-)nanoparticle MW determination via its EMD within one analyte class is possible. Turning our attention to icosahedral, non-enveloped virus-like particles (VLPs), proteinaceous shells, we set up an EMD/MW correlation. We employed native electrospray ionization mass spectrometry (native ESI MS) to obtain MW values of investigated analytes, where possible, after extensive purification. We experienced difficulties in native ESI MS with time-of-flight (ToF) detection to determine MW due to sample inherent characteristics, which was not the case for charge detection (CDMS). nES GEMMA exceeds CDMS in speed of analysis and is likewise less dependent on sample purity and homogeneity. Hence, gas-phase electrophoresis yields calculated MW values in good approximation even when charge resolution was not obtained in native ESI ToF MS. Therefore, both methods-native nES GEMMA-based MW determination via an analyte class inherent EMD/MW correlation and native ESI MS-in the end relate (bio-)nanoparticle MW values. However, they differ significantly in, e.g., ease of instrument operation, sample and analyte handling, or costs of instrumentation. Graphical abstract ![]()
Collapse
Affiliation(s)
- Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria.
| | - Ronja Pogan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251, Hamburg, Germany.,European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Samuele Zoratto
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Kevin M Bond
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Pascale Boulanger
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Nicholas Lyktey
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Dominik Pahl
- Institute of Cellular Virology, WWU Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Nicole Puffler
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Mario Schelhaas
- Institute of Cellular Virology, WWU Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Ekaterina Selivanovitch
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251, Hamburg, Germany.,European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| |
Collapse
|
11
|
Weiss VU, Golesne M, Friedbacher G, Alban S, Szymanski WW, Marchetti‐Deschmann M, Allmaier G. Size and molecular weight determination of polysaccharides by means of nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA). Electrophoresis 2018; 39:1142-1150. [PMID: 29465753 PMCID: PMC6001696 DOI: 10.1002/elps.201700382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
Size, size distribution and molecular weight (MW) determination of nanoparticles and that are for example large polymers, are of great interest and pose an analytical challenge. In this context, nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) is a valuable tool with growing impact. Separation of single-charged analytes according to their electrophoretic mobility diameter (EMD) starting from single-digit EMDs up to several hundred nm diameters is possible. In case of spherical analytes, the EMD corresponds to the dry nanoparticle size. Additionally, the instrument is capable of number-based, single-particle detection following the recommendation of the European Commission for nanoparticle characterization (2011/696/EU). In case an EMD/MW correlation for a particular compound class (based on availability of well-defined standards) exists, a nanoparticle's MW can be determined from its EMD. In the present study, we focused on nES GEMMA of linear and branched, water-soluble polysaccharides forming nanoparticles and were able to obtain spectra for both analyte classes regarding single-charged species. Based on EMDs for corresponding analytes, an excellent EMD/MW correlation could be obtained in case of the branched natural polymer (dextran). This enables the determination of dextran MWs from nES GEMMA spectra despite high analyte polydispersity and in a size/MW range, where classical mass spectrometry is limited. EMD/MW correlations based on linear (pullulans, oat-ß-glucans) polymers were significantly different, possibly indicating challenges in the exact MW determination of these compounds by, for example, chromatographic and light scattering means. Despite these observations, nES GEMMA of linear, monosaccharide-based polymers enabled the determination of size and size-distribution of such dry bionanoparticles.
Collapse
Affiliation(s)
- Victor U. Weiss
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | - Monika Golesne
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
- Department of Mechanical and Process EngineeringUniversity of KaiserslauternKaiserslauternGermany
| | - Gernot Friedbacher
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | | | | | | | - Günter Allmaier
- Institute of Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| |
Collapse
|
12
|
Yu H, Afshar-Mohajer N, Theodore AD, Lednicky JA, Fan ZH, Wu CY. An efficient virus aerosol sampler enabled by adiabatic expansion. JOURNAL OF AEROSOL SCIENCE 2018; 117:74-84. [PMID: 32226117 PMCID: PMC7094368 DOI: 10.1016/j.jaerosci.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 05/24/2023]
Abstract
Protection of public health against pathogenic viruses transmitted through the airborne route requires effective sampling of airborne viruses for determination of their concentration and distribution. However, sampling viable airborne viruses is challenging as conventional bioaerosol sampling devices operate on inertia-based mechanisms that inherently have low sampling efficiency for virus aerosols in the ultrafine size range (< 100 nm). Herein, a Batch Adiabatic-expansion for Size Intensification by Condensation (BASIC) approach was developed for efficient sampling of virus aerosols. The BASIC utilizes adiabatic expansion in a supersaturated container to activate condensation of water vapor onto virus aerosol particles, thus amplifying the size of the particles by orders of magnitude. Using aerosolized MS2 bacteriophage, the BASIC's performance was evaluated and optimized both from the perspectives of physical size amplification as well as preservation of the viability of the MS2 bacteriophage. Experimental results show that one compression/expansion (C/E) cycle under a compression pressure of 103.5 kPa and water temperature of 25 °C was sufficient to increase the particle diameter from < 100 nm to > 1 µm; further increases in the number of C/E cycles neither increased particle number concentration nor diameter. An increase in compression pressure was associated with physical size amplification and a higher concentration of collected viable MS2. Water temperature of 40 °C was found to be the optimal for size amplification as well as viability preservation. No significant effect on particle size enlargement was observed by changing the dwell time after expansion. The results illustrate the BASIC's capability as a simple, quick and inexpensive tool for rapid sampling of viable airborne viruses.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Nima Afshar-Mohajer
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - John A Lednicky
- Department of Environmental & Global Health, University of Florida, Gainesville, FL, USA
| | - Z Hugh Fan
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Allmaier G, Blaas D, Bliem C, Dechat T, Fedosyuk S, Gösler I, Kowalski H, Weiss VU. Monolithic anion-exchange chromatography yields rhinovirus of high purity. J Virol Methods 2017; 251:15-21. [PMID: 28966037 DOI: 10.1016/j.jviromet.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022]
Abstract
For vaccine development, 3D-structure determination, direct fluorescent labelling, and numerous other studies, homogeneous virus preparations of high purity are essential. Working with human rhinoviruses (RVs), members of the picornavirus family and the main cause of generally mild respiratory infections, we noticed that our routine preparations appeared highly pure on analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), exclusively showing the four viral capsid proteins (VPs). However, the preparations turned out to contain substantial amounts of contaminating material when analyzed by orthogonal analytical methods including capillary zone electrophoresis, nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA), and negative stain transmission electron microscopy (TEM). Because these latter analyses are not routine to many laboratories, the above contaminations might remain unnoticed and skew experimental results. By using human rhinovirus serotype A2 (RV-A2) as example we report monolithic anion-exchange chromatography (AEX) as a last polishing step in the purification and demonstrate that it yields infective, highly pure, virus (RV-A2 in the respective fractions was confirmed by peptide mass fingerprinting) devoid of foreign material as judged by the above criteria.
Collapse
Affiliation(s)
- Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Dieter Blaas
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Christina Bliem
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria
| | - Thomas Dechat
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Sofiya Fedosyuk
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Irene Gösler
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Heinrich Kowalski
- Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria.
| |
Collapse
|
14
|
Brinet D, Gaie-Levrel F, Delatour V, Kaffy J, Ongeri S, Taverna M. In vitro monitoring of amyloid β-peptide oligomerization by Electrospray differential mobility analysis: An alternative tool to evaluate Alzheimer's disease drug candidates. Talanta 2017; 165:84-91. [DOI: 10.1016/j.talanta.2016.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022]
|
15
|
Greco TM, Cristea IM. Proteomics Tracing the Footsteps of Infectious Disease. Mol Cell Proteomics 2017; 16:S5-S14. [PMID: 28163258 DOI: 10.1074/mcp.o116.066001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Every year, a major cause of human disease and death worldwide is infection with the various pathogens-viruses, bacteria, fungi, and protozoa-that are intrinsic to our ecosystem. In efforts to control the prevalence of infectious disease and develop improved therapies, the scientific community has focused on building a molecular picture of pathogen infection and spread. These studies have been aimed at defining the cellular mechanisms that allow pathogen entry into hosts cells, their replication and transmission, as well as the core mechanisms of host defense against pathogens. The past two decades have demonstrated the valuable implementation of proteomic methods in all these areas of infectious disease research. Here, we provide a perspective on the contributions of mass spectrometry and other proteomics approaches to understanding the molecular details of pathogen infection. Specifically, we highlight methods used for defining the composition of viral and bacterial pathogens and the dynamic interaction with their hosts in space and time. We discuss the promise of MS-based proteomics in supporting the development of diagnostics and therapies, and the growing need for multiomics strategies for gaining a systems view of pathogen infection.
Collapse
Affiliation(s)
- Todd M Greco
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| |
Collapse
|
16
|
Forsberg E, Fang M, Siuzdak G. Staying Alive: Measuring Intact Viable Microbes with Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:14-20. [PMID: 27456857 PMCID: PMC5177535 DOI: 10.1007/s13361-016-1440-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/08/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
Mass spectrometry has traditionally been the technology of choice for small molecule analysis, making significant inroads into metabolism, clinical diagnostics, and pharmacodynamics since the 1960s. In the mid-1980s, with the discovery of electrospray ionization (ESI) for biomolecule analysis, a new door opened for applications beyond small molecules. Initially, proteins were widely examined, followed by oligonucleotides and other nonvolatile molecules. Then in 1991, three intriguing studies reported using mass spectrometry to examine noncovalent protein complexes, results that have been expanded on for the last 25 years. Those experiments also raised the questions: How soft is ESI, and can it be used to examine even more complex interactions? Our lab addressed these questions with the analyses of viruses, which were initially tested for viability following electrospray ionization and their passage through a quadrupole mass analyzer by placing them on an active medium that would allow them to propagate. This observation has been replicated on multiple different systems, including experiments on an even bigger microbe, a spore. The question of analysis was also addressed in the early 2000s with charge detection mass spectrometry. This unique technology could simultaneously measure mass-to-charge and charge, allowing for the direct determination of the mass of a virus. More recent experiments on spores and enveloped viruses have given us insight into the range of mass spectrometry's capabilities (reaching 100 trillion Da), beginning to answer fundamental questions regarding the complexity of these organisms beyond proteins and genes, and how small molecules are integral to these supramolecular living structures. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Erica Forsberg
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mingliang Fang
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Departments of Chemistry, Molecular and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
17
|
Engel NY, Weiss VU, Marchetti-Deschmann M, Allmaier G. nES GEMMA Analysis of Lectins and Their Interactions with Glycoproteins - Separation, Detection, and Sampling of Noncovalent Biospecific Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:77-86. [PMID: 27644941 PMCID: PMC5174143 DOI: 10.1007/s13361-016-1483-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/24/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
In order to better understand biological events, lectin-glycoprotein interactions are of interest. The possibility to gather more information than the mere positive or negative response for interactions brought mass spectrometry into the center of many research fields. The presented work shows the potential of a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) to detect weak, noncovalent, biospecific interactions besides still unbound glycoproteins and unreacted lectins without prior liquid phase separation. First results for Sambucus nigra agglutinin, concanavalin A, and wheat germ agglutinin and their retained noncovalent interactions with glycoproteins in the gas phase are presented. Electrophoretic mobility diameters (EMDs) were obtained by nES GEMMA for all interaction partners correlating very well with molecular masses determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the individual molecules. Moreover, EMDs measured for the lectin-glycoprotein complexes were in good accordance with theoretically calculated mass values. Special focus was laid on complex formation for different lectin concentrations and binding specificities to evaluate the method with respect to results obtained in the liquid phase. The latter was addressed by capillary electrophoresis on-a-chip (CE-on-a-chip). Of exceptional interest was the fact that the formed complexes could be sampled according to their size onto nitrocellulose membranes after gas-phase separation. Subsequent immunological investigation further proved that the collected complex actually retained its native structure throughout nES GEMMA analysis and sampling. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nicole Y Engel
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria.
| |
Collapse
|
18
|
Critical review of current and emerging quantification methods for the development of influenza vaccine candidates. Vaccine 2015; 33:5913-9. [DOI: 10.1016/j.vaccine.2015.07.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
19
|
Weiss V, Bereszcazk JZ, Havlik M, Kallinger P, Gösler I, Kumar M, Blaas D, Marchetti-Deschmann M, Heck AJR, Szymanski WW, Allmaier G. Analysis of a common cold virus and its subviral particles by gas-phase electrophoretic mobility molecular analysis and native mass spectrometry. Anal Chem 2015; 87:8709-17. [PMID: 26221912 PMCID: PMC4558612 DOI: 10.1021/acs.analchem.5b01450] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/25/2015] [Indexed: 01/02/2023]
Abstract
Gas-phase electrophoretic mobility molecular analysis (GEMMA) separates nanometer-sized, single-charged particles according to their electrophoretic mobility (EM) diameter after transition to the gas-phase via a nano electrospray process. Electrospraying as a soft desorption/ionization technique preserves noncovalent biospecific interactions. GEMMA is therefore well suited for the analysis of intact viruses and subviral particles targeting questions related to particle size, bioaffinity, and purity of preparations. By correlating the EM diameter to the molecular mass (Mr) of standards, the Mr of analytes can be determined. Here, we demonstrate (i) the use of GEMMA in purity assessment of a preparation of a common cold virus (human rhinovirus serotype 2, HRV-A2) and (ii) the analysis of subviral HRV-A2 particles derived from such a preparation. (iii) Likewise, native mass spectrometry was employed to obtain spectra of intact HRV-A2 virions and empty viral capsids (B-particles). Charge state resolution for the latter allowed its Mr determination. (iv) Cumulatively, the data measured and published earlier were used to establish a correlation between the Mr and EM diameter for a range of globular proteins and the intact virions. Although a good correlation resulted from this analysis, we noticed a discrepancy especially for the empty and subviral particles. This demonstrates the influence of genome encapsulation (preventing analytes from shrinking upon transition into the gas-phase) on the measured analyte EM diameter. To conclude, GEMMA is useful for the determination of the Mr of intact viruses but needs to be employed with caution when subviral particles or even empty viral capsids are targeted. The latter could be analyzed by native MS.
Collapse
Affiliation(s)
- Victor
U. Weiss
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, A-1060 Vienna, Austria
| | - Jessica Z. Bereszcazk
- Bijvoet
Centre for Biomolecular Research and Utrecht Institute of Pharmaceutical
Sciences, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | - Marlene Havlik
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, A-1060 Vienna, Austria
| | - Peter Kallinger
- Faculty
of Physics, University of Vienna, A-1090 Vienna, Austria
| | - Irene Gösler
- Department
of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Mohit Kumar
- Department
of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Dieter Blaas
- Department
of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | | | - Albert J. R. Heck
- Bijvoet
Centre for Biomolecular Research and Utrecht Institute of Pharmaceutical
Sciences, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | | | - Günter Allmaier
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, A-1060 Vienna, Austria
| |
Collapse
|
20
|
Weiss VU, Subirats X, Kumar M, Harutyunyan S, Gösler I, Kowalski H, Blaas D. Capillary electrophoresis, gas-phase electrophoretic mobility molecular analysis, and electron microscopy: effective tools for quality assessment and basic rhinovirus research. Methods Mol Biol 2015; 1221:101-128. [PMID: 25261310 DOI: 10.1007/978-1-4939-1571-2_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe standard methods for propagation, purification, quality control, and physicochemical characterization of human rhinoviruses, using HRV-A2 as an example. Virus is propagated in HeLa-OHIO cells grown in suspension culture and purified via sucrose density gradient centrifugation. Purity and homogeneity of the preparations are assessed with SDS-polyacrylamide gel electrophoresis (SDS-PAGE), capillary electrophoresis (CE), gas-phase electrophoretic mobility molecular analysis (GEMMA), and electron microscopy (EM). We also briefly describe usage of these methods for the characterization of subviral particles as well as for the analysis of their complexes with antibodies and soluble recombinant receptor mimics.
Collapse
Affiliation(s)
- Victor U Weiss
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Greco TM, Diner BA, Cristea IM. The Impact of Mass Spectrometry-Based Proteomics on Fundamental Discoveries in Virology. Annu Rev Virol 2014; 1:581-604. [PMID: 26958735 DOI: 10.1146/annurev-virology-031413-085527] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, mass spectrometry has emerged as a core component of fundamental discoveries in virology. As a consequence of their coevolution, viruses and host cells have established complex, dynamic interactions that function either in promoting virus replication and dissemination or in host defense against invading pathogens. Thus, viral infection triggers an impressive range of proteome changes. Alterations in protein abundances, interactions, posttranslational modifications, subcellular localizations, and secretion are temporally regulated during the progression of an infection. Consequently, understanding viral infection at the molecular level requires versatile approaches that afford both breadth and depth of analysis. Mass spectrometry is uniquely positioned to bridge this experimental dichotomy. Its application to both unbiased systems analyses and targeted, hypothesis-driven studies has accelerated discoveries in viral pathogenesis and host defense. Here, we review the contributions of mass spectrometry-based proteomic approaches to understanding viral morphogenesis, replication, and assembly and to characterizing host responses to infection.
Collapse
Affiliation(s)
- Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Benjamin A Diner
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| |
Collapse
|
22
|
Tseng YH, Pease LF. Electrospray differential mobility analysis for nanoscale medicinal and pharmaceutical applications. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2014; 10:1591-600. [PMID: 24846522 DOI: 10.1016/j.nano.2014.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/21/2014] [Accepted: 05/12/2014] [Indexed: 12/14/2022]
Abstract
Nanoscale characterization tools hold the potential to overcome long-standing medicinal and pharmaceutical challenges. For example, electrospray differential mobility analysis (ES-DMA) is an emerging tool that rapidly provides label-free multimodal size distributions for proteins and particles from ~1 nm to <500 nm with subnanometer precision. Here we critically review the contributions of this tool to medicine, pharmaceutical practice, and pharmaceutical production. Our review critically evaluates, first, the use of ES-DMA for diagnostic strategies that detect and quantify lipoproteins, bacterial infections, viruses and amyloid fibrillation and then focuses on ES-DMA's contribution to treatment strategies that employ tailored virus-like particles as vaccines and decorated nanoparticle vectors for gene delivery. Our review also highlights ES-DMA's contribution to viral clearance and antibody aggregation and potential as a process analytical technology (PAT). FROM THE CLINICAL EDITOR Electrospray differential mobility analysis is an emerging nanotechnology-based tool with potential clinical utility in the detection and quantification of lipoproteins, glycoproteins, viruses, amyloids, bacterial infections. Its contribution to treatment strategies and pharmaceutical production is also discussed in this comprehensive review.
Collapse
Affiliation(s)
- Yen-Hsun Tseng
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Leonard F Pease
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Gastroenterology, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics & Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
23
|
Peng WP, Chou SW, Patil AA. Measuring masses of large biomolecules and bioparticles using mass spectrometric techniques. Analyst 2014; 139:3507-23. [DOI: 10.1039/c3an02329j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometric techniques can measure the masses and fragments of large biomolecules and bioparticles.
Collapse
Affiliation(s)
- Wen-Ping Peng
- Department of Physics
- National Dong Hwa University
- Hualien, Republic of China
| | - Szu-Wei Chou
- Department of Physics
- National Dong Hwa University
- Hualien, Republic of China
| | - Avinash A. Patil
- Department of Physics
- National Dong Hwa University
- Hualien, Republic of China
| |
Collapse
|
24
|
Sizing up large protein complexes by electrospray ionisation-based electrophoretic mobility and native mass spectrometry: morphology selective binding of Fabs to hepatitis B virus capsids. Anal Bioanal Chem 2013; 406:1437-46. [PMID: 24357008 DOI: 10.1007/s00216-013-7548-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/29/2022]
Abstract
The capsid of hepatitis B virus (HBV) is a major viral antigen and important diagnostic indicator. HBV capsids have prominent protrusions ('spikes') on their surface and are unique in having either T = 3 or T = 4 icosahedral symmetry. Mouse monoclonal and also human polyclonal antibodies bind either near the spike apices (historically the 'α-determinant') or in the 'floor' regions between them (the 'β-determinant'). Native mass spectrometry (MS) and gas-phase electrophoretic mobility molecular analysis (GEMMA) were used to monitor the titration of HBV capsids with the antigen-binding domain (Fab) of mAb 3120, which has long defined the β-determinant. Both methods readily distinguished Fab binding to the two capsid morphologies and could provide accurate masses and dimensions for these large immune complexes, which range up to ~8 MDa. As such, native MS and GEMMA provide valuable alternatives to a more time-consuming cryo-electron microscopy analysis for preliminary characterisation of virus-antibody complexes.
Collapse
|
25
|
Brown SC, Boyko V, Meyers G, Voetz M, Wohlleben W. Toward advancing nano-object count metrology: a best practice framework. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1282-91. [PMID: 24076973 PMCID: PMC3852792 DOI: 10.1289/ehp.1306957] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/19/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND A movement among international agencies and policy makers to classify industrial materials by their number content of sub-100-nm particles could have broad implications for the development of sustainable nanotechnologies. OBJECTIVES Here we highlight current particle size metrology challenges faced by the chemical industry due to these emerging number percent content thresholds, provide a suggested best-practice framework for nano-object identification, and identify research needs as a path forward. DISCUSSION Harmonized methods for identifying nanomaterials by size and count for many real-world samples do not currently exist. Although particle size remains the sole discriminating factor for classifying a material as "nano," inconsistencies in size metrology will continue to confound policy and decision making. Moreover, there are concerns that the casting of a wide net with still-unproven metrology methods may stifle the development and judicious implementation of sustainable nanotechnologies. Based on the current state of the art, we propose a tiered approach for evaluating materials. To enable future risk-based refinements of these emerging definitions, we recommend that this framework also be considered in environmental and human health research involving the implications of nanomaterials. CONCLUSION Substantial scientific scrutiny is needed in the area of nanomaterial metrology to establish best practices and to develop suitable methods before implementing definitions based solely on number percent nano-object content for regulatory purposes. Strong cooperation between industry, academia, and research institutions will be required to fully develop and implement detailed frameworks for nanomaterial identification with respect to emerging count-based metrics.
Collapse
Affiliation(s)
- Scott C Brown
- Corporate Center for Analytical Sciences, DuPont Central Research and Development, Wilmington, Delaware, USA
| | | | | | | | | |
Collapse
|
26
|
Zhao Q, Li S, Yu H, Xia N, Modis Y. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol 2013; 31:654-63. [PMID: 24125746 DOI: 10.1016/j.tibtech.2013.09.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/20/2013] [Accepted: 09/03/2013] [Indexed: 12/18/2022]
Abstract
Human vaccines against three viruses use recombinant virus-like particles (VLPs) as the antigen: hepatitis B virus, human papillomavirus, and hepatitis E virus. VLPs are excellent prophylactic vaccine antigens because they are self-assembling bionanoparticles (20 to 60 nm in diameter) that expose multiple epitopes on their surface and faithfully mimic the native virions. Here we summarize the long journey of these vaccines from bench to patients. The physical properties and structural features of each recombinant VLP vaccine are described. With the recent licensure of Hecolin against hepatitis E virus adding a third disease indication to prophylactic VLP-based vaccines, we review how the crucial quality attributes of VLP-based human vaccines against all three disease indications were assessed, controlled, and improved during bioprocessing through an array of structural and functional analyses.
Collapse
Affiliation(s)
- Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | | | | | | | | |
Collapse
|
27
|
Tsai DH, DelRio FW, Pettibone JM, Lin PA, Tan J, Zachariah MR, Hackley VA. Temperature-programmed electrospray-differential mobility analysis for characterization of ligated nanoparticles in complex media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11267-11274. [PMID: 23937656 DOI: 10.1021/la402311c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An electrospray-differential mobility analyzer (ES-DMA) was operated with an aerosol flow-mode, temperature-programmed approach to enhance its ability to characterize the particle size distributions (PSDs) of nanoscale particles (NPs) in the presence of adsorbed and free ligands. Titanium dioxide NPs (TiO2-NPs) stabilized by citric acid (CA) or bovine serum albumin (BSA) were utilized as representative systems. Transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry were used to provide visual information and elemental-based PSDs, respectively. Results show that the interference resulting from electrospray-dried nonvolatile salt residual nanoscale particles (S-NPs) could be effectively reduced using the thermal treatment process: PSDs were accurately measured at temperatures above 200 °C for CA-stabilized TiO2-NPs and above 400 °C for BSA-stabilized TiO2-NPs. Moreover, TEM confirmed the volumetric shrinkage of S-NPs due to thermal treatment and also showed that the primary structure of TiO2-NPs was relatively stable over the temperature range studied (i.e., below 700 °C). Conversely, the shape factor for TiO2-NPs decreased after treatment above 500 °C, possibly due to a change in the secondary (aggregate) structure. S-NPs from BSA-stabilized TiO2-NPs exhibited higher global activation energies toward induced volumetric shrinkage than those of CA-stabilized TiO2-NPs, suggesting that activation energy is dependent on ligand size. This prototype study demonstrates the efficacy of using ES-DMA coupled with thermal treatment for characterizing the physical state of NPs, even in a complex medium (e.g., containing plasma proteins) and in the presence of particle agglomerates induced by interaction with binding ligands.
Collapse
Affiliation(s)
- De-Hao Tsai
- Materials Measurement Science Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Thompson CM, Petiot E, Lennaertz A, Henry O, Kamen AA. Analytical technologies for influenza virus-like particle candidate vaccines: challenges and emerging approaches. Virol J 2013; 10:141. [PMID: 23642219 PMCID: PMC3655918 DOI: 10.1186/1743-422x-10-141] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/29/2013] [Indexed: 02/08/2023] Open
Abstract
Influenza virus-like particle vaccines are one of the most promising ways to respond to the threat of future influenza pandemics. VLPs are composed of viral antigens but lack nucleic acids making them non-infectious which limit the risk of recombination with wild-type strains. By taking advantage of the advancements in cell culture technologies, the process from strain identification to manufacturing has the potential to be completed rapidly and easily at large scales. After closely reviewing the current research done on influenza VLPs, it is evident that the development of quantification methods has been consistently overlooked. VLP quantification at all stages of the production process has been left to rely on current influenza quantification methods (i.e. Hemagglutination assay (HA), Single Radial Immunodiffusion assay (SRID), NA enzymatic activity assays, Western blot, Electron Microscopy). These are analytical methods developed decades ago for influenza virions and final bulk influenza vaccines. Although these methods are time-consuming and cumbersome they have been sufficient for the characterization of final purified material. Nevertheless, these analytical methods are impractical for in-line process monitoring because VLP concentration in crude samples generally falls out of the range of detection for these methods. This consequently impedes the development of robust influenza-VLP production and purification processes. Thus, development of functional process analytical techniques, applicable at every stage during production, that are compatible with different production platforms is in great need to assess, optimize and exploit the full potential of novel manufacturing platforms.
Collapse
Affiliation(s)
- Christine M Thompson
- National Research Council Canada, Vaccine Program – Human Health therapeutics Portfolio, 6100 Royalmount Avenue, Montreal, Québec H4P 2R2, Canada
- École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Emma Petiot
- National Research Council Canada, Vaccine Program – Human Health therapeutics Portfolio, 6100 Royalmount Avenue, Montreal, Québec H4P 2R2, Canada
| | - Alexandre Lennaertz
- National Research Council Canada, Vaccine Program – Human Health therapeutics Portfolio, 6100 Royalmount Avenue, Montreal, Québec H4P 2R2, Canada
- École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Olivier Henry
- École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Amine A Kamen
- National Research Council Canada, Vaccine Program – Human Health therapeutics Portfolio, 6100 Royalmount Avenue, Montreal, Québec H4P 2R2, Canada
- École Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
29
|
Mohr J, Chuan YP, Wu Y, Lua LHL, Middelberg APJ. Virus-like particle formulation optimization by miniaturized high-throughput screening. Methods 2013; 60:248-56. [PMID: 23639868 DOI: 10.1016/j.ymeth.2013.04.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 12/19/2022] Open
Abstract
Virus-like particles (VLPs) are non-infectious and immunogenic virus-mimicking protein assemblies that are increasingly researched as vaccine candidates. Stability against aggregation is an important determinant dictating the viability of a pipeline VLP product, making multivariable stability data highly desirable especially in early product development stages. However, comprehensive formulation studies are challenging due to low sample availability early in developability assessment. This issue is exacerbated by industry-standard analytical techniques which are low-throughput and/or sample-consuming. This study presents a miniaturized high-throughput screening (MHTS) methodology for VLP formulation by integrating dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AF4) in a formulation funnel analysis. Using only 2 μg of sample and 100 s per measurement, a DLS plate reader was deployed to effectively pre-screen a large experimental space, allowing a smaller set of superior formulation conditions to be interrogated at high-resolution with AF4. The stabilizing effects of polysorbate 20, sucrose, trehalose, mannitol and sorbitol were investigated. MHTS data showed that addition of 0.5% w/v polysorbate 20 together with either 40% w/v sucrose or 40% w/v sorbitol could stabilize VLPs at elevated temperatures up to 58 °C. AF4 data further confirmed that the formulation containing 40% w/v sorbitol and 0.5% w/v polysorbate 20 effectively protected VLPs during freeze-thawing and freeze-drying, increasing recoveries from these processes by 80 and 50 percentage points, respectively. The MHTS strategy presented here could be used to rapidly explore a large formulation development space using reduced amounts of sample, without sacrificing the analytical resolution needed for quality control. Such a method paves the way for rapid formulation development and could potentially hasten the commercialization of new VLP vaccines.
Collapse
Affiliation(s)
- Johannes Mohr
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
30
|
Wyttenbach T, Bleiholder C, Bowers MT. Factors contributing to the collision cross section of polyatomic ions in the kilodalton to gigadalton range: application to ion mobility measurements. Anal Chem 2013; 85:2191-9. [PMID: 23305137 DOI: 10.1021/ac3029008] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The projected superposition approximation (PSA) method was used to theoretically evaluate the factors contributing to the cross section measured in ion mobility experiments and to study how the significance of these factors varies with ion size from diglycine to a 1 μm oil droplet. Thousands of PSA calculations for ∼400 different molecules in the temperature range from 80 to 700 K revealed that the molecular framework made up of atomic hard spheres is, as expected, a major component of the cross section. However, the ion-buffer gas interaction is almost equally important for very small peptides, and although its significance decreases with increasing ion size, interaction is still a factor for megadalton ions. An additional major factor is the ion shape: Fully convex ions drifting in a buffer gas have a minimal frictional resisting force, whereas the resisting force increases with degree of ion surface concaveness. This added resistance is small for peptides and larger for proteins and increases the ion mobility cross section from 0 to greater than 40%. The proteins with the highest degree of concaveness reach a shape-effected friction similar to, and sometimes larger than that of, macroscopic particles such as oil droplets. In summary, our results suggest that the transition from nanoparticle (with Lennard-Jones-like interaction with the buffer gas) to macroscopic particle (with hard sphere-like interaction) occurs at ∼1 GDa.
Collapse
Affiliation(s)
- Thomas Wyttenbach
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | | | | |
Collapse
|
31
|
Elzey S, Tsai DH, Yu LL, Winchester MR, Kelley ME, Hackley VA. Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Anal Bioanal Chem 2013; 405:2279-88. [PMID: 23338753 DOI: 10.1007/s00216-012-6617-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 01/25/2023]
Abstract
We report the development of a hyphenated instrument with the capacity to quantitatively characterize aqueous suspended gold nanoparticles (AuNPs) based on a combination of gas-phase size separation, particle counting, and elemental analysis. A customized electrospray-differential mobility analyzer (ES-DMA) was used to achieve real-time upstream size discrimination. A condensation particle counter and inductively coupled plasma mass spectrometer (ICP-MS) were employed as downstream detectors, providing information on number density and elemental composition, respectively, of aerosolized AuNPs versus the upstream size selected by ES-DMA. A gas-exchange device was designed and optimized to improve the conversion of air flow (from the electrospray) to argon flow required to sustain the ICP-MS plasma, the key compatibility issue for instrumental hyphenation. Our work provides the proof of concept and a working prototype for utilizing this construct to successfully measure (1) number- and mass-based distributions; (2) elemental compositions of nanoparticles classified by size, where the size classification and elemental analysis are performed within a single experiment; (3) particle concentrations in both solution (before size discrimination) and aerosol (after size discrimination) phases; and (4) the number of atoms per nanoparticle or the nanoparticle density.
Collapse
Affiliation(s)
- Sherrie Elzey
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | | | | | | | |
Collapse
|
32
|
Guha S, Li M, Tarlov MJ, Zachariah MR. Electrospray–differential mobility analysis of bionanoparticles. Trends Biotechnol 2012; 30:291-300. [DOI: 10.1016/j.tibtech.2012.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
|