1
|
Bon C. [Palaeogenetics or the interest of genetic exploration of the past]. Med Sci (Paris) 2024; 40:556-559. [PMID: 38986102 DOI: 10.1051/medsci/2024084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Affiliation(s)
- Céline Bon
- UMR7206 Éco-Anthropologie (EA), CNRS, Muséum national d'Histoire naturelle, Université Paris-Cité, Paris, France
| |
Collapse
|
2
|
Gervasio JHDB, da Costa Oliveira H, da Costa Martins AG, Pesquero JB, Verona BM, Cerize NNP. How close are we to storing data in DNA? Trends Biotechnol 2024; 42:156-167. [PMID: 37673693 DOI: 10.1016/j.tibtech.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
DNA is an intelligent data storage medium due to its stability and high density. It has been used by nature for over 3.5 billion years. Compared with traditional methods, DNA offers better compression and physical density. DNA can retain information for thousands of years. However, challenges exist in scalability, standardization, metadata gathering, biocybersecurity, and specialized tools. Addressing these challenges is crucial for widespread implementation. Collaboration among experts, as well as keeping the future in mind, is needed to unlock the full potential of DNA data storage, which promises low energy costs, high-density storage, and long-term stability.
Collapse
Affiliation(s)
- Joao Henrique Diniz Brandao Gervasio
- Bionanomanufacturing Center, IPT - Institute for Technological Research, Sao Paulo, SP, Brazil; Department of Bioinformatics, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Statistics, University of Oxford, Oxford, UK.
| | | | | | | | - Bruno Marinaro Verona
- Bionanomanufacturing Center, IPT - Institute for Technological Research, Sao Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Danielewski M, Żuraszek J, Zielińska A, Herzig KH, Słomski R, Walkowiak J, Wielgus K. Methodological Changes in the Field of Paleogenetics. Genes (Basel) 2023; 14:genes14010234. [PMID: 36672975 PMCID: PMC9859346 DOI: 10.3390/genes14010234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Paleogenetics has significantly changed since its inception almost forty years ago. Initially, molecular techniques available to the researchers offered minimal possibilities for ancient DNA analysis. The subsequent expansion of the scientific tool cabinet allowed for more remarkable achievements, combined has with the newfound popularity of this budding field of science. Finally, a breakthrough was made with the development of next-generation sequencing (NGS) technologies and the update of DNA isolation protocols, through which even very fragmented aDNA samples could be used to sequence whole genomes. In this paper, we review the achievements made thus far and compare the methodologies utilized in this field of science, discussing their benefits and challenges.
Collapse
Affiliation(s)
- Mikołaj Danielewski
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Joanna Żuraszek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Karl-Heinz Herzig
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
- Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Medical Research Center, Oulu University Hospital, P.O. Box 5000, FIN-90014 Oulu, Finland
- Correspondence: (K.-H.H.); (K.W.)
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Karolina Wielgus
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
- Correspondence: (K.-H.H.); (K.W.)
| |
Collapse
|
4
|
Schulze Johann K, Bauer H, Wiegand P, Pfeiffer H, Vennemann M. Whole-genome sequencing of artificial single-nucleotide variants induced by DNA degradation in biological crime scene traces. Int J Legal Med 2023; 137:33-45. [PMID: 36352329 PMCID: PMC9816238 DOI: 10.1007/s00414-022-02911-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
The aim of this study was to identify artificial single-nucleotide variants (SNVs) in degraded trace DNA samples. In a preliminary study, blood samples were stored for up to 120 days and whole-genome sequencing was performed using the Snakemake workflow dna-seq-gatk-variant-calling to identify positions that vary between the time point 0 sample and the aged samples. In a follow-up study on blood and saliva samples stored under humid and dry conditions, potential marker candidates for the estimation of the age of a blood stain (= time since deposition) were identified. Both studies show that a general decrease in the mean fragment size of the libraries over time was observed, presumably due to the formation of abasic sites during DNA degradation which are more susceptible to strand breaks by mechanical shearing of DNA. Unsurprisingly, an increase in the number of failed genotype calls (no coverage) was detected over time. Both studies indicated the presence of artificial SNVs with the majority of changes happening at guanine and cytosine positions. This confirms previous studies and can be explained by depurination through hydrolytic attacks which more likely deplete guanine while deamination leads to cytosine to thymine variants. Even complete genotype switches from homozygote 0/0 genotypes to the opposite 1/1 genotypes were observed. While positions with such drastic changes might provide suitable candidate markers for estimating short-term time since deposition (TsD), 11 markers were identified which show a slower gradual change of the relative abundance of the artificial variant in both blood and saliva samples, irrespective of storage conditions.
Collapse
Affiliation(s)
| | - Hannah Bauer
- Institute of Legal Medicine, University of Münster, Röntgenstr. 23, 48149 Münster, Germany
| | - Peter Wiegand
- Institute of Legal Medicine, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Heidi Pfeiffer
- Institute of Legal Medicine, University of Münster, Röntgenstr. 23, 48149 Münster, Germany
| | - Marielle Vennemann
- Institute of Legal Medicine, University of Münster, Röntgenstr. 23, 48149 Münster, Germany
| |
Collapse
|
5
|
Badania kopalnego DNA – możliwości i ograniczenia. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Ostatnie cztery dekady przyniosły znaczący rozwój archeologii molekularnej i badania nad kopalnym DNA (aDNA). Nowatorskie metody uwzględniają szeroki zakres badań, począwszy od sekwencjonowania niewielkich fragmentów mitochondrialnego DNA po wielkoskalowe badania całych populacji, łączące sekwencjonowanie genomów mitochondrialnych, genów podlegających doborowi naturalnemu, jak i całych genomów jądrowych. Postęp, zwłaszcza w dziedzinie technologii sekwencjonowania DNA, umożliwił pozyskanie informacji ze szczątków paleontologicznych i materiału archeologicznego, umożliwiając zbadanie związków filogenetycznych między wymarłymi i współczesnymi gatunkami. Dzięki zastosowaniu technologii sekwencjonowania nowej generacji możliwe stało się poznanie sekwencji DNA nie tylko bezpośrednio ze szczątków ludzkich lub zwierzęcych, ale także z osadów sedymentacyjnych z głębin jezior oraz jaskiń. W artykule przedstawiono możliwości i ograniczenia występujące w badaniach nad kopalnym DNA ludzi, zwierząt czy bakterii z podkreśleniem wkładu polskich badaczy w rozwój tej dziedziny nauki.
Collapse
|
6
|
Zhang M, Cao P, Dai Q, Wang Y, Feng X, Wang H, Wu H, Ko AMS, Mao X, Liu Y, Yu L, Roos C, Nadler T, Xiao W, Bennett EA, Fu Q. Comparative analysis of DNA extraction protocols for ancient soft tissue museum samples. Zool Res 2021; 42:280-286. [PMID: 33855818 PMCID: PMC8175948 DOI: 10.24272/j.issn.2095-8137.2020.377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
DNA studies of endangered or extinct species often rely on ancient or degraded remains. The majority of ancient DNA (aDNA) extraction protocols focus on skeletal elements, with skin and hair samples rarely explored. Similar to that found in bones and teeth, DNA extracted from historical or ancient skin and fur samples is also extremely fragmented with low endogenous content due to natural degradation processes. Thus, the development of effective DNA extraction methods is required for these materials. Here, we compared the performance of two DNA extraction protocols (commercial and custom laboratory aDNA methods) on hair and skin samples from decades-old museum specimens to Iron Age archaeological material. We found that apart from the impact sample-specific taphonomic and handling history has on the quantity and quality of DNA preservation, skin yielded more endogenous DNA than hair of the samples and protocols tested. While both methods recovered DNA from ancient soft tissue, the laboratory method performed better overall in terms of DNA yield and quality, which was primarily due to the poorer performance of the commercial binding buffer in recovering aDNA.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Yongqiang Wang
- Institute of cultural relics and archaeology in Xinjiang, Urumqi, Xinjiang 830011, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Hongru Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-resource in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Tilo Nadler
- Wildlife Consultant, Cuc Phuong Commune, Nho Quan, Ninh Binh 430000, Vietnam
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan 671003, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China. E-mail:
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.,University of Chinese Academy of Sciences, Beijing 100049, China. E-mail:
| |
Collapse
|
7
|
Szentiványi T, Markotter W, Dietrich M, Clément L, Ançay L, Brun L, Genzoni E, Kearney T, Seamark E, Estók P, Christe P, Glaizot O. Host conservation through their parasites: molecular surveillance of vector-borne microorganisms in bats using ectoparasitic bat flies. ACTA ACUST UNITED AC 2020; 27:72. [PMID: 33306024 PMCID: PMC7731914 DOI: 10.1051/parasite/2020069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023]
Abstract
Most vertebrates host a wide variety of haematophagous parasites, which may play an important role in the transmission of vector-borne microorganisms to hosts. Surveillance is usually performed by collecting blood and/or tissue samples from vertebrate hosts. There are multiple methods to obtain samples, which can be stored for decades if properly kept. However, blood sampling is considered an invasive method and may possibly be harmful to the sampled individual. In this study, we investigated the use of ectoparasites as a tool to acquire molecular information about the presence and diversity of infectious microorganism in host populations. We tested the presence of three distinct vector-borne microorganisms in both bat blood and bat flies: Bartonella bacteria, malaria-like Polychromophilus sp. (Apicomplexa), and Trypanosoma sp. (Kinetoplastea). We detected the presence of these microorganisms both in bats and in their bat flies, with the exception of Trypanosoma sp. in South African bat flies. Additionally, we found Bartonella sp. in bat flies from one population in Spain, suggesting its presence in the host population even if not detected in bats. Bartonella and Polychromophilus infection showed the highest prevalence in both bat and bat fly populations. Single, co- and triple infections were also frequently present in both. We highlight the use of haematophagous ectoparasites to study the presence of infectious microorganism in host blood and its use as an alternative, less invasive sampling method.
Collapse
Affiliation(s)
- Tamara Szentiványi
- Museum of Zoology, 1014 Lausanne, Switzerland - Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Wanda Markotter
- Department of Medical Virology, University of Pretoria, 0001 Pretoria, South Africa - AfricanBats NPC, 0157 Pretoria, South Africa
| | - Muriel Dietrich
- UMR Processus Infectieux en Milieu Insulaire Tropical, 97490 Sainte-Clotilde, Reunion Island, France
| | - Laura Clément
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurie Ançay
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Loïc Brun
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Eléonore Genzoni
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Teresa Kearney
- AfricanBats NPC, 0157 Pretoria, South Africa - Ditsong National Museum of Natural History, 0001 Pretoria, South Africa - Department of Zoology and Entomology, University of Pretoria, 0083 Pretoria, South Africa
| | | | - Peter Estók
- Department of Zoology, Eszterházy Károly University, 3300 Eger, Hungary
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Olivier Glaizot
- Museum of Zoology, 1014 Lausanne, Switzerland - Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Su X, Liang R, Stolee JA. A facile one-step fluorescence method for the quantitation of low-content single base deamination impurity in synthetic oligonucleotides. J Pharm Biomed Anal 2018; 155:50-55. [PMID: 29614399 DOI: 10.1016/j.jpba.2018.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 11/27/2022]
Abstract
Oligonucleotides are being researched and developed as potential drug candidates for the treatment of a broad spectrum of diseases. The characterization of antisense oligonucleotide (ASO) impurities caused by base mutations (e.g. deamination) which are closely related to the target ASO is a significant analytical challenge. Herein, we describe a novel one-step method, utilizing a strategy that combines fluorescence-ON detection with competitive hybridization, to achieve single base mutation quantitation in extensively modified synthetic ASOs. Given that this method is highly specific and sensitive (LoQ = 4 nM), we envision that it will find utility for screening other impurities as well as sequencing modified oligonucleotides.
Collapse
Affiliation(s)
- Xiaoye Su
- Analytical Development, Biogen Inc., Cambridge, MA 02142, United States.
| | - Ruiting Liang
- Analytical Development, Biogen Inc., Cambridge, MA 02142, United States.
| | - Jessica A Stolee
- Analytical Development, Biogen Inc., Cambridge, MA 02142, United States.
| |
Collapse
|
9
|
Sereno D, Akhoundi M, Dorkeld F, Oury B, Momen H, Perrin P. What pre-Columbian mummies could teach us about South American leishmaniases? Pathog Dis 2017; 75:3003283. [PMID: 28423167 DOI: 10.1093/femspd/ftx019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/14/2017] [Indexed: 11/13/2022] Open
Abstract
A recent report on the taxonomic profile of the human gut microbiome in pre-Columbian mummies (Santiago-Rodriguez et al. 2016) gives for the first time evidence of the presence of Leishmania DNA (sequences similar to Leishmania donovani according to the authors) that can be reminiscent of visceral leishmaniasis during the pre-Columbian era. It is commonly assumed that Leishmania infantum, the etiological agent of American visceral leishmaniasis (AVL) was introduced into the New World by the Iberian conquest. This finding is really surprising and must be put into perspective with what is known from an AVL epidemiological and historical point of view. Beside L. infantum, there are other species that are occasionally reported to cause AVL in the New World. Among these, L. colombiensis is present in the region of pre-Columbian mummies studied. Other explanations for these findings include a more ancient introduction of a visceral species of Leishmania from the Old World or the existence of a yet unidentified endemic species causing visceral leishmaniasis in South America. Unfortunately, very few molecular data are known about this very long pre-Columbian period concerning the circulating species of Leishmania and their diversity in America.
Collapse
Affiliation(s)
- Denis Sereno
- IRD UMR 177 (IRD, CIRAD), Centre IRD de Montpellier, Montpellier 34394, France.,MIVEGEC/Université de Montpellier CNRS/UMR 5244/IRD 224-Centre IRD, Montpellier 34394, France
| | - Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Provence-Alpes-Côte d'Azur, Nice 06003, France
| | - Franck Dorkeld
- INRA-UMR 1062 CBGP (INRA, IRD, CIRAD), Montpellier SupAgro, Montferrier-sur-Lez, Languedoc-Roussillon 34988, France
| | - Bruno Oury
- IRD UMR 177 (IRD, CIRAD), Centre IRD de Montpellier, Montpellier 34394, France
| | - Hooman Momen
- Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil
| | - Pascale Perrin
- MIVEGEC/Université de Montpellier CNRS/UMR 5244/IRD 224-Centre IRD, Montpellier 34394, France
| |
Collapse
|
10
|
Yeates DK, Zwick A, Mikheyev AS. Museums are biobanks: unlocking the genetic potential of the three billion specimens in the world's biological collections. CURRENT OPINION IN INSECT SCIENCE 2016; 18:83-88. [PMID: 27939715 DOI: 10.1016/j.cois.2016.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/23/2016] [Indexed: 05/25/2023]
Abstract
Museums and herbaria represent vast repositories of biological material. Until recently, working with these collections has been difficult, due to the poor condition of historical DNA. However, recent advances in next-generation sequencing technology, and subsequent development of techniques for preparing and sequencing historical DNA, have recently made working with collection specimens an attractive option. Here we describe the unique technical challenges of working with collection specimens, and innovative molecular methods developed to tackle them. We also highlight possible applications of collection specimens, for taxonomy, ecology and evolution. The application of next-generation sequencing methods to museum and herbaria collections is still in its infancy. However, by giving researchers access to billions of specimens across time and space, it holds considerable promise for generating future discoveries across many fields.
Collapse
Affiliation(s)
- David K Yeates
- Australian National Insect Collection, CSIRO National Research Collections Australia, PO Box 1700, Canberra, ACT 2601, Australia.
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO National Research Collections Australia, PO Box 1700, Canberra, ACT 2601, Australia
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun 904-0412, Japan
| |
Collapse
|
11
|
Rathbun MM, McElhoe JA, Parson W, Holland MM. Considering DNA damage when interpreting mtDNA heteroplasmy in deep sequencing data. Forensic Sci Int Genet 2016; 26:1-11. [PMID: 27718383 DOI: 10.1016/j.fsigen.2016.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
Resolution of mitochondrial (mt) DNA heteroplasmy is now possible when applying a massively parallel sequencing (MPS) approach, including minor components down to 1%. However, reporting thresholds and interpretation criteria will need to be established for calling heteroplasmic variants that address a number of important topics, one of which is DNA damage. We assessed the impact of increasing amounts of DNA damage on the interpretation of minor component sequence variants in the mtDNA control region, including low-level mixed sites. A passive approach was used to evaluate the impact of storage conditions, and an active approach was employed to accelerate the process of hydrolytic damage (for example, replication errors associated with depurination events). The patterns of damage were compared and assessed in relation to damage typically encountered in poor quality samples. As expected, the number of miscoding lesions increased as conditions worsened. Single nucleotide polymorphisms (SNPs) associated with miscoding lesions were indistinguishable from innate heteroplasmy and were most often observed as 1-2% of the total sequencing reads. Numerous examples of miscoding lesions above 2% were identified, including two complete changes in the nucleotide sequence, presenting a challenge when assessing the placement of reporting thresholds for heteroplasmy. To mitigate the impact, replication of miscoding lesions was not observed in stored samples, and was rarely seen in data associated with accelerated hydrolysis. In addition, a significant decrease in the expected transition:transversion ratio was observed, providing a useful tool for predicting the presence of damage-induced lesions. The results of this study directly impact MPS analysis of minor sequence variants from poorly preserved DNA extracts, and when biological samples have been exposed to agents that induce DNA damage. These findings are particularly relevant to clinical and forensic investigations.
Collapse
Affiliation(s)
- Molly M Rathbun
- Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States
| | - Jennifer A McElhoe
- Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States
| | - Walther Parson
- Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States; The Institute of Legal Medicine, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Mitchell M Holland
- Forensic Science Program, Biochemistry and Molecular Biology Department, The Pennsylvania State University, 014 Thomas Building, University Park, PA 16802, United States.
| |
Collapse
|
12
|
Torti A, Lever MA, Jørgensen BB. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar Genomics 2015; 24 Pt 3:185-96. [DOI: 10.1016/j.margen.2015.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022]
|
13
|
Affiliation(s)
- Anna Linderholm
- Research Laboratory for Archaeology; University of Oxford; Dyson Perrins Building South Parks Road Oxford OX1 3Q UK
| |
Collapse
|
14
|
Orlando L, Gilbert MTP, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet 2015; 16:395-408. [PMID: 26055157 DOI: 10.1038/nrg3935] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research involving ancient DNA (aDNA) has experienced a true technological revolution in recent years through advances in the recovery of aDNA and, particularly, through applications of high-throughput sequencing. Formerly restricted to the analysis of only limited amounts of genetic information, aDNA studies have now progressed to whole-genome sequencing for an increasing number of ancient individuals and extinct species, as well as to epigenomic characterization. Such advances have enabled the sequencing of specimens of up to 1 million years old, which, owing to their extensive DNA damage and contamination, were previously not amenable to genetic analyses. In this Review, we discuss these varied technical challenges and solutions for sequencing ancient genomes and epigenomes.
Collapse
Affiliation(s)
- Ludovic Orlando
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen 1350C, Denmark. [2] Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, 37 allées Jules Guesde, 31000 Toulouse, France
| | - M Thomas P Gilbert
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen 1350C, Denmark. [2] Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, Copenhagen 1350C, Denmark
| |
Collapse
|
15
|
Graham CF, Glenn TC, McArthur AG, Boreham DR, Kieran T, Lance S, Manzon RG, Martino JA, Pierson T, Rogers SM, Wilson JY, Somers CM. Impacts of degraded
DNA
on restriction enzyme associated
DNA
sequencing (
RADS
eq). Mol Ecol Resour 2015; 15:1304-15. [DOI: 10.1111/1755-0998.12404] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Carly F. Graham
- Department of Biology University of Regina Regina Saskatchewan S4S 0A2 Canada
| | - Travis C. Glenn
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Andrew G. McArthur
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences DeGroote School of Medicine McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Douglas R. Boreham
- Medical Sciences Northern Ontario School of Medicine Greater Sudbury Ontario P0M Canada
| | - Troy Kieran
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Stacey Lance
- Savannah River Ecology Laboratory University of Georgia Athens GA 30602 USA
| | - Richard G. Manzon
- Department of Biology University of Regina Regina Saskatchewan S4S 0A2 Canada
| | - Jessica A. Martino
- Department of Biology University of Regina Regina Saskatchewan S4S 0A2 Canada
| | - Todd Pierson
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Sean M. Rogers
- Department of Biological Sciences University of Calgary Calgary Alberta T2N 1N4 Canada
| | - Joanna Y. Wilson
- Department of Biology McMaster University Hamilton Ontario L8S 4M1 Canada
| | | |
Collapse
|
16
|
Mawlood SK, Alrowaithi M, Watson N. Advantage of ForensiX Swabs in Retrieving and Preserving Biological Fluids. J Forensic Sci 2015; 60:686-9. [DOI: 10.1111/1556-4029.12704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/13/2014] [Accepted: 04/27/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Shakhawan K. Mawlood
- Centre for Forensic Science; Department of Pure and Applied Chemistry (WestCHEM); University of Strathclyde; Royal College R 6.20, 204 George Street G1 1XW Glasgow UK
| | - Majid Alrowaithi
- Centre for Forensic Science; Department of Pure and Applied Chemistry (WestCHEM); University of Strathclyde; Royal College R 6.20, 204 George Street G1 1XW Glasgow UK
| | - Nigel Watson
- Centre for Forensic Science; Department of Pure and Applied Chemistry; University of Strathclyde; Royal College 204 George Street Glasgow G1 1XW UK
| |
Collapse
|
17
|
Burrell AS, Disotell TR, Bergey CM. The use of museum specimens with high-throughput DNA sequencers. J Hum Evol 2015; 79:35-44. [PMID: 25532801 PMCID: PMC4312722 DOI: 10.1016/j.jhevol.2014.10.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/08/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022]
Abstract
Natural history collections have long been used by morphologists, anatomists, and taxonomists to probe the evolutionary process and describe biological diversity. These biological archives also offer great opportunities for genetic research in taxonomy, conservation, systematics, and population biology. They allow assays of past populations, including those of extinct species, giving context to present patterns of genetic variation and direct measures of evolutionary processes. Despite this potential, museum specimens are difficult to work with because natural postmortem processes and preservation methods fragment and damage DNA. These problems have restricted geneticists' ability to use natural history collections primarily by limiting how much of the genome can be surveyed. Recent advances in DNA sequencing technology, however, have radically changed this, making truly genomic studies from museum specimens possible. We review the opportunities and drawbacks of the use of museum specimens, and suggest how to best execute projects when incorporating such samples. Several high-throughput (HT) sequencing methodologies, including whole genome shotgun sequencing, sequence capture, and restriction digests (demonstrated here), can be used with archived biomaterials.
Collapse
Affiliation(s)
- Andrew S Burrell
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA.
| | - Todd R Disotell
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, USA
| | - Christina M Bergey
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA; New York Consortium in Evolutionary Primatology, USA
| |
Collapse
|
18
|
Parks M, Lambert D. Impacts of low coverage depths and post-mortem DNA damage on variant calling: a simulation study. BMC Genomics 2015; 16:19. [PMID: 25613391 PMCID: PMC4312461 DOI: 10.1186/s12864-015-1219-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/02/2015] [Indexed: 01/01/2023] Open
Abstract
Background Massively parallel sequencing platforms, featuring high throughput and relatively short read lengths, are well suited to ancient DNA (aDNA) studies. Variant identification from short-read alignment could be hindered, however, by low DNA concentrations common to historic samples, which constrain sequencing depths, and post-mortem DNA damage patterns. Results We simulated pairs of sequences to act as reference and sample genomes at varied GC contents and divergence levels. Short-read sequence pools were generated from sample sequences, and subjected to varying levels of “post-mortem” damage by adjusting levels of fragmentation and fragmentation biases, transition rates at sequence ends, and sequencing depths. Mapping of sample read pools to reference sequences revealed several trends, including decreased alignment success with increased read length and decreased variant recovery with increased divergence. Variants were generally called with high accuracy, however identification of SNPs (single-nucleotide polymorphisms) was less accurate for high damage/low divergence samples. Modest increases in sequencing depth resulted in rapid gains in total variant recovery, and limited improvements to recovery of heterozygous variants. Conclusions This in silico study suggests aDNA-associated damage patterns minimally impact variant call accuracy and recovery from short-read alignment, while modest increases in sequencing depth can greatly improve variant recovery. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1219-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Parks
- Environmental Futures Research Institute, Griffith University, Nathan, 4111, Queensland, Australia.
| | - David Lambert
- Environmental Futures Research Institute, Griffith University, Nathan, 4111, Queensland, Australia.
| |
Collapse
|
19
|
Der Sarkissian C, Allentoft ME, Ávila-Arcos MC, Barnett R, Campos PF, Cappellini E, Ermini L, Fernández R, da Fonseca R, Ginolhac A, Hansen AJ, Jónsson H, Korneliussen T, Margaryan A, Martin MD, Moreno-Mayar JV, Raghavan M, Rasmussen M, Velasco MS, Schroeder H, Schubert M, Seguin-Orlando A, Wales N, Gilbert MTP, Willerslev E, Orlando L. Ancient genomics. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130387. [PMID: 25487338 PMCID: PMC4275894 DOI: 10.1098/rstb.2013.0387] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.
Collapse
Affiliation(s)
- Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Morten E Allentoft
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - María C Ávila-Arcos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ross Barnett
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Enrico Cappellini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Luca Ermini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Fernández
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Rute da Fonseca
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Aurélien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Anders J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hákon Jónsson
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Thorfinn Korneliussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - J Víctor Moreno-Mayar
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Maanasa Raghavan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rasmussen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Marcela Sandoval Velasco
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hannes Schroeder
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Nathan Wales
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Fattorini P, Previderè C, Sorçaburu-Cigliero S, Marrubini G, Alù M, Barbaro AM, Carnevali E, Carracedo A, Casarino L, Consoloni L, Corato S, Domenici R, Fabbri M, Giardina E, Grignani P, Baldassarra SL, Moratti M, Nicolin V, Pelotti S, Piccinini A, Pitacco P, Plizza L, Resta N, Ricci U, Robino C, Salvaderi L, Scarnicci F, Schneider PM, Seidita G, Trizzino L, Turchi C, Turrina S, Vatta P, Vecchiotti C, Verzeletti A, De Stefano F. The molecular characterization of a depurinated trial DNA sample can be a model to understand the reliability of the results in forensic genetics. Electrophoresis 2014; 35:3134-44. [PMID: 25176610 DOI: 10.1002/elps.201400141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 11/09/2022]
Abstract
The role of DNA damage in PCR processivity/fidelity is a relevant topic in molecular investigation of aged/forensic samples. In order to reproduce one of the most common lesions occurring in postmortem tissues, a new protocol based on aqueous hydrolysis of the DNA was developed in vitro. Twenty-five forensic laboratories were then provided with 3.0 μg of a trial sample (TS) exhibiting, in mean, the loss of 1 base of 20, and a molecular weight below 300 bp. Each participating laboratory could freely choose any combination of methods, leading to the quantification and to the definition of the STR profile of the TS, through the documentation of each step of the analytical approaches selected. The results of the TS quantification by qPCR showed significant differences in the amount of DNA recorded by the participating laboratories using different commercial kits. These data show that only DNA quantification "relative" to the used kit (probe) is possible, being the "absolute" amount of DNA inversely related to the length of the target region (r(2) = 0.891). In addition, our results indicate that the absence of a shared stable and certified reference quantitative standard is also likely involved. STR profiling was carried out selecting five different commercial kits and amplifying the TS for a total number of 212 multiplex PCRs, thus representing an interesting overview of the different analytical protocols used by the participating laboratories. Nine laboratories decided to characterize the TS using a single kit, with a number of amplifications varying from 2 to 12, obtaining only partial STR profiles. Most of the participants determined partial or full profiles using a combination of two or more kits, and a number of amplifications varying from 2 to 27. The performance of each laboratory was described in terms of number of correctly characterized loci, dropped-out markers, unreliable genotypes, and incorrect results. The incidence of unreliable and incorrect genotypes was found to be higher for participants carrying out a limited number of amplifications, insufficient to define the correct genotypes from damaged DNA samples such as the TS. Finally, from a dataset containing about 4500 amplicons, the frequency of PCR artifacts (allele dropout, allele drop-in, and allelic imbalance) was calculated for each kit showing that the new chemistry of the kits is not able to overcome the concern of template-related factors. The results of this collaborative exercise emphasize the advantages of using a standardized degraded DNA sample in the definition of which analytical parameters are critical for the outcome of the STR profiles.
Collapse
Affiliation(s)
- Paolo Fattorini
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy*
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schubert M, Ermini L, Der Sarkissian C, Jónsson H, Ginolhac A, Schaefer R, Martin MD, Fernández R, Kircher M, McCue M, Willerslev E, Orlando L. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat Protoc 2014; 9:1056-82. [PMID: 24722405 DOI: 10.1038/nprot.2014.063] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Next-generation sequencing technologies have revolutionized the field of paleogenomics, allowing the reconstruction of complete ancient genomes and their comparison with modern references. However, this requires the processing of vast amounts of data and involves a large number of steps that use a variety of computational tools. Here we present PALEOMIX (http://geogenetics.ku.dk/publications/paleomix), a flexible and user-friendly pipeline applicable to both modern and ancient genomes, which largely automates the in silico analyses behind whole-genome resequencing. Starting with next-generation sequencing reads, PALEOMIX carries out adapter removal, mapping against reference genomes, PCR duplicate removal, characterization of and compensation for postmortem damage, SNP calling and maximum-likelihood phylogenomic inference, and it profiles the metagenomic contents of the samples. As such, PALEOMIX allows for a series of potential applications in paleogenomics, comparative genomics and metagenomics. Applying the PALEOMIX pipeline to the three ancient and seven modern Phytophthora infestans genomes as described here takes 5 d using a 16-core server.
Collapse
Affiliation(s)
- Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Luca Ermini
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Clio Der Sarkissian
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Hákon Jónsson
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Aurélien Ginolhac
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Robert Schaefer
- Biomedical Informatics and Computational Biology Graduate Program, University of Minnesota Rochester, Rochester, Minnesota, USA
| | - Michael D Martin
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Fernández
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Molly McCue
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Star B, Nederbragt AJ, Hansen MHS, Skage M, Gilfillan GD, Bradbury IR, Pampoulie C, Stenseth NC, Jakobsen KS, Jentoft S. Palindromic sequence artifacts generated during next generation sequencing library preparation from historic and ancient DNA. PLoS One 2014; 9:e89676. [PMID: 24608104 PMCID: PMC3946424 DOI: 10.1371/journal.pone.0089676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/21/2014] [Indexed: 11/23/2022] Open
Abstract
Degradation-specific processes and variation in laboratory protocols can bias the DNA sequence composition from samples of ancient or historic origin. Here, we identify a novel artifact in sequences from historic samples of Atlantic cod (Gadus morhua), which forms interrupted palindromes consisting of reverse complementary sequence at the 5′ and 3′-ends of sequencing reads. The palindromic sequences themselves have specific properties – the bases at the 5′-end align well to the reference genome, whereas extensive misalignments exists among the bases at the terminal 3′-end. The terminal 3′ bases are artificial extensions likely caused by the occurrence of hairpin loops in single stranded DNA (ssDNA), which can be ligated and amplified in particular library creation protocols. We propose that such hairpin loops allow the inclusion of erroneous nucleotides, specifically at the 3′-end of DNA strands, with the 5′-end of the same strand providing the template. We also find these palindromes in previously published ancient DNA (aDNA) datasets, albeit at varying and substantially lower frequencies. This artifact can negatively affect the yield of endogenous DNA in these types of samples and introduces sequence bias.
Collapse
Affiliation(s)
- Bastiaan Star
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| | - Alexander J. Nederbragt
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marianne H. S. Hansen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Morten Skage
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Ian R. Bradbury
- Fisheries and Oceans Canada, St. John's, Newfoundland, Canada
| | | | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 2014; 507:225-8. [PMID: 24463515 DOI: 10.1038/nature12960] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022]
Abstract
Ancient genomic sequences have started to reveal the origin and the demographic impact of farmers from the Neolithic period spreading into Europe. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immunity and diet. However, the limited data available from earlier hunter-gatherers preclude an understanding of the selective processes associated with this crucial transition to agriculture in recent human evolution. Here we sequence an approximately 7,000-year-old Mesolithic skeleton discovered at the La Braña-Arintero site in León, Spain, to retrieve a complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across western and central Eurasia from the Upper Paleolithic to the Mesolithic. The La Braña individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer.
Collapse
|
24
|
Seguin-Orlando A, Schubert M, Clary J, Stagegaard J, Alberdi MT, Prado JL, Prieto A, Willerslev E, Orlando L. Ligation bias in illumina next-generation DNA libraries: implications for sequencing ancient genomes. PLoS One 2013; 8:e78575. [PMID: 24205269 PMCID: PMC3812280 DOI: 10.1371/journal.pone.0078575] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/18/2013] [Indexed: 01/09/2023] Open
Abstract
Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries.
Collapse
Affiliation(s)
- Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Joel Clary
- Centre de Conservation et d’Étude des Collections, Musée des Confluences, Lyon, France
| | | | - Maria T. Alberdi
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - José Luis Prado
- Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Centro de la provincia de Buenos Aires, Olavarría, Argentina
| | - Alfredo Prieto
- Instituto de la Patagonia, Universidad de Magallanes, Punta Arenas, Chile; Programa de Doctorado, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Ludovic Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
The forensiX evidence collection tube and its impact on DNA preservation and recovery. BIOMED RESEARCH INTERNATIONAL 2013; 2013:105797. [PMID: 24288659 PMCID: PMC3830855 DOI: 10.1155/2013/105797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 11/17/2022]
Abstract
Biological samples are vulnerable to degradation from the time they are collected until they are analysed at the laboratory. Biological contaminants, such as bacteria, fungi, and enzymes, as well as environmental factors, such as sunlight, heat, and humidity, can increase the rate of DNA degradation. Currently, DNA samples are normally dried or frozen to limit their degradation prior to their arrival at the laboratory. In this study, the effect of the sample drying rate on DNA preservation was investigated, as well as a comparison between drying and freezing methods. The drying performances of two commercially available DNA collection tools (swab and drying tube) with different drying rates were evaluated. The swabs were used to collect human saliva, placed into the drying tubes, and stored in a controlled environment at 25°C and 60% relative humidity, or frozen at −20°C, for 2 weeks. Swabs that were stored in fast sample drying tubes yielded 95% recoverable DNA, whereas swabs stored in tubes with slower sample drying rates yielded only 12% recoverable DNA; saliva stored in a microtube at −20°C was used as a control. Thus, DNA sampling tools that offer rapid drying can significantly improve the preservation of DNA collected on a swab, increasing the quantity of DNA available for subsequent analysis.
Collapse
|
26
|
Abstract
Ancient biomolecules including DNA, proteins, and lipids are often preserved in archaeological skeletons or artifacts such as potsherds from cooking vessels. Techniques for analyzing these molecules have improved dramatically in recent years, though challenges remain in ensuring that results are authentic and not confused by the presence of contaminating modern biomolecules. Ancient DNA (aDNA) can be used to identify the sex, kinship relationships, and population affinities of human skeletons, and also to detect the presence of disease-causing organisms such as the plague and tuberculosis bacteria. Stable isotope ratios in collagen and other skeletal proteins enable past diets to be studied, and similar work with lipids from potsherds have revealed that dairying in Europe began 2,000 years earlier than previously thought. Biomolecular archaeology has therefore developed into a mature discipline that is making a significant contribution to different aspects of our understanding of the human past.
Collapse
Affiliation(s)
- Keri A. Brown
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom;,
| | - Terence A. Brown
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom;,
| |
Collapse
|
27
|
Abstract
Under favorable conditions DNA can survive for thousands of years in the remains of dead organisms. The DNA extracted from such remains is invariably degraded to a small average size by processes that at least partly involve depurination. It also contains large amounts of deaminated cytosine residues that are accumulated toward the ends of the molecules, as well as several other lesions that are less well characterized.
Collapse
Affiliation(s)
- Jesse Dabney
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
28
|
Allentoft ME, Collins M, Harker D, Haile J, Oskam CL, Hale ML, Campos PF, Samaniego JA, Gilbert MTP, Willerslev E, Zhang G, Scofield RP, Holdaway RN, Bunce M. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc Biol Sci 2012; 279:4724-33. [PMID: 23055061 PMCID: PMC3497090 DOI: 10.1098/rspb.2012.1745] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/14/2012] [Indexed: 12/26/2022] Open
Abstract
Claims of extreme survival of DNA have emphasized the need for reliable models of DNA degradation through time. By analysing mitochondrial DNA (mtDNA) from 158 radiocarbon-dated bones of the extinct New Zealand moa, we confirm empirically a long-hypothesized exponential decay relationship. The average DNA half-life within this geographically constrained fossil assemblage was estimated to be 521 years for a 242 bp mtDNA sequence, corresponding to a per nucleotide fragmentation rate (k) of 5.50 × 10(-6) per year. With an effective burial temperature of 13.1°C, the rate is almost 400 times slower than predicted from published kinetic data of in vitro DNA depurination at pH 5. Although best described by an exponential model (R(2) = 0.39), considerable sample-to-sample variance in DNA preservation could not be accounted for by geologic age. This variation likely derives from differences in taphonomy and bone diagenesis, which have confounded previous, less spatially constrained attempts to study DNA decay kinetics. Lastly, by calculating DNA fragmentation rates on Illumina HiSeq data, we show that nuclear DNA has degraded at least twice as fast as mtDNA. These results provide a baseline for predicting long-term DNA survival in bone.
Collapse
Affiliation(s)
- Morten E. Allentoft
- Ancient DNA Laboratory, School of Biological Sciences and Biotechnology, Murdoch University, 90 South Street, Perth, Western Australia 6150, Australia
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Matthew Collins
- Department of Archaeology, University of York, PO Box 373, York, UK
| | - David Harker
- Department of Archaeology, University of York, PO Box 373, York, UK
| | - James Haile
- Ancient DNA Laboratory, School of Biological Sciences and Biotechnology, Murdoch University, 90 South Street, Perth, Western Australia 6150, Australia
| | - Charlotte L. Oskam
- Ancient DNA Laboratory, School of Biological Sciences and Biotechnology, Murdoch University, 90 South Street, Perth, Western Australia 6150, Australia
| | - Marie L. Hale
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Paula F. Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
- Museu da Ciência, University of Coimbra, Laboratorio Chimico, Largo Marquês de Pombal, 3000-272 Coimbra, Portugal
| | - Jose A. Samaniego
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - M. Thomas P. Gilbert
- Ancient DNA Laboratory, School of Biological Sciences and Biotechnology, Murdoch University, 90 South Street, Perth, Western Australia 6150, Australia
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Guojie Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, People's Republic of China
| | - R. Paul Scofield
- Canterbury Museum, Rolleston Avenue, Christchurch 8050, New Zealand
| | - Richard N. Holdaway
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- Palaecol Research Ltd, 167 Springs Road, Hornby, Christchurch 8042, New Zealand
| | - Michael Bunce
- Ancient DNA Laboratory, School of Biological Sciences and Biotechnology, Murdoch University, 90 South Street, Perth, Western Australia 6150, Australia
| |
Collapse
|
29
|
Strutzenberger P, Brehm G, Fiedler K. DNA barcode sequencing from old type specimens as a tool in taxonomy: a case study in the diverse genus Eois (Lepidoptera: Geometridae). PLoS One 2012. [PMID: 23185414 PMCID: PMC3504115 DOI: 10.1371/journal.pone.0049710] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study we report on the sequencing of the COI barcode region from 96 historical specimens (92 type specimens +4 non-types) of Eois. Eois is a diverse clade of tropical geometrid moths and is the target of a number of ongoing studies on life-histories, phylogeny, co-evolution with host plants or parasitoids, and diversity patterns across temporal and spatial dimensions. The unequivocal application of valid names is crucial for all aspects of biodiversity research as well as monitoring and conservation efforts. The availability of barcodes from historical type specimens has the potential to facilitate the much-needed acceleration of species description. We performed non-destructive DNA extraction on the abdomens of Eois specimens between 79 and 157 years of age. We used six primer combinations (recovering between 109 and 130 bp each) to target the full-length barcode sequence of each specimen. We were able to obtain sequences for 91 of 96 specimens (success rate 94.8%). Sequence length ranged from 121 bp to full barcode sequences (658 bp), the average sequence length was ∼500 bp. We detected a moderately strong and statistically significant negative correlation between specimen age and total sequence length, which is in agreement with expectations. The abdomen proved to be an exceedingly valuable source of DNA in old specimens of Lepidoptera. Barcode sequences obtained in this study are currently being used in an effort towards a step-wise taxonomic revision of Eois. We encourage that DNA barcodes obtained from types specimens should be included in all species descriptions and revisions whenever feasible.
Collapse
Affiliation(s)
- Patrick Strutzenberger
- Department of Tropical Ecology and Animal Biodiversity, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|