1
|
Jiang Y, Wu R, Zhang W, Xin F, Jiang M. Construction of stable microbial consortia for effective biochemical synthesis. Trends Biotechnol 2023; 41:1430-1441. [PMID: 37330325 DOI: 10.1016/j.tibtech.2023.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/19/2023]
Abstract
Microbial consortia can complete otherwise arduous tasks through the cooperation of multiple microbial species. This concept has been applied to produce commodity chemicals, natural products, and biofuels. However, metabolite incompatibility and growth competition can make the microbial composition unstable, and fluctuating microbial populations reduce the efficiency of chemical production. Thus, controlling the populations and regulating the complex interactions between different strains are challenges in constructing stable microbial consortia. This Review discusses advances in synthetic biology and metabolic engineering to control social interactions within microbial cocultures, including substrate separation, byproduct elimination, crossfeeding, and quorum-sensing circuit design. Additionally, this Review addresses interdisciplinary strategies to improve the stability of microbial consortia and provides design principles for microbial consortia to enhance chemical production.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China.
| | - Ruofan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Academy of Chemical Inherent Safety, Nanjing, 211800, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Academy of Chemical Inherent Safety, Nanjing, 211800, China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China; Jiangsu Academy of Chemical Inherent Safety, Nanjing, 211800, China
| |
Collapse
|
2
|
Mu R, Jia Y, Ma G, Liu L, Hao K, Qi F, Shao Y. Advances in the use of microalgal-bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1217-1230. [PMID: 33305497 DOI: 10.1002/wer.1496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The rise in living standards has generated a demand for higher aquatic environmental quality. The microalgal community and the surrounding organic molecules, environmental factors, and microorganisms, such as bacteria, are together defined as the phycosphere. The bacteria in the phycosphere can form consortia with microalgae through various forms of interaction. The study of the species in these consortia and their relative proportions is of great significance in determining the species and strains of stable algae that can be used in sewage treatment. This article summarizes the following topics: the interactions between microalgae and bacteria that are required to establish consortia; how symbiosis between algae and bacteria is established; microalgal competition with bacteria through inhibition and anti-inhibition strategies; the influence of environmental factors on microalgal-bacterial aggregates, such as illumination conditions, pH, dissolved oxygen, temperature, and nutrient levels; the application of algal-bacterial aggregates to enhance biomass production and nutrient reuse; and techniques for studying the community structure and interactions of algal-bacterial consortia, such as microscopy, flow cytometry, and omics. PRACTITIONER POINTS: Community structures in microalgal-bacterial consortia in wastewater treatment. Interactions between algae and bacteria in wastewater treatment. Effects of ecological factors on the algal-bacterial community in wastewater treatment. Economically recycling resources from algal-bacterial consortia based on wastewater. Technologies for studying microalgal-bacterial consortia in wastewater treatment.
Collapse
Affiliation(s)
- Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yantian Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Guixia Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | | | - Kaixuan Hao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Feng Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yuanyuan Shao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
3
|
Decoding the molecular properties of mycobacteriophage D29 Holin provides insights into Holin engineering. J Virol 2021; 95:JVI.02173-20. [PMID: 33627396 PMCID: PMC8139666 DOI: 10.1128/jvi.02173-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Holins are bacteriophage-encoded small transmembrane proteins that determine the phage infection cycle duration by forming non-specific holes in the host cell membrane at a specific time post-infection. Thus, Holins are also termed as "Protein clocks". Holins have one or more transmembrane domains, and a charged C-terminal region, which, although conserved among Holins, has not yet been examined in detail. Here, we characterize the molecular properties of mycobacteriophage D29 Holin C-terminal region, and investigate the significance of the charged residues and coiled coil (CC) domain present therein. We show that the CC domain is indispensable for Holin-mediated efficient bacterial cell lysis. We further demonstrate that out of the positively- and negatively-charged residues present in the C-terminal region, substituting the former, and not the latter, with serine, renders Holin non-toxic. Moreover, the basic residues present between the 59th and the 79th amino acids are the most crucial for Holin-mediated toxicity. We also constructed an engineered Holin, HolHC, by duplicating the C-terminal region. The HolHC protein shows higher toxicity in both Escherichia coli and Mycobacterium smegmatis, and causes rapid killing of both bacteria upon expression, as compared to the wild-type. A similar oligomerization property of HolHC as the wild-type Holin allows us to propose that the C-terminal region of D29 Holin determines the timing, and not the extent, of oligomerization and, thereby, hole formation. Such knowledge-based engineering of mycobacteriophage Holin will help in developing novel phage-based therapeutics to kill pathogenic mycobacteria, including M. tuberculosis ImportanceHolins are bacteriophage-encoded small membrane perforators that play an important role in determining the timing of host cell lysis towards the end of the phage infection cycle. Holin's ability to precisely time the hole formation in the cell membrane ensuing cell lysis is both interesting and intriguing. Here, we examined the molecular properties of the mycobacteriophage D29 Holin C-terminal region that harbours several polar charged residues and a coiled-coil domain. Our data allowed us to engineer Holin with an ability to rapidly kill bacteria and show higher toxicity than the wild-type protein. Due to their ability to kill host bacteria by membrane disruption, it becomes important to explore the molecular properties of Holins that allow them to function in a timely and efficient manner. Understanding these details can help us modulate Holin activity and engineer bacteriophages with superior lytic properties to kill pathogenic bacteria, curtail infections, and combat antimicrobial resistance.
Collapse
|
4
|
Mosey M, Douchi D, Knoshaug EP, Laurens LM. Methodological review of genetic engineering approaches for non-model algae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Deferred control of ammonium cross-feeding in a N 2-fixing bacterium-microalga artificial consortium. Appl Microbiol Biotechnol 2021; 105:2937-2950. [PMID: 33687504 DOI: 10.1007/s00253-021-11210-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
There is an increasing interest in the use of N2-fixing bacteria for the sustainable biofertilization of crops. Genetically-optimized bacteria for ammonium release have an improved biofertilization capacity. Some of these strains also cross-feed ammonium into microalgae raising additional concerns on their sustainable use in agriculture due to the potential risk of producing a higher and longer-lasting eutrophication problem than synthetic N-fertilizers. Here we studied the dynamic algal cross-feeding properties of a genetically-modified Azotobacter vinelandii strain which can be tuned to over-accumulate different levels of glutamine synthetase (GS, EC 6.3.1.20) under the control of an exogenous inducer. After switching cells overaccumulating GS into a noninducing medium, they proliferated for several generations at the expense of the previously accumulated GS. Further dilution of GS by cell division slowed-down growth, promoted ammonium-excretion and cross-fed algae. The final bacterial population, and timing and magnitude of algal N-biofertlization was finely tuned in a deferred manner. This tuning was in accordance with the intensity of the previous induction of GS accumulation in the cells. This bacterial population behavior could be maintained up to about 15 bacterial cell generations, until faster-growing and nonammonium excreting cells arose at an apparent high frequency. Further improvements of this genetic engineering strategy might help to align efficiency of N-biofertilizers and safe use in an open environment. KEY POINTS: • Ammonium-excreting bacteria are potential eutrophication agents • GS-dependent deferred control of bacterial growth and ammonium release • Strong but transient ammonium cross-feeding of microalgae.
Collapse
|
6
|
|
7
|
Lee JA, Baugh AC, Shevalier NJ, Strand B, Stolyar S, Marx CJ. Cross-Feeding of a Toxic Metabolite in a Synthetic Lignocellulose-Degrading Microbial Community. Microorganisms 2021; 9:321. [PMID: 33557371 PMCID: PMC7914493 DOI: 10.3390/microorganisms9020321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
The recalcitrance of complex organic polymers such as lignocellulose is one of the major obstacles to sustainable energy production from plant biomass, and the generation of toxic intermediates can negatively impact the efficiency of microbial lignocellulose degradation. Here, we describe the development of a model microbial consortium for studying lignocellulose degradation, with the specific goal of mitigating the production of the toxin formaldehyde during the breakdown of methoxylated aromatic compounds. Included are Pseudomonas putida, a lignin degrader; Cellulomonas fimi, a cellulose degrader; and sometimes Yarrowia lipolytica, an oleaginous yeast. Unique to our system is the inclusion of Methylorubrum extorquens, a methylotroph capable of using formaldehyde for growth. We developed a defined minimal "Model Lignocellulose" growth medium for reproducible coculture experiments. We demonstrated that the formaldehyde produced by P. putida growing on vanillic acid can exceed the minimum inhibitory concentration for C. fimi, and, furthermore, that the presence of M. extorquens lowers those concentrations. We also uncovered unexpected ecological dynamics, including resource competition, and interspecies differences in growth requirements and toxin sensitivities. Finally, we introduced the possibility for a mutualistic interaction between C. fimi and M. extorquens through metabolite exchange. This study lays the foundation to enable future work incorporating metabolomic analysis and modeling, genetic engineering, and laboratory evolution, on a model system that is appropriate both for fundamental eco-evolutionary studies and for the optimization of efficiency and yield in microbially-mediated biomass transformation.
Collapse
Affiliation(s)
- Jessica A. Lee
- NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| | - Alyssa C. Baugh
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Nicholas J. Shevalier
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
| | - Brandi Strand
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
| | - Sergey Stolyar
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (A.C.B.); (N.J.S.); (B.S.); (S.S.)
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
8
|
Fedeson DT, Saake P, Calero P, Nikel PI, Ducat DC. Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microb Biotechnol 2020; 13:997-1011. [PMID: 32064751 PMCID: PMC7264894 DOI: 10.1111/1751-7915.13544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
In contrast to the current paradigm of using microbial mono-cultures in most biotechnological applications, increasing efforts are being directed towards engineering mixed-species consortia to perform functions that are difficult to programme into individual strains. In this work, we developed a synthetic microbial consortium composed of two genetically engineered microbes, a cyanobacterium (Synechococcus elongatus PCC 7942) and a heterotrophic bacterium (Pseudomonas putida EM173). These microbial species specialize in the co-culture: cyanobacteria fix CO2 through photosynthetic metabolism and secrete sufficient carbohydrates to support the growth and active metabolism of P. putida, which has been engineered to consume sucrose and to degrade the environmental pollutant 2,4-dinitrotoluene (2,4-DNT). By encapsulating S. elongatus within a barium-alginate hydrogel, cyanobacterial cells were protected from the toxic effects of 2,4-DNT, enhancing the performance of the co-culture. The synthetic consortium was able to convert 2,4-DNT with light and CO2 as key inputs, and its catalytic performance was stable over time. Furthermore, cycling this synthetic consortium through low nitrogen medium promoted the sucrose-dependent accumulation of polyhydroxyalkanoate, an added-value biopolymer, in the engineered P. putida strain. Altogether, the synthetic consortium displayed the capacity to remediate the industrial pollutant 2,4-DNT while simultaneously synthesizing biopolymers using light and CO2 as the primary inputs.
Collapse
Affiliation(s)
- Derek T. Fedeson
- DOE‐MSU Plant Research LaboratoriesMichigan State UniversityEast LansingMIUSA
- Genetics ProgramMichigan State UniversityEast LansingMIUSA
| | - Pia Saake
- Heinrich‐Heine UniversitätDüsseldorfGermany
| | - Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs LyngbyDenmark
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs LyngbyDenmark
| | - Daniel C. Ducat
- DOE‐MSU Plant Research LaboratoriesMichigan State UniversityEast LansingMIUSA
- Genetics ProgramMichigan State UniversityEast LansingMIUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
9
|
Hobmeier K, Löwe H, Liefeldt S, Kremling A, Pflüger-Grau K. A Nitrate-Blind P. putida Strain Boosts PHA Production in a Synthetic Mixed Culture. Front Bioeng Biotechnol 2020; 8:486. [PMID: 32523942 PMCID: PMC7261876 DOI: 10.3389/fbioe.2020.00486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/27/2020] [Indexed: 11/24/2022] Open
Abstract
One of the major challenges for the present and future generations is to find suitable substitutes for the fossil resources we rely on today. In this context, cyanobacterial carbohydrates have been discussed as an emerging renewable feedstock in industrial biotechnology for the production of fuels and chemicals. Based on this, we recently presented a synthetic bacterial co-culture for the production of medium-chain-length polyhydroxyalkanoates (PHAs) from CO2. This co-cultivation system is composed of two partner strains: Synechococcus elongatus cscB which fixes CO2, converts it to sucrose and exports it into the culture supernatant, and a Pseudomonas putida strain that metabolizes this sugar and accumulates PHAs in the cytoplasm. However, these biopolymers are preferably accumulated under conditions of nitrogen limitation, a situation difficult to achieve in a co-culture as the other partner, at best, should not perceive any limitation. In this article, we will present an approach to overcome this dilemma by uncoupling the PHA production from the presence of nitrate in the medium. This is achieved by the construction of a P. putida strain that is no longer able to grow with nitrate as nitrogen source -is thus nitrate blind, and able to grow with sucrose as carbon source. The deletion of the nasT gene encoding the response regulator of the NasS/NasT two-component system resulted in such a strain that has lost the ability use nitrate, but growth with ammonium was not affected. Subsequently, the nasT deletion was implemented in P. putida cscRABY, an efficient sucrose consuming strain. This genetic engineering approach introduced an artificial unilateral nitrogen limitation in the co-cultivation process, and the amount of PHA produced from light and CO2 was 8.8 fold increased to 14.8% of its CDW compared to the nitrate consuming reference strain. This nitrate blind strain, P. putidaΔnasT attTn7:cscRABY, is not only a valuable partner in the co-cultivation but additionally enables the use of other nitrate containing substrates for medium-chain-length PHA production, like for example waste-water.
Collapse
Affiliation(s)
- Karina Hobmeier
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Hannes Löwe
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Stephan Liefeldt
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Andreas Kremling
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
10
|
Auxin-dependent alleviation of oxidative stress and growth promotion of Scenedesmus obliquus C1S by Azospirillum brasilense. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Larkum AWD, Grossman AR, Raven JA. Recent Advances in the Photosynthesis of Cyanobacteria and Eukaryotic Algae. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Aerobic nitrogen-fixing bacteria for hydrogen and ammonium production: current state and perspectives. Appl Microbiol Biotechnol 2019; 104:1383-1399. [PMID: 31879824 DOI: 10.1007/s00253-019-10210-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 10/25/2022]
Abstract
Biological nitrogen fixation (BNF) is accomplished through the action of the oxygen-sensitive enzyme nitrogenase. One unique caveat of this reaction is the inclusion of hydrogen gas (H2) evolution as a requirement of the reaction mechanism. In the absence of nitrogen gas as a substrate, nitrogenase will reduce available protons to become a directional ATP-dependent hydrogenase. Aerobic nitrogen-fixing microbes are of particular interest, because these organisms have evolved to perform these reactions with oxygen-sensitive enzymes in an environment surrounded by oxygen. The ability to maintain a functioning nitrogenase in aerobic conditions facilitates the application of these organisms under conditions where most anaerobic nitrogen fixers are excluded. In recent years, questions related to the potential yields of the nitrogenase-derived products ammonium and H2 have grown more approachable to experimentation based on efforts to construct increasingly more complicated strains of aerobic nitrogen fixers such as the obligate aerobe Azotobacter vinelandii. This mini-review provides perspectives of recent and historical efforts to understand and quantify the yields of ammonium and H2 that can be obtained through the model aerobe A. vinelandii, and outstanding questions that remain to be answered to fully realize the potential of nitrogenase in these applications with model aerobic bacteria.
Collapse
|
13
|
Wang W, Sheng Y. Pseudomonas sp. strain WJ04 enhances current generation of Synechocystis sp. PCC6803 in photomicrobial fuel cells. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters. Crit Rev Biotechnol 2019; 39:709-731. [PMID: 30971144 DOI: 10.1080/07388551.2019.1597828] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The excessive generation and discharge of wastewaters have been serious concerns worldwide in the recent past. From an environmental friendly perspective, bacteria, cyanobacteria and microalgae, and the consortia have been largely considered for biological treatment of wastewaters. For efficient use of bacteria‒cyanobacteria/microalgae consortia in wastewater treatment, detailed knowledge on their structure, behavior and interaction is essential. In this direction, specific analytical tools and techniques play a significant role in studying these consortia. This review presents a critical perspective on physical, biochemical and molecular techniques such as microscopy, flow cytometry with cell sorting, nanoSIMS and omics approaches used for systematic investigations of the structure and function, particularly nutrient removal potential of bacteria‒cyanobacteria/microalgae consortia. In particular, the use of specific molecular techniques of genomics, transcriptomics, proteomics metabolomics and genetic engineering to develop more stable consortia of bacteria and cyanobacteria/microalgae with their improved biotechnological capabilities in wastewater treatment has been highlighted.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Sudharsanam Abinandan
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Suresh R Subashchandrabose
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Kadiyala Venkateswarlu
- c Formerly Department of Microbiology , Sri Krishnadevaraya University , Anantapuramu , Andhra Pradesh , India
| | - Ravi Naidu
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| | - Mallavarapu Megharaj
- a Global Centre for Environmental Remediation (GCER), Faculty of Science , The University of Newcastle , Callaghan , New South Wales , Australia.,b Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE) , The University of Newcastle , Callaghan , New South Wales , Australia
| |
Collapse
|
15
|
Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat Commun 2018; 9:2677. [PMID: 29992956 PMCID: PMC6041260 DOI: 10.1038/s41467-018-05046-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/11/2018] [Indexed: 12/02/2022] Open
Abstract
Advancing synthetic biology to the multicellular level requires the development of multiple cell-to-cell communication channels that propagate information with minimal signal interference. The development of quorum-sensing devices, the cornerstone technology for building microbial communities with coordinated system behaviour, has largely focused on cognate acyl-homoserine lactone (AHL)/transcription factor pairs, while the use of non-cognate pairs as a design feature has received limited attention. Here, we demonstrate a large library of AHL-receiver devices, with all cognate and non-cognate chemical signal interactions quantified, and we develop a software tool that automatically selects orthogonal communication channels. We use this approach to identify up to four orthogonal channels in silico, and experimentally demonstrate the simultaneous use of three channels in co-culture. The development of multiple non-interfering cell-to-cell communication channels is an enabling step that facilitates the design of synthetic consortia for applications including distributed bio-computation, increased bioprocess efficiency, cell specialisation and spatial organisation. The engineering of synthetic microbial communities necessitates the use of synthetic, orthogonal cell-to-cell communication channels. Here the authors present a library of characterised AHL-receiver devices and a software tool for the automatic identification of non-interfering chemical communication channels.
Collapse
|
16
|
Antibiotic discovery: combining isolation chip (iChip) technology and co-culture technique. Appl Microbiol Biotechnol 2018; 102:7333-7341. [DOI: 10.1007/s00253-018-9193-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
17
|
Dolinšek J, Goldschmidt F, Johnson DR. Synthetic microbial ecology and the dynamic interplay between microbial genotypes. FEMS Microbiol Rev 2018; 40:961-979. [PMID: 28201744 DOI: 10.1093/femsre/fuw024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/27/2016] [Accepted: 07/04/2016] [Indexed: 01/27/2023] Open
Abstract
Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.
Collapse
Affiliation(s)
- Jan Dolinšek
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Felix Goldschmidt
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
18
|
Transcriptional Analysis of an Ammonium-Excreting Strain of Azotobacter vinelandii Deregulated for Nitrogen Fixation. Appl Environ Microbiol 2017; 83:AEM.01534-17. [PMID: 28802272 DOI: 10.1128/aem.01534-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation is accomplished by a diverse group of organisms known as diazotrophs and requires the function of the complex metalloenzyme nitrogenase. Nitrogenase and many of the accessory proteins required for proper cofactor biosynthesis and incorporation into the enzyme have been characterized, but a complete picture of the reaction mechanism and key cellular changes that accompany biological nitrogen fixation remain to be fully elucidated. Studies have revealed that specific disruptions of the antiactivator-encoding gene nifL result in the deregulation of the nif transcriptional activator NifA in the nitrogen-fixing bacterium Azotobacter vinelandii, triggering the production of extracellular ammonium levels approaching 30 mM during the stationary phase of growth. In this work, we have characterized the global patterns of gene expression of this high-ammonium-releasing phenotype. The findings reported here indicated that cultures of this high-ammonium-accumulating strain may experience metal limitation when grown using standard Burk's medium, which could be amended by increasing the molybdenum levels to further increase the ammonium yield. In addition, elevated levels of nitrogenase gene transcription are not accompanied by a corresponding dramatic increase in hydrogenase gene transcription levels or hydrogen uptake rates. Of the three potential electron donor systems for nitrogenase, only the rnf1 gene cluster showed a transcriptional correlation to the increased yield of ammonium. Our results also highlight several additional genes that may play a role in supporting elevated ammonium production in this aerobic nitrogen-fixing model bacterium.IMPORTANCE The transcriptional differences found during stationary-phase ammonium accumulation show a strong contrast between the deregulated (nifL-disrupted) and wild-type strains and what was previously reported for the wild-type strain under exponential-phase growth conditions. These results demonstrate that further improvement of the ammonium yield in this nitrogenase-deregulated strain can be obtained by increasing the amount of available molybdenum in the medium. These results also indicate a potential preference for one of two ATP synthases present in A. vinelandii as well as a prominent role for the membrane-bound hydrogenase over the soluble hydrogenase in hydrogen gas recycling. These results should inform future studies aimed at elucidating the important features of this phenotype and at maximizing ammonium production by this strain.
Collapse
|
19
|
Nath A, tiwari PK, Rai AK, Sundaram S. Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:269-280. [PMID: 28461716 PMCID: PMC5391349 DOI: 10.1007/s12298-017-0415-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/26/2016] [Accepted: 01/17/2017] [Indexed: 05/22/2023]
Abstract
A set of experiments was conducted to provide significant insights of micro-algal consortia regarding chromium adsorption. Four monocultures; Scenedesmus dimorphus, Chlorella sp., Oscillatoria sp., and Lyngbya sp., and their synthetic consortia were evaluated initially for chromium bio-adsorption at four different regimes of hexavalent chromium i.e. 0.5, 1.0, 3.0 and 5.0 ppm. Based on findings, only 1.0 and 5.0 ppm were considered for future experiments. Consequently, three different types of monoculture and consortia cells namely; live cells, heat-killed cells, and pre-treated cells were prepared to enhance their adsorption potential. Maximal adsorption of 112% was obtained at the dose of 1.0 ppm with 0.1% SDS pre-treated consortia cells over live consortia cells. In support, atomic absorption spectroscopy, laser induced breakdown spectroscopy, pulse amplitude modulated chlorophyll fluorescence, and scanning electron microscopy were performed to assess the structural and functional changes within consortia and their utilization in mitigation of elevated chromium levels.
Collapse
Affiliation(s)
- Adi Nath
- Centre of Biotechnology, Nehru Science Centre, University of Allahabad, Allahabad, 211002 India
| | - Pravin Kumar tiwari
- Laser Spectroscopy Research Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Awadhesh Kumar Rai
- Laser Spectroscopy Research Laboratory, Department of Physics, University of Allahabad, Allahabad, India
| | - Shanthy Sundaram
- Centre of Biotechnology, Nehru Science Centre, University of Allahabad, Allahabad, 211002 India
| |
Collapse
|
20
|
Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Fedeson DT, Ducat DC. Cyanobacterial Surface Display System Mediates Engineered Interspecies and Abiotic Binding. ACS Synth Biol 2017; 6:367-374. [PMID: 27794611 DOI: 10.1021/acssynbio.6b00254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteria are uniquely suited for the development of sustainable bioproduction platforms but are currently underutilized in scaled applications in part due to a lack of genetic tools. Here, we develop a surface display system in the cyanobacterial model Synechococcus elongatus PCC7942 via expression of modified versions of the outer membrane porin SomA. Importantly, we demonstrate accessibility of heterologous functional groups on the recombinant porin to the external environment in living cells. We show that this requires the removal of occluding factors that include lipopolysaccharides and a putative surface layer protein. Displayed epitopes on SomA can be utilized to mediate physical adhesion between living cyanobacteria and abiotic surfaces or an engineered Saccharomyces cerevisiae partner strain. We show that >80% of cyanobacterial cells attach to functionalized magnetic beads, allowing for magnet-assisted recovery. This work showcases the development of a functional surface display system in cyanobacteria with wide-ranging applications.
Collapse
Affiliation(s)
- Derek T. Fedeson
- DOE-MSU
Plant Research Laboratories, ‡Genetics Program, and §Department of Biochemistry and Molecular
Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C. Ducat
- DOE-MSU
Plant Research Laboratories, ‡Genetics Program, and §Department of Biochemistry and Molecular
Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
22
|
Hays SG, Yan LLW, Silver PA, Ducat DC. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J Biol Eng 2017; 11:4. [PMID: 28127397 PMCID: PMC5259876 DOI: 10.1186/s13036-017-0048-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/05/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Microbial consortia composed of autotrophic and heterotrophic species abound in nature, yet examples of synthetic communities with mixed metabolism are limited in the laboratory. We previously engineered a model cyanobacterium, Synechococcus elongatus PCC 7942, to secrete the bulk of the carbon it fixes as sucrose, a carbohydrate that can be utilized by many other microbes. Here, we tested the capability of sucrose-secreting cyanobacteria to act as a flexible platform for the construction of synthetic, light-driven consortia by pairing them with three disparate heterotrophs: Bacillus subtilis, Escherichia coli, or Saccharomyces cerevisiae. The comparison of these different co-culture dyads reveals general design principles for the construction of robust autotroph/heterotroph consortia. RESULTS We observed heterotrophic growth dependent upon cyanobacterial photosynthate in each co-culture pair. Furthermore, these synthetic consortia could be stabilized over the long-term (weeks to months) and both species could persist when challenged with specific perturbations. Stability and productivity of autotroph/heterotroph co-cultures was dependent on heterotroph sucrose utilization, as well as other species-independent interactions that we observed across all dyads. One destabilizing interaction we observed was that non-sucrose byproducts of oxygenic photosynthesis negatively impacted heterotroph growth. Conversely, inoculation of each heterotrophic species enhanced cyanobacterial growth in comparison to axenic cultures. Finally, these consortia can be flexibly programmed for photoproduction of target compounds and proteins; by changing the heterotroph in co-culture to specialized strains of B. subtilis or E. coli we demonstrate production of alpha-amylase and polyhydroxybutyrate, respectively. CONCLUSIONS Enabled by the unprecedented flexibility of this consortia design, we uncover species-independent design principles that influence cyanobacteria/heterotroph consortia robustness. The modular nature of these communities and their unusual robustness exhibits promise as a platform for highly-versatile photoproduction strategies that capitalize on multi-species interactions and could be utilized as a tool for the study of nascent symbioses. Further consortia improvements via engineered interventions beyond those we show here (i.e., increased efficiency growing on sucrose) could improve these communities as production platforms.
Collapse
Affiliation(s)
- Stephanie G Hays
- Department of Systems Biology, Harvard Medical School, Boston, MA USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | - Leo L W Yan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA.,Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA.,Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI USA
| |
Collapse
|
23
|
Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae. Metab Eng 2017; 40:59-68. [PMID: 28089747 DOI: 10.1016/j.ymben.2017.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/02/2016] [Accepted: 01/07/2017] [Indexed: 11/22/2022]
Abstract
The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. However, with the exception of the symbiotic rhizobia-legumes system, progress towards a more extensive realization of this goal has been slow. In this study we manipulated the endogenous regulation of both nitrogen fixation and assimilation in the aerobic bacterium Azotobacter vinelandii. Substituting an exogenously inducible promoter for the native promoter of glutamine synthetase produced conditional lethal mutant strains unable to grow diazotrophically in the absence of the inducer. This mutant phenotype could be reverted in a double mutant strain bearing a deletion in the nifL gene that resulted in constitutive expression of nif genes and increased production of ammonium. Under GS non-inducing conditions both the single and the double mutant strains consistently released very high levels of ammonium (>20mM) into the growth medium. The double mutant strain grew and excreted high levels of ammonium under a wider range of concentrations of the inducer than the single mutant strain. Induced mutant cells could be loaded with glutamine synthetase at different levels, which resulted in different patterns of extracellular ammonium accumulation afterwards. Inoculation of the engineered bacteria into a microalgal culture in the absence of sources of C and N other than N2 and CO2 from the air, resulted in a strong proliferation of microalgae that was suppressed upon addition of the inducer. Both single and double mutant strains also promoted growth of cucumber plants in the absence of added N-fertilizer, while this property was only marginal in the parental strain. This study provides a simple synthetic genetic circuit that might inspire engineering of optimized inoculants that efficiently channel N2 from the air into crops.
Collapse
|
24
|
Löwe H, Hobmeier K, Moos M, Kremling A, Pflüger-Grau K. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:190. [PMID: 28814973 PMCID: PMC5517840 DOI: 10.1186/s13068-017-0875-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND One of the major challenges for the present and future generations is to find suitable substitutes for the fossil resources we rely on today. Cyanobacterial carbohydrates have been discussed as an emerging renewable feedstock in industrial biotechnology for the production of fuels and chemicals, showing promising production rates when compared to crop-based feedstock. However, intrinsic capacities of cyanobacteria to produce biotechnological compounds are limited and yields are low. RESULTS Here, we present an approach to circumvent these problems by employing a synthetic bacterial co-culture for the carbon-neutral production of polyhydroxyalkanoates (PHAs) from CO2. The co-culture consists of two bio-modules: Bio-module I, in which the cyanobacterial strain Synechococcus elongatus cscB fixes CO2, converts it to sucrose, and exports it into the culture supernatant; and bio-module II, where this sugar serves as C-source for Pseudomonas putida cscAB and is converted to PHAs that are accumulated in the cytoplasm. By applying a nitrogen-limited process, we achieved a maximal PHA production rate of 23.8 mg/(L day) and a maximal titer of 156 mg/L. We will discuss the present shortcomings of the process and show the potential for future improvement. CONCLUSIONS These results demonstrate the feasibility of mixed cultures of S. elongatus cscB and P. putida cscAB for PHA production, making room for the cornucopia of possible products that are described for P. putida. The construction of more efficient sucrose-utilizing P. putida phenotypes and the optimization of process conditions will increase yields and productivities and eventually close the gap in the contemporary process. In the long term, the co-culture may serve as a platform process, in which P. putida is used as a chassis for the implementation of synthetic metabolic pathways for biotechnological production of value-added products.
Collapse
Affiliation(s)
- Hannes Löwe
- Fachgebiet für Systembiotechnologie, Technische Universität München, Boltzmannstr 15, 85748 Garching, Germany
| | - Karina Hobmeier
- Fachgebiet für Systembiotechnologie, Technische Universität München, Boltzmannstr 15, 85748 Garching, Germany
| | - Manuel Moos
- Fachgebiet für Systembiotechnologie, Technische Universität München, Boltzmannstr 15, 85748 Garching, Germany
| | - Andreas Kremling
- Fachgebiet für Systembiotechnologie, Technische Universität München, Boltzmannstr 15, 85748 Garching, Germany
| | - Katharina Pflüger-Grau
- Fachgebiet für Systembiotechnologie, Technische Universität München, Boltzmannstr 15, 85748 Garching, Germany
| |
Collapse
|
25
|
de-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez JP, Prufert-Bebout L, Bashan Y. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Zevin AS, Rittmann BE, Krajmalnik-Brown R. The source of inoculum drives bacterial community structure in Synechocystis sp. PCC6803-based photobioreactors. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol Adv 2016; 34:14-29. [PMID: 26657897 DOI: 10.1016/j.biotechadv.2015.12.003] [Citation(s) in RCA: 576] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/28/2022]
Abstract
Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications.
Collapse
Affiliation(s)
- Rishiram Ramanan
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Byung-Hyuk Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Dae-Hyun Cho
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Mock Oh
- Bioenergy and Biochemical Research Center, KRIBB, Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Sik Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
28
|
Gangl D, Zedler JAZ, Rajakumar PD, Martinez EMR, Riseley A, Włodarczyk A, Purton S, Sakuragi Y, Howe CJ, Jensen PE, Robinson C. Biotechnological exploitation of microalgae. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6975-90. [PMID: 26400987 DOI: 10.1093/jxb/erv426] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microalgae are a diverse group of single-cell photosynthetic organisms that include cyanobacteria and a wide range of eukaryotic algae. A number of microalgae contain high-value compounds such as oils, colorants, and polysaccharides, which are used by the food additive, oil, and cosmetic industries, among others. They offer the potential for rapid growth under photoautotrophic conditions, and they can grow in a wide range of habitats. More recently, the development of genetic tools means that a number of species can be transformed and hence used as cell factories for the production of high-value chemicals or recombinant proteins. In this article, we review exploitation use of microalgae with a special emphasis on genetic engineering approaches to develop cell factories, and the use of synthetic ecology approaches to maximize productivity. We discuss the success stories in these areas, the hurdles that need to be overcome, and the potential for expanding the industry in general.
Collapse
Affiliation(s)
- Doris Gangl
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Julie A Z Zedler
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Priscilla D Rajakumar
- Institute of Structural & Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Erick M Ramos Martinez
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Anthony Riseley
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Artur Włodarczyk
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Yumiko Sakuragi
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Poul Erik Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
29
|
Do Nascimento M, Sanchez Rizza L, Arruebarrena Di Palma A, Dublan MDLA, Salerno G, Rubio LM, Curatti L. Cyanobacterial biological nitrogen fixation as a sustainable nitrogen fertilizer for the production of microalgal oil. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Barney BM, Eberhart LJ, Ohlert JM, Knutson CM, Plunkett MH. Gene Deletions Resulting in Increased Nitrogen Release by Azotobacter vinelandii: Application of a Novel Nitrogen Biosensor. Appl Environ Microbiol 2015; 81:4316-28. [PMID: 25888177 PMCID: PMC4475869 DOI: 10.1128/aem.00554-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/13/2015] [Indexed: 11/20/2022] Open
Abstract
Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes.
Collapse
Affiliation(s)
- Brett M Barney
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Lauren J Eberhart
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Janet M Ohlert
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
| | - Carolann M Knutson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
| | - Mary H Plunkett
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
31
|
Savakis P, Hellingwerf KJ. Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol 2015; 33:8-14. [DOI: 10.1016/j.copbio.2014.09.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 02/02/2023]
|
32
|
Gudmundsson S, Nogales J. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective. MOLECULAR BIOSYSTEMS 2015; 11:60-70. [DOI: 10.1039/c4mb00335g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A review of cyanobacterial biocatalysts highlighting their metabolic features that argues for the need for systems-level metabolic engineering.
Collapse
Affiliation(s)
| | - Juan Nogales
- Department of Environmental Biology
- Centro de Investigaciones Biológicas-CSIC
- 28040 Madrid
- Spain
| |
Collapse
|
33
|
Goers L, Freemont P, Polizzi KM. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 2014; 11:rsif.2014.0065. [PMID: 24829281 DOI: 10.1098/rsif.2014.0065] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell-cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions.
Collapse
Affiliation(s)
- Lisa Goers
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Paul Freemont
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Karen M Polizzi
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
34
|
Holins in bacteria, eukaryotes, and archaea: multifunctional xenologues with potential biotechnological and biomedical applications. J Bacteriol 2014; 197:7-17. [PMID: 25157079 DOI: 10.1128/jb.02046-14] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Holins form pores in the cytoplasmic membranes of bacteria for the primary purpose of releasing endolysins that hydrolyze the cell wall and induce cell death. Holins are encoded within bacteriophage genomes, where they promote cell lysis for virion release, and within bacterial genomes, where they serve a diversity of potential or established functions. These include (i) release of gene transfer agents, (ii) facilitation of programs of differentiation such as those that allow sporulation and spore germination, (iii) contribution to biofilm formation, (iv) promotion of responses to stress conditions, and (v) release of toxins and other proteins. There are currently 58 recognized families of holins and putative holins with members exhibiting between 1 and 4 transmembrane α-helical spanners, but many more families have yet to be discovered. Programmed cell death in animals involves holin-like proteins such as Bax and Bak that may have evolved from bacterial holins. Holin homologues have also been identified in archaea, suggesting that these proteins are ubiquitous throughout the three domains of life. Phage-mediated cell lysis of dual-membrane Gram-negative bacteria also depends on outer membrane-disrupting "spanins" that function independently of, but in conjunction with, holins and endolysins. In this minireview, we provide an overview of their modes of action and the first comprehensive summary of the many currently recognized and postulated functions and uses of these cell lysis systems. It is anticipated that future studies will result in the elucidation of many more such functions and the development of additional applications.
Collapse
|
35
|
Curatti L, Rubio LM. Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:130-7. [PMID: 25017168 DOI: 10.1016/j.plantsci.2014.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/24/2014] [Accepted: 06/03/2014] [Indexed: 05/19/2023]
Abstract
Some regions of the developing world suffer low cereal production yields due to low fertilizer inputs, among other factors. Biological N2 fixation, catalyzed by the prokaryotic enzyme nitrogenase, is an alternative to the use of synthetic N fertilizers. The molybdenum nitrogenase is an O2-labile metalloenzyme composed of the NifDK and NifH proteins, which biosyntheses require a number of nif gene products. A challenging strategy to increase cereal crop productivity in a scenario of low N fertilization is the direct transfer of nif genes into cereals. The sensitivity of nitrogenase to O2 and the apparent complexity of nitrogenase biosynthesis are the main barriers identified so far. Expression of active NifH requires the products of nifM, nifH, and possibly nifU and nifS, whereas active NifDK requires the products of nifH, nifD, nifK, nifB, nifE, nifN, and possibly nifU, nifS, nifQ, nifV, nafY, nifW and nifZ. Plastids and mitochondria are potential subcellular locations for nitrogenase. Both could provide the ATP and electrons required for nitrogenase to function but they differ in their internal O2 levels and their ability to incorporate ammonium into amino acids.
Collapse
Affiliation(s)
- Leonardo Curatti
- Instituto de Investigaciones en Biodiversidad y Biotecnología - Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina; Fundación para Investigaciones Biológicas Aplicadas, Pozuelo de Alarcón, Madrid, Spain
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
36
|
Olofsson M, Lamela T, Nilsson E, Bergé JP, del Pino V, Uronen P, Legrand C. Combined effects of nitrogen concentration and seasonal changes on the production of lipids in Nannochloropsis oculata. Mar Drugs 2014; 12:1891-910. [PMID: 24691025 PMCID: PMC4012439 DOI: 10.3390/md12041891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 11/17/2022] Open
Abstract
Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.
Collapse
Affiliation(s)
- Martin Olofsson
- Faculty of Health and Life Sciences, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnæus University, 391 82 Kalmar, Sweden.
| | - Teresa Lamela
- Necton SA, Belamandil s/n, 8700-152 Olhão, Portugal.
| | - Emmelie Nilsson
- Faculty of Health and Life Sciences, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnæus University, 391 82 Kalmar, Sweden.
| | - Jean-Pascal Bergé
- IFREMER, Laboratoire de Science et Technologie de la Biomasse Marine (STBM), 44311 Nantes cedex 03, France.
| | | | - Pauliina Uronen
- Neste Oil, Technology Centre, POB 310, 06101 Porvoo, Finland.
| | - Catherine Legrand
- Faculty of Health and Life Sciences, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnæus University, 391 82 Kalmar, Sweden.
| |
Collapse
|
37
|
Ortiz-Marquez JCF, Do Nascimento M, Curatti L. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metab Eng 2014; 23:154-64. [PMID: 24680860 DOI: 10.1016/j.ymben.2014.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/26/2014] [Accepted: 03/19/2014] [Indexed: 11/30/2022]
Abstract
The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. In this study we compared the effect of controlling the maximum activation state of the Azotobacter vinelandii glutamine synthase by a point mutation at the active site (D49S mutation) and impairing the ammonium-dependent homeostatic control of nitrogen-fixation genes expression by the ΔnifL mutation on ammonium release by the cells. Strains bearing the single D49S mutation were more efficient ammonium producers under carbon/energy limiting conditions and sustained microalgae growth at the expense of atmospheric N2 in synthetic microalgae-bacteria consortia. Ammonium delivery by the different strains had implications for the microalga׳s cell-size distribution. It was uncovered an extensive cross regulation between nitrogen fixation and assimilation that extends current knowledge on this key metabolic pathway and might represent valuable hints for further improvements of versatile N2-fixing microbial-cell factories.
Collapse
Affiliation(s)
- Juan Cesar Federico Ortiz-Marquez
- Instituto de Investigaciones en Biodiversidad y Biotecnología - Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina; Fundación para Investigaciones Biológicas Aplicadas, Argentina
| | - Mauro Do Nascimento
- Instituto de Investigaciones en Biodiversidad y Biotecnología - Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina; Fundación para Investigaciones Biológicas Aplicadas, Argentina
| | - Leonardo Curatti
- Instituto de Investigaciones en Biodiversidad y Biotecnología - Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Buenos Aires, Argentina; Fundación para Investigaciones Biológicas Aplicadas, Argentina.
| |
Collapse
|
38
|
Grosskopf T, Soyer OS. Synthetic microbial communities. Curr Opin Microbiol 2014; 18:72-7. [PMID: 24632350 PMCID: PMC4005913 DOI: 10.1016/j.mib.2014.02.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 01/22/2023]
Abstract
Microbial interactions and system function are two ways to study communities. Natural microbial communities are difficult to define and to study. Synthetic microbial communities are comprehensible systems of reduced complexity. Synthetic communities keep key features of natural ones and are amenable to modelling. Synthetic microbial communities are gaining importance in biotechnology.
While natural microbial communities are composed of a mix of microbes with often unknown functions, the construction of synthetic microbial communities allows for the generation of defined systems with reduced complexity. Used in a top-down approach, synthetic communities serve as model systems to ask questions about the performance and stability of microbial communities. In a second, bottom-up approach, synthetic microbial communities are used to study which conditions are necessary to generate interaction patterns like symbiosis or competition, and how higher order community structure can emerge from these. Besides their obvious value as model systems to understand the structure, function and evolution of microbial communities as complex dynamical systems, synthetic communities can also open up new avenues for biotechnological applications.
Collapse
Affiliation(s)
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
39
|
Nguyen K, Bruce BD. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1553-66. [PMID: 24388916 DOI: 10.1016/j.bbabio.2013.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
Abstract
Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI)reaction centers via the Z-scheme. Both of these pigment-membrane protein complexes are found in cyanobacteria, algae, and plants. Unlike PSII, PSI is remarkably stable and does not undergo limiting photo-damage. This stability, as well as other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosynthetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of PSI where the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled catalyst to yield H₂. Recent advances in molecular genetics, synthetic biology, and nanotechnology have merged to allow PSI to be integrated into a myriad of biohybrid devices. In photocurrent producing devices, PSI has been immobilized onto various electrode substrates with a continuously evolving toolkit of strategies and novel reagents. However, these innovative yet highly variable designs make it difficult to identify the rate-limiting steps and/or components that function as bottlenecks in PSI-biohybrid devices. In this study we aim to highlight these recent advances with a focus on identifying the similarities and differences in electrode surfaces, immobilization/orientation strategies, and artificial redox mediators. Collectively this work has been able to maintain an annual increase in photocurrent density (Acm⁻²) of ~10-fold over the past decade. The potential drawbacks and attractive features of some of these schemes are also discussed with their feasibility on a large-scale. As an environmentally benign and renewable resource, PSI may provide a new sustainable source of bioenergy. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Khoa Nguyen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; Bredesen Center for Interdisciplinary Research and Education, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|