1
|
Alexandre ADS, Casas LL, da Silva DR, Nunez CV. 5,6-Dihydro-5,6-Epoxymultiplolide A, Cytosporone C, and Uridine Production by Diaporthe hongkongensis, an Endophytic Fungus from Minquartia guianensis. Microorganisms 2025; 13:792. [PMID: 40284629 PMCID: PMC12029568 DOI: 10.3390/microorganisms13040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Endophytic fungi are valuable sources of bioactive secondary metabolites, with potential applications in pharmaceutical and agricultural fields. This study investigates the metabolic potential of Diaporthe hongkongensis, an endophytic fungus isolated from Minquartia guianensis. To date, no secondary metabolites have been identified from this species, highlighting the novelty of this research and its contribution to understanding the chemical diversity of endophytic fungi. The fungus was cultivated on parboiled rice under static and dark conditions for 28 days, leading to the isolation of the following three compounds: 5,6-dihydro-5,6-epoxymultiplolide A (1), cytosporone C (2), and uridine (3). Structural identification was carried out using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. The results revealed the metabolic versatility of D. hongkongensis, as demonstrated by its ability to produce structurally diverse substances with biological relevance. Hence, it describes the first isolation of secondary metabolites from the endophytic fungus D. hongkongensis, marking a significant step in understanding its chemical profile. The identification of a known antifungal compound and a lactone derivative underscores the biosynthetic potential of this endophytic fungus, while the isolation of a nucleoside expands the chemical repertoire of fungal metabolites, suggesting possible roles in cellular metabolism and stress adaptation. These findings highlight the role of endophytic fungi as prolific sources of structurally diverse and potentially bioactive natural products, supporting further exploration of their biotechnological applications.
Collapse
Affiliation(s)
- Andrei da Silva Alexandre
- Bioprospecting and Biotechnology Laboratory, Technology and Innovation Coordination, National Institute of Amazonian Research, Manaus 69067-375, AM, Brazil; (A.d.S.A.); (L.L.C.); (D.R.d.S.)
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University (UEA), Manaus 69050-010, AM, Brazil
| | - Luana Lopes Casas
- Bioprospecting and Biotechnology Laboratory, Technology and Innovation Coordination, National Institute of Amazonian Research, Manaus 69067-375, AM, Brazil; (A.d.S.A.); (L.L.C.); (D.R.d.S.)
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University (UEA), Manaus 69050-010, AM, Brazil
| | - David Ribeiro da Silva
- Bioprospecting and Biotechnology Laboratory, Technology and Innovation Coordination, National Institute of Amazonian Research, Manaus 69067-375, AM, Brazil; (A.d.S.A.); (L.L.C.); (D.R.d.S.)
| | - Cecilia Veronica Nunez
- Bioprospecting and Biotechnology Laboratory, Technology and Innovation Coordination, National Institute of Amazonian Research, Manaus 69067-375, AM, Brazil; (A.d.S.A.); (L.L.C.); (D.R.d.S.)
- Graduate Program in Biotechnology and Natural Resources of the Amazon, School of Health Sciences, Amazonas State University (UEA), Manaus 69050-010, AM, Brazil
| |
Collapse
|
2
|
Gupta A, Chandra Pandey B, Yaseen M, Kushwaha R, Shukla M, Chaudhary P, Manna PP, Singh A, Tiwari I, Nath G, Kumari N. Exploring anticancer, antioxidant, and antimicrobial potential of Aspergillus flavus, a fungal endophyte isolated from Dillenia indica leaf callus. Heliyon 2025; 11:e42142. [PMID: 39931481 PMCID: PMC11808721 DOI: 10.1016/j.heliyon.2025.e42142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Background Endophytic fungi represent a compelling assemblage of microorganisms that inhabit plant tissues without inflicting any discernible detriment to the host organism. They foster a symbiotic association with their host plants, frequently conferring advantages such as augmented growth, enhanced resilience to stressors, and safeguarding against pathogens. Study design Dillenia indica is a medicinal tree of Dilleniaceae. This study aims to isolate and identify the fungi growing as a contaminant in leaf callus. For the identification, both morphological observation and molecular methods were used. The presence of secondary metabolites in different fungal extracts were observed by FTIR and High-resolution accurate mass spectroscopy (HRAMS) methods. Different biological activities (antioxidant, antibacterial and antitumor) of fungal extracts were assessed. Methods For callus initiation, leaf tissues of Dillenia indica were inoculated on Murashige and Skoog's medium supplemented with BAP (1mgl-1) and NAA (1mgl-1) plant growth regulators. To raise pure cultures of endophyte, fungal hyphae were isolated from the contaminated cultures and were grown on Potato Dextrose Agar medium. For molecular identification, genomic DNA (gDNA) was isolated from fungal mycelia. Internal transcribed spacers (ITS1 and ITS4) were used to amplify the conserved ITS region of the fungal gDNA. Previously deposited sequences in the Gene bank were used for the identification and making of phylogenetic tree. Antioxidant, antibacterial and anticancer potential of fungal extracts were studied. Results The endophyte was identified as Aspergillus flavus. FTIR study showed the presence of diverse types of secondary metabolites in fungal extract. A significant presence of phenolics, flavonoids, terpenes, steroids, etc. was observed by High-resolution accurate mass spectroscopy analysis (HRAMS) of fungal extract. Endophyte extract prepared in chloroform showed both antioxidant (IC50 430.23) and antibacterial (maximum inhibition of E. coli:15 ± 0.62 mm) potential compared to other solvents. Cell viability decreased at high concentrations of endophyte extract prepared in chloroform and ethyl acetate solvents. Fungal extract prepared in ethyl acetate showed considerable cytotoxicity and growth inhibition of DL tumor cells. Conclusion In the present study, isolated endophyte of Dillenia indica showed high occurrence of secondary metabolites. Fungal extracts showed antioxidant, antibacterial and antitumor activities. As, endophytes are remarkable source of active constituents, there is a great need to explore such endophytes. Their extensive studies are required to develop an alternative of plant less production of valuable compounds.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | | | - Mohd Yaseen
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Renu Kushwaha
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Madhavenda Shukla
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Pratima Chaudhary
- Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Partha Pratim Manna
- Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Aparna Singh
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Ida Tiwari
- Department of Chemistry, Institute of Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nishi Kumari
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Tiwari P, Thakkar S, Dufossé L. Antimicrobials from endophytes as novel therapeutics to counter drug-resistant pathogens. Crit Rev Biotechnol 2025; 45:164-190. [PMID: 38710617 DOI: 10.1080/07388551.2024.2342979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/28/2023] [Accepted: 01/29/2024] [Indexed: 05/08/2024]
Abstract
The rapid increase in antimicrobial resistance (AMR) projects a "global emergency" and necessitates a need to discover alternative resources for combating drug-resistant pathogens or "superbugs." One of the key themes in "One Health Concept" is based on the fact that the interconnected network of humans, the environment, and animal habitats majorly contribute to the rapid selection and spread of AMR. Moreover, the injudicious and overuse of antibiotics in healthcare, the environment, and associated disciplines, further aggravates the concern. The prevalence and persistence of AMR contribute to the global economic burden and are constantly witnessing an upsurge due to fewer therapeutic options, rising mortality statistics, and expensive healthcare. The present decade has witnessed the extensive exploration and utilization of bio-based resources in harnessing antibiotics of potential efficacies. The discovery and characterization of diverse chemical entities from endophytes as potent antimicrobials define an important yet less-explored area in natural product-mediated drug discovery. Endophytes-produced antimicrobials show potent efficacies in targeting microbial pathogens and synthetic biology (SB) mediated engineering of endophytes for yield enhancement, forms a prospective area of research. In keeping with the urgent requirements for new/novel antibiotics and growing concerns about pathogenic microbes and AMR, this paper comprehensively reviews emerging trends, prospects, and challenges of antimicrobials from endophytes and their effective production via SB. This literature review would serve as the platform for further exploration of novel bioactive entities from biological organisms as "novel therapeutics" to address AMR.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Shreya Thakkar
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, India
| | - Laurent Dufossé
- Laboratoire CHEMBIOPRO (Chimie et Biotechnologie des Produits Naturels), ESIROI Département agroalimentaire, Université de La Réunion, Saint-Denis, France
| |
Collapse
|
4
|
Dos Santos Oliveira JA, Polli AD, Ferreira AP, Lopes NB, Mangolim CA, Vicentini VEP, Polonio JC, Ramos AVG, Baldoqui DC, Pamphile JA, Azevedo JL. Radiotolerant endophytic bacteria and analysis of the effects of 137Cesium on the metabolome of Pantoea sp. Braz J Microbiol 2024; 55:3309-3320. [PMID: 39083225 PMCID: PMC11711599 DOI: 10.1007/s42770-024-01458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/10/2024] [Indexed: 01/11/2025] Open
Abstract
Some bacteria have developed mechanisms to withstand the stress caused by ionizing radiation. The ability of these radioresistant microorganisms to survive high levels of radiation is primarily attributed to their DNA repair mechanisms and the production of protective metabolites. To determine the effect of irradiation on bacterial growth, we propose to compare the metabolites produced by the irradiated isolates to those of the control (non-irradiated isolates) using mass spectrometry, molecular networking, and chemometric analysis. We identified the secondary metabolites produced by these bacteria and observed variations in growth following irradiation. Notably, after 48 h of exposure to radiation, Pantoea sp. bacterial cells exhibited a significant 6-log increase compared to non-irradiated cells. Non-irradiated cells produce exclusively Pyridindolol, 1-hydroxy-4-methylcarbostyril, N-alkyl, and N-2-alkoxyethyl diethanolamine, while 5'-methylthioadenosine was detected only in irradiated cells. These findings suggest that the metabolic profile of Pantoea sp. remained relatively stable. The results obtained from this study have the potential to facilitate the development of innovative strategies for harnessing the capabilities of endophytic bacteria in radiological protection and bioremediation of radionuclides.
Collapse
Affiliation(s)
| | - Andressa Domingos Polli
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringa, Paraná, 87020-900, Brazil
| | - Ana Paula Ferreira
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringa, Paraná, 87020-900, Brazil
| | - Nilson Benedito Lopes
- Department of Physics, State University of Maringá, Maringa, Paraná, 87020-900, Brazil
| | - Claudete Aparecida Mangolim
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringa, Paraná, 87020-900, Brazil
| | | | - Julio Cesar Polonio
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringa, Paraná, 87020-900, Brazil.
| | | | | | - João Alencar Pamphile
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá, Maringa, Paraná, 87020-900, Brazil
| | - João Lucio Azevedo
- Department of Genetics, Superior College of Agriculture (Luiz de Queiroz), University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| |
Collapse
|
5
|
Groff DB, Marmentini J, Gaglioti AL, Silva PRDA, Knob A. Endophytic fungi associated with Araucaria angustifolia (Bertol.) Kuntze. AN ACAD BRAS CIENC 2024; 96:e20230251. [PMID: 39292101 DOI: 10.1590/0001-3765202420230251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/06/2024] [Indexed: 09/19/2024] Open
Abstract
The diversity of endophytes and their ecological relationships with the endangered conifer Araucaria angustifolia (a critically endangered species) are unrevealed. This study aimed to characterize the diversity of endophytic fungi associated with A. angustifolia. To this end, we analyzed 90 fragments from five individuals collected from a mixed localized fragment in Guarapuava-PR, Brazil. The total DNA of 61 morphotypes was extracted and the Internal Transcribed Spacer (ITS) region was amplified and sequenced. The sequence analysis allowed the identification of 37 genera belonging to the phylum Ascomycota and the classes Eurotiomycetes, Dothideomycetes, and Sordariomycetes, divided into 11 orders and 13 families. Most of the isolated fungi belonged to the Sordariomycetes class (40%) and to the Xylaria genus (14%), while Eurotiomycetes was the minority class within the community. Our results reveal the high endophytic richness supporting the life cycle of A. angustifolia and reinforce the necessity for the conservation of this conifer, as many genetic resources can be lost owing to its irrational exploration.
Collapse
Affiliation(s)
- Danieli B Groff
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Jéssica Marmentini
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - André Luiz Gaglioti
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Paulo Roberto DA Silva
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| | - Adriana Knob
- Universidade Estadual do Centro-Oeste, Departamento de Ciências Biológicas, Alameda Élio Antonio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil
| |
Collapse
|
6
|
Thakur A, Thakur K, Kumar A, Warghat AR, Kumar D, Pandey SS. Endophyte-based fungal elicitors for enhanced production of valepotriates and sesquiterpenoids in leaf cell suspension cultures of Valeriana jatamansi Jones. J Appl Microbiol 2024; 135:lxae242. [PMID: 39289002 DOI: 10.1093/jambio/lxae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
AIMS The immense therapeutic value of Valeriana jatamansi is attributed to the presence of bioactive secondary metabolites (valepotriates and sesquiterpenoids). Its over-exploitation in wild habitats resulted in extensive depletion, necessitating alternative approaches to produce its therapeutic metabolites. This study sought to assess the ability of endophytes of V. jatamansi to boost the biosynthesis of secondary metabolites in the leaf-cell suspension (LCS) culture of V. jatamansi. METHODS AND RESULTS A total of 11 fungal endophytes were isolated from the rhizomes of V. jatamansi. Isolated endophytes were found to belong to phylum Ascomycota, Basidiomycota, and Mucoromycota. Supplementation of extracts of endophyte Phaeosphaeriaceae sp. VRzFB, Mucor griseocyanus VRzFD, Penicillium raistrickii VRzFK, and Penicillium sajarovii VRzFL in the LCS culture of V. jatamansi increased the fresh cell biomass by 19.6%-39.1% and dry cell biomass by 23.4%-37.8%. Most of the endophytes' extract could increase the content of valepotriates (26.5%-76.5% valtrate and 40.5%-77.9% acevaltrate) and sesquiterpenoids (19.9%-61.1% hydroxyl valerenic acid) in LCS culture. However, only two endophytes, Irpex lacteus VRzFI and Fusarium oxysporum VRzFF, could increase the sesquiterpenoids acetoxy valerenic acid (36.9%-55.3%). In contrast, some endophytes' extracts caused negative or no significant effect on the cell biomass and targeted metabolites. Increased secondary metabolites were corroborated with increased expression of iridoid biosynthesis genes in LCS culture. Production of H2O2 and lipid peroxidation was also varied with different endophytes indicating the modulation of cellular oxidative stress due to endophyte elicitors. CONCLUSIONS The results suggest the distinct effect of different fungal endophytes-extract on LCS culture, and endophytes can serve as biotic elicitors for increasing the secondary metabolite production in plant in vitro systems.
Collapse
Affiliation(s)
- Ankita Thakur
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanika Thakur
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical Technology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Ashish Rambhau Warghat
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical Technology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
8
|
Jia X, Li Q, Xu M, Zhang J, Xu D. Advances in militarine: Pharmacology, synthesis, molecular regulation and regulatory mechanisms. Heliyon 2024; 10:e24341. [PMID: 38293334 PMCID: PMC10826723 DOI: 10.1016/j.heliyon.2024.e24341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Militarine is the lead member of secondary metabolites found in multiple medicinal plants of the orchid family. It acts as not only an important inhibitor on plant growth, but also functions as the quality marker for medicinal materials. In addition, Militarine has been shown to possess remarkably medicinal value, with a definite potential for finding widespread adoption of treating various diseases, including lung injury, brain nerve injury, cognitive impairment, aging, tumors, inflammation, peptic ulcers, and more. Thus, it can serve as a material carrier for pharmacophore upon, so much so that it probes as natural source of lead compounds in the research and development of medication. The study reported herein makes an overview on the physicochemical properties and pharmacological mechanisms of Militarine compounds, summarizes the biogenic pathways of Militarine and organically integrates the biological characteristics of Militarine with multiple omics techniques. Besides, this review also constructs a regulatory system for the biological accumulation of Militarine around its precursor compounds, characteristic gene elements, key enzymes, important metabolic products, and critical steps and links. Exceptionally, emphasis on the biosynthesis of Militarine under both abiotic and biotic stress, as well as an elaboration of the signaling pathways and critical regulatory mechanisms that govern the metabolic flow of Militarine have been represented accordingly in this paper. These findings are expected to provide reference schemes and theoretical foundations for acquiring high-quality resources of Militarine and advancing its large-scale industrial production, drug development, and clinical applications to comprehensively elucidate the biosynthetic and metabolic pathways.
Collapse
Affiliation(s)
- Xueyan Jia
- Department of Cell Biology, Zunyi Medical University, Zunyi, 563099, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, 563099, China
| | - Qingqing Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, 563099, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, 563099, China
| | - Mengwei Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, 563099, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, 563099, China
| | - Jie Zhang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, 563099, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, 563099, China
| |
Collapse
|
9
|
Ge Z, Wang D, Zhao W, Wang P, Dai Y, Dong M, Wang J, Zhao Y, Zhao X. Structural and functional characterization of exopolysaccharide from Leuconostoc citreum BH10 discovered in birch sap. Carbohydr Res 2024; 535:108994. [PMID: 38056028 DOI: 10.1016/j.carres.2023.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
In this study, Leuconostoc citreum BH10, an endophytic strain, was isolated from aseptically collected xylem sap of birch for the first time, and its exopolysaccharide (LCEPS) production was up to 46.31 g/L in glucan producing medium. The produced LCEPS was purified to obtain two water-soluble fractions, named as LCEPS-1 and LCEPS-2, respectively. The major fraction LCEPS-1 was characterized to be comprised of glucose with average molecular weight of 6.34 × 106 Da. The structure of LCEPS-1 was investigated by spectroscopy analysis, which revealed that LCEPS-1 was identified with containing 90.45 % α-(1,6) linkages in the main chains and 9.55 % α-(1,3) branch linkages. The scanning electron microscope results demonstrated that the dried LCEPS-1 appeared porous surface overlaid with an irregular glittering. The water solubility index (WSI) and water holding capacity (WHC) of LCEPS-1 were 88.02 ± 1.69 % and 241.43 ± 6.38 %, respectively. Besides, it exhibited high thermal stability as well as fine antioxidant activities. Taken together, the results indicated that LCEPS-1 could have good potentiality to be applied in fields of foods, cosmetics, nutraceuticals and pharmaceutical industries as the natural agent.
Collapse
Affiliation(s)
- Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Yiqiang Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Junjuan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Yuanyuan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China.
| |
Collapse
|
10
|
Zhang D, Zhang X, Shen F, Ding Y, Wang J, Cui Y, Ye S. Preparation and functional characteristics of protein from Ginkgo endophytic Pseudomonas R6 and Ginkgo seed. Int J Biol Macromol 2023; 253:127063. [PMID: 37748587 DOI: 10.1016/j.ijbiomac.2023.127063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Ginkgo seed protein (GSP) has excellent processing characteristics and antioxidant properties. In this study, Gingko endophytic protein (GEP) was synthesized by Ginkgo endophytic Pseudomonas R6. SDS-PAGE analysis indicated that the molecular weights of GSP and GEP were mainly distributed at 17 KDa and 48 KDa, respectively. FTIR showed that GEP and GSP exhibited characteristic absorption in the amide I, II, and III bands, and absorption in amide A and B indicated the presence of hydrogen bonding. HPLC analysis showed that both proteins had 17 amino acids, but their relative abundance was different, with GSP having the highest Ser content (74.713 mg/g) and GEP having the highest Val content (35.905 mg/g). Stomata were observed on the surface of both proteins by SEM, and there were lamellar and some spherical structures on GEP, while the opposite was observed on GSP. GEP had superior solubility, OHC, FC and EC, while GSP showed good WHC. Both proteins exhibited antioxidant activities, with GSP exhibiting stronger hydroxyl radical scavenging ability than GEP, with IC50 of 0.46 mg/mL and 1.54 mg/mL, respectively. This work demonstrates the antioxidant potential of GEP as an alternative to GSP in the food industry.
Collapse
Affiliation(s)
- Dong Zhang
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Xiaohan Zhang
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Fengjun Shen
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Yan Ding
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Jing Wang
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Yanping Cui
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China
| | - Shuhong Ye
- School of Food Science, Dalian Polytechnic University, Dalian, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, China.
| |
Collapse
|
11
|
Nguyen GT, Nguyen HTH, Tran HT, Tran HT, Ho AN, Tran QH, Pham NB. Enhanced podophyllotoxin production of endophyte Fusarium proliferatum TQN5T by host extract and phenylalanine. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12659-1. [PMID: 37436482 DOI: 10.1007/s00253-023-12659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023]
Abstract
Fermentation technology using endophytes is considered a potential alternative approach for producing pharmaceutical compounds like podophyllotoxin (PTOX). In this study, fungus TQN5T (VCCM 44284) was selected from endophytic fungi isolated from Dysosma versipellis in Vietnam for PTOX production through TLC. The presence of PTOX in TQN5T was further confirmed by HPLC. Molecular identification indicated TQN5T as Fusarium proliferatum with 99.43% identity. This result was asserted by morphological characteristics such as white cottony, filamentous colony, layer and branched mycelium, and clear hyphae septa. Cytotoxic assay indicated both biomass extract and culture filtrate of TQN5T presented strong cytotoxicity on LU-1 and HepG2 with IC50 of 0.11, 0.20, 0.041, and 0071, respectively, implying anti-cancer compounds were accumulated in the mycelium and secreted into the medium. Further, the production of PTOX in TQN5T was investigated in the fermentation condition supplemented with 10 µg/ml of host plant extract or phenylalanine as elicitors. The results revealed a significantly higher amount of PTOX in the PDB + PE and PDB + PA at all studied time points in comparison with PDB (control). Especially, after 168 h of culture, PTOX content in the PDB with plant extract reached the peak with 314 µg/g DW which is 10% higher than the best yield of PTOX in previous studies, denoting F. proliferatum TQN5T as a promising PTOX producer. This is the first study on enhancing the PTOX production in endophytic fungi by supplementing phenylalanine-a precursor for PTOX biosynthesis in plants into fermented media, suggesting a common PTOX biosynthetic pathway between host plant and endophytes. KEY POINTS: • Fusarium proliferatum TQN5T was proven for PTOX production. • Both mycelia extract and spent broth extract of Fusarium proliferatum TQN5T presented strong cytotoxicity on cancer cell lines LU-1 and HepG2. • The supplementation of 10 µg/ml host plant extract and phenylalanine into fermentation media of F. proliferatum TQN5T improved the yield of PTOX.
Collapse
Affiliation(s)
- Giang Thu Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha Thi Hong Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hoa Thi Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huyen Thi Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Anh Ngoc Ho
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quang Ho Tran
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
12
|
Gupta A, Meshram V, Gupta M, Goyal S, Qureshi KA, Jaremko M, Shukla KK. Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade. Biomolecules 2023; 13:1038. [PMID: 37509074 PMCID: PMC10377637 DOI: 10.3390/biom13071038] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
The seminal discovery of paclitaxel from endophytic fungus Taxomyces andreanae was a milestone in recognizing the immense potential of endophytic fungi as prolific producers of bioactive secondary metabolites of use in medicine, agriculture, and food industries. Following the discovery of paclitaxel, the research community has intensified efforts to harness endophytic fungi as putative producers of lead molecules with anticancer, anti-inflammatory, antimicrobial, antioxidant, cardio-protective, and immunomodulatory properties. Endophytic fungi have been a valuable source of bioactive compounds over the last three decades. Compounds such as taxol, podophyllotoxin, huperzine, camptothecin, and resveratrol have been effectively isolated and characterized after extraction from endophytic fungi. These findings have expanded the applications of endophytic fungi in medicine and related fields. In the present review, we systematically compile and analyze several important compounds derived from endophytic fungi, encompassing the period from 2011 to 2022. Our systematic approach focuses on elucidating the origins of endophytic fungi, exploring the structural diversity and biological activities exhibited by these compounds, and giving special emphasis to the pharmacological activities and mechanism of action of certain compounds. We highlight the tremendous potential of endophytic fungi as alternate sources of bioactive metabolites, with implications for combating major global diseases. This underscores the significant role that fungi can play in the discovery and development of novel therapeutic agents that address the challenges posed by prevalent diseases worldwide.
Collapse
Affiliation(s)
- Aditi Gupta
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Vineet Meshram
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Mahiti Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Soniya Goyal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, Haryana, India
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Kamlesh Kumar Shukla
- School of Studies in Biotechnology, Pandit Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
13
|
Hereira-Pacheco SE, Estrada-Torres A, Dendooven L, Navarro-Noya YE. Shifts in root-associated fungal communities under drought conditions in Ricinus communis. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
14
|
Banyal A, Tiwari S, Sharma A, Chanana I, Patel SKS, Kulshrestha S, Kumar P. Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges. 3 Biotech 2023; 13:211. [PMID: 37251731 PMCID: PMC10209376 DOI: 10.1007/s13205-023-03636-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Vinca alkaloids including vincristine, vinblastine, vindesine, and vinflunine are chemotherapeutic compounds commonly used to treat various cancers. Vinca alkaloids are one of the first microtubule-targeting agents to be produced and certified for the treatment of hematological and lymphatic neoplasms. Microtubule targeting agents like vincristine and vinblastine work by disrupting microtubule dynamics, causing mitotic arrest and cell death. The key issues facing vinca alkaloids applications include establishing an environment-friendly production technique based on microorganisms, as well as increasing bioavailability without causing harm to patient's health. The low yield of these vinca alkaloids from the plant and the difficulty of meeting their huge colossal demand around the globe prompted researchers to create a variety of approaches. Endophytes could thus be selected to produce beneficial secondary metabolites required for the biosynthesis of vinca alkaloids. This review covers the significant aspects of these vital drugs, from their discovery to the present day, in a concise manner. In addition, we emphasize the major hurdles that must be overcome in the coming years to improve vinca alkaloid's effectiveness.
Collapse
Affiliation(s)
- Aditya Banyal
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Shubham Tiwari
- IMS Engineering College, Ghaziabad, Uttar Pradesh 201009 India
| | - Aparajita Sharma
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Ishita Chanana
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Sanjay Kumar Singh Patel
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701 South Korea
| | - Saurabh Kulshrestha
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| | - Pradeep Kumar
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
15
|
Aydi Ben Abdallah R, Hassine M, Jabnoun-Khiareddine H, Daami-Remadi M. Exploration of non-phytopathogenic Aspergillus spp. isolates recovered from soil and compost as potential source of bioactive metabolites for potato Fusarium dry rot control. Braz J Microbiol 2023; 54:1103-1113. [PMID: 36807883 PMCID: PMC10235386 DOI: 10.1007/s42770-023-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/05/2023] [Indexed: 02/23/2023] Open
Abstract
During storage, infected potato tubers by Fusarium species leads to significant losses. Searching natural-based alternatives to chemical fungicides for the control of tuber dry rot pathogens is becoming essential. Nine Aspergillus spp. (A. niger, A. terreus, A. flavus, and Aspergillus sp.) isolates, recovered from soil and compost samples, were explored and evaluated for their ability to suppress Fusarium sambucinum the main causal agent of potato tuber dry rot disease in Tunisia. All conidial suspensions of Aspergillus spp. tested and their cell-free culture filtrates had significantly inhibited the in vitro pathogen growth by 18.5 to 35.9% and by 9 to 69% compared to control, respectively. A. niger CH12 cell-free filtrate was the most active against F. sambucinum at the three concentration tested (10, 15, and 20% v v-1). Chloroform and ethyl acetate extracts from four Aspergillus spp., tested at 5% v v-1, had limited F. sambucinum mycelial growth by 34-60% and 38-66%, respectively, compared to control, with A. niger CH12 ethyl extract being the most active. Tested on potato tubers inoculated with F. sambucinum, all tested Aspergillus spp. isolates, their cell-free filtrates and organic extracts had significantly decreased the external diameter of dry rot lesion compared to pathogen-inoculated and untreated control tubers. For the rot penetration, all Aspergillus spp. isolates, their organic extracts and only filtrates from A. niger CH12 and MC2 isolates had significantly limited dry rot severity compared to pathogen-inoculated and untreated control. The highest reductions in the external diameter of dry rot lesion (76.6 and 64.1%) and the average rot penetration (77.1 and 65.1%) were achieved using chloroform and ethyl acetate extracts from A. niger CH12, respectively. These results clearly demonstrated the presence of bioactive compounds in Aspergillus spp. that can be extracted and explored as an eco-friendly alternative for the control of the target pathogen.
Collapse
Affiliation(s)
- Rania Aydi Ben Abdallah
- LR21AGR03- Production and Protection for a Sustainable Horticulture (2PHD), Regional Research Centre On Horticulture and Organic Agriculture, University of Sousse, 4042, Chott-Mariem, Tunisia.
| | - Marwa Hassine
- LR14AGR01, Laboratory of Genetics and Cereal Breeding, National Agronomic Institute of Tunisia, University of Carthage, Avenue Charles Nicolle 43, 1082, Tunis, Tunisia
| | - Hayfa Jabnoun-Khiareddine
- LR21AGR03- Production and Protection for a Sustainable Horticulture (2PHD), Regional Research Centre On Horticulture and Organic Agriculture, University of Sousse, 4042, Chott-Mariem, Tunisia
| | - Mejda Daami-Remadi
- LR21AGR03- Production and Protection for a Sustainable Horticulture (2PHD), Regional Research Centre On Horticulture and Organic Agriculture, University of Sousse, 4042, Chott-Mariem, Tunisia
| |
Collapse
|
16
|
Tiwari P, Kang S, Bae H. Plant-endophyte associations: Rich yet under-explored sources of novel bioactive molecules and applications. Microbiol Res 2023; 266:127241. [DOI: 10.1016/j.micres.2022.127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
17
|
Chen Y, Yu D, Huo J, Huang N, Zhang M, Du X. Studies on biotransformation mechanism of Fusarium sp. C39 to enhance saponin content of Paridis Rhizoma. Front Microbiol 2022; 13:992318. [PMID: 36590423 PMCID: PMC9800501 DOI: 10.3389/fmicb.2022.992318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Paridis Rhizoma is a natural medicine with strong anti-tumor and anti-inflammatory activities. Our previous research have found that Fusarium sp. C39, an endophytic fungus isolated from Dioscorea nipponica which contains the similar chemical components, significantly increased the steroidal saponins content of Paridis Rhizoma by fermentation. In this study, the inhibitory effects of fermentated Paridis Rhizoma extract (PRE) on liver cancer cells (Hepal-6), cervical cancer cells (Hela), and lung cancer cells (A549) were determined to be stronger than that of the unfermented extract. For discovering the fermentation mechanism of PRE with Fusarium sp. C39, 36 components with obviously quantitative variations were screened out by UPLC-Q/TOF-MS and 53 key genes involved in the metabolic pathways of steroidal saponins were identified by transcriptome. On the basis of comprehensively analyzing information from the metabonomics and transcriptome, it can be speculated that the increase of spirostanol saponins and nuatigenin-type saponins enhanced the inhibitory effect of fermented PRE on cancer cell proliferation. Under the action of glycosidase, glycosyltransferase, oxidoreductases, and genes involved in sterol synthesis, strain C39 achieved the synthesis of diosgenin and the alteration of configurations, sugar chain and substituent of steroidal saponins. The research suggested a microbial transformation approach to increase the resource utilization and activity of Paris polyphylla.
Collapse
Affiliation(s)
- Yiyang Chen
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Nannan Huang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Zhang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Du
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Xiaowei Du,
| |
Collapse
|
18
|
Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9966750. [PMID: 36111166 PMCID: PMC9470311 DOI: 10.1155/2022/9966750] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Plant preparations have been used to treat various diseases and discussed for centuries. Research has advanced to discover and identify the plant components with beneficial effects and reveal their underlying mechanisms. Flavonoids are phytoconstituents with anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial properties. Herein, we listed and contextualized various aspects of the protective effects of the flavonols quercetin, isoquercetin, kaempferol, and myricetin and the flavones luteolin, apigenin, 3
,4
-dihydroxyflavone, baicalein, scutellarein, lucenin-2, vicenin-2, diosmetin, nobiletin, tangeretin, and 5-O-methyl-scutellarein. We presented their structural characteristics and subclasses, importance, occurrence, and food sources. The bioactive compounds present in our diet, such as fruits and vegetables, may affect the health and disease state. Therefore, we discussed the role of these compounds in inflammation, oxidative mechanisms, and bacterial metabolism; moreover, we discussed their synergism with antibiotics for better disease outcomes. Indiscriminate use of antibiotics allows the emergence of multidrug-resistant bacterial strains; thus, bioactive compounds may be used for adjuvant treatment of infectious diseases caused by resistant and opportunistic bacteria via direct and indirect mechanisms. We also focused on the reported mechanisms and intracellular targets of flavonols and flavones, which support their therapeutic role in inflammatory and infectious diseases.
Collapse
|
19
|
Shukla N, Singh D, Tripathi A, Kumari P, Gupta RK, Singh S, Shanker K, Singh A. Synergism of endophytic Bacillus subtilis and Klebsiella aerogenes modulates plant growth and bacoside biosynthesis in Bacopa monnieri. FRONTIERS IN PLANT SCIENCE 2022; 13:896856. [PMID: 35991388 PMCID: PMC9386127 DOI: 10.3389/fpls.2022.896856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Bacopa monnieri is the main source of pharmaceutically important bacosides; however, the low content of these molecules in planta remains a limiting factor for fulfilling the industrial requirement. The accumulation of secondary metabolites can be enhanced in plants upon inoculation with endophytes. In this study, we isolated and analyzed the culturable endophytes associated with different plant parts. By analyzing their impact on plant growth parameters (in vitro and in vivo) and Bacoside A content, we found few candidates which increased bacoside accumulation significantly. Finally, two promising endophytes namely Bacillus subtilis (OK070745) and Klebsiella aerogenes (OK070774) were co-cultivated with B. monnieri cuttings singly and in combination mode to clarify their effect on bacoside biosynthesis and their accumulation in B. monnieri shoot. Consortium-inoculated plants significantly enhanced the plant biomass and Bacoside A content with respect to single inoculation. The results of real-time quantitative (RT-PCR) revealed significant accumulation of bacoside biosynthetic pathway transcripts (HMGCR, PMVK, FDPS, SQS, and β-AS) in the case of plants inoculated with microbial combination, while the single inoculation of B. subtilis diverted the plant's machinery toward the synthesis of phenylpropanoid genes like CCR, CAD, CHS, and HST. In addition, higher expression of MYB 2 and WRKY 1 transcription factors in combinational treatment points out their probable role in better physiological and developmental processes. Altogether, this is the first study on B. monnieri-endophyte interaction showing improvement in the accumulation of bacoside A by modulating various genes of metabolic pathway and thus suggests an effective "green approach" for augmenting in planta production of pharmaceutically important bacosides.
Collapse
Affiliation(s)
- Namita Shukla
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Deepti Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Poonam Kumari
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rahul Kumar Gupta
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Shiwangi Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Karuna Shanker
- Division of Phytochemistry, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
20
|
Lipid-rich endo-metabolites from a vertically transmitted fungal endophyte Penicillium sp. PM031 attenuate virulence factors of phytopathogenic Ralstonia solanacearum. Microbiol Res 2022; 261:127058. [DOI: 10.1016/j.micres.2022.127058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
21
|
Pandey SS, Jain R, Bhardwaj P, Thakur A, Kumari M, Bhushan S, Kumar S. Plant Probiotics – Endophytes pivotal to plant health. Microbiol Res 2022; 263:127148. [DOI: 10.1016/j.micres.2022.127148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/22/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022]
|
22
|
Lacerda ÍCDS, Polonio JC, Golias HC. Endophytic Fungi as a Source of Antiviral Compounds - A Review. Chem Biodivers 2022; 19:e202100971. [PMID: 35426966 DOI: 10.1002/cbdv.202100971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/14/2022] [Indexed: 11/05/2022]
Abstract
Endophytic fungi are a rich source of secondary metabolites. The interactions between endophytes and their hosts lead to the production of several bioactive substances grouped into different classes, each having a wide variety of effects against various pathogens. The metabolites obtained from these organisms include steroids, alkaloids, phenols, isocoumarins, xanthones, quinones, and terpenoids, among others. These substances are known to have antibiotic, antiparasitic, antifungal, and antiviral effects. This review summarizes secondary metabolites with antiviral effects produced by endophytic fungi and highlights the importance of research in developing novel antiviral substances. We demonstrate that endophytic fungi are a rich source of secondary metabolites that combat pathologies caused by viruses. Optimizing practical and biotechnological screening tools for the research of these metabolites will provide promising drugs to combat these infections.
Collapse
Affiliation(s)
| | - Júlio Cesar Polonio
- Department of Cell Biology, Genetics and Biotechnology, State University of Maringá (UEM), Brazil
| | - Halison Correia Golias
- Department of Humanities, Microbiology Laboratory, Federal Technological University of Paraná (UTFPR), Brazil
| |
Collapse
|
23
|
Xia Y, Liu J, Chen C, Mo X, Tan Q, He Y, Wang Z, Yin J, Zhou G. The Multifunctions and Future Prospects of Endophytes and Their Metabolites in Plant Disease Management. Microorganisms 2022; 10:microorganisms10051072. [PMID: 35630514 PMCID: PMC9146654 DOI: 10.3390/microorganisms10051072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
Endophytes represent a ubiquitous and magical world in plants. Almost all plant species studied by different researchers have been found to harbor one or more endophytes, which protect host plants from pathogen invasion and from adverse environmental conditions. They produce various metabolites that can directly inhibit the growth of pathogens and even promote the growth and development of the host plants. In this review, we focus on the biological control of plant diseases, aiming to elucidate the contribution and key roles of endophytes and their metabolites in this field with the latest research information. Metabolites synthesized by endophytes are part of plant disease management, and the application of endophyte metabolites to induce plant resistance is very promising. Furthermore, multi-omics should be more fully utilized in plant–microbe research, especially in mining novel bioactive metabolites. We believe that the utilization of endophytes and their metabolites for plant disease management is a meaningful and promising research direction that can lead to new breakthroughs in the development of more effective and ecosystem-friendly insecticides and fungicides in modern agriculture.
Collapse
Affiliation(s)
- Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Cang Chen
- College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Xiuli Mo
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Qian Tan
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Yuan He
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Zhikai Wang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Jia Yin
- College of Life Science, Hunan Normal University, Changsha 410081, China;
- Correspondence: (J.Y.); (G.Z.)
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
- Correspondence: (J.Y.); (G.Z.)
| |
Collapse
|
24
|
Endophytic fungi: a potential source of industrial enzyme producers. 3 Biotech 2022; 12:86. [PMID: 35273898 PMCID: PMC8894535 DOI: 10.1007/s13205-022-03145-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 11/01/2022] Open
Abstract
Microbial enzymes have gained interest for their widespread use in various industries and medicine due to their stability, ease of production, and optimization. Endophytic fungi in plant tissues produce a wide range of secondary metabolites and enzymes, which exhibit a variety of biological activities. The present review illustrates promising applications of enzymes produced by endophytic fungi and discusses the characteristic features of the enzymes, application of the endophytic fungal enzymes in therapeutics, agriculture, food, and biofuel industries. Endophytic fungi producing ligninolytic enzymes have possible biotechnological applications in lignocellulosic biorefineries. The global market of industrially important enzymes, challenges, and future prospects are illustrated. However, the commercialization of endophytic fungal enzymes for industrial purposes is yet to be explored. The present review suggests that endophytic fungi can produce various enzymes and may become a novel source for upscaling the production of enzymes of industrial use.
Collapse
|
25
|
Yang F, Chen J, Ye S, Liu Z, Ding Y. Characterization of antioxidant activity of exopolysaccharides from endophytic Lysinibacillus sphaericus Ya6 under osmotic stress conditions. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and Metabolomic Approaches Deepen Our Knowledge of Plant-Endophyte Interactions. FRONTIERS IN PLANT SCIENCE 2022; 12:700200. [PMID: 35154169 PMCID: PMC8828500 DOI: 10.3389/fpls.2021.700200] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 05/10/2023]
Abstract
In natural systems, plant-symbiont-pathogen interactions play important roles in mitigating abiotic and biotic stresses in plants. Symbionts have their own special recognition ways, but they may share some similar characteristics with pathogens based on studies of model microbes and plants. Multi-omics technologies could be applied to study plant-microbe interactions, especially plant-endophyte interactions. Endophytes are naturally occurring microbes that inhabit plants, but do not cause apparent symptoms in them, and arise as an advantageous source of novel metabolites, agriculturally important promoters, and stress resisters in their host plants. Although biochemical, physiological, and molecular investigations have demonstrated that endophytes confer benefits to their hosts, especially in terms of promoting plant growth, increasing metabolic capabilities, and enhancing stress resistance, plant-endophyte interactions consist of complex mechanisms between the two symbionts. Further knowledge of these mechanisms may be gained by adopting a multi-omics approach. The involved interaction, which can range from colonization to protection against adverse conditions, has been investigated by transcriptomics and metabolomics. This review aims to provide effective means and ways of applying multi-omics studies to solve the current problems in the characterization of plant-microbe interactions, involving recognition and colonization. The obtained results should be useful for identifying the key determinants in such interactions and would also provide a timely theoretical and material basis for the study of interaction mechanisms and their applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling-shang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
27
|
Sharma S, Meyer V. The colors of life: an interdisciplinary artist-in-residence project to research fungal pigments as a gateway to empathy and understanding of microbial life. Fungal Biol Biotechnol 2022; 9:1. [PMID: 35012670 PMCID: PMC8744264 DOI: 10.1186/s40694-021-00130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background Biological pigmentation is one of the most intriguing traits of many fungi. It holds significance to scientists, as a sign of biochemical metabolism and organism-environment interaction, and to artists, as the source of natural colors that capture the beauty of the microbial world. Furthermore, the functional roles and aesthetic appeal of biological pigmentation may be a path to inspiring human empathy for microorganisms, which is key to understanding and preserving microbial biodiversity. A project focused on cross-species empathy was initiated and conducted as part of an artist-in-residence program in 2021. The aim of this residency is to bridge the current divide between science and art through interdisciplinary practice focused on fungi. Results The residency resulted in multiple products that are designed for artistic and scientific audiences with the central theme of biological pigmentation in fungi and other microorganisms. The first product is a video artwork that focuses on Aspergillus niger as a model organism that produces melanin pigment in a biosynthetic process similar to that of humans. The growth and morphology of this commonplace organism are displayed through video, photo, animation, and time-lapse footage, inviting the viewer to examine the likenesses and overlaps between humans and fungi. The second product is The Living Color Database, an online compendium of biological colors for scientists, artists, and designers. It links organisms across the tree of life, focusing on fungi, bacteria, and archaea, and the colors they express through biological pigmentation. Each pigment is represented in terms of its chemistry, its related biosynthesis, and its color expressions according to different indices: HEX, RGB, and Pantone. It is available at color.bio. Conclusions As fungal biotechnology continues to mature into new application areas, it is as important as ever that there is human empathy for these organisms to promote the preservation and appreciation of fungal biodiversity. The products presented here provide paths for artists, scientists, and designers to understand microorganisms through the lens of color, promoting interspecies empathy through research, teaching, and practice.
Collapse
Affiliation(s)
- Sunanda Sharma
- Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Str. des 17. Juni 135, 10623, Berlin, Germany.
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Str. des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
28
|
Deep learning strategies for active secondary metabolites biosynthesis from fungi: Harnessing artificial manipulation and application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Arumugam N, Shanmugam MK, Thangavelu P. Purification and anticancer activity of glutaminase and urease-free l-asparaginase from novel endophyte Chaetomium sp. Biotechnol Appl Biochem 2021; 69:2161-2175. [PMID: 34694636 DOI: 10.1002/bab.2276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/18/2021] [Indexed: 11/06/2022]
Abstract
l-Asparaginase catalyzes the hydrolysis of asparagine into aspartic acid and ammonia. The present work elaborates the isolation and identification of a novel endophytic fungal isolate producing l-glutaminase and urease-free l-asparaginase. Cell growth and enzyme production were investigated for large production. The isolated endophytic fungi were identified at molecular levels and a phylogenetic tree was constructed. The enzyme synthesis was evaluated by cultivating the isolated microorganisms in potato dextrose agar medium. Out of 27 isolated endophytes, nine were producing "l-glutaminase and urease-free l-asparaginase." l-Asparaginase from Chaetomium sp. exhibited superior enzyme activity than from the other isolates. Observed optimal conditions for l-asparaginase activity were 25 min of incubation time, 0.5 mg of enzyme source, 40°C of temperature, and pH 7.0. l-Asparaginase from Chaetomium sp. exhibited anticancer activity on human blood cancer (MOLT-4) cells. The current study has demonstrated the production of contaminant-free l-asparaginase enzyme from endophytic fungal species. The results showed that: (a) maximum enzyme activity was observed for l-asparaginase from Chaetomium sp., (b) concentration of glucose in the medium as a carbon source suppressed the enzyme production. Chaetomium sp. is a novel source for "l-glutaminase and urease-free l-asparaginase," which may play a major role in pharmacotherapy.
Collapse
Affiliation(s)
- Nagarajan Arumugam
- Thermal and Bio Analysis Lab, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India
| | - Manoj Kumar Shanmugam
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Perarasu Thangavelu
- Thermal and Bio Analysis Lab, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India
| |
Collapse
|
30
|
Dos Santos R, Morais-Urano RP, Marçal RM, Silva GH, Santos MFC. Acetylcholinesterase and butyrylcholinesterase inhibition by nectriapyrone and tryptophol isolated from endophytic fungus Phomopsis sp. Nat Prod Res 2021; 36:4153-4158. [PMID: 34498969 DOI: 10.1080/14786419.2021.1960327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cholinesterase (ChE) inhibitors are currently the main drugs used to treat the cognitive symptoms of Alzheimer's disease (AD). Dual cholinesterase inhibitors, that is, compounds capable of inhibiting both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), are considered a new potential approach for the long-term treatment of patients with AD. We evaluated the ethyl acetate extract of Phomopsis sp., grown in liquid medium malt extract and potato dextrose (PDB), an endophyte isolated from the Brazilian medicinal plant Hancornia speciosa. The anticholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were evaluated. The extracts exhibited dual action against AChE and BuChE. The compounds isolated from these extracts, nectriapyrone (1) and tryptophol (2), showed inhibitory action on BuChE (IC50 = 29.05 and 34.15 μM respectively), being selective towards BuChE. The discovery of selective BuChE inhibitors is extremely important for the development of drugs that can be used in the treatment of patients diagnosed with AD.
Collapse
Affiliation(s)
- Rosiane Dos Santos
- Departamento de Engenharia Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | | | - Rosilene M Marçal
- Departamento de Engenharia Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Geraldo H Silva
- Instituto de Ciências Exatas, Universidade Federal de Viçosa, Rio Parnaíba, Brazil
| | - Mário F C Santos
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| |
Collapse
|
31
|
Dos Santos GD, Gomes RR, Gonçalves R, Fornari G, Maia BHLNS, Schmidt-Dannert C, Gaascht F, Glienke C, Schneider GX, Colombo IR, Degenhardt-Goldbach J, Pietsch JLM, Costa-Ribeiro MCV, Vicente VA. Molecular Identification and Antimicrobial Activity of Foliar Endophytic Fungi on the Brazilian Pepper Tree (Schinus terebinthifolius) Reveal New Species of Diaporthe. Curr Microbiol 2021; 78:3218-3229. [PMID: 34213615 DOI: 10.1007/s00284-021-02582-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
The presence of endophytes promotes the biosynthesis of secondary plant metabolites. In this study, endophytic fungi were isolated from Schinus terebinthifolius to investigate their diversity and antimicrobial activity. A total of 272 endophytic fungi was obtained. These belonged to nine different genera: Alternaria, Colletotrichum, Diaporthe, Epicoccum, Fusarium, Pestalotiopsis, Phyllosticta, Xylaria, and Cryptococcus. Notably, Diaporthe foliorum was introduced as a new species, with accompanying morphological descriptions, illustrations, and a multigene phylogenetic analysis (using ITS, TEF1, TUB, HIS, and CAL). Among the 26 fungal morphotypes evaluated for antimicrobial activity, five strains had inhibitory effects against pathogenic microorganisms. Xylaria allantoidea CMRP1424 extracts showed antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Diaporthe terebinthifolii CMRP1430 and CMRP1436 showed antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Meanwhile, D. foliorum CMRP1321 and D. malorum CMRP1438 extracts inhibited C. albicans alone. Three classes of chemical compounds were identified in D. foliorum CMRP1438 extracts: ferric chloride, potassium hydroxide, and vanillin-sulfuric acid. In conclusion, the endophytic isolates were able to produce bioactive agents with pharmaceutical potential as antibacterial and antifungal agents. As such, they may provide fresh leads in the search for new, biological sources of drug therapies.
Collapse
Affiliation(s)
- Germana D Dos Santos
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil.
| | - Rosana Gonçalves
- Undergraduate Student in Biomedicine, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gheniffer Fornari
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Beatriz H L N S Maia
- Department of Chemistry, Federal University of Paraná State, Curitiba, PR, Brazil
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Francois Gaascht
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Chirlei Glienke
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Gabriela X Schneider
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Israella R Colombo
- Undergraduate Student in Biomedicine, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - João L M Pietsch
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Magda C V Costa-Ribeiro
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil
| | - Vania A Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Basic Pathology Department, Federal University of Paraná State, Curitiba, 81531-980, Brazil.
| |
Collapse
|
32
|
Chen Y, Hu B, Xing J, Li C. Endophytes: the novel sources for plant terpenoid biosynthesis. Appl Microbiol Biotechnol 2021; 105:4501-4513. [PMID: 34047817 PMCID: PMC8161352 DOI: 10.1007/s00253-021-11350-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Terpenoids are natural compounds predominantly present in plants. They have many pharmaceutical and/or nutritional functions, and have been widely applied in medical, food, and cosmetics industries. Recently, terpenoids have been used in the clinical treatment of COVID-19 due to the good antiviral activities. The increasing demand for terpenoids in international markets poses a serious threat to many plant species. For environmentally sustainable development, microbial cell factories have been utilized as the promising platform to produce terpenoids. Nevertheless, the bioproduction of most terpenoids cannot meet commercial requirements due to the low cost-benefit ratio until now. The biosynthetic potential of endophytes has gained attention in recent decades owing to the continual discovery of endophytes capable of synthesizing plant bioactive compounds. Accordingly, endophytes could be alternative sources of terpenoid-producing strains or terpenoid synthetic genes. In this review, we summarized the research progress describing the main and supporting roles of endophytes in terpenoid biosynthesis and biotransformation, and discussed the current problems and challenges which may prevent the further exploitation. This review will improve our understanding of endophyte resources for terpenoid production in industry in the future. The four main research interests on endophytes for terpenoid production. A: Isolation of terpenoid-producing endophytes; B: The heterologous expression of endophyte-derived terpenoid synthetic genes; C: Endophytes promoting their hosts' terpenoid production. The blue dashed arrows indicate signal transduction; D: Biotransformation of terpenoids by endophytes or their enzymes. Key points• The mechanisms employed by endophytes in terpenoid synthesis in vivo and in vitro.• Endophytes have the commercial potentials in terpenoid bioproduction and biotransformation.• Synthetic biology and multiomics will improve terpenoid bioproduction in engineered cell factories.
Collapse
Affiliation(s)
- Yachao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bing Hu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Wu T, Li XB, Xu J, Liu LX, Ren LL, Dong B, Li W, Xie WJ, Yao ZG, Chen QF, Xia JB. Diversity and functional characteristics of endophytic bacteria from two grass species growing on an oil-contaminated site in the Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144340. [PMID: 33429273 DOI: 10.1016/j.scitotenv.2020.144340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Phragmites australis and Chloris virgata are native, dominant, salt-tolerant grass species that grow in the Yellow River Delta, China, and have potential applications in the phytoremediation of petroleum-polluted saline soil. The characteristics of endophytic bacterial communities of Phragmites australis and Chloris virgata and their functions in hydrocarbon degradation and plant growth promotion have been studied using both high-throughput sequencing and conventional microbial techniques. Through 16S rRNA gene amplicon sequencing, we found five bacterial phyla that were dominant among the endophytic bacterial communities of the two grass species, including Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Tenericutes. The phylum Proteobacteria was common among the endophytic bacterial communities of the two grass species. The diversity in the endophytic bacterial community of Chloris virgata was generally higher than that in the community of Phragmites australis. Thirty-eight hydrocarbon-degrading endophytic bacteria were isolated from the two grasses via culturing techniques. Based on phylogenetic analyses, the bacterial isolates were classified into the phyla Proteobacteria, Firmicutes, and Actinobacteria. The majority of strains belonged to the genera Bacillus and Pseudomonas. More than 70% of the isolates of hydrocarbon-degrading endophytes exhibited the ability to stimulate plant growth. These isolates mainly belonged to Bacillus sp., Pseudomonas sp., Beijerinckia sp., Serratia sp., Acinetobacter sp., Microbacterium sp., and Rhizobium sp. Altogether, the present study revealed that Phragmites australis and Chloris virgata growing on petroleum-polluted saline soil in the Yellow River Delta harbor several diverse species of endophytic bacteria and serve as novel sources of beneficial bacteria and hydrocarbon degradation.
Collapse
Affiliation(s)
- Tao Wu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China; Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256603, China
| | - Xiao-Bin Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, China
| | - Jie Xu
- Department of Bioengineering, Binzhou Vocational College, Binzhou 256600, China
| | - Long-Xiang Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Li-Li Ren
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Bin Dong
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Wang Li
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Wen-Jun Xie
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China; Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256603, China
| | - Zhi-Gang Yao
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China
| | - Qing-Feng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| | - Jiang-Bao Xia
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, China; Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou 256603, China.
| |
Collapse
|
34
|
Jahromi MS, Azizi A, Soltani J. Diversity and Spatiotemporal Distribution of Fungal Endophytes Associated with Salvia multicaulis. Curr Microbiol 2021; 78:1432-1447. [PMID: 33651191 DOI: 10.1007/s00284-021-02430-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022]
Abstract
Salvia multicaulis has been an important medicinal plant in Iran and several East Asian countries for hundreds of years. Because of growing demand, overharvesting of wild S. multicaulis has endangered its wild populations. Endophytes are well known for protecting wild plant populations against biotic and abiotic stresses, especially under harsh situations, as well as for their plant growth enhancement activities. Since no information was on endophyte biology in S. multicaulis, here we aimed at analyzing diversity and spatiotemporal distribution of fungal endophytes associating S. multicaulis in their main wild habitats in Iran, i.e., Qazvin, Alborz and Mazandaran provinces. A total of 153 fungal endophytes were isolated and identified according to their morphology and ribosomal ITS rDNA sequences. As results indicated Ascomycota dominated in colonizing S. multicaulis with a relative frequency (RF) of 96.77%, comprising of Eurotiomycetes (RF: 40.5%), Sordariomycetes (RF: 33.9%) and Dothideomycetes (RF: 20.5%). Mucoromycota, comprised the rest of endophytes (RF: 5.23%). The entire fungal microbiome was classified into nine genera including Fusarium (25.5%), Penicillium (21.5%), Aspergillus (17.0%), Alternaria (15.5%), Colletotrichum (5.2%), Rhizopus (5.2%), Macrophomina (4.5%), Trichoderma (3.25%) and Nodulisporium (2.0%). Analyses of different diversity indices indicated significant correlations with tissue type, sampling locations and season of recovery. Almost 43% of fungal endophytes were recovered at Mazandaran, Kojur; 35.4% at Qazvin, Barajin Forest Park; 30.1% at Alborz, Taleqan; and 21% at Alborz, Mahdasht. The highest overall endophyte recovery was in summer (36.8%), followed by spring (31.6%), autumn (21%), and winter (10.5%). In total, the number of endophytes recovered from roots (91) was higher than those of stems (32) and leaves (30), especially during autumn and winter. Accordingly, we conclude that Ascomycota are the major endophytic fungi colonizing S. multicaulis, and that sampling location, tissue type and season can affect the fungal endophyte composition of this medicinal plant. This knowledge could be further applied in protection and health management of this endangered species.
Collapse
Affiliation(s)
- Mahdi Sabet Jahromi
- Horticultural Sciences Department, Agriculture Faculty, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Azizi
- Horticultural Sciences Department, Agriculture Faculty, Bu-Ali Sina University, Hamedan, Iran.
| | - Jalal Soltani
- Phytopathology Section, Plant Protection Department, Agriculture Faculty, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
35
|
Purification, Characterization, and Biocatalytic and Antibiofilm Activity of a Novel Dextranase from Talaromyces sp. Int J Microbiol 2020. [DOI: 10.1155/2020/9198048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dextranase is a useful enzyme that catalyzes the degradation of dextran to low-molecular-weight fractions, which have many critical commercial and clinical applications. Endophytic fungi represent a source of both high heat-stable and pH-stable enzymes. In this study, from Delonix regia bark by plate assay, out of 12 isolated fungal strains, hyaline zones were detected in only one strain. By using the standard ITS rDNA sequencing analysis, the isolated strain was identified as Talaromyces sp. In the case of carbon source, in a medium containing 1% dextran T2000 as the sole carbon source, the maximum dextranase activity reached approximately 120 U/ml after incubation of 2 days where the optimum pH was 7.4. Peptone addition to the production medium as a sole nitrogen source was accompanied by a significant increase in the dextranase production. Similarly, some metal ions, such as Fe2+ and Zn2+, increased significantly enzyme production. However, there was no significant difference resulting from the addition of Cu2+. The crude dextranase was purified by ammonium sulfate fractionation, followed by Sephadex G100 chromatography with 28-fold purification. The produced dextranase was 45 kDa with an optimum activity at 37°C and a pH of 7. Moreover, the presence of MgSO4, FeSO4, and NH4SO4 increased the purified dextranase activity; however, SDS and EDTA decreased it. Interestingly, the produced dextranase expressed remarkable pH stability, temperature stability, and biofilm inhibition activity, reducing old-established biofilm by 86% and biofilm formation by 6%.
Collapse
|
36
|
Torres-Mendoza D, Ortega HE, Cubilla-Rios L. Patents on Endophytic Fungi Related to Secondary Metabolites and Biotransformation Applications. J Fungi (Basel) 2020; 6:E58. [PMID: 32370098 PMCID: PMC7344749 DOI: 10.3390/jof6020058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Endophytic fungi are an important group of microorganisms and one of the least studied. They enhance their host's resistance against abiotic stress, disease, insects, pathogens and mammalian herbivores by producing secondary metabolites with a wide spectrum of biological activity. Therefore, they could be an alternative source of secondary metabolites for applications in medicine, pharmacy and agriculture. In this review, we analyzed patents related to the production of secondary metabolites and biotransformation processes through endophytic fungi and their fields of application. We examined 245 patents (224 related to secondary metabolite production and 21 for biotransformation). The most patented fungi in the development of these applications belong to the Aspergillus, Fusarium, Trichoderma, Penicillium, and Phomopsis genera and cover uses in the biomedicine, agriculture, food, and biotechnology industries.
Collapse
Affiliation(s)
- Daniel Torres-Mendoza
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama; (D.T.-M.); (H.E.O.)
- Vicerrectoría de Investigación y Postgrado, University of Panama, Panama 0824, Panama
| | - Humberto E. Ortega
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama; (D.T.-M.); (H.E.O.)
- Department of Organic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama
| | - Luis Cubilla-Rios
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama; (D.T.-M.); (H.E.O.)
| |
Collapse
|
37
|
Ancheeva E, Daletos G, Proksch P. Bioactive Secondary Metabolites from Endophytic Fungi. Curr Med Chem 2020; 27:1836-1854. [DOI: 10.2174/0929867326666190916144709] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/15/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022]
Abstract
Background:
Endophytes represent a complex community of microorganisms colonizing
asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance
the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved
in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly
apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally
believed to be produced only by their host plants.
Objective:
The present review provides an overview of secondary metabolites from endophytic fungi
with pronounced biological activities covering the literature between 2010 and 2017. Special focus is
given on studies aiming at exploration of the mode of action of these metabolites towards the discovery
of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic
fungi as alternative sources of bioactive “plant metabolites”.
Results:
Over the past few years, several promising lead structures from endophytic fungi have been
described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities,
primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be
highly selective or to possess novel mechanisms of action, which hold great promises as potential drug
candidates.
Conclusion:
Endophytes represent an inexhaustible reservoir of pharmacologically important compounds.
Moreover, endophytic fungi could be exploited for the sustainable production of bioactive
“plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host
plant interactions and origin of endophytic fungal genes would be of utmost importance.
Collapse
Affiliation(s)
- Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| |
Collapse
|
38
|
Sarsaiya S, Jain A, Jia Q, Fan X, Shu F, Chen Z, Zhou Q, Shi J, Chen J. Molecular Identification of Endophytic Fungi and Their Pathogenicity Evaluation Against Dendrobium nobile and Dendrobium officinale. Int J Mol Sci 2020; 21:316. [PMID: 31906579 PMCID: PMC6982089 DOI: 10.3390/ijms21010316] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 11/17/2022] Open
Abstract
: Dendrobium are tropical orchid plants that host diverse endophytic fungi. The role of these fungi is not currently well understood in Dendrobium plants. We morphologically and molecularly identified these fungal endophytes, and created an efficient system for evaluating the pathogenicity and symptoms of endophytic fungi on Dendrobium nobile and Dendrobium officinale though in vitro co-culturing. ReThe colony morphological traits of Dendrobium myco-endophytes (DMEs) were recorded for their identification. Molecular identification revealed the presence of Colletotrichum tropicicola, Fusarium keratoplasticum, Fusarium oxysporum, Fusarium solani, and Trichoderma longibrachiatum. The pathogenicity results revealed that T. longibrachiatum produced the least pathogenic effects against D. nobile protocorms. In seedlings, T. longibrachiatum showed the least pathogenic effects against D. officinale seedlings after seven days. C. tropicicola produced highly pathogenic effects against both Dendrobium seedlings. The results of histological examination of infected tissues revealed that F. keratoplasticum and T. longibrachiatum fulfill Koch's postulates for the existence of endophytes inside the living tissues. The DMEs are cross-transmitted inside the host plant cells, playing an important role in plant host development, resistance, and alkaloids stimulation.
Collapse
Affiliation(s)
- Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; (S.S.); (A.J.)
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China; (Q.J.); (F.S.); (Z.C.); (Q.Z.)
| | - Archana Jain
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; (S.S.); (A.J.)
| | - Qi Jia
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China; (Q.J.); (F.S.); (Z.C.); (Q.Z.)
| | - Xiaokuan Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China;
| | - Fuxing Shu
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China; (Q.J.); (F.S.); (Z.C.); (Q.Z.)
| | - Zhongwen Chen
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China; (Q.J.); (F.S.); (Z.C.); (Q.Z.)
| | - Qinian Zhou
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China; (Q.J.); (F.S.); (Z.C.); (Q.Z.)
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; (S.S.); (A.J.)
| | - Jishuang Chen
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China; (S.S.); (A.J.)
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi 563003, China; (Q.J.); (F.S.); (Z.C.); (Q.Z.)
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China;
| |
Collapse
|
39
|
Antitumor astins originate from the fungal endophyte Cyanodermella asteris living within the medicinal plant Aster tataricus. Proc Natl Acad Sci U S A 2019; 116:26909-26917. [PMID: 31811021 DOI: 10.1073/pnas.1910527116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Medicinal plants are a prolific source of natural products with remarkable chemical and biological properties, many of which have considerable remedial benefits. Numerous medicinal plants are suffering from wildcrafting, and thus biotechnological production processes of their natural products are urgently needed. The plant Aster tataricus is widely used in traditional Chinese medicine and contains unique active ingredients named astins. These are macrocyclic peptides showing promising antitumor activities and usually containing the highly unusual moiety 3,4-dichloroproline. The biosynthetic origins of astins are unknown despite being studied for decades. Here we show that astins are produced by the recently discovered fungal endophyte Cyanodermella asteris We were able to produce astins in reasonable and reproducible amounts using axenic cultures of the endophyte. We identified the biosynthetic gene cluster responsible for astin biosynthesis in the genome of C. asteris and propose a production pathway that is based on a nonribosomal peptide synthetase. Striking differences in the production profiles of endophyte and host plant imply a symbiotic cross-species biosynthesis pathway for astin C derivatives, in which plant enzymes or plant signals are required to trigger the synthesis of plant-exclusive variants such as astin A. Our findings lay the foundation for the sustainable biotechnological production of astins independent from aster plants.
Collapse
|
40
|
Xiong YW, Ju XY, Li XW, Gong Y, Xu MJ, Zhang CM, Yuan B, Lv ZP, Qin S. Fermentation conditions optimization, purification, and antioxidant activity of exopolysaccharides obtained from the plant growth-promoting endophytic actinobacterium Glutamicibacter halophytocola KLBMP 5180. Int J Biol Macromol 2019; 153:1176-1185. [PMID: 31756484 DOI: 10.1016/j.ijbiomac.2019.10.247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/26/2019] [Accepted: 10/26/2019] [Indexed: 01/05/2023]
Abstract
In this study, an endophytic actinobacterium Glutamicibacter halophytocola KLBMP 5180, was investigated for the production and antioxidant activity of exopolysaccharides (EPSs). First, the suitable fermentation time, temperature, inoculation volume, pH value, and the carbon and nitrogen sources for EPSs production were obtained using the one variable at a time method (OVAT). Then, a central composition design was used for fermentation conditions optimization to obtain the maximum EPS yield. The optimal medium and condition were as follows: 100 mL broth in 250 mL Erlenmeyer flasks, including 3.65 g/L maltose, 9.88 g/L malt extract, 3.40 g/L yeast extract, 1.41 g/L MnCl2, pH 7.5, culture temperature 28 °C, and 200 rpm for 7 days, which increased the yield of EPSs to 2.89 g/L. Two purified EPSs, 5180EPS-1 (MW 58.9 kDa) and 5180EPS-2 (10.5 kDa), comprising rhamnose, galacturonic acid, glucose, glucuronic acid, xylose, and arabinose, were obtained for chemical analysis and antioxidant evaluation. The scavenging ability and reducing power of the superoxide anion and hydroxyl radicals demonstrated the moderate in vitro antioxidant activities of the two EPSs, thus indicating their potential to be a new source of natural antioxidants. However, further structure elucidation and functional studies need to be continued.
Collapse
Affiliation(s)
- You-Wei Xiong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Xiu-Yun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Xue-Wei Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Yuan Gong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Ming-Jie Xu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Chun-Mei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Bo Yuan
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Zuo-Peng Lv
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province (KLBMP), School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
41
|
Henning JA, Weston DJ, Pelletier DA, Timm CM, Jawdy SS, Classen AT. Relatively rare root endophytic bacteria drive plant resource allocation patterns and tissue nutrient concentration in unpredictable ways. AMERICAN JOURNAL OF BOTANY 2019; 106:1423-1434. [PMID: 31657872 DOI: 10.1002/ajb2.1373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/06/2019] [Indexed: 05/12/2023]
Abstract
PREMISE Plant endophytic bacterial strains can influence plant traits such as leaf area and root length. Yet, the influence of more complex bacterial communities in regulating overall plant phenotype is less explored. Here, in two complementary experiments, we tested whether we can predict plant phenotype response to changes in microbial community composition. METHODS In the first study, we inoculated a single genotype of Populus deltoides with individual root endophytic bacteria and measured plant phenotype. Next, data from this single inoculation were used to predict phenotypic traits after mixed three-strain community inoculations, which we tested in the second experiment. RESULTS By itself, each bacterial endophyte significantly but weakly altered plant phenotype relative to noninoculated plants. In a mixture, bacterial strain Burkholderia BT03, constituted at least 98% of community relative abundance. Yet, plant resource allocation and tissue nutrient concentrations were disproportionately influenced by Pseudomonas sp. GM17, GM30, and GM41. We found a 10% increase in leaf mass fraction and an 11% decrease in root mass fraction when replacing Pseudomonas GM17 with GM41 in communities containing both Pseudomonas GM30 and Burkholderia BT03. CONCLUSIONS Our results indicate that interactions among endophytic bacteria may drive plant phenotype over the contribution of each strain individually. Additionally, we have shown that low-abundance strains contribute to plant phenotype challenging the assumption that the dominant strains will drive plant function.
Collapse
Affiliation(s)
- Jeremiah A Henning
- Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996, USA
- Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Avenue, St. Paul, MN, 55108, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Collin M Timm
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Biosciences, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Aimée T Classen
- Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, TN, 37996, USA
- The Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
42
|
He W, Megharaj M, Wu CY, Subashchandrabose SR, Dai CC. Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants. Crit Rev Biotechnol 2019; 40:31-45. [PMID: 31656090 DOI: 10.1080/07388551.2019.1675582] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phytoremediation uses plants and associated microbes to remove pollutants from the environment and is considered a promising bioremediation method. Compared with well-described single contaminant treatments, the number of studies reporting phytoremediation of soil mixed pollutants has increased recently. Endophytes, including bacteria and fungi, exhibit beneficial traits for the promotion of plant growth, stress alleviation, and biodegradation. Moreover, endophytes either directly or indirectly assist host plants to survive high concentrations of organic and inorganic pollutants in the soil. Endophytic microorganisms can also regulate the plant metabolism in different ways, exhibiting a variety of physiological characteristics. This review summarizes the taxa and physiological properties of endophytic microorganisms that may participate in the detoxification of contaminant mixtures. Furthermore, potential biomolecules that may enhance endophyte mediated phytoremediation are discussed. The practical applications of pollutant-degrading endophytes and current strategies for applying this valuable bio-resource to soil phytoremediation are summarized.
Collapse
Affiliation(s)
- Wei He
- College of Life Sciences, Nanjing Normal University, Nanjing, China.,Global Centre for Environmental Remediation (GCER), The University of Newcastle (UoN), Callaghan, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UoN), Callaghan, Australia
| | - Chun-Ya Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UoN), Callaghan, Australia
| | - Chuan-Chao Dai
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
43
|
Ashitha A, Midhun S, Sunil M, Nithin T, Radhakrishnan E, Mathew J. Bacterial endophytes from Artemisia nilagirica (Clarke) Pamp., with antibacterial efficacy against human pathogens. Microb Pathog 2019; 135:103624. [DOI: 10.1016/j.micpath.2019.103624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022]
|
44
|
Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101284] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Wu J, Ming Q, Zhai X, Wang S, Zhu B, Zhang Q, Xu Y, Shi S, Wang S, Zhang Q, Han T, Qin L. Structure of a polysaccharide from Trichoderma atroviride and its promotion on tanshinones production in Salvia miltiorrhiza hairy roots. Carbohydr Polym 2019; 223:115125. [PMID: 31426969 DOI: 10.1016/j.carbpol.2019.115125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023]
Abstract
This study evaluates the chemical structure of a heteropolysaccharide (PSF-W-1) from the endophytic fungus Trichoderma atroviride and its effects on the production of tanshinones in Salvia miltiorrhiza hairy roots. The total carbohydrate content of isolated PSF-W-1 was determined to be 97.72%. PSF-W-1 has a relative molecular weight of 36.13 kDa and contains mannose, glucose and galactose in molar ratios of 1.00:4.86:2.25. Through methylation analysis, IR and NMR, PSF-W-1 was determined to possess a backbone of →4)-β-D-Glcp-(1→6)-α-D-Galp-(1→4)-β-D-Manp-(1→6)-α-D-Galp-(1→ with two side chains β-D-Glcp-(1→4)-β-D-Glcp-(1→ attached to O3 of 1,6-α-D-Galp. Bioactivity tests suggested that PSF-W-1 was responsible for boosting the S. miltiorrhiza hairy root growth and the biosynthesis of dihydrotanshinone I, tanshinone I, tanshinone IIA and cryptotanshinone in hairy roots. According to this study, PSF-W-1 might be utilized as a potent stimulator of tanshinones synthesis.
Collapse
Affiliation(s)
- Jianjun Wu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Qianliang Ming
- Department of Pharmacognosy, School of Pharmacy, Army Medical University, Chongqing 400038, PR China; Department of Pharmacognosy, School of Pharmacy, Navy Medical University, Shanghai 200433, PR China
| | - Xin Zhai
- Department of Pharmacognosy, School of Pharmacy, Navy Medical University, Shanghai 200433, PR China
| | - Siqi Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Quanlong Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yongbin Xu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Songshan Shi
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Shunchun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Qiaoyan Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Navy Medical University, Shanghai 200433, PR China.
| | - Luping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Department of Pharmacognosy, School of Pharmacy, Navy Medical University, Shanghai 200433, PR China.
| |
Collapse
|
46
|
Extracellular polysaccharides of endophytic fungus Alternaria tenuissima F1 from Angelica sinensis: Production conditions, purification, and antioxidant properties. Int J Biol Macromol 2019; 133:172-183. [DOI: 10.1016/j.ijbiomac.2019.03.246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022]
|
47
|
Sundaresan N, Sahu AK, Jagan EG, Pandi M. Evaluation of ITS2 molecular morphometrics effectiveness in species delimitation of Ascomycota - A pilot study. Fungal Biol 2019; 123:517-527. [PMID: 31196521 DOI: 10.1016/j.funbio.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 04/01/2019] [Accepted: 05/02/2019] [Indexed: 01/19/2023]
Abstract
Exploring the secondary structure information of nuclear ribosomal internal transcribed spacer 2 (ITS2) has been a promising approach in species delimitation. However, Compensatory base changes (CBC) concept employed in this approach turns futile when CBC is absent. This prompted us to investigate the utility of insertion/deletion (INDELs) and substitutions in fungal delineation at species level. Upon this rationale, 116 strains representing 97 species, belonging to 6 genera (Colletotrichum, Boeremia, Leptosphaeria, Peyronellaea, Plenodomus and Stagonosporopsis) of Ascomycota were retrieved from Q-bank for molecular morphometric analysis. CBC, INDELs and substitutions between the species of their respective genus were recorded. Most species combinations lacked CBC. Among the substitution events, transitions were predominant. INDELs were less frequent than the substitutions. These evolutionary events were mapped upon the helices to discern species specific variation sites. In 68 species unique variation sites were recognised. The remaining 29 species shared absolute similarity with distinctly named species. The variation sites catalogued in them overlapped with other distinct species and resulted in the blurring of species boundaries. Species specific variation sites recognized in this study are the preliminary results and they could be discerned with absolute confidence when larger datasets encompassing all described species of genera were investigated. They could be of potential use in barcoding fungi at species level. This study also concludes that the ITS2 molecular morphometric analysis is an efficient third dimensional study of the fungal species delimitation. This may help to avoid the false positives in species delimitations and to alleviate the challenges in molecular characterization.
Collapse
Affiliation(s)
- Natesan Sundaresan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Amit Kumar Sahu
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Enthai Ganeshan Jagan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Mohan Pandi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
48
|
Wang ZF, Zhang W, Xiao L, Zhou YM, Du FY. Characterization and bioactive potentials of secondary metabolites from Fusarium chlamydosporum. Nat Prod Res 2018; 34:889-892. [DOI: 10.1080/14786419.2018.1508142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zhao-Fu Wang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Wei Zhang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Lin Xiao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
| | - Yuan-Ming Zhou
- Analytical and Testing Center, Qingdao Agricultural University, Qingdao, China
| | - Feng-Yu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, China
- Shandong Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
49
|
Pedra NS, Galdino KDCA, da Silva DS, Ramos PT, Bona NP, Soares MSP, Azambuja JH, Canuto KM, de Brito ES, Ribeiro PRV, Souza ASDQ, Cunico W, Stefanello FM, Spanevello RM, Braganhol E. Endophytic Fungus Isolated From Achyrocline satureioides Exhibits Selective Antiglioma Activity-The Role of Sch-642305. Front Oncol 2018; 8:476. [PMID: 30420941 PMCID: PMC6215846 DOI: 10.3389/fonc.2018.00476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most devastating primary brain tumor. Current treatment is palliative, making necessary the development of new therapeutic strategies to offer alternatives to patients. Therefore, endophytes represent an interesting source of natural metabolites with anticancer potential. These microorganisms reside in tissues of living plants and act to improve their growth. Evidence revealed that several medicinal plants are colonized by endophytic fungi producer of antitumor metabolites. Achyrocline satureioides is a Brazilian medicinal plant characterized by its properties against gastrointestinal disturbances, anticancer and antioxidant effects. However, there are no reports describing the endophytic composition of A. satureioides. The present study proposes the isolation of endophytic fungus from A. satureioides, extract preparation, phytochemical characterization and evaluation of its antiglioma potential. Our data showed that crude extracts of endophyte decreased glioma viability with IC50 values of 1.60-1.63 μg/mL to eDCM (dichloromethane extract) and 37.30-55.12 μg/mL to eEtAc (ethyl acetate extract), respectively. Crude extracts induced cell death by apoptosis with modulation of redox status. In order to bioprospect anticancer metabolites, endophytic fungus extracts were subjected to guided fractionation and purification yielded five fractions of each extract. Six of ten fractions showed selective antiproliferative activity against glioma cells, with IC50 values ranged from 0.95 to 131.3 μg/mL. F3DCM (from eDCM) and F3EtAc (from eEtAc) fractions promoted C6 glioma toxicity with IC50 of 1.0 and 27.05 μg/mL, respectively. F3EtAc fraction induced late apoptosis and arrest in G2/M stage, while F3DCM promoted apoptosis with arrest in Sub-G1 phase. Moreover, F3DCM increased antioxidant defense and decreased ROS production. Additionally, F3DCM showed no cytotoxic activity against astrocytes, revealing selective effect. Based on promising potential of F3DCM, we identified the production of Sch-642305, a lactone, which showed antiproliferative properties with IC50 values of 1.1 and 7.6 μg/mL to C6 and U138MG gliomas, respectively. Sch-642305 promoted arrest on cell cycle in G2/M inducing apoptosis. Furthermore, this lactone decreased glioma cell migration and modulated redox status, increasing superoxide dismutase and catalase activities and enhancing sulfhydryl content, consequently suppressing reactive species of oxygen generation. Taken together, these results indicate that metabolites produced by endophytic fungus isolated from A. satureioides have therapeutic potential as antiglioma agent.
Collapse
Affiliation(s)
- Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Kennia de Cássia Araújo Galdino
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Daniel Schuch da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Priscila Treptow Ramos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Juliana Hoffstater Azambuja
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | | | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
50
|
Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V. Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications. Front Microbiol 2018; 9:2325. [PMID: 30333807 PMCID: PMC6176074 DOI: 10.3389/fmicb.2018.02325] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 01/14/2023] Open
Abstract
Viral infections are amongst the most common diseases affecting people worldwide. New viruses emerge all the time and presently we have limited number of vaccines and only few antivirals to combat viral diseases. Fungi represent a vast source of bioactive molecules, which could potentially be used as antivirals in the future. Here, we have summarized the current knowledge of fungi as producers of antiviral compounds and discuss their potential applications. In particular, we have investigated how the antiviral action has been assessed and what is known about the molecular mechanisms and actual targets. Furthermore, we highlight the importance of accurate fungal species identification on antiviral and other natural products studies.
Collapse
Affiliation(s)
| | - Dhanik Reshamwala
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pyry Veteli
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Henri Vanhanen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Varpu Marjomäki
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|