1
|
Chisanga M, Masson JF. Machine Learning-Driven SERS Nanoendoscopy and Optophysiology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:313-338. [PMID: 38701442 DOI: 10.1146/annurev-anchem-061622-012448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A frontier of analytical sciences is centered on the continuous measurement of molecules in or near cells, tissues, or organs, within the biological context in situ, where the molecular-level information is indicative of health status, therapeutic efficacy, and fundamental biochemical function of the host. Following the completion of the Human Genome Project, current research aims to link genes to functions of an organism and investigate how the environment modulates functional properties of organisms. New analytical methods have been developed to detect chemical changes with high spatial and temporal resolution, including minimally invasive surface-enhanced Raman scattering (SERS) nanofibers using the principles of endoscopy (SERS nanoendoscopy) or optical physiology (SERS optophysiology). Given the large spectral data sets generated from these experiments, SERS nanoendoscopy and optophysiology benefit from advances in data science and machine learning to extract chemical information from complex vibrational spectra measured by SERS. This review highlights new opportunities for intracellular, extracellular, and in vivo chemical measurements arising from the combination of SERS nanosensing and machine learning.
Collapse
Affiliation(s)
- Malama Chisanga
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| | - Jean-Francois Masson
- Département de Chimie, Institut Courtois, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada;
| |
Collapse
|
2
|
Li M, Sun Y, Yang X, Ke Z, Zhou J, Liang Z, Zhang S. Temperature measurement of aqueous solution in miniature sample chamber in microscopic system based on near-infrared spectrum. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:123701. [PMID: 36586931 DOI: 10.1063/5.0111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Measurement of the sample temperature in biophysics research is challenging, as the samples are commonly placed in a miniature sample chamber under a microscope. In this study, we proposed a method to measure the temperature of an aqueous solution in miniature sample chambers in a microscopic system. Existing studies show that the absorption coefficient spectrum of water shifts with temperature, especially in the near-infrared (NIR) band. We measured the absorption spectra of water with different temperatures and analyzed them, to build a mathematical model relating the temperature and the spectrum. A setup for temperature measurement in a microscopic system was designed and implemented by coupling a spectrometer and a light source to a microscope. The temperature could be calculated by the spectral data and the mathematical model while simultaneously observing the micro-image of the sample. A series of liquid samples at different temperatures were tested using the setup, and the root mean square error of the calculated temperature is less than 0.5 °C. The results demonstrate that the method based on the NIR spectrum can be used for noncontact and quick measurement of the liquid sample temperature in a microscopic system.
Collapse
Affiliation(s)
- Miao Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yue Sun
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Xiao Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Zeyu Ke
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Jinhua Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Zhen Liang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Shengzhao Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
3
|
Yang Q, Cristea A, Roberts C, Liu K, Song Y, Xiao H, Shi H, Ma Y. Unveil early-stage nanocytotoxicity by a label-free single cell pH nanoprobe. Analyst 2020; 145:7210-7224. [PMID: 32960188 PMCID: PMC7655686 DOI: 10.1039/d0an01437k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-cell analysis is an emerging research area that aims to reveal delicate cellular status and underlying mechanisms by conquering the intercellular heterogeneity. Current single-cell research methods, however, are highly dependent on cell-destructive protocols and cannot sequentially display the progress of cellular events. A recently developed pH nanoprobe in our lab conceptually showed its ability to detect intracellular pH (pHi) without cell labeling or disruption. In the present study, we took the cytotoxicity of nanoparticles (NPs) as a typical example of cell heterogeneity, to testify the practicality of the pH nanoprobe in interpreting cell status. Three types of NPs (CeO2, TiO2, and SiO2) were employed to generate varied toxic effects. Results showed that the traditional assays - including cell viability, intracellular ROS generation, and mitochondrial inner membrane depolarization - not only failed to report the nanotoxicity accurately and timely, but also drew confusing or misleading conclusions. The pH nanoprobe revealed explicit pHi changes induced by the NPs, which corresponded well with the cell damages found by the transmission electron microscopic (TEM) imaging. Besides, our results unveiled an unexpectedly devastating effect of SiO2 NPs on cells during the early stage NP-cell interaction. The developed novel pH nanoprobe demonstrated a rapid sensing capability at single-cell resolution with minimum invasiveness. Therefore, it may become a promising alternative for a wide range of applications in areas such as single-cell research and precision medicine.
Collapse
Affiliation(s)
- Qingbo Yang
- Department of Chemistry, and Center for Biomedical Research, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cortie MB, Arnold MD, Keast VJ. The Quest for Zero Loss: Unconventional Materials for Plasmonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904532. [PMID: 31789443 DOI: 10.1002/adma.201904532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/14/2019] [Indexed: 06/10/2023]
Abstract
There has been an ongoing quest to optimize the materials used to build plasmonic devices: first the elements were investigated, then alloys and intermetallic compounds, later semiconductors were considered, and, most recently, there has been interest in using more exotic materials such as topological insulators and conducting oxides. The quality of the plasmon resonances in these materials is closely correlated with their structure and properties. In general gold and silver are the most commonly specified materials for these applications but they do have weaknesses. Here, it is shown how, in specific circumstances, the selection of certain other materials might be more useful. Candidate alternatives include Tix N, VO2 , Al, Cu, Al-doped ZnO, and Cu-Al alloys. The relative merits of these choices and the many pitfalls and subtle problems that arise are discussed, and a frank perspective on the field is provided.
Collapse
Affiliation(s)
- Michael B Cortie
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Matthew D Arnold
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Vicki J Keast
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia
| |
Collapse
|
5
|
Pissuwan D, Gazzana C, Mongkolsuk S, Cortie MB. Single and multiple detections of foodborne pathogens by gold nanoparticle assays. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1584. [PMID: 31532914 DOI: 10.1002/wnan.1584] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
A late detection of pathogenic microorganisms in food and drinking water has a high potential to cause adverse health impacts in those who have ingested the pathogens. For this reason there is intense interest in developing precise, rapid and sensitive assays that can detect multiple foodborne pathogens. Such assays would be valuable components in the campaign to minimize foodborne illness. Here, we discuss the emerging types of assays based on gold nanoparticles (GNPs) for rapidly diagnosing single or multiple foodborne pathogen infections. Colorimetric and lateral flow assays based on GNPs may be read by the human eye. Refractometric sensors based on a shift in the position of a plasmon resonance absorption peak can be read by the new generation of inexpensive optical spectrometers. Surface-enhanced Raman spectroscopy and the quartz microbalance require slightly more sophisticated equipment but can be very sensitive. A wide range of electrochemical techniques are also under development. Given the range of options provided by GNPs, we confidently expect that some, or all, of these technologies will eventually enter routine use for detecting pathogens in food. This article is categorized under: Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Dakrong Pissuwan
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Nanobiotechnology and Nanobiomaterials Research Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand.,School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Camilla Gazzana
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Michael B Cortie
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Nanomaterial-based electrochemical sensors and optical probes for detection and imaging of peroxynitrite: a review. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2093-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Shahcheraghi N, Keast VJ, Gentle AR, Arnold MD, Cortie MB. Anomalously strong plasmon resonances in aluminium bronze by modification of the electronic density-of-states. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:405501. [PMID: 27518759 DOI: 10.1088/0953-8984/28/40/405501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use a combination of experimental measurements and density functional theory calculations to show that modification of the band structure of Cu by additions of Al causes an unexpected enhancement of the dielectric properties. The effect is optimized in alloys with Al contents between 10 and 15 at.% and would result in strong localized surface plasmon resonances at suitable wavelengths of light. This result is surprising as, in general, alloying of Cu increases its DC resistivity and would be expected to increase optical loss. The wavelengths for the plasmon resonances in the optimized alloy are significantly blue-shifted relative to those of pure Cu and provide a new material selection option for the range 2.2-2.8 eV.
Collapse
Affiliation(s)
- N Shahcheraghi
- Institute for Nanoscale Technology, University of Technology Sydney, Broadway, NSW 2007, Australia
| | | | | | | | | |
Collapse
|
8
|
Samanta A, Medintz IL. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. NANOSCALE 2016; 8:9037-95. [PMID: 27080924 DOI: 10.1039/c5nr08465b] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.
Collapse
Affiliation(s)
- Anirban Samanta
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA. and College of Science, George Mason University, Fairfax, Virginia 22030, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
9
|
Qin WW, Wang SP, Li J, Peng TH, Xu Y, Wang K, Shi JY, Fan CH, Li D. Visualizing dopamine released from living cells using a nanoplasmonic probe. NANOSCALE 2015; 7:15070-15074. [PMID: 26348717 DOI: 10.1039/c5nr04433b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the development of an ultrasensitive nanoplasmonic probe for discriminative detection and imaging of dopamine released from living cells. The sensing mechanism is based on the dopamine-induced seeded-growth of Au nanoparticles (Au NPs) that leads to the shift of the plasmon band. This platform allows for the detection of dopamine with a detection limit down to 0.25 pM within 1 min. This nanoplasmonic assay is further applied to visualize the release of dopamine from living rat pheochromocytoma (PC12) cells under ATP-stimulation with dark-field microscopy (DFM). The DFM results together with real time fluorescence imaging of PC12 cells stained with the Fluo calcium indicator, suggested that ATP stimulated-release of dopamine is concomitant with the Ca(2+) influx, and the influx of Ca(2+) is through ATP-activated channels instead of the voltage-gated Ca(2+) channel (VGC).
Collapse
Affiliation(s)
- W W Qin
- Division of Physical Biology & Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fletcher G, Arnold MD, Pedersen T, Keast VJ, Cortie MB. Multipolar and dark-mode plasmon resonances on drilled silver nano-triangles. OPTICS EXPRESS 2015; 23:18002-13. [PMID: 26191860 DOI: 10.1364/oe.23.018002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dark-mode plasmon resonances can be excited by positioning a suitable nano-antenna above a nanostructure to couple a planar incident wave-front into a virtual point source. We explore this phenomenon using a prototypical nanostructure consisting of a silver nanotriangle into which a hole has been drilled and a rod-like nano-antenna of variable aspect ratio. Using numerical simulations, we establish the behavior of the basic drilled nanotriangle under plane wave illumination and electron beam irradiation to provide a baseline, and then add the nano-antenna to investigate the stimulation of additional dark-mode plasmon resonances. The introduction of a suitably tuned nano-antenna provides a new and general means of exciting dark-mode resonances using plane wave light. The resulting system exhibits a very rich variety of radiant and sub-radiant resonance modes.
Collapse
|