1
|
Jiang W, Guo Y, Liang X, Zhang Y, Kang J, Jin Z, Ning B. A dual light-controlled co-culture system enables the regulation of population composition. Synth Syst Biotechnol 2025; 10:574-582. [PMID: 40092159 PMCID: PMC11910626 DOI: 10.1016/j.synbio.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
With the development of metabolic engineering, increasing requirements for efficient microbial biosynthesis call for establishment of multi-strain co-culture system. Dynamic regulation of population ratios is crucial for optimizing bioproduction performance. Optogenetic systems with high universality and flexibility have the potential to realize dynamic control of population proportion. In this study, we utilized an optimized chromatic acclimation sensor/regulator (CcaS/R) system and a blue light-activated YF1-FixJ-PhlF system as induction modules. A pair of orthogonal quorum sensing systems and a toxin-antitoxin system were employed as communication module and effector module, respectively. By integrating these modules, we developed a dual light-controlled co-culture system that enables dynamic regulation of population ratios. This co-culture system provides a universal toolkit for applications in metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Wei Jiang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, PR China
- Medical Integration and Practice Center, Shandong University, Jinan, 250013, Shandong, PR China
| | - Yijian Guo
- Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, PR China
| | - Xuanshuo Liang
- West China Medical Center, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, PR China
| | - Jianning Kang
- Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, PR China
| | - Zhengxin Jin
- Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, PR China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, PR China
- Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, PR China
| |
Collapse
|
2
|
Bhattacharjee R, Kayang H, Kharshiing EV. Engineering plant photoreceptors towards enhancing plant productivity. PLANT MOLECULAR BIOLOGY 2025; 115:64. [PMID: 40327169 DOI: 10.1007/s11103-025-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Light is a critical environmental factor that governs the growth and development of plants. Plants have specialised photoreceptor proteins, which allow them to sense both quality and quantity of light and drive a wide range of responses critical for optimising growth, resource use and adaptation to changes in environment. Understanding the role of these photoreceptors in plant biology has opened up potential avenues for engineering crops with enhanced productivity by engineering photoreceptor activity and/or action. The ability to manipulate plant genomes through genetic engineering and synthetic biology approaches offers the potential to unlock new agricultural innovations by fine-tuning photoreceptors or photoreceptor pathways that control plant traits of agronomic significance. Additionally, optogenetic tools which allow for precise, light-triggered control of plant responses are emerging as powerful technologies for real-time manipulation of plant cellular responses. As these technologies continue to develop, the integration of photoreceptor engineering and optogenetics into crop breeding programs could potentially revolutionise how plant researchers tackle challenges of plant productivity. Here we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement. This review seeks to highlight both opportunities and challenges in harnessing photoreceptor engineering approaches for enhancing plant productivity. In this review, we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement.
Collapse
Affiliation(s)
- Ramyani Bhattacharjee
- Department of Botany, St. Edmund's College, Shillong, Meghalaya, 793 003, India
- Department of Botany, Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, Meghalaya, 793 022, India
| | - Highland Kayang
- Department of Botany, Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, Meghalaya, 793 022, India.
| | - Eros V Kharshiing
- Department of Botany, St. Edmund's College, Shillong, Meghalaya, 793 003, India.
| |
Collapse
|
3
|
Yu Y, Jeffreys LN, Poddar H, Hill A, Johannissen L, Dai F, Sakuma M, Leys D, Heyes DJ, Zhang S, Scrutton NS. SignatureFinder enables sequence mining to identify cobalamin-dependent photoreceptor proteins. FEBS J 2025; 292:635-652. [PMID: 39718193 PMCID: PMC11796333 DOI: 10.1111/febs.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
Photoreceptors control cellular processes in response to light. Most photoreceptors sense blue or red light, but the recent discovery of the cobalamin-dependent photoreceptor, CarH, has expanded the wavelength range of photoreception to other regions of the electromagnetic spectrum to include the green light region. Further identification of cobalamin-dependent green light-sensitive photoreceptors has been hampered owing to poor annotation of the light responsiveness of cobalamin-binding domains (CBDs) in public databases. Here we report a computational workflow, SignatureFinder, that uses a combination of sequence and structural analyses to identify new light-responsive CBD-containing proteins. The light response of exemplar proteins containing the proposed signature were confirmed experimentally. A structural analysis of these new photoreceptors, including the crystal structure of a new CBD domain, highlights how the signature elements interact with the cobalamin chromophore to sense light. Database mining of 128 000 CBD-containing sequences using the identified signature revealed more diverse CBD-containing photoreceptors, thereby expanding the family of green-light photoreceptors. A SignatureFinder web server is available (https://enzymeevolver.com) for wider applications, including the identification of signature sequences of other biological ligands of interest.
Collapse
Affiliation(s)
- Yuqi Yu
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
- Present address:
Astra ZenecaCambridgeUK
| | - Laura N. Jeffreys
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Harshwardhan Poddar
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Adam Hill
- Department of ChemistryThe University of ManchesterUK
| | - Linus Johannissen
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Fanzhuo Dai
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Michiyo Sakuma
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - David Leys
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Derren J. Heyes
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| | - Shaowei Zhang
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
- Present address:
Department of Biology and Chemistry, College of SciencesNational University of Defense TechnologyChangshaChina
| | - Nigel S. Scrutton
- Department of ChemistryThe University of Manchester, Manchester Institute of BiotechnologyUK
| |
Collapse
|
4
|
Zhang Z, Li F, Duan Z, Shi C, Wang X, Zhu F, Xue W. OPTICS: An interactive online platform for photosensory and bio-functional proteins in optogenetic systems. Comput Biol Med 2024; 178:108687. [PMID: 38870722 DOI: 10.1016/j.compbiomed.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/25/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
High-precise modulation of bio-functional proteins related to signaling is crucial in life sciences and human health. The cutting-edge technology of optogenetics, which combines optical method with genetically encoded protein expression, pioneered new pathways for the control of cellular bio-functional proteins (CPs) using optogenetic tools (OTs) in spatial and temporal. Over the past decade, hundreds of optogenetic systems (OSs) have been developed for various applications from living cells to freely moving organisms. However, no database has been constructed to comprehensively provide the valuable information of OSs yet. In this work, a new database named OPTICS (an interactive online platform for photosensory and bio-functional proteins in optogenetic systems) is introduced. Our OPTICS is unique in (i) systematically describing diverse OSs from the perspective of photoreceptor-based classification and mechanism of action, (ii) featuring the detailed biophysical properties and functional data of OSs, (iii) providing the interaction between OT and CP for each OS referring to distinct applications in research, diagnosis, and therapy, and (iv) enabling a light response property-based search against all OSs in the database. Since the information on OSs is essential for rapid and predictable design of optogenetic controls, the comprehensive data provided in OPTICS lay a solid foundation for the future development of novel OSs. OPTICS is freely accessible without login requirement at https://idrblab.org/optics/.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zixin Duan
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China
| | - Chaoqun Shi
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China
| | - Xiaona Wang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
5
|
Gao TT, Oh T, Mehta K, Huang YA, Camp T, Fan H, Han JW, Barnes CM, Zhang K. The clinical potential of optogenetic interrogation of pathogenesis. Clin Transl Med 2023; 13:e1243. [PMID: 37132114 PMCID: PMC10154842 DOI: 10.1002/ctm2.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye. AIMS AND METHODS This work summarizes the progress of current clinical trials and provides a brief overview of basic structures and photophysics of commonly used photoactivable proteins. We highlight recent achievements such as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system, gene expression, and organelle dynamics. We discuss conceptual innovation and technical challenges faced by current optogenetic research. CONCLUSION In doing so, we provide a framework that showcases ever-growing applications of optogenetics in biomedical research and may inform novel precise medicine strategies based on this enabling technology.
Collapse
Affiliation(s)
- Tianyu Terry Gao
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Teak‐Jung Oh
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kritika Mehta
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Yu‐En Andrew Huang
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
| | - Tyler Camp
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Huaxun Fan
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Jeong Won Han
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Collin Michael Barnes
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kai Zhang
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
6
|
Rojas V, Larrondo LF. Coupling Cell Communication and Optogenetics: Implementation of a Light-Inducible Intercellular System in Yeast. ACS Synth Biol 2023; 12:71-82. [PMID: 36534043 PMCID: PMC9872819 DOI: 10.1021/acssynbio.2c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/23/2022]
Abstract
Cell communication is a widespread mechanism in biology, allowing the transmission of information about environmental conditions. In order to understand how cell communication modulates relevant biological processes such as survival, division, differentiation, and apoptosis, different synthetic systems based on chemical induction have been successfully developed. In this work, we coupled cell communication and optogenetics in the budding yeast Saccharomyces cerevisiae. Our approach is based on two strains connected by the light-dependent production of α-factor pheromone in one cell type, which induces gene expression in the other type. After the individual characterization of the different variants of both strains, the optogenetic intercellular system was evaluated by combining the cells under contrasting illumination conditions. Using luciferase as a reporter gene, specific co-cultures at a 1:1 ratio displayed activation of the response upon constant blue light, which was not observed for the same cell mixtures grown in darkness. Then, the system was assessed at several dark/blue-light transitions, where the response level varies depending on the moment in which illumination was delivered. Furthermore, we observed that the amplitude of response can be tuned by modifying the initial ratio between both strains. Finally, the two-population system showed higher fold inductions in comparison with autonomous strains. Altogether, these results demonstrated that external light information is propagated through a diffusible signaling molecule to modulate gene expression in a synthetic system involving microbial cells, which will pave the road for studies allowing optogenetic control of population-level dynamics.
Collapse
Affiliation(s)
- Vicente Rojas
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad
Católica de Chile, Santiago 8331150, Chile
- Millennium
Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Luis F. Larrondo
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad
Católica de Chile, Santiago 8331150, Chile
- Millennium
Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| |
Collapse
|
7
|
Fan H, Barnes C, Hwang H, Zhang K, Yang J. Precise modulation of embryonic development through optogenetics. Genesis 2022; 60:e23505. [PMID: 36478118 PMCID: PMC9847014 DOI: 10.1002/dvg.23505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed enormous progress in optogenetics, which uses photo-sensitive proteins to control signal transduction in live cells and animals. The ever-increasing amount of optogenetic tools, however, could overwhelm the selection of appropriate optogenetic strategies. In this work, we summarize recent progress in this emerging field and highlight the application of opsin-free optogenetics in studying embryonic development, focusing on new insights gained into optical induction of morphogenesis, cell polarity, cell fate determination, tissue differentiation, neuronal regeneration, synaptic plasticity, and removal of cells during development.
Collapse
Affiliation(s)
- Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin Barnes
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA,Authors for correspondence: Kai Zhang, Ph.D., , 600 South Mathews Avenue, 314 B Roger Adams Laboratory,Urbana, Illinois 61801, USA, Phone: 1-217-300-0582; Jing Yang, Ph.D., , 2001 S Lincoln Ave, VMBSB3411, Urbana, Illinois 61802, USA, Phone: 1-217-333-6825
| |
Collapse
|
8
|
Mazraeh D, Di Ventura B. Synthetic microbiology applications powered by light. Curr Opin Microbiol 2022; 68:102158. [PMID: 35660240 DOI: 10.1016/j.mib.2022.102158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Synthetic biology is a field of research in which molecular parts (mostly nucleic acids and proteins) are de novo created or modified and then used either alone or in combination to achieve new functions that can help solve the problems of our modern society. In synthetic microbiology, microbes are employed rather than other organisms or cell-free systems. Optogenetics, a relatively recently established technology that relies on the use of genetically encoded photosensitive proteins to control biological processes with high spatiotemporal precision, offers the possibility to empower synthetic (micro)biology applications due to the many positive features that light has as an external trigger. In this review, we describe recent synthetic microbiology applications that made use of optogenetics after briefly introducing the molecular mechanism behind some of the most employed optogenetic tools. We highlight the power and versatility of this technique, which opens up new horizons for both research and industry.
Collapse
Affiliation(s)
- Daniel Mazraeh
- Signaling Research Centres BIOSS and CIBSS, and Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Di Ventura
- Signaling Research Centres BIOSS and CIBSS, and Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Wang S, Luo Y, Jiang W, Li X, Qi Q, Liang Q. Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030617. [PMID: 35163885 PMCID: PMC8838604 DOI: 10.3390/molecules27030617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 11/30/2022]
Abstract
Several strategies, including inducer addition and biosensor use, have been developed for dynamical regulation. However, the toxicity, cost, and inflexibility of existing strategies have created a demand for superior technology. In this study, we designed an optogenetic dual-switch system and applied it to increase polyhydroxybutyrate (PHB) production. First, an optimized chromatic acclimation sensor/regulator (RBS10–CcaS#10–CcaR) system (comprising an optimized ribosomal binding site (RBS), light sensory protein CcaS, and response regulator CcaR) was selected for a wide sensing range of approximately 10-fold between green-light activation and red-light repression. The RBS10–CcaS#10–CcaR system was combined with a blue light-activated YF1–FixJ–PhlF system (containing histidine kinase YF1, response regulator FixJ, and repressor PhlF) engineered with reduced crosstalk. Finally, the optogenetic dual-switch system was used to rewire the metabolic flux for PHB production by regulating the sequences and intervals of the citrate synthase gene (gltA) and PHB synthesis gene (phbCAB) expression. Consequently, the strain RBS34, which has high gltA expression and a time lag of 3 h, achieved the highest PHB content of 16.6 wt%, which was approximately 3-fold that of F34 (expressed at 0 h). The results indicate that the optogenetic dual-switch system was verified as a practical and convenient tool for increasing PHB production.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Yue Luo
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Xiaomeng Li
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Correspondence: (Q.Q.); (Q.L.)
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, China; (S.W.); (Y.L.); (W.J.); (X.L.)
- Correspondence: (Q.Q.); (Q.L.)
| |
Collapse
|
10
|
Tassone G, Paolino M, Pozzi C, Reale A, Salvini L, Giorgi G, Orlandini M, Galvagni F, Mangani S, Yang X, Carlotti B, Ortica F, Latterini L, Olivucci M, Cappelli A. Xanthopsin-Like Systems via Site-Specific Click-Functionalization of a Retinoic Acid Binding Protein. Chembiochem 2022; 23:e202100449. [PMID: 34647400 PMCID: PMC8934143 DOI: 10.1002/cbic.202100449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Indexed: 01/07/2023]
Abstract
The use of light-responsive proteins to control both living or synthetic cells, is at the core of the expanding fields of optogenetics and synthetic biology. It is thus apparent that a richer reaction toolbox for the preparation of such systems is of fundamental importance. Here, we provide a proof-of-principle demonstration that Morita-Baylis-Hillman adducts can be employed to perform a facile site-specific, irreversible and diastereoselective click-functionalization of a lysine residue buried into a lipophilic binding pocket and yielding an unnatural chromophore with an extended π-system. In doing so we effectively open the path to the in vitro preparation of a library of synthetic proteins structurally reminiscent of xanthopsin eubacterial photoreceptors. We argue that such a library, made of variable unnatural chromophores inserted in an easy-to-mutate and crystallize retinoic acid transporter, significantly expand the scope of the recently introduced rhodopsin mimics as both optogenetic and "lab-on-a-molecule" tools.
Collapse
Affiliation(s)
- Giusy Tassone
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Annalisa Reale
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Laura Salvini
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Maurizio Orlandini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Federico Galvagni
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, OH 43403, USA
| | - Benedetta Carlotti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Fausto Ortica
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, OH 43403, USA
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| |
Collapse
|
11
|
Coyote-Maestas W, Nedrud D, Suma A, He Y, Matreyek KA, Fowler DM, Carnevale V, Myers CL, Schmidt D. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nat Commun 2021; 12:7114. [PMID: 34880224 PMCID: PMC8654947 DOI: 10.1038/s41467-021-27342-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Protein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Nedrud
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - Antonio Suma
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Yungui He
- grid.17635.360000000419368657Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kenneth A. Matreyek
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Douglas M. Fowler
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98115 USA ,grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA 98115 USA
| | - Vincenzo Carnevale
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Chad L. Myers
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Sharma S, Sanyal SK, Sushmita K, Chauhan M, Sharma A, Anirudhan G, Veetil SK, Kateriya S. Modulation of Phototropin Signalosome with Artificial Illumination Holds Great Potential in the Development of Climate-Smart Crops. Curr Genomics 2021; 22:181-213. [PMID: 34975290 PMCID: PMC8640849 DOI: 10.2174/1389202922666210412104817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Changes in environmental conditions like temperature and light critically influence crop production. To deal with these changes, plants possess various photoreceptors such as Phototropin (PHOT), Phytochrome (PHY), Cryptochrome (CRY), and UVR8 that work synergistically as sensor and stress sensing receptors to different external cues. PHOTs are capable of regulating several functions like growth and development, chloroplast relocation, thermomorphogenesis, metabolite accumulation, stomatal opening, and phototropism in plants. PHOT plays a pivotal role in overcoming the damage caused by excess light and other environmental stresses (heat, cold, and salinity) and biotic stress. The crosstalk between photoreceptors and phytohormones contributes to plant growth, seed germination, photo-protection, flowering, phototropism, and stomatal opening. Molecular genetic studies using gene targeting and synthetic biology approaches have revealed the potential role of different photoreceptor genes in the manipulation of various beneficial agronomic traits. Overexpression of PHOT2 in Fragaria ananassa leads to the increase in anthocyanin content in its leaves and fruits. Artificial illumination with blue light alone and in combination with red light influence the growth, yield, and secondary metabolite production in many plants, while in algal species, it affects growth, chlorophyll content, lipid production and also increases its bioremediation efficiency. Artificial illumination alters the morphological, developmental, and physiological characteristics of agronomic crops and algal species. This review focuses on PHOT modulated signalosome and artificial illumination-based photo-biotechnological approaches for the development of climate-smart crops.
Collapse
Affiliation(s)
- Sunita Sharma
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sibaji K. Sanyal
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kumari Sushmita
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manisha Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Gireesh Anirudhan
- Integrated Science Education and Research Centre (ISERC), Institute of Science (Siksha Bhavana), Visva Bharati (A Central University), Santiniketan (PO), West Bengal, 731235, India
| | - Sindhu K. Veetil
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
13
|
Camsund D, Jaramillo A, Lindblad P. Engineering of a Promoter Repressed by a Light-Regulated Transcription Factor in Escherichia coli. BIODESIGN RESEARCH 2021; 2021:9857418. [PMID: 37849950 PMCID: PMC10521638 DOI: 10.34133/2021/9857418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 10/19/2023] Open
Abstract
Light-regulated gene expression systems allow controlling gene expression in space and time with high accuracy. Contrary to previous synthetic light sensors that incorporate two-component systems which require localization at the plasma membrane, soluble one-component repression systems provide several advantageous characteristics. Firstly, they are soluble and able to diffuse across the cytoplasm. Secondly, they are smaller and of lower complexity, enabling less taxing expression and optimization of fewer parts. Thirdly, repression through steric hindrance is a widespread regulation mechanism that does not require specific interaction with host factors, potentially enabling implementation in different organisms. Herein, we present the design of the synthetic promoter PEL that in combination with the light-regulated dimer EL222 constitutes a one-component repression system. Inspired by previously engineered synthetic promoters and the Escherichia coli lacZYA promoter, we designed PEL with two EL222 operators positioned to hinder RNA polymerase binding when EL222 is bound. PEL is repressed by EL222 under conditions of white light with a light-regulated repression ratio of five. Further, alternating conditions of darkness and light in cycles as short as one hour showed that repression is reversible. The design of the PEL-EL222 system herein presented could aid the design and implementation of analogous one-component optogenetic repression systems. Finally, we compare the PEL-EL222 system with similar systems and suggest general improvements that could optimize and extend the functionality of EL222-based as well as other one-component repression systems.
Collapse
Affiliation(s)
- Daniel Camsund
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
- Molecular Systems Biology, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Institute for Integrative Systems Biology (I2SysBio), CSIC – Universitat de València, 46980 Paterna, Spain
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Pérez ALA, Piva LC, Fulber JPC, de Moraes LMP, De Marco JL, Vieira HLA, Coelho CM, Reis VCB, Torres FAG. Optogenetic strategies for the control of gene expression in yeasts. Biotechnol Adv 2021; 54:107839. [PMID: 34592347 DOI: 10.1016/j.biotechadv.2021.107839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
Collapse
Affiliation(s)
- Ana Laura A Pérez
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Luiza C Piva
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Julia P C Fulber
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Lidia M P de Moraes
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Janice L De Marco
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Hugo L A Vieira
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Cintia M Coelho
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Viviane C B Reis
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Fernando A G Torres
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil.
| |
Collapse
|
15
|
Mroginski MA, Adam S, Amoyal GS, Barnoy A, Bondar AN, Borin VA, Church JR, Domratcheva T, Ensing B, Fanelli F, Ferré N, Filiba O, Pedraza-González L, González R, González-Espinoza CE, Kar RK, Kemmler L, Kim SS, Kongsted J, Krylov AI, Lahav Y, Lazaratos M, NasserEddin Q, Navizet I, Nemukhin A, Olivucci M, Olsen JMH, Pérez de Alba Ortíz A, Pieri E, Rao AG, Rhee YM, Ricardi N, Sen S, Solov'yov IA, De Vico L, Wesolowski TA, Wiebeler C, Yang X, Schapiro I. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem Photobiol 2021; 97:243-269. [PMID: 33369749 DOI: 10.1111/php.13372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.
Collapse
Affiliation(s)
| | - Suliman Adam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil S Amoyal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Barnoy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Veniamin A Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Department Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | - Ofer Filiba
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lukas Kemmler
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yigal Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.,MIGAL - Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Qays NasserEddin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Navizet
- MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris Est Creteil, Marne-la-Vallée, France
| | - Alexander Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy.,Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alberto Pérez de Alba Ortíz
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Pieri
- Aix-Marseille Univ, CNRS, ICR, Marseille, France
| | - Aditya G Rao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Niccolò Ricardi
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | | | - Christian Wiebeler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
17
|
Engineering the orange carotenoid protein for applications in synthetic biology. Curr Opin Struct Biol 2019; 57:110-117. [DOI: 10.1016/j.sbi.2019.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/13/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
|
18
|
Mishra K, Fuenzalida-Werner JP, Ntziachristos V, Stiel AC. Photocontrollable Proteins for Optoacoustic Imaging. Anal Chem 2019; 91:5470-5477. [PMID: 30933491 DOI: 10.1021/acs.analchem.9b01048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photocontrollable proteins revolutionized life-science imaging due to their contribution to subdiffraction-resolution optical microscopy. They might have yet another lasting impact on photo- or optoacoustic imaging (OA). OA combines optical contrast with ultrasound detection enabling high-resolution real-time in vivo imaging well-beyond the typical penetration depth of optical methods. While OA already showed numerous applications relying on endogenous contrast from blood hemoglobin or lipids, its application in the life-science was limited by a lack of labels overcoming the strong signal from the aforementioned endogenous absorbers. Here, a number of recent studies showed that photocontrollable proteins provide the means to overcome this barrier eventually enabling OA to image small cell numbers in a complete organism in vivo. In this Feature article, we introduce the key photocontrollable proteins, explain the basic concepts, and highlight achievements that have been already made.
Collapse
Affiliation(s)
- Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI) , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| | | | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI) , Helmholtz Zentrum München , 85764 Neuherberg , Germany.,Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM) , Technische Universität München , 81675 Munich , Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI) , Helmholtz Zentrum München , 85764 Neuherberg , Germany
| |
Collapse
|
19
|
Bartelt SM, Chervyachkova E, Ricken J, Wegner SV. Mimicking Adhesion in Minimal Synthetic Cells. ACTA ACUST UNITED AC 2019; 3:e1800333. [DOI: 10.1002/adbi.201800333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Solveig M. Bartelt
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Julia Ricken
- Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
| | - Seraphine V. Wegner
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
20
|
Liu Z, Zhang J, Jin J, Geng Z, Qi Q, Liang Q. Programming Bacteria With Light-Sensors and Applications in Synthetic Biology. Front Microbiol 2018; 9:2692. [PMID: 30467500 PMCID: PMC6236058 DOI: 10.3389/fmicb.2018.02692] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
Collapse
Affiliation(s)
- Zedao Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jizhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Jiao Jin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Zilong Geng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
21
|
Menger MFSJ, Plasser F, Mennucci B, González L. Surface Hopping within an Exciton Picture. An Electrostatic Embedding Scheme. J Chem Theory Comput 2018; 14:6139-6148. [PMID: 30299941 DOI: 10.1021/acs.jctc.8b00763] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development and the implementation of an exciton approach that allows ab initio nonadiabatic dynamics simulations of electronic excitation energy transfer in multichromophoric systems. For the dynamics, a trajectory-based strategy is used within the surface hopping formulation. The approach features a consistent hybrid formulation that allows the construction of potential energy surfaces and gradients by combining quantum mechanics and molecular mechanics within an electrostatic embedding scheme. As an application, the study of a molecular dyad consisting of a covalently bound BODIPY moiety and a tetrathiophene group is presented using time-dependent density functional theory (TDDFT). The results obtained with the exciton model are compared to previously performed full TDDFT dynamics of the same system. Our results show excellent agreement with the full TDDFT results, indicating that the couplings that lead to excitation energy transfer (EET) are dominated by Coulomb interaction terms and that charge-transfer states are not necessary to properly describe the nonadiabatic dynamics of the system. The exciton model also reveals ultrafast coherent oscillations of the excitation between the two units in the dyad, which occur during the first 50 fs.
Collapse
Affiliation(s)
- Maximilian F S J Menger
- Institute for Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währingerstrasse 17 , 1090 Vienna , Austria.,Dipartimento di Chimica e Chimica Industriale , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Felix Plasser
- Institute for Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währingerstrasse 17 , 1090 Vienna , Austria.,Department of Chemistry , Loughborough University , Loughborough LE11 3TU , U.K
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Leticia González
- Institute for Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währingerstrasse 17 , 1090 Vienna , Austria
| |
Collapse
|
22
|
Krishnamurthy VV, Zhang K. Chemical physics in living cells — Using light to visualize and control intracellular signal transduction. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1806152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Vishnu V. Krishnamurthy
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast. mBio 2018; 9:mBio.00626-18. [PMID: 30065085 PMCID: PMC6069114 DOI: 10.1128/mbio.00626-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Optogenetic switches permit accurate control of gene expression upon light stimulation. These synthetic switches have become a powerful tool for gene regulation, allowing modulation of customized phenotypes, overcoming the obstacles of chemical inducers, and replacing their use by an inexpensive resource: light. In this work, we implemented FUN-LOV, an optogenetic switch based on the photon-regulated interaction of WC-1 and VVD, two LOV (light-oxygen-voltage) blue-light photoreceptors from the fungus Neurospora crassa. When tested in yeast, FUN-LOV yields light-controlled gene expression with exquisite temporal resolution and a broad dynamic range of over 1,300-fold, as measured by a luciferase reporter. We also tested the FUN-LOV switch for heterologous protein expression in Saccharomyces cerevisiae, where Western blot analysis confirmed strong induction upon light stimulation, surpassing by 2.5 times the levels achieved with a classic GAL4/galactose chemical-inducible system. Additionally, we utilized FUN-LOV to control the ability of yeast cells to flocculate. Light-controlled expression of the flocculin-encoding gene FLO1, by the FUN-LOV switch, yielded flocculation in light (FIL), whereas the light-controlled expression of the corepressor TUP1 provided flocculation in darkness (FID). Altogether, the results reveal the potential of the FUN-LOV optogenetic switch to control two biotechnologically relevant phenotypes such as heterologous protein expression and flocculation, paving the road for the engineering of new yeast strains for industrial applications. Importantly, FUN-LOV’s ability to accurately manipulate gene expression, with a high temporal dynamic range, can be exploited in the analysis of diverse biological processes in various organisms. Optogenetic switches are molecular devices which allow the control of different cellular processes by light, such as gene expression, providing a versatile alternative to chemical inducers. Here, we report a novel optogenetic switch (FUN-LOV) based on the LOV domain interaction of two blue-light photoreceptors (WC-1 and VVD) from the fungus N. crassa. In yeast cells, FUN-LOV allowed tight regulation of gene expression, with low background in darkness and a highly dynamic and potent control by light. We used FUN-LOV to optogenetically manipulate, in yeast, two biotechnologically relevant phenotypes, heterologous protein expression and flocculation, resulting in strains with potential industrial applications. Importantly, FUN-LOV can be implemented in diverse biological platforms to orthogonally control a multitude of cellular processes.
Collapse
|
24
|
Wei J, Wu WH, Wang R, Yang Z, Sun F, Zhang WB. B 12-Dependent Protein Oligomerization Facilitates Layer-by-Layer Growth of Photo/Thermal Responsive Nanofilms. ACS Macro Lett 2018; 7:514-518. [PMID: 35632923 DOI: 10.1021/acsmacrolett.8b00147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the robust growth of an entirely protein-based, photo- and thermoresponsive Layer-by-Layer nanofilm using genetically encoded SpyTag/SpyCatcher chemistry. The process was facilitated by AdoB12-induced tetramerization of photoreceptor proteins. Protein cargos can be released from the film in a light-dependent manner, showing its potential for therapeutic protein delivery.
Collapse
Affiliation(s)
- Jingjing Wei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, People’s Republic of China
| | - Wen-Hao Wu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Ri Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR China
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
25
|
Lee EJ, Yoon HH, Park ES, Min J, Jeon SR. A Novel Animal Model of Parkinson's Disease Using Optogenetics: Representation of Various Disease Stages by Modulating the Illumination Parameter. Stereotact Funct Neurosurg 2018; 96:22-32. [PMID: 29444523 DOI: 10.1159/000486644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The classic animal model of Parkinson's disease (PD) using neurotoxin can only simulate fixed stages of the disease by causing irreversible damage to the nigrostriatal system. OBJECTIVES To develop an optogenetic PD model that can modulate the severity of disease by optical stimulation by introducing the halorhodopsin (NpHR) gene into the substantia nigra compacta. METHODS Fifteen rats received injections of engineered AAV with NpHR-YFP gene into the substantia nigra. They were then subjected to illumination of 590-nm light wavelengths with 3 optical stimulation conditions, i.e., frequency-width: 5 Hz-10 ms (n = 5), 5 Hz-100 ms (n = 5), and 50 Hz-10 ms (n = 5). Eleven rats received 6-hydroxydopamine injections to establish the conventional PD model. RESULTS The optogenetic models showed characteristic PD manifestations, similar to those of the conventional models; the severity of forelimb akinesia correlated with the total illumination value (frequency × width). The group with a low illumination value (5 Hz-10 ms) was comparable to the conventional partial model whereas the groups with high illumination values (5 Hz-100 ms and 50 Hz-10 ms) were similar to the conventional complete model. CONCLUSIONS An optogenetic PD model has the advantage of more appropriately representing various PD stages by controlling illumination parameters.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Neurosurgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si, Republic of Korea
| | - Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Suk Park
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Joongkee Min
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
27
|
Samodelov SL, Zurbriggen MD. Quantitatively Understanding Plant Signaling: Novel Theoretical-Experimental Approaches. TRENDS IN PLANT SCIENCE 2017; 22:685-704. [PMID: 28668509 DOI: 10.1016/j.tplants.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
With the need to respond to and integrate a multitude of external and internal stimuli, plant signaling is highly complex, exhibiting signaling component redundancy and high interconnectedness between individual pathways. We review here novel theoretical-experimental approaches in manipulating plant signaling towards the goal of a comprehensive understanding and targeted quantitative control of plant processes. We highlight approaches taken in the field of synthetic biology used in other systems and discuss their applicability in plants. Finally, we introduce existing tools for the quantitative analysis and monitoring of plant signaling and the integration of experimentally obtained quantitative data into mathematical models. Incorporating principles of synthetic biology into plant sciences more widely will lead this field forward in both fundamental and applied research.
Collapse
Affiliation(s)
- Sophia L Samodelov
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Düsseldorf, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
28
|
Mawphlang OIL, Kharshiing EV. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1181. [PMID: 28744290 PMCID: PMC5504655 DOI: 10.3389/fpls.2017.01181] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 05/18/2023]
Abstract
Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes), blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2), and UV-B light (UVR8). While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors.
Collapse
|
29
|
Bao H, Melnicki MR, Kerfeld CA. Structure and functions of Orange Carotenoid Protein homologs in cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:1-9. [PMID: 28391046 DOI: 10.1016/j.pbi.2017.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Rapidly-induced photoprotection in cyanobacteria involves thermal dissipation of excess energy absorbed by the phycobilisome (PBS), the primary light-harvesting antenna. This process is called non-photochemical quenching (NPQ), and is mediated by a water-soluble photoactive protein, the Orange Carotenoid Protein (OCP). The OCP is structurally and functionally modular, consisting of a sensor domain, an effector domain, and a carotenoid. Blue-green light induces a structural transition of the OCP from the orange inactive form, OCPo, to the red active form, OCPR. Translocation of the carotenoid into the effector domain accompanies photoactivation. The OCPR binds to the PBS core, where it triggers dissipation of excitation energy and quenches fluorescence. To recover the antenna capacity under low light conditions, the Fluorescence Recovery Protein (FRP) participates in detaching the OCP from the PBS and accelerates back-conversion of OCPR to OCPo. Increased sequencing of cyanobacterial genomes has allowed the identification of new paralogous families of the OCP and its domain homologs, the Helical Carotenoid Proteins (HCPs), which have been found distributed widely among taxonomically and ecophysiologically diverse cyanobacteria. Distinct functions from the canonical OCP have been revealed for some of these paralogs by recent structural and functional studies.
Collapse
Affiliation(s)
- Han Bao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Salinas F, Rojas V, Delgado V, Agosin E, Larrondo LF. Optogenetic switches for light-controlled gene expression in yeast. Appl Microbiol Biotechnol 2017; 101:2629-2640. [DOI: 10.1007/s00253-017-8178-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
|
31
|
Gil AA, Laptenok SP, French JB, Iuliano JN, Lukacs A, Hall CR, Sazanovich IV, Greetham GM, Bacher A, Illarionov B, Fischer M, Tonge PJ, Meech SR. Femtosecond to Millisecond Dynamics of Light Induced Allostery in the Avena sativa LOV Domain. J Phys Chem B 2017; 121:1010-1019. [PMID: 28068090 DOI: 10.1021/acs.jpcb.7b00088] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rational engineering of photosensor proteins underpins the field of optogenetics, in which light is used for spatiotemporal control of cell signaling. Optogenetic elements function by converting electronic excitation of an embedded chromophore into structural changes on the microseconds to seconds time scale, which then modulate the activity of output domains responsible for biological signaling. Using time-resolved vibrational spectroscopy coupled with isotope labeling, we have mapped the structural evolution of the LOV2 domain of the flavin binding phototropin Avena sativa (AsLOV2) over 10 decades of time, reporting structural dynamics between 100 fs and 1 ms after optical excitation. The transient vibrational spectra contain contributions from both the flavin chromophore and the surrounding protein matrix. These contributions are resolved and assigned through the study of four different isotopically labeled samples. High signal-to-noise data permit the detailed analysis of kinetics associated with the light activated structural evolution. A pathway for the photocycle consistent with the data is proposed. The earliest events occur in the flavin binding pocket, where a subpicosecond perturbation of the protein matrix occurs. In this perturbed environment, the previously characterized reaction between triplet state isoalloxazine and an adjacent cysteine leads to formation of the adduct state; this step is shown to exhibit dispersive kinetics. This reaction promotes coupling of the optical excitation to successive time-dependent structural changes, initially in the β-sheet and then α-helix regions of the AsLOV2 domain, which ultimately gives rise to Jα-helix unfolding, yielding the signaling state. This model is tested through point mutagenesis, elucidating in particular the key mediating role played by Q513.
Collapse
Affiliation(s)
- Agnieszka A Gil
- Department of Chemistry, Stony Brook University , New York 11794-3400, United States
| | - Sergey P Laptenok
- School of Chemistry, University of East Anglia , Norwich, NR4 7TJ, U.K
| | - Jarrod B French
- Department of Chemistry, Stony Brook University , New York 11794-3400, United States
| | - James N Iuliano
- Department of Chemistry, Stony Brook University , New York 11794-3400, United States
| | - Andras Lukacs
- School of Chemistry, University of East Anglia , Norwich, NR4 7TJ, U.K.,Department of Biophysics, Medical School, University of Pecs , Szigeti ut 12, 7624 Pecs, Hungary
| | | | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory , Didcot, Oxon OX11 0QX, U.K
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory , Didcot, Oxon OX11 0QX, U.K
| | - Adelbert Bacher
- Department Chemie, Technische Universität München , D-85747 Garching, Germany
| | - Boris Illarionov
- Institut für Biochemie und Lebensmittelchemie, Universität Hamburg , Grindelallee 117, D-20146 Hamburg, Germany
| | - Markus Fischer
- Institut für Biochemie und Lebensmittelchemie, Universität Hamburg , Grindelallee 117, D-20146 Hamburg, Germany
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University , New York 11794-3400, United States
| | - Stephen R Meech
- School of Chemistry, University of East Anglia , Norwich, NR4 7TJ, U.K
| |
Collapse
|
32
|
Krishnamurthy VV, Khamo JS, Mei W, Turgeon AJ, Ashraf HM, Mondal P, Patel DB, Risner N, Cho EE, Yang J, Zhang K. Reversible optogenetic control of kinase activity during differentiation and embryonic development. Development 2016; 143:4085-4094. [PMID: 27697903 DOI: 10.1242/dev.140889] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022]
Abstract
A limited number of signaling pathways are repeatedly used to regulate a wide variety of processes during development and differentiation. The lack of tools to manipulate signaling pathways dynamically in space and time has been a major technical challenge for biologists. Optogenetic techniques, which utilize light to control protein functions in a reversible fashion, hold promise for modulating intracellular signaling networks with high spatial and temporal resolution. Applications of optogenetics in multicellular organisms, however, have not been widely reported. Here, we create an optimized bicistronic optogenetic system using Arabidopsis thaliana cryptochrome 2 (CRY2) protein and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). In a proof-of-principle study, we develop an optogenetic Raf kinase that allows reversible light-controlled activation of the Raf/MEK/ERK signaling cascade. In PC12 cells, this system significantly improves light-induced cell differentiation compared with co-transfection. When applied to Xenopus embryos, this system enables blue light-dependent reversible Raf activation at any desired developmental stage in specific cell lineages. Our system offers a powerful optogenetic tool suitable for manipulation of signaling pathways with high spatial and temporal resolution in a wide range of experimental settings.
Collapse
Affiliation(s)
- Vishnu V Krishnamurthy
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Aurora J Turgeon
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Humza M Ashraf
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dil B Patel
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Noah Risner
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ellen E Cho
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA .,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Abstract
The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.
Collapse
Affiliation(s)
- Eli Zamir
- a Department of Systemic Cell Biology , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
34
|
Schmidt-Dannert C, Lopez-Gallego F. A roadmap for biocatalysis - functional and spatial orchestration of enzyme cascades. Microb Biotechnol 2016; 9:601-9. [PMID: 27418373 PMCID: PMC4993178 DOI: 10.1111/1751-7915.12386] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 12/23/2022] Open
Abstract
Advances in biological engineering and systems biology have provided new approaches and tools for the industrialization of biology. In the next decade, advanced biocatalytic systems will increasingly be used for the production of chemicals that cannot be made by current processes and/or where the use of enzyme catalysts is more resource efficient with a much reduced environmental impact. We expect that in the future, manufacture of chemicals and materials will utilize both biocatalytic and chemical synthesis synergistically. The realization of such advanced biomanufacturing processes currently faces a number of major challenges. Ready‐to‐deploy portfolios of biocatalysts for design to production must be created from biological diverse sources and through protein engineering. Robust and efficient multi‐step enzymatic reaction cascades must be developed that can operate simultaneously in one‐pot. For this to happen, bio‐orthogonal strategies for spatial and temporal control of biocatalyst activities must be developed. Promising approaches and technologies are emerging that will eventually lead to the design of in vitro biocatalytic systems that mimic the metabolic pathways and networks of cellular systems which will be discussed in this roadmap.
Collapse
Affiliation(s)
- Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Fernando Lopez-Gallego
- Heterogeneous Biocatalysis Group, CIC BiomaGUNE, Pase Miramon 182, San Sebastian-Donostia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
35
|
Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor Devices Inspired by the Five Senses: A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201600047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - B. Jelle Toebes
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Jan Lauko
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Nicoleta Anton
- Universitatea de Medicina si Farmacie Grigore T.; Popa, Str. Universitatii nr. 16 700115 Iasi Romania
| | | |
Collapse
|
36
|
Abstract
Sensory photoreceptors underpin optogenetics by mediating the noninvasive and reversible perturbation of living cells by light with unprecedented temporal and spatial resolution. Spurred by seminal optogenetic applications of natural photoreceptors, the engineering of photoreceptors has recently garnered wide interest and has led to the construction of a broad palette of novel light-regulated actuators. Photoreceptors are modularly built of photosensors that receive light signals, and of effectors that carry out specific cellular functions. These modules have to be precisely connected to allow efficient communication, such that light stimuli are relayed from photosensor to effector. The engineering of photoreceptors benefits from a thorough understanding of the underlying signaling mechanisms. This chapter gives a brief overview of key characteristics and signal-transduction mechanisms of sensory photoreceptors. Adaptation of these concepts in photoreceptor engineering has enabled the generation of novel optogenetic tools that greatly transcend the repertoire of natural photoreceptors.
Collapse
Affiliation(s)
- Thea Ziegler
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany
- Lehrstuhl für Biochemie, Universität Bayreuth, Universitätstraße 30, Bldg. NW III, 95440, Bayreuth, Germany
| | | | - Andreas Möglich
- Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Berlin, Germany.
- Faculty of Biology, Chemistry and Earth Sciences, Lehrstuhl für Biochemie, Universität Bayreuth, Universitätstraße 30, Bldg. NW III, 95440, Bayreuth, Germany.
| |
Collapse
|
37
|
Kianianmomeni A, Hallmann A. Algal Photobiology: A Rich Source of Unusual Light Sensitive Proteins for Synthetic Biology and Optogenetics. Methods Mol Biol 2016; 1408:37-54. [PMID: 26965114 DOI: 10.1007/978-1-4939-3512-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The light absorption system in eukaryotic (micro)algae includes highly sensitive photoreceptors, which change their conformation in response to different light qualities on a subsecond time scale and induce physiological and behavioral responses. Some of the light sensitive modules are already in use to engineer and design photoswitchable tools for control of cellular and physiological activities in living organisms with various degrees of complexity. Thus, identification of new light sensitive modules will not only extend the source material for the generation of optogenetic tools but also foster the development of new light-based strategies in cell signaling research. Apart from searching for new proteins with suitable light-sensitive modules, smaller variants of existing light-sensitive modules would be helpful to simplify the construction of hybrid genes and facilitate the generation of mutated and chimerized modules. Advances in genome and transcriptome sequencing as well as functional analysis of photoreceptors and their interaction partners will help to discover new light sensitive modules.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
38
|
Abstract
The discovery of light-gated ion channels and their application to controlling neural activities have had a transformative impact on the field of neuroscience. In recent years, the concept of using light-activated proteins to control biological processes has greatly diversified into other fields, driven by the natural diversity of photoreceptors and decades of knowledge obtained from their biophysical characterization. In this chapter, we will briefly discuss the origin and development of optogenetics and highlight the basic concepts that make it such a powerful technology. We will review how these enabling concepts have developed over the past decade, and discuss future perspectives.
Collapse
Affiliation(s)
- Yong Ku Cho
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| | - Dan Li
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
39
|
Abstract
Sensory photoreceptors not only control diverse adaptive responses in Nature, but as light-regulated actuators they also provide the foundation for optogenetics, the non-invasive and spatiotemporally precise manipulation of cellular events by light. Novel photoreceptors have been engineered that establish control by light over manifold biological processes previously inaccessible to optogenetic intervention. Recently, photoreceptor engineering has witnessed a rapid development, and light-regulated actuators for the perturbation of a plethora of cellular events are now available. Here, we review fundamental principles of photoreceptors and light-regulated allostery. Photoreceptors dichotomize into associating receptors that alter their oligomeric state as part of light-regulated allostery and non-associating receptors that do not. A survey of engineered photoreceptors pinpoints light-regulated association reactions and order-disorder transitions as particularly powerful and versatile design principles. Photochromic photoreceptors that are bidirectionally toggled by two light colors augur enhanced spatiotemporal resolution and use as photoactivatable fluorophores. By identifying desirable traits in engineered photoreceptors, we provide pointers for the design of future, light-regulated actuators.
Collapse
Affiliation(s)
- Thea Ziegler
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany ; Lehrstuhl für Biochemie, Universität Bayreuth Bayreuth, Germany
| | - Andreas Möglich
- Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin Berlin, Germany ; Lehrstuhl für Biochemie, Universität Bayreuth Bayreuth, Germany
| |
Collapse
|
40
|
Gao XJ, Riabinina O, Li J, Potter CJ, Clandinin TR, Luo L. A transcriptional reporter of intracellular Ca(2+) in Drosophila. Nat Neurosci 2015; 18:917-25. [PMID: 25961791 PMCID: PMC4446202 DOI: 10.1038/nn.4016] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022]
Abstract
Intracellular Ca2+ is a widely used neuronal activity indicator. Here we describe a transcriptional reporter of intracellular Ca2+ (TRIC) in Drosophila, which uses a binary expression system to report Ca2+-dependent interactions between calmodulin and its target peptide. We show that in vitro assays predict in vivo properties of TRIC, and that TRIC signals in sensory systems depend on neuronal activity. TRIC can quantitatively monitor neuronal responses that change slowly, such as those of neuropeptide F-expressing neurons to sexual deprivation and neuroendocrine pars intercerebralis (PI) cells to food and arousal. Furthermore, TRIC-induced expression of a neuronal silencer in nutrient activated cells enhanced stress resistance, providing proof-of-principle that TRIC can be used for circuit manipulation. Thus, TRIC facilitates the monitoring and manipulation of neuronal activity, especially those reflecting slow changes in physiological states that are poorly captured by existing methods. TRIC’s modular design should enable optimization and adaptation to other organisms.
Collapse
Affiliation(s)
- Xiaojing J Gao
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA
| | - Olena Riabinina
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiefu Li
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, California, USA
| | - Liqun Luo
- 1] Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA. [2] Department of Neurobiology, Stanford University, Stanford, California, USA
| |
Collapse
|