1
|
Zhang H, Li S, Ma X. Transforming Healthcare with Nanomedicine: A SWOT Analysis of Drug Delivery Innovation. Drug Des Devel Ther 2024; 18:3499-3521. [PMID: 39132625 PMCID: PMC11314449 DOI: 10.2147/dddt.s470210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Nanomedicine represents a transformative approach in biomedical applications. This study aims to delineate the application of nanomedicine in the biomedical field through the strengths, weaknesses, opportunities, and threats (SWOT) analysis to evaluate its efficacy and potential in clinical applications. Methods The SWOT analysis framework was employed to systematically review and assess the internal strengths and weaknesses, along with external opportunities and threats of nanomedicine. This method provides a balanced consideration of the potential benefits and challenges. Results Findings from the SWOT analysis indicate that nanomedicine presents significant potential in drug delivery, diagnostic imaging, and tissue engineering. Nonetheless, it faces substantial hurdles such as safety issues, environmental concerns, and high development costs. Critical areas for development were identified, particularly concerning its therapeutic potential and the uncertainties surrounding long-term effects. Conclusion Nanomedicine holds substantial promise in driving medical innovation. However, successful clinical translation requires addressing safety, cost, and regulatory challenges. Interdisciplinary collaboration and comprehensive strategic planning are crucial for the safe and effective application of nanomedicine.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Suping Li
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xingming Ma
- School of Health Management, Xihua University, Chengdu, 610039, People’s Republic of China
| |
Collapse
|
2
|
Koo J, Palli SR. Recent advances in understanding of the mechanisms of RNA interference in insects. INSECT MOLECULAR BIOLOGY 2024:10.1111/imb.12941. [PMID: 38957135 PMCID: PMC11695441 DOI: 10.1111/imb.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
We highlight the recent 5 years of research that contributed to our understanding of the mechanisms of RNA interference (RNAi) in insects. Since its first discovery, RNAi has contributed enormously as a reverse genetic tool for functional genomic studies. RNAi is also being used in therapeutics, as well as agricultural crop and livestock production and protection. Yet, for the wider application of RNAi, improvement of its potency and delivery technologies is needed. A mechanistic understanding of every step of RNAi, from cellular uptake of RNAi trigger molecules to targeted mRNA degradation, is key for developing an efficient strategy to improve RNAi technology. Insects provide an excellent model for studying the mechanism of RNAi due to species-specific variations in RNAi efficiency. This allows us to perform comparative studies in insect species with different RNAi sensitivity. Understanding the mechanisms of RNAi in different insects can lead to the development of better strategies to improve RNAi and its application to manage agriculturally and medically important insects.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
- Current address: Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Subba Reddy Palli
- Department of Entomology, Gatton-Martin College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
3
|
Bhole RP, Kute PR, Chikhale RV, Bonde CG, Pant A, Gurav SS. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy. Bioorg Chem 2023; 139:106720. [PMID: 37480814 DOI: 10.1016/j.bioorg.2023.106720] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The technology known asPROTACs (PROteolysisTArgeting Chimeras) is a method of protein degradation. Utilising bifunctional small molecules, the ubiquitin-proteosome system (UPS) is used to induce the ubiquitination and degradation of target proteins. In addition to being novel chemical knockdown agents for biological studies that are catalytic, reversible, and rapid, PROTACs used in the treatment for disorders like cancer, immunological disorders, viral diseases, and neurological disorders. The protein degradation field has advanced quickly over the last two years, with a significant rise in research articles on the subject as well as a quick rise in smallmolecule degraders that are currently in or will soon enter the clinical stage. Other new degrading technologies, in addition to PROTAC and molecular glue technology, are also emerging rapidly. In this review article, we mainly focuses on various PROTAC molecules designed with special emphasis on targeted cellular pathways for different diseases i.e., cancer, Viral diseases Immune disorders, Neurodegenerative diseases, etc. We discussed about new technologies based on PROTACs such as Antibody PROTAC, Aptamers, Dual target, Folate caged, TF PROTAC, etc. Also, we listed out the PROTACs which are in clinical trials.
Collapse
Affiliation(s)
- Ritesh P Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.
| | - Payal R Kute
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | | | - C G Bonde
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur Campus 425 405, India.
| | - Amit Pant
- School of Medicine Creighton University, Omaha, Neraska, USA.
| | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa University, Goa 403001, India.
| |
Collapse
|
4
|
Yarahmadi A, Sohan R, McAllister B, Caromile LA. Therapeutic potential of targeting mirnas to prostate cancer tumors: using psma as an active target. Mol Cell Oncol 2022; 9:2136476. [PMID: 36313480 PMCID: PMC9601542 DOI: 10.1080/23723556.2022.2136476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023]
Abstract
Prostate cancer (PC) is a commonly diagnosed malignancy in men and is associated with high mortality rates. Current treatments for PC include surgery, chemotherapy, and radiation therapy. However, recent advances in targeted delivery systems have yielded promising new approaches to PC treatment. As PC epithelial cells express high levels of prostate-specific membrane antigen (PSMA) on the cell surface, new drug conjugates focused on PSMA targeting have been developed. microRNAs (miRNAs) are small noncoding RNAs that regulate posttranscriptional gene expression in cells and show excellent possibilities for use in developing new therapeutics for PC. PSMA-targeted therapies based on a miRNA payload and that selectively target PC cells enhances therapeutic efficacy without eliciting damage to normal surrounding tissue. This review discusses the rationale for utilizing miRNAs to target PSMA, revealing their potential in therapeutic approaches to PC treatment. Different delivery systems for miRNAs and challenges to miRNA therapy are also explored.
Collapse
Affiliation(s)
- Amir Yarahmadi
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Romoye Sohan
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Brenna McAllister
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Leslie A. Caromile
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
5
|
Yu A, Tang S, Ding L, Foley J, Tang W, Jia H, Panja S, Holbert CE, Hang Y, Stewart TM, Smith LM, Sil D, Casero RA, Oupický D. Hyaluronate-coated perfluoroalkyl polyamine prodrugs as bioactive siRNA delivery systems for the treatment of peritoneal cancers. BIOMATERIALS ADVANCES 2022; 136:212755. [PMID: 35813988 PMCID: PMC9268001 DOI: 10.1016/j.bioadv.2022.212755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
RNA interference (RNAi) is an emerging therapeutic modality for cancer, which remains in critical need of effective delivery vectors due to the unfavorable biopharmaceutical properties of small RNAs. Polyamines are essential for functioning of mammalian cells. Dysregulated polyamine metabolism is found in many cancers and has been an attractive therapeutic target in combination therapies. Combination therapies based on drugs that affect polyamine metabolism and nucleic acids promise to enhance anticancer activity due to a cooperative effect on multiple oncogenic pathways. Here, we report bioactive polycationic prodrug (F-PaP) based on an anticancer polyamine analog bisethylnorspermine (BENSpm) modified with perfluoroalkyl moieties. Following encapsulation of siRNA, F-PaP/siRNA nanoparticles were coated with hyaluronic acid (HA) to form ternary nanoparticles HA@F-PaP/siRNA. The presence of perfluoroalkyl moieties and HA reduced cell membrane toxicity and improved stability of the particles with cooperatively enhanced siRNA delivery in pancreatic and colon cancer cell lines. We then tested a therapeutic hypothesis that combining BENSpm with siRNA silencing of polo-like kinase 1 (PLK1) would result in cooperative cancer cell killing. HA@F-PaP/siPLK1 induced polyamine catabolism and cell cycle arrest, leading to enhanced apoptosis in the tested cell lines. The HA-coated nanoparticles facilitated tumor accumulation and contributed to strong tumor inhibition and favorable modulation of the immune tumor microenvironment in orthotopic pancreatic cancer model. Combination anticancer therapy with polyamine prodrug-mediated delivery of siRNA. Hyaluronate coating of the siRNA nanoparticles facilitates selective accumulation in orthotopic pancreatic tumors. Perfluoroalkyl conjugation reduces toxicity and improves gene silencing effect. Nanoparticle treatment induces polyamine catabolism and cell cycle arrest leading to strong tumor inhibition and favorable modulation of immune tumor microenvironment.
Collapse
Affiliation(s)
- Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Jackson Foley
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Huizhen Jia
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Cassandra E. Holbert
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lynette M. Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha NE, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha NE, USA
| |
Collapse
|
6
|
Reboud-Ravaux M. [Induced degradation of proteins by PROTACs and other strategies: towards promising drugs]. Biol Aujourdhui 2021; 215:25-43. [PMID: 34397373 DOI: 10.1051/jbio/2021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 11/14/2022]
Abstract
Targeted protein degradation (TPD), discovered twenty years ago through the PROTAC technology, is rapidly developing thanks to the implication of many scientists from industry and academia. PROTAC chimeras are heterobifunctional molecules able to link simultaneously a protein to be degraded and an E3 ubiquitin ligase. This allows the protein ubiquitination and its degradation by 26S proteasome. PROTACs have evolved from small peptide molecules to small non-peptide and orally available molecules. It was shown that PROTACs are capable to degrade proteins considered as "undruggable" i.e. devoid of well-defined pockets and deep grooves possibly occupied by small molecules. Among these "hard to drug" proteins, several can be degraded by PROTACs: scaffold proteins, BAF complex, transcription factors, Ras family proteins. Two PROTACs are clinically tested for breast (ARV471) and prostate (ARV110) cancers. The protein degradation by proteasome is also induced by other types of molecules: molecular glues, hydrophobic tagging (HyT), HaloPROTACs and homo-PROTACs. Other cellular constituents are eligible to induced degradation: RNA-PROTACs for RNA binding proteins and RIBOTACs for degradation of RNA itself (SARS-CoV-2 RNA). TPD has recently moved beyond the proteasome with LYTACs (lysosome targeting chimeras) and MADTACs (macroautophagy degradation targeting chimeras). Several techniques such as screening platforms together with mathematical modeling and computational design are now used to improve the discovery of new efficient PROTACs.
Collapse
Affiliation(s)
- Michèle Reboud-Ravaux
- Sorbonne Université, Institut de Biologie Paris Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, 7 quai Saint-Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
7
|
Nanomedicines accessible in the market for clinical interventions. J Control Release 2021; 330:372-397. [DOI: 10.1016/j.jconrel.2020.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
|
8
|
Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, Kramvis A. The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses 2020; 12:v12070746. [PMID: 32664401 PMCID: PMC7412373 DOI: 10.3390/v12070746] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, the treatment of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) [HBV-HCC] relies on blunt tools that are unable to offer effective therapy for later stage pathogenesis. The potential of miRNA to treat HBV-HCC offer a more targeted approach to managing this lethal carcinoma; however, the complexity of miRNA as an ancillary regulator of the immune system remains poorly understood. This review examines the overlapping roles of HBx-dysregulated miRNA in HBV-HCC and immune pathways and seeks to demonstrate that specific miRNA response in immune cells is not independent of their expression in hepatocytes. This interplay between the two pathways may provide us with the possibility of using candidate miRNA to manipulate this interaction as a potential therapeutic option.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
- UKZN Gastrointestinal Cancer Research Centre, Durban 4041, South Africa
- Correspondence:
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E6BT, UK;
| | - Ping An
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Julia Makarova
- National Research University Higher School of Economics, Faculty of Biology and Biotechnology, 10100 Moscow, Russia;
| | - Cheryl Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Anil Chuturgoon
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
9
|
Abstract
Spherical nucleic acids (SNAs) are nanostructures formed by chemically conjugating short linear strands of oligonucleotides to a nanoparticle template. When made with modified small interfering RNA (siRNA) duplexes, SNAs act as single-entity transfection and gene silencing agents and have been used as lead therapeutic constructs in several disease models. However, the manner in which modified siRNA duplex strands that comprise the SNA lead to gene silencing is not understood. Herein, a systematic analysis of siRNA biochemistry involving SNAs shows that Dicer cleaves the modified siRNA duplex from the surface of the nanoparticle, and the liberated siRNA subsequently functions in a way that is dependent on the canonical RNA interference mechanism. By leveraging this understanding, a class of SNAs was chemically designed which increases the siRNA content by an order of magnitude through covalent attachment of each strand of the duplex. As a consequence of increased nucleic acid content, this nanostructure architecture exhibits less cell cytotoxicity than conventional SNAs without a decrease in siRNA activity.
Collapse
|
10
|
Targeting Cullin-RING Ubiquitin Ligases and the Applications in PROTACs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:317-347. [DOI: 10.1007/978-981-15-1025-0_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Lee SK, Law B, Tung CH. Multifunctional Nanodelivery Platform for Maximizing Nucleic Acids Combination Therapy. Methods Mol Biol 2020; 2115:79-90. [PMID: 32006395 DOI: 10.1007/978-1-0716-0290-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The silencing of an oncogene with a small interfering RNA (siRNA) is a promising way for cancer therapy. Its efficacy can be further enhanced by integrating with other therapeutics; however, transporting siRNA and other active ingredients to the same location at the same time is challenging. Here, we report a novel multifunctional nanodelivery platform by sequentially layering several functional ingredients, such as siRNAs, microRNAs, peptides, and targeting ligands, onto a core through charge-charge interaction. The prepared nanovectors effectively and programmably delivered multiple active components to maximize therapeutic combination with minimal off-targeting effects.
Collapse
Affiliation(s)
- Seung Koo Lee
- Department of Radiology, Weill Cornell Medicine, Molecular Imaging Innovations Institute, New York, NY, USA
| | - Benedict Law
- Department of Radiology, Weill Cornell Medicine, Molecular Imaging Innovations Institute, New York, NY, USA
| | - Ching-Hsuan Tung
- Department of Radiology, Weill Cornell Medicine, Molecular Imaging Innovations Institute, New York, NY, USA.
| |
Collapse
|
12
|
Lin LC, Lee HT, Chien PJ, Huang YH, Chang MY, Lee YC, Chang WW. NAD(P)H:quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1. Int J Med Sci 2020; 17:2214-2224. [PMID: 32922184 PMCID: PMC7484675 DOI: 10.7150/ijms.45706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
Radioresistant cells cause recurrence in patients with breast cancer after they undergo radiation therapy. The molecular mechanisms by which cancer cells obtain radioresistance should be understood to develop radiation-sensitizing agents. Results showed that the protein expression and activity of NAD(P)H:quinone oxidoreductase 1 (NQO1) were upregulated in radioresistant MDA-MB-231 triple-negative breast cancer (TNBC) cells. NQO1 knockdown inhibited the proliferation of NQO1 expressing Hs578t TNBC cells or the radioresistant MDA-MB-231 cells, whereas NOQ1 overexpression increased the survival of MDA-MB-231 cells, which lack of NQO1 expression originally, under irradiation. The cytotoxicity of β-lapachone, an NQO1-dependent bioactivatable compound, was greater in radioresistant MDA-MB-231 cells than in parental cells. β-lapachone displayed a radiosensitization effect on Hs578t or radioresistant MBDA-MB-231 cells. The expression of the long noncoding RNA NEAT1 positively regulated the NQO1 expression in radioresistant MDA-MB-231 cells at a translational level rather than at a transcription level. The inhibition of the NEAT1 expression through the CRISPR-Cas9 method increased the sensitivity of radioresistant MDA-MB-231 cells to radiation and decreased their proliferation, the activity of cancer stem cells, and the expression of stemness genes, including BMI1, Oct4, and Sox2. In conclusion, the NQO1 expression in triple-negative breast cancer cells determined their radiosensitivity and was controlled by NEAT1. In addition, NOQ1 bioactivatable compounds displayed potential for application in the development of radiation sensitizers in breast cancer.
Collapse
Affiliation(s)
- Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan, Taiwan.,School of Medicine, Taipei Medical University, Taipei, Taiwan.,Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Taipei City, Taiwan
| | - Peng-Ju Chien
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hao Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Ya Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
13
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
14
|
Scheideler M, Vidakovic I, Prassl R. Lipid nanocarriers for microRNA delivery. Chem Phys Lipids 2019; 226:104837. [PMID: 31689410 DOI: 10.1016/j.chemphyslip.2019.104837] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) like microRNAs (miRNAs) or small interference RNAs (siRNAs) with their power to selectively silence any gene of interest enable the targeting of so far 'undruggable' proteins and diseases. Such RNA molecules have gained much attention from biotech and pharmaceutical companies, which led to the first Food and Drug Administration (FDA) approved ncRNA therapeutic in 2018. However, the main barrier in clinical practice of ncRNAs is the lack of an effective delivery system that can protect the RNA molecules from nuclease degradation, deliver them to specific tissues and cell types, and release them into the cytoplasm of the targeted cells, all without inducing adverse effects. For that reason, drug delivery approaches, formulations, technologies and systems for transporting pharmacological ncRNA compounds to achieve a diagnostic or therapeutic effect in the human body are in demand. Here, we review the development of therapeutic lipid-based nanoparticles for delivery of miRNAs, one class of endogenous ncRNAs with specific regulatory functions. We outline challenges and opportunities for advanced miRNA-based therapies, and discuss the complexity associated with the delivery of functional miRNAs. Novel strategies are addressed how to deal with the most critical points in miRNA delivery, such as toxicity, specific targeting of disease sites, proper cellular uptake and endosomal escape of miRNAs. Current fields of application and various preclinical settings involving miRNA therapeutics are discussed, providing an outlook to future clinical approaches. Following the current trends and technological developments in nanomedicine exciting new delivery systems for ncRNA-based therapeutics can be expected in upcoming years.
Collapse
Affiliation(s)
- Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Ivan Vidakovic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| |
Collapse
|
15
|
Unveiling the druggable RNA targets and small molecule therapeutics. Bioorg Med Chem 2019; 27:2149-2165. [PMID: 30981606 PMCID: PMC7126819 DOI: 10.1016/j.bmc.2019.03.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
The increasing appreciation for the crucial roles of RNAs in infectious and non-infectious human diseases makes them attractive therapeutic targets. Coding and non-coding RNAs frequently fold into complex conformations which, if effectively targeted, offer opportunities to therapeutically modulate numerous cellular processes, including those linked to undruggable protein targets. Despite the considerable skepticism as to whether RNAs can be targeted with small molecule therapeutics, overwhelming evidence suggests the challenges we are currently facing are not outside the realm of possibility. In this review, we highlight the most recent advances in molecular techniques that have sparked a revolution in understanding the RNA structure-to-function relationship. We bring attention to the application of these modern techniques to identify druggable RNA targets and to assess small molecule binding specificity. Finally, we discuss novel screening methodologies that support RNA drug discovery and present examples of therapeutically valuable RNA targets.
Collapse
|
16
|
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 2019; 14:93-126. [PMID: 30451076 PMCID: PMC6391637 DOI: 10.2217/nnm-2018-0120] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
There has been a revolution in nanotechnology and nanomedicine. Since 1980, there has been a remarkable increase in approved nano-based pharmaceutical products. These novel nano-based systems can either be therapeutic agents themselves, or else act as vehicles to carry different active pharmaceutical agents into specific parts of the body. Currently marketed nanostructures include nanocrystals, liposomes and lipid nanoparticles, PEGylated polymeric nanodrugs, other polymers, protein-based nanoparticles and metal-based nanoparticles. A range of issues must be addressed in the development of these nanostructures. Ethics, market size, possibility of market failure, costs and commercial development, are some topics which are on the table to be discussed. After passing all the ethical and biological assessments, and satisfying the investors as to future profitability, only a handful of these nanoformulations, successfully obtained marketing approval. We survey the range of nanomedicines that have received regulatory approval and are marketed. We discuss ethics, costs, commercial development and possible market failure. We estimate the global nanomedicine market size and future growth. Our goal is to summarize the different approved nanoformulations on the market, and briefly cover the challenges and future outlook.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Amir Ghasemi
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
- Advances Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14496-4535, Iran
| | - Omid Gohari
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Science, Shiraz 71348-14336, Iran
| | - Mahdi Karimi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard – MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Xie Y, Wang Y, Li J, Hang Y, Oupický D. Promise of chemokine network-targeted nanoparticles in combination nucleic acid therapies of metastatic cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1528. [PMID: 29700990 DOI: 10.1002/wnan.1528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 01/10/2023]
Abstract
Chemokines and chemokine receptors play key roles in cancer progression and metastasis. Although multiple chemokines and chemokine receptors have been investigated, inhibition of CXCR4 emerged as one of the most promising approaches in combination cancer therapy, especially when focused on the metastatic disease. Small RNA molecules, such as small interfering RNA (siRNA) and microRNA (miRNA), represent new class of therapeutics for cancer treatment through RNA interference-mediated gene silencing. However, the clinical applicability of siRNA and miRNA is severely limited by the lack of effective delivery systems. There is a significant therapeutic potential for CXCR4-targeted nanomedicines in combination with the delivery of siRNA and miRNA in cancer. Recently developed CXCR4-targeted polymeric drugs and nanomedicines, including cyclam- and chloroquine-based polymeric CXCR4 antagonists are introduced here and their ability to deliver functional siRNA and miRNA is discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yazhe Wang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jing Li
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yu Hang
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - David Oupický
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
18
|
Schaefer M, Kapoor U, Jantsch MF. Understanding RNA modifications: the promises and technological bottlenecks of the 'epitranscriptome'. Open Biol 2018; 7:rsob.170077. [PMID: 28566301 PMCID: PMC5451548 DOI: 10.1098/rsob.170077] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
The discovery of mechanisms that alter genetic information via RNA editing or introducing covalent RNA modifications points towards a complexity in gene expression that challenges long-standing concepts. Understanding the biology of RNA modifications represents one of the next frontiers in molecular biology. To this date, over 130 different RNA modifications have been identified, and improved mass spectrometry approaches are still adding to this list. However, only recently has it been possible to map selected RNA modifications at single-nucleotide resolution, which has created a number of exciting hypotheses about the biological function of RNA modifications, culminating in the proposition of the ‘epitranscriptome’. Here, we review some of the technological advances in this rapidly developing field, identify the conceptual challenges and discuss approaches that are needed to rigorously test the biological function of specific RNA modifications.
Collapse
Affiliation(s)
- Matthias Schaefer
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Utkarsh Kapoor
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| | - Michael F Jantsch
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17-I, 1090 Vienna, Austria
| |
Collapse
|
19
|
Zoni E, Karkampouna S, Thalmann GN, Kruithof-de Julio M, Spahn M. Emerging aspects of microRNA interaction with TMPRSS2-ERG and endocrine therapy. Mol Cell Endocrinol 2018; 462:9-16. [PMID: 28189568 DOI: 10.1016/j.mce.2017.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the most common malignancy detected in males and the second most common cause of cancer death in western countries. The development of the prostate gland, is finely regulated by androgens which modulate also its growth and function. Importantly, androgens exert a major role in PCa formation and progression and one of the hypothesized mechanism proposed has been linked to the chromosomal rearrangement of the androgen regulated gene TMPRSS2 with ERG. Androgens have been therefore used as main target for therapies in the past. However, despite the development of endocrine therapies (e.g. androgen ablation), when PCa progress, tumors become resistant to this therapeutic castration and patients develop incurable metastases. A strategy to better understand how patients respond to therapy, in order to achieve a better patient stratification, consists in monitoring the levels of small noncoding RNAs (microRNAs). microRNAs are a class of small molecules that regulate protein abundance and their application as biomarkers to monitor disease progression has been intensely studied in the last years. In this review, we highlight the interactions between microRNAs and endocrine-related aspects of PCa in tissues. We focus on the modulation of TMPRSS2-ERG and Glucocorticoid Receptor (GR) by microRNAs and detail the influence of steroidal hormonal therapies on microRNAs expression.
Collapse
Affiliation(s)
- Eugenio Zoni
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Department of Urology, Bern University Hospital, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Urology Research Laboratory, Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Spahn
- Urology Research Laboratory, Department of Urology, University of Bern, Bern, Switzerland; Department of Urology, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
20
|
Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hasani-Sadrabadi MM, Ebrahimi M, Baharvand H. Engineered Hydrogels in Cancer Therapy and Diagnosis. Trends Biotechnol 2017; 35:1074-1087. [PMID: 28734545 DOI: 10.1016/j.tibtech.2017.06.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
Over the last decade, numerous investigations have attempted to clarify the intricacies of tumor development to propose effective approaches for cancer treatment. Thanks to the unique properties of hydrogels, researchers have made significant progress in tumor model reconstruction, tumor diagnosis, and associated therapies. Notably, hydrogel-based systems can be adjusted to respond to cancer-specific hallmarks and/or external stimuli. These well-known drug reservoirs can be used as smart carriers for multiple cargos, including both naked and nanoparticle-encapsulated chemotherapeutics, genes, and radioisotopes. Recent works have attempted to specialize hydrogels for cancer research; we comprehensively review this topic for the first time, synthesizing past results and defining paths for future work.
Collapse
Affiliation(s)
- Mohammadmajid Sepantafar
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reihan Maheronnaghsh
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Mohammadi
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Fatemeh Radmanesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Mahdi Hasani-Sadrabadi
- Parker H. Petit Institute for Bioengineering and Bioscience, G.W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
21
|
Ki67 targeted strategies for cancer therapy. Clin Transl Oncol 2017; 20:570-575. [DOI: 10.1007/s12094-017-1774-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
|
22
|
Abstract
Traditional pharmaceutical drug discovery is almost exclusively focused on directly controlling protein activity to cure diseases. Modulators of protein activity, especially inhibitors, are developed and applied at high concentration to achieve maximal effects. Thereby, reduced bioavailability and off-target effects can hamper compound efficacy. Nucleic acid-based strategies that control protein function by affecting expression have emerged as an alternative. However, metabolic stability and broad bioavailability represent development hurdles that remain to be overcome for these approaches. More recently, utilizing the cell's own protein destruction machinery for selective degradation of essential drivers of human disorders has opened up a new and exciting area of drug discovery. Small-molecule-induced proteolysis of selected substrates offers the potential of reaching beyond the limitations of the current pharmaceutical paradigm to expand the druggable target space.
Collapse
Affiliation(s)
- Philipp M Cromm
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - Craig M Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
23
|
Attarwala H, Han M, Kim J, Amiji M. Oral nucleic acid therapy using multicompartmental delivery systems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544521 DOI: 10.1002/wnan.1478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/12/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Nucleic acid-based therapeutics has the potential for treating numerous diseases by correcting abnormal expression of specific genes. Lack of safe and efficacious delivery strategies poses a major obstacle limiting clinical advancement of nucleic acid therapeutics. Oral route of drug administration has greater delivery challenges, because the administered genes or oligonucleotides have to bypass degrading environment of the gastrointestinal (GI) tract in addition to overcoming other cellular barriers preventing nucleic acid delivery. For efficient oral nucleic acid delivery, vector should be such that it can protect encapsulated material during transit through the GI tract, facilitate efficient uptake and intracellular trafficking at desired target sites, along with being safe and well tolerated. In this review, we have discussed multicompartmental systems for overcoming extracellular and intracellular barriers to oral delivery of nucleic acids. A nanoparticles-in-microsphere oral system-based multicompartmental system was developed and tested for in vivo gene and small interfering RNA delivery for treating colitis in mice. This system has shown efficient transgene expression or gene silencing when delivered orally along with favorable downstream anti-inflammatory effects, when tested in a mouse model of intestinal bowel disease. WIREs Nanomed Nanobiotechnol 2018, 10:e1478. doi: 10.1002/wnan.1478 This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Husain Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Murui Han
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Fernandez-Piñeiro I, Badiola I, Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv 2017; 35:350-360. [PMID: 28286148 DOI: 10.1016/j.biotechadv.2017.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 02/26/2017] [Accepted: 03/03/2017] [Indexed: 01/09/2023]
Abstract
The number of deaths caused by cancer is expected to increase partly due to the lack of selectivity and undesirable systemic effects of current treatments. Advances in the understanding of microRNA (miRNA) functions and the ideal properties of nanosystems have brought increasing attention to the application of nanomedicine to cancer therapy. This review covers the different miRNA therapeutic strategies and delivery challenges for its application in cancer medicine. Current trends in inorganic, polymeric and lipid nanocarrier development for miRNA replacement or inhibition are summarized. To achieve clinical success, in-depth knowledge of the effects of the promotion or inhibition of specific miRNAs is required. To establish the dose and the length of treatment, it will be necessary to study the duration of gene silencing. Additionally, efforts should be made to develop specifically targeted delivery systems to cancer cells to reduce doses and unwanted effects. In the near future, the combination of miRNAs with other therapeutic approaches is likely to play an important role in addressing the heterogeneity of cancer.
Collapse
Affiliation(s)
- I Fernandez-Piñeiro
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain
| | - I Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Odontology, University of Basque Country, B° Sarriena, s/n, 48940 Leioa, Spain
| | - A Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
25
|
Mendes R, Fernandes AR, Baptista PV. Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer-The Case for Combined Delivery? Genes (Basel) 2017; 8:E94. [PMID: 28257109 PMCID: PMC5368698 DOI: 10.3390/genes8030094] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/25/2017] [Accepted: 02/23/2017] [Indexed: 01/30/2023] Open
Abstract
Gene therapy arises as a great promise for cancer therapeutics due to its potential to silence genes involved in tumor development. In fact, there are some pivotal gene drivers that suffer critical alterations leading to cell transformation and ultimately to tumor growth. In this vein, gene silencing has been proposed as an active tool to selectively silence these molecular triggers of cancer, thus improving treatment. However, naked nucleic acid (DNA/RNA) sequences are reported to have a short lifetime in the body, promptly degraded by circulating enzymes, which in turn speed up elimination and decrease the therapeutic potential of these drugs. The use of nanoparticles for the effective delivery of these silencers to the specific target locations has allowed researchers to overcome this issue. Particularly, gold nanoparticles (AuNPs) have been used as attractive vehicles for the target-specific delivery of gene-silencing moieties, alone or in combination with other drugs. We shall discuss current trends in AuNP-based delivery of gene-silencing tools, considering the promising road ahead without overlooking existing concerns for their translation to clinics.
Collapse
Affiliation(s)
- Rita Mendes
- UCIBIO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Alexandra R Fernandes
- UCIBIO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Pedro V Baptista
- UCIBIO, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
26
|
Chen HY, Albert K, Wen CC, Hsieh PY, Chen SY, Huang NC, Lo SC, Chen JK, Hsu HY. Multifunctional silver nanocluster-hybrid oligonucleotide vehicle for cell imaging and microRNA-targeted gene silencing. Colloids Surf B Biointerfaces 2017; 152:423-431. [PMID: 28171795 DOI: 10.1016/j.colsurfb.2017.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/17/2022]
Abstract
Novel therapeutics is urgently needed to prevent cancer-related deaths. MicroRNAs that act as tumor suppressors have been recognized as a next-generation tumor therapy, and the restoration of tumor-suppressive microRNAs using microRNA replacements or mimics may be a less toxic, more effective strategy due to fewer off-target effects. Here, we designed the novel multifunctional oligonucleotide nanocarrier complex composed of a tumor-targeting aptamer sequence specific to mucin 1 (MUC1), poly-cytosine region for fluorescent silver nanocluster (AgNC) synthesis, and complimentary sequence for microRNA miR-34a loading. MiR-34a was employed because of its therapeutic effect of inhibiting oncogene expression and inducing apoptosis in carcinomas. By monitoring the intrinsic fluorescence of AgNC, it was clearly shown that the constructed complex (MUC1-AgNCm-miR-34a) enters MCF-7 cells. To evaluate the efficacy of this nanocarrier for microRNA delivery, we investigated the gene and protein expression levels of downstream miR-34a targets (BCL-2, CDK6, and CCND1) by quantitative PCR and western blotting, respectively, and the results indicated their effective inhibition by miR-34a. This novel multifunctional AgNC-based nanocarrier can aid in improving the efficacy of breast cancer theranostics.
Collapse
Affiliation(s)
- Hau-Yun Chen
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Karunya Albert
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Cheng-Che Wen
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Pei-Ying Hsieh
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Sih-Yu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Nei-Chung Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shen-Chuan Lo
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan; Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.
| |
Collapse
|
27
|
Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer. Ther Deliv 2016; 7:245-55. [PMID: 27010986 DOI: 10.4155/tde-2015-0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aberrant gene expression can trigger several vital molecular events that not only result in carcinogenesis but also cause chemoresistance, metastasis and relapse. Gene-based therapies using siRNA/miRNA have been suggested as new treatment method to improve the current regimen. Although these agents can restore the normal molecular cascade thereby resensitizing the cancer cells, delivering a standard regimen (either subsequently or simultaneously) is necessary to achieve the therapeutic benefit. However, co-delivery using a single carrier could give an additional advantage of similar biodistribution profile of the loaded agents. While much research has been carried out in this field in recent years, challenges involved in designing combination formulations including efficient coloading, stability, appropriate biodistribution and target specificity have hampered their clinical translation. This article highlights current aspects of nano-carriers used for co-delivery of small molecules and genes to treat cancer.
Collapse
|
28
|
Reschke CR, Silva LFA, Norwood BA, Senthilkumar K, Morris G, Sanz-Rodriguez A, Conroy RM, Costard L, Neubert V, Bauer S, Farrell MA, O'Brien DF, Delanty N, Schorge S, Pasterkamp RJ, Rosenow F, Henshall DC. Potent Anti-seizure Effects of Locked Nucleic Acid Antagomirs Targeting miR-134 in Multiple Mouse and Rat Models of Epilepsy. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 6:45-56. [PMID: 28325299 PMCID: PMC5363384 DOI: 10.1016/j.omtn.2016.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 01/19/2023]
Abstract
Current anti-epileptic drugs (AEDs) act on a limited set of neuronal targets, are ineffective in a third of patients with epilepsy, and do not show disease-modifying properties. MicroRNAs are small noncoding RNAs that regulate levels of proteins by post-transcriptional control of mRNA stability and translation. MicroRNA-134 is involved in controlling neuronal microstructure and brain excitability and previous studies showed that intracerebroventricular injections of locked nucleic acid (LNA), cholesterol-tagged antagomirs targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in mouse models of status epilepticus. Translation of these findings would benefit from evidence of efficacy in non-status epilepticus models and validation in another species. Here, we report that electrographic seizures and convulsive behavior are strongly reduced in adult mice pre-treated with Ant-134 in the pentylenetetrazol model. Pre-treatment with Ant-134 did not affect the severity of status epilepticus induced by perforant pathway stimulation in adult rats, a toxin-free model of acquired epilepsy. Nevertheless, Ant-134 post-treatment reduced the number of rats developing spontaneous seizures by 86% in the perforant pathway stimulation model and Ant-134 delayed epileptiform activity in a rat ex vivo hippocampal slice model. The potent anticonvulsant effects of Ant-134 in multiple models may encourage pre-clinical development of this approach to epilepsy therapy.
Collapse
Affiliation(s)
- Cristina R Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Luiz F Almeida Silva
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Braxton A Norwood
- Department of Neurology, Philipps University, Marburg 35043, Germany; Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University, Frankfurt 60528, Germany
| | - Ketharini Senthilkumar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland; Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CG, the Netherlands
| | - Gareth Morris
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College of London, London WC1N 3BG, UK
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Ronán M Conroy
- Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Lara Costard
- Department of Neurology, Philipps University, Marburg 35043, Germany
| | - Valentin Neubert
- Department of Neurology, Philipps University, Marburg 35043, Germany
| | - Sebastian Bauer
- Department of Neurology, Philipps University, Marburg 35043, Germany; Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University, Frankfurt 60528, Germany
| | - Michael A Farrell
- Department of Pathology, Beaumont Hospital, Beaumont, Dublin D09 C562, Ireland
| | - Donncha F O'Brien
- Department of Neurological Surgery, Beaumont Hospital, Beaumont, Dublin D09 C562, Ireland
| | - Norman Delanty
- Department of Neurology, Beaumont Hospital, Beaumont, Dublin D09 C562, Ireland
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College of London, London WC1N 3BG, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CG, the Netherlands
| | - Felix Rosenow
- Department of Neurology, Philipps University, Marburg 35043, Germany; Department of Neurology, Epilepsy Center Frankfurt Rhine-Main, Goethe University, Frankfurt 60528, Germany
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland.
| |
Collapse
|
29
|
MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol 2016; 15:1368-1376. [DOI: 10.1016/s1474-4422(16)30246-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022]
|
30
|
Abstract
Protein homeostasis networks are highly regulated systems responsible for maintaining the health and productivity of cells. Whereas therapeutics have been developed to disrupt protein homeostasis, more recently identified techniques have been used to repurpose homeostatic networks to effect degradation of disease-relevant proteins. Here, we review recent advances in the use of small molecules to degrade proteins in a selective manner. First, we highlight all-small-molecule techniques with direct clinical application. Second, we describe techniques that may find broader acceptance in the biomedical research community that require little or no synthetic chemistry. In addition to serving as innovative research tools, these new approaches to control intracellular protein levels offer the potential to develop novel therapeutics targeting proteins that are not currently pharmaceutically vulnerable.
Collapse
Affiliation(s)
- Daniel P Bondeson
- Department of Molecular, Cellular, and Developmental Biology, Department of Chemistry, and Department of Pharmacology, Yale University, New Haven, Connecticut 06511;
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Department of Chemistry, and Department of Pharmacology, Yale University, New Haven, Connecticut 06511;
| |
Collapse
|
31
|
Lee SH, Kang YY, Jang HE, Mok H. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Adv Drug Deliv Rev 2016; 104:78-92. [PMID: 26514375 DOI: 10.1016/j.addr.2015.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
Recent promising clinical results of RNA therapeutics have drawn big attention of academia and industries to RNA therapeutics and their carrier systems. To improve their feasibility in clinics, systemic evaluations of currently available carrier systems under clinical trials and preclinical studies are needed. In this review, we focus on recent noticeable preclinical studies and clinical results regarding siRNA-based conjugates for clinical translations. Advantages and drawbacks of siRNA-based conjugates are discussed, compared to particle-based delivery systems. Then, representative siRNA-based conjugates with aptamers, peptides, carbohydrates, lipids, polymers, and nanostructured materials are introduced. To improve feasibility of siRNA conjugates in preclinical studies, several considerations for the rational design of siRNA conjugates in terms of cleavability, immune responses, multivalent conjugations, and mechanism of action are also presented. Lastly, we discuss lessons from previous preclinical and clinical studies related to siRNA conjugates and perspectives of their clinical applications.
Collapse
Affiliation(s)
- Soo Hyeon Lee
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | - Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyo-Eun Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
32
|
Molasy M, Walczak A, Szaflik J, Szaflik JP, Majsterek I. MicroRNAs in glaucoma and neurodegenerative diseases. J Hum Genet 2016; 62:105-112. [PMID: 27412874 DOI: 10.1038/jhg.2016.91] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) constitute a class of short, non-coding RNAs, which have important role in post-transcriptional regulation of genes expression by base-pairing with their target messenger RNA (mRNA). In recent years, miRNAs biogenesis, gene silencing mechanism and implication in various diseases have been thoroughly investigated. Many scientific findings indicate the altered expression of specific miRNA in the brains of patients affected by neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease and Huntington disease. The progressive optic nerve neuropathy associated with changed miRNA profile was also observed during glaucoma development. This suggests that the miRNAs may have a crucial role in these disorders, contributing to the neuronal cell death. A better understanding of molecular mechanism of these disorders will open a new potential way of ND treatment. In this review, the miRNAs role in particular neurodegenerative disorders and their possible application in medicine was discussed.
Collapse
Affiliation(s)
- Milena Molasy
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Anna Walczak
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology, SPKSO Ophthalmic Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, SPKSO Ophthalmic Hospital, Medical University of Warsaw, Warsaw, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
33
|
Reautschnig P, Vogel P, Stafforst T. The notorious R.N.A. in the spotlight - drug or target for the treatment of disease. RNA Biol 2016; 14:651-668. [PMID: 27415589 PMCID: PMC5449091 DOI: 10.1080/15476286.2016.1208323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
mRNA is an attractive drug target for therapeutic interventions. In this review we highlight the current state, clinical trials, and developments in antisense therapy, including the classical approaches like RNaseH-dependent oligomers, splice-switching oligomers, aptamers, and therapeutic RNA interference. Furthermore, we provide an overview on emerging concepts for using RNA in therapeutic settings including protein replacement by in-vitro-transcribed mRNAs, mRNA as vaccines and anti-allergic drugs. Finally, we give a brief outlook on early-stage RNA repair approaches that apply endogenous or engineered proteins in combination with short RNAs or chemically stabilized oligomers for the re-programming of point mutations, RNA modifications, and frame shift mutations directly on the endogenous mRNA.
Collapse
Affiliation(s)
- Philipp Reautschnig
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| | - Paul Vogel
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| | - Thorsten Stafforst
- a Interfaculty Institute of Biochemistry, University of Tübingen Auf der Morgenstelle , Tübingen , Germany
| |
Collapse
|
34
|
Zoni E, van der Pluijm G. The role of microRNAs in bone metastasis. J Bone Oncol 2016; 5:104-108. [PMID: 27761367 PMCID: PMC5063223 DOI: 10.1016/j.jbo.2016.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 01/07/2023] Open
Abstract
The skeleton represents a common site of metastases for osteotropic cancers such as prostate and breast tumors and novel therapeutic targets and new markers for the monitoring of bone lesions are urgently needed. The formation of bone metastases is a complex process that starts at the level of the confined tumor and that is characterized by a dynamic crosstalk between the primary cancer and the future metastatic site, the bone. Factors released by the primary tumor contribute to prepare a fertile “soil”, where a “pre-metastatic niche” is established prior to future colonization by cancer cells. When the primary cancer progress from the confined disease to its invasive phase, tumor cells will acquire an invasive phenotype, enter into the circulation and colonize the previously prepared site where they will establish a “metastatic niche”. Among the variety of molecules that participate in the metastatic cascade, microRNAs are a class of small non-coding RNA that play an important role in the development of metastatic bone lesions. Many studies have addressed the role of small non-coding RNAs (miRs) in metastasis in osteotropic cancers and have highlighted the role of miRs as oncogenes (oncomiRs) or tumor suppressor miRs. In this review we present describe the role of miRs in the processing of the supportive bone microenvironment prior and after the bone colonization by cancer cells. Finally, future therapeutic strategies and perspectives are also discussed.
Collapse
Affiliation(s)
- Eugenio Zoni
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabri van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Zhou Y, Zhou G, Tian C, Jiang W, Jin L, Zhang C, Chen X. Exosome-mediated small RNA delivery for gene therapy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:758-771. [DOI: 10.1002/wrna.1363] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS); School of Life Sciences, Nanjing University; Nanjing China
| | - Geyu Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS); School of Life Sciences, Nanjing University; Nanjing China
| | - Chenfei Tian
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS); School of Life Sciences, Nanjing University; Nanjing China
| | - Waner Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS); School of Life Sciences, Nanjing University; Nanjing China
| | - Ling Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS); School of Life Sciences, Nanjing University; Nanjing China
| | - Chenyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS); School of Life Sciences, Nanjing University; Nanjing China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS); School of Life Sciences, Nanjing University; Nanjing China
| |
Collapse
|
36
|
Singh MS, Peer D. RNA nanomedicines: the next generation drugs? Curr Opin Biotechnol 2016; 39:28-34. [PMID: 26773301 DOI: 10.1016/j.copbio.2015.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/19/2015] [Indexed: 02/08/2023]
Abstract
RNA therapeutics could represent the next generation personalized medicine. The variety of RNA molecules that can inhibit the expression of any mRNA using, for example, RNA interference (RNAi) strategies, or increase the expression of a given protein using modified mRNA together with new gene editing strategies open new avenues for manipulating the fate of diseased cells while leaving healthy cells untouched. In addition, these therapeutic RNA molecules can maximize the treatment of diseases and minimize its adverse effects. Yet, the promise of RNA therapeutics is hindered by the lack of efficient delivery strategies to selectively target these molecules into specific cells. Herein, we will focus on the challenges and opportunities of the delivery of therapeutic RNAi molecules into cancer cells with special emphasis on solid tumors. Solid tumors represent more than 80 percent of cancers and some are very challenging to treat, not merely due to physiological barriers but also since the tumor microenvironment (TME) is a complex milieu of accessory cells besides the cancerous cells. In this review, we will highlight various limiting factors to successful delivery, current clinical achievements and future outlook focusing on RNAi therapeutics to the TME.
Collapse
Affiliation(s)
- Manu Smriti Singh
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
37
|
Abstract
Breast cancer affects approximately 12 % women worldwide and results in 14 % of all cancer-related fatalities. Breast cancer is commonly categorized into one of four main subtypes (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive and basal), indicating molecular characteristics and informing treatment regimes. The most severe form of breast cancer is metastasis, when the tumour spreads from the breast tissue to other parts of the body. Significantly, the primary tumour subtype affects rates and sites of metastasis. Currently, up to 5 % of patients present with incurable metastasis, with an additional 10–15 % of patients going on to develop metastasis within 3 years of diagnosis. MicroRNAs (miRNAs) are short 21–25 long nucleotides that have been shown to significantly affect gene expression. Currently, >2000 miRNAs have been identified and significantly, specific miRNAs have been found associated with diseases states. Importantly, miRNAs are found circulating in the blood, presenting an opportunity to use these circulating disease-related miRNAs as biomarkers. Clearly, the identification of circulating miRNA specific to metastatic breast cancer presents a unique opportunity for early disease identification and for monitoring disease burden. Currently however, few groups have identified miRNA associated with metastatic breast cancer. Here, we review the literature surrounding the identification of metastatic miRNA in breast cancer patients, highlighting key areas where miRNA biomarker discovery could be beneficial, identifying key concepts, recognizing critical areas requiring further research and discussing potential problems.
Collapse
|
38
|
Dakwar GR, Braeckmans K, Demeester J, Ceelen W, De Smedt SC, Remaut K. Disregarded Effect of Biological Fluids in siRNA Delivery: Human Ascites Fluid Severely Restricts Cellular Uptake of Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24322-24329. [PMID: 26470057 DOI: 10.1021/acsami.5b08805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Small interfering RNA (siRNA) offers a great potential for the treatment of various diseases and disorders. Nevertheless, inefficient in vivo siRNA delivery hampers its translation into the clinic. While numerous successful in vitro siRNA delivery stories exist in reduced-protein conditions, most studies so far overlook the influence of the biological fluids present in the in vivo environment. In this study, we compared the transfection efficiency of liposomal formulations in Opti-MEM (low protein content, routinely used for in vitro screening) and human undiluted ascites fluid obtained from a peritoneal carcinomatosis patient (high protein content, representing the in vivo situation). In Opti-MEM, all formulations are biologically active. In ascites fluid, however, the biological activity of all lipoplexes is lost except for lipofectamine RNAiMAX. The drop in transfection efficiency was not correlated to the physicochemical properties of the nanoparticles, such as premature siRNA release and aggregation of the nanoparticles in the human ascites fluid. Remarkably, however, all of the formulations except for lipofectamine RNAiMAX lost their ability to be taken up by cells following incubation in ascites fluid. To take into account the possible effects of a protein corona formed around the nanoparticles, we recommend always using undiluted biological fluids for the in vitro optimization of nanosized siRNA formulations next to conventional screening in low-protein content media. This should tighten the gap between in vitro and in vivo performance of nanoparticles and ensure the optimal selection of nanoparticles for further in vivo studies.
Collapse
Affiliation(s)
- George R Dakwar
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University , Ottergemsesteenweg 460 , 9000 Ghent, Belgium
| | - Joseph Demeester
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Wim Ceelen
- Department of Surgery, Ghent University Hospital , De Pintelaan 185, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
39
|
Conde J. The Golden Age in Cancer Nanobiotechnology: Quo Vadis? Front Bioeng Biotechnol 2015; 3:142. [PMID: 26442256 PMCID: PMC4585264 DOI: 10.3389/fbioe.2015.00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/07/2015] [Indexed: 11/20/2022] Open
Affiliation(s)
- João Conde
- Harvard-MIT Division for Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|