1
|
Cao J, Zhao D, Chen C, Zhu X, Zheng Y, Wei H, Hou M, Li C, Zhang S. Phosphorus removal in microalgal growth and harvesting using natural flocculant: Influence of microalgal characteristics and phosphorus forms. BIORESOURCE TECHNOLOGY 2025; 417:131885. [PMID: 39603478 DOI: 10.1016/j.biortech.2024.131885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Phosphorus-induced harmful algae blooms elicited attention, and both microalgae harvesting and phosphorus removal are essential, especially preventing secondary pollution. In this study, starved Chlorella vulgaris removed 68.73 % of dissolved inorganic phosphorus (DIP) compared to 37.47 % of dissolved organic phosphorus (DOP). Microalgae growth promoted the increase of extracellular organic matter, which had little effect on phosphorus removal. As incubation time increased, the phosphorus rebound was even higher than the original, which was not consistent with the continued growth of the microalgae cells, indicating that phosphorus uptake by microalgae alone could not inhibit algal blooms. A starch-based flocculant fed after the phycoremediation process exhibited effective microalgae harvesting, reducing DIP and DOP by 72.06 % and 48.31 %, respectively. Only 1/3rd flocculant dose was needed to treat suspensions supplemented with DIP compared with DOP. The study offers an eco-friendly technology for simultaneous phosphorus removal and microalgae harvesting by combining Chlorella vulgaris with natural flocculants.
Collapse
Affiliation(s)
- Jingyi Cao
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Donghua Zhao
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, PR China
| | - Chen Chen
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, PR China
| | - Xiaoming Zhu
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, PR China
| | - Yanhao Zheng
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, PR China
| | - Hua Wei
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Chunjun Li
- School of Engineering Innovation, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Siqi Zhang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| |
Collapse
|
2
|
Jiao R, Zhang L, You R, Peng X, Pei C, Jiang B, Hu M, Li J, Du Y, Qian EW. Efficient and Cost-Effective Synthesis of N-Acetyllactosamine by Sequential Modular Enzymatic Cascade Reactions Involving NTP Regeneration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28060-28071. [PMID: 39625714 DOI: 10.1021/acs.jafc.4c08638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Human milk oligosaccharides (HMOs) play important roles in the development of infants, which are the third most abundant component in human milk. N-Acetyllactosamine (LacNAc) is an important intermediate for the biosynthesis of other HMOs and antigens. Since currently appropriate synthetic methods for large-scale production of LacNAc are not available, it is urgently needed to develop an efficient and cost-effective synthetic pathway for LacNAc preparation. In this study, a cost-effective pathway of LacNAc synthesis involving regeneration of adenosine triphosphate (ATP) and uridine 5'-triphosphate (UTP) was established. After optimizing the reaction conditions, LacNAc was synthesized at a yield of >90% via a sequential one-pot multienzyme (OPME) method with crude enzymes at 100 mM substrates. Finally, LacNAc was produced efficiently and cost-effectively at a 5 L scale. This strategy would possibly meet the requirements of potential industrial production of LacNAc and would provide guidance for the production of other structurally complex HMOs or functional oligosaccharides in the future.
Collapse
Affiliation(s)
- Runmiao Jiao
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 1848588, Japan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Liming Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ran You
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlv Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixia Pei
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 1848588, Japan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Bowen Jiang
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 1848588, Japan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Meirong Hu
- Institute of Microbiology Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Eika W Qian
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 1848588, Japan
| |
Collapse
|
3
|
Monterrey DT, Azcona L, Revuelta J, Sánchez-Moreno I, García-Junceda E. Polyphosphate Kinase from Burkholderia cenocepacia, One Enzyme Catalyzing a Two-Step Cascade Reaction to Synthesize ATP from AMP. Int J Mol Sci 2024; 25:12995. [PMID: 39684704 DOI: 10.3390/ijms252312995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
This study characterizes a novel polyphosphate kinase from Burkholderia cenocepacia (BcPPK2-III), an enzyme with potential applications in ATP regeneration processes. Bioinformatic and structural analyses confirmed the presence of conserved motifs characteristic of PPK2 enzymes, including Walker A and B motifs, and the subclass-specific residue E137. Molecular docking simulations showed AMP had the highest binding affinity (-7.0 kcal/mol), followed by ADP (-6.5 kcal/mol), with ATP having the lowest affinity (-6.3 kcal/mol). It was overexpressed in Escherichia coli, after purification enzymatic activity assays revealed that BcPPK2-III needed divalent cations (Mg2⁺, Mn2⁺, Co2⁺) as cofactors to be active. Functional assays revealed its ability to synthesize ATP from AMP through a stepwise phosphorylation mechanism, forming ADP as an intermediate, achieving 70% ATP conversion (TTN 4354.7) after 24 h. Kinetic studies indicated cooperative behavior and substrate preference, with AMP phosphorylation to ADP being the most efficient step. The enzyme demonstrated high thermostability (T50 = 62 °C) and a broad pH stability range (pH 6.0-9.0), making it suitable for diverse biocatalytic applications. The study highlights BcPPK2-III as a robust and versatile candidate for cost-effective ATP regeneration, offering advantages in industrial processes requiring stoichiometric amounts of ATP.
Collapse
Affiliation(s)
- Dianelis T Monterrey
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Leire Azcona
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Julia Revuelta
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Israel Sánchez-Moreno
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Eduardo García-Junceda
- Department of Bio-Organic Chemistry, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
4
|
Yang Y, Zhao J, Song M, Yu J, Yu X, Ding B, Chen X. Analysis of photosynthetic pigments pathway produced by CO 2-toxicity-induced Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161309. [PMID: 36623657 DOI: 10.1016/j.scitotenv.2022.161309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The coal-to-gas process produces carbon dioxide, which increases global warming, and its wastewater treatment generates sludge with high organic toxicity. Scenedesmus obliquus is a potential solution to such environmental problems, and photosynthetic pigments are the focus of this study. The optimal concentration of CO2 for the growth of Scenedesmus obliquus was found to be 30 % after increasing the concentration of CO2 (0.05 %-100 %). The accumulation of photosynthetic pigments during cultivation could reach 31.74 ± 1.33 mg/L, 11.21 ± 0.42 mg/L, and 5.59 ± 0.19 mg/L respectively, and the organic toxicity of sludge extract could be reduced by 44.97 %. Upregulation of A0A383VSL5, A0A383WMQ3, and A0A2Z4THB7 as photo systemic oxygen release proteins and propylene phosphate isomerase resulted in oxygen-evolving proteins in photosystem II, electron transport in photosystem I, and intermediates in carbon fixation. This is achieved by increasing the intracellular antennae protein and carbon fixation pathway, allowing Scenedesmus obliquus to both tolerate and fix CO2 and reduce the organic toxicity of sludge. These findings provide insights into the innovative strategy underlining the fixation of CO2, treatment and disposal of industrial residual sludge, and the enhancement of microalgal biomass production.
Collapse
Affiliation(s)
- Yingying Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiamin Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Meijing Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiayu Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Biao Ding
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Wohlgemuth R. Advances in the Synthesis and Analysis of Biologically Active Phosphometabolites. Int J Mol Sci 2023; 24:3150. [PMID: 36834560 PMCID: PMC9961378 DOI: 10.3390/ijms24043150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Phosphorus-containing metabolites cover a large molecular diversity and represent an important domain of small molecules which are highly relevant for life and represent essential interfaces between biology and chemistry, between the biological and abiotic world. The large but not unlimited amount of phosphate minerals on our planet is a key resource for living organisms on our planet, while the accumulation of phosphorus-containing waste is associated with negative effects on ecosystems. Therefore, resource-efficient and circular processes receive increasing attention from different perspectives, from local and regional levels to national and global levels. The molecular and sustainability aspects of a global phosphorus cycle have become of much interest for addressing the phosphorus biochemical flow as a high-risk planetary boundary. Knowledge of balancing the natural phosphorus cycle and the further elucidation of metabolic pathways involving phosphorus is crucial. This requires not only the development of effective new methods for practical discovery, identification, and high-information content analysis, but also for practical synthesis of phosphorus-containing metabolites, for example as standards, as substrates or products of enzymatic reactions, or for discovering novel biological functions. The purpose of this article is to review the advances which have been achieved in the synthesis and analysis of phosphorus-containing metabolites which are biologically active.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland; or
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
| |
Collapse
|
6
|
Li S, Zhang Z, Liu FL, Yuan BF, Liu TG, Feng YQ. Comprehensive Profiling of Phosphomonoester Metabolites in Saccharomyces cerevisiae by the Chemical Isotope Labeling-LC-MS Method. J Proteome Res 2023; 22:114-122. [PMID: 36484485 DOI: 10.1021/acs.jproteome.2c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphomonoesters are important biosynthetic and energy metabolism intermediates in microorganisms. A comprehensive analysis of phosphomonoester metabolites is of great significance for the understanding of their metabolic phosphorylation process and inner mechanism. In this study, we established a pair of isotope reagent d0/d5-2-diazomethyl-N-methyl-phenyl benzamide-labeling-based LC-MS method for the comprehensive analysis of phosphomonoester metabolites. By this method, the labeled phosphomonoester metabolites specifically produced characteristic isotope paired peaks with an m/z difference of 5.0314 in the MS1 spectra and a pair of diagnostic ions (m/z 320.0693/325.1077) in the MS2 spectra. Based on this, a diagnostic ion-based strategy was established for the rapid screening, identification, and relative quantification of phosphomonoester metabolites. Using this strategy, 42 phosphomonoester metabolites were highly accurately identified fromSaccharomyces cerevisiae (S. cerevisiae). Notably, two phosphomonoesters were first detected fromS. cerevisiae. The relative quantification results indicated that the contents of nine phosphomonoester metabolites including two intermediates (Ru5P and S7P) in the pentose phosphate pathway (PPP) were significantly different between lycopene-producible and wild-type S. cerevisiae. A further enzyme assay indicated that the activity of the PPP was closely related to the production of lycopene. Our findings provide new perspectives for the related mechanism study and valuable references for making informed microbial engineering decisions.
Collapse
Affiliation(s)
- Sha Li
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Zheng Zhang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Fei-Long Liu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Tian-Gang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
7
|
Advances in antioxidative nanozymes for treating ischemic stroke. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
8
|
The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022. [DOI: 10.3390/catal12111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactions involving the transfer of phosphorus-containing groups are of key importance for maintaining life, from biological cells, tissues and organs to plants, animals, humans, ecosystems and the whole planet earth. The sustainable utilization of the nonrenewable element phosphorus is of key importance for a balanced phosphorus cycle. Significant advances have been achieved in highly selective and efficient biocatalytic phosphorylation reactions, fundamental and applied aspects of phosphorylation biocatalysts, novel phosphorylation biocatalysts, discovery methodologies and tools, analytical and synthetic applications, useful phosphoryl donors and systems for their regeneration, reaction engineering, product recovery and purification. Biocatalytic phosphorylation reactions with complete conversion therefore provide an excellent reaction platform for valuable analytical and synthetic applications.
Collapse
|
9
|
Engineering Saccharomyces cerevisiae for production of the capsaicinoid nonivamide. Microb Cell Fact 2022; 21:106. [PMID: 35643562 PMCID: PMC9148506 DOI: 10.1186/s12934-022-01831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Background Capsaicinoids are produced by plants in the Capsicum genus and are the main reason for the pungency of chili pepper fruits. They are strong agonists of TRPV1 (the transient receptor potential cation channel subfamily V member 1) and used as active ingredients in pharmaceuticals for the treatment of pain. The use of bioengineered microorganisms in a fermentation process may be an efficient route for their preparation, as well as for the discovery of (bio-)synthetic capsaicinoids with improved or novel bioactivities. Results Saccharomyces cerevisiae was engineered to over-express a selection of amide-forming N-acyltransferase and CoA-ligase enzyme cascades using a combinatorial gene assembly method, and was screened for nonivamide production from supplemented vanillylamine and nonanoic acid. Data from this work demonstrate that Tyramine N-hydroxycinnamoyl transferase from Capsicum annuum (CaAT) was most efficient for nonivamide formation in yeast, outcompeting the other candidates including AT3 (Pun1) from Capsicum spp. The CoA-ligase partner with highest activity from the ones evaluated here were from Petunia hybrida (PhCL) and Spingomonas sp. Ibu-2 (IpfF). A yeast strain expressing CaAT and IpfF produced 10.6 mg L−1 nonivamide in a controlled bioreactor setup, demonstrating nonivamide biosynthesis by S. cerevisiae for the first time. Conclusions Baker’s yeast was engineered for production of nonivamide as a model capsaicinoid, by expressing N-acyltransferases and CoA-ligases of plant and bacterial origin. The constructed yeast platform holds potential for in vivo biocatalytic formation of capsaicinoids and could be a useful tool for the discovery of novel drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01831-3.
Collapse
|
10
|
Wu Q, Guo L, Li X, Wang Y. Effect of phosphorus concentration and light/dark condition on phosphorus uptake and distribution with microalgae. BIORESOURCE TECHNOLOGY 2021; 340:125745. [PMID: 34426241 DOI: 10.1016/j.biortech.2021.125745] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of P concentration and light/dark condition on the distribution of P in microalgae were tracked with Scenedesmus sp.393. Results showed that different culture conditions affected the accumulation capacity and transformation of P in intracellular polymeric substances (IPS), extracellular polymeric substances (EPS), and soluble microbial products (SMP). At low P concentration (0.70 mg P/L), inorganic phosphorus (IP) absorbed in EPS (19.40%) and organic phosphorus (OP) accumulated in IPS (70.98%) were mainly P forms in microalgae. High P concentration (>21.42 mg P/L) promoted the luxury uptake and accumulation of IP by IPS, and the conversion of IP to OP. However, the adsorption of IP by EPS was inhibited when exposed to high external P concentration. Continuous illumination promoted the microalgae growth, and dark condition stimulated the P accumulation in microalgae biomass. The results of this study could provide valuable information for P recovery with microalgae.
Collapse
Affiliation(s)
- Qirui Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Xunzhou Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yu Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Tavanti M, Hosford J, Lloyd RC, Brown MJB. Recent Developments and Challenges for the Industrial Implementation of Polyphosphate Kinases. ChemCatChem 2021. [DOI: 10.1002/cctc.202100688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michele Tavanti
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
- Early Chemical development Pharmaceutical Sciences, R&D AstraZeneca Astrazeneca PLC 1 Francis Crick Avenue Cambridge Biomedical Campus Cambridge CB20AA UK
| | - Joseph Hosford
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Richard C. Lloyd
- Chemical Development Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Murray J. B. Brown
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| |
Collapse
|
12
|
An integrative approach to improving the biocatalytic reactions of whole cells expressing recombinant enzymes. World J Microbiol Biotechnol 2021; 37:105. [PMID: 34037845 DOI: 10.1007/s11274-021-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation is a selective, stereospecific, efficient, and environment friendly method, compared to chemical synthesis, and a feasible tool for industrial and pharmaceutical applications. The design of biocatalysts using enzyme engineering and metabolic engineering tools has been widely reviewed. However, less importance has been given to the biocatalytic reaction of whole cells expressing recombinant enzymes. Along with the remarkable development of biotechnology tools, a variety of techniques have been applied to improve the biocatalytic reaction of whole cell biotransformation. In this review, techniques related to the biocatalytic reaction are examined, reorganized, and summarized via an integrative approach. Moreover, equilibrium-shifted biotransformation is reviewed for the first time.
Collapse
|
13
|
Liu FL, Ye TT, Ding JH, Yin XM, Yang XK, Huang WH, Yuan BF, Feng YQ. Chemical Tagging Assisted Mass Spectrometry Analysis Enables Sensitive Determination of Phosphorylated Compounds in a Single Cell. Anal Chem 2021; 93:6848-6856. [PMID: 33882236 DOI: 10.1021/acs.analchem.1c00915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polar phosphorylated metabolites are involved in a variety of biological processes and play vital roles in energetic metabolism, cofactor regeneration, and nucleic acid synthesis. However, it is often challenging to interrogate polar phosphorylated metabolites and compounds from biological samples. Liquid chromatography-mass spectrometry (LC/MS) now plays a central role in metabolomic studies. However, LC/MS-based approaches have been hampered by the issues of the low ionization efficiencies, low in vivo concentrations, and less chemical stability of polar phosphorylated metabolites. In this work, we synthesized paired reagents of light and heavy isotopomers, 2-(diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)methanone (DMPI) and d3-(2-(diazomethyl)phenyl)(9-methyl-1,3,4,9-tetrahydro-2H-pyrido[3,4-b]indol-2-yl)methanone (d3-DMPI). The paired reagents of DMPI and d3-DMPI carry diazo groups that can efficiently and selectively react with the phosphate group on polar phosphorylated metabolites under mild conditions. As a proof of concept, we found that the transfer of the indole heterocycle group from DMPI/d3-DMPI to ribonucleotides led to the significant increase of ionization efficiencies of ribonucleotides during LC/MS analysis. The detection sensitivities of these ribonucleotides increased by 25-1137-fold upon DMPI tagging with the limits of detection (LODs) being between 7 and 150 amol. With the developed method, we achieved the determination of all the 12 ribonucleotides from a single mammalian cell and from a single stamen of Arabidopsis thaliana. The method provides a valuable tool to investigate the dynamic changes of polar phosphorylated metabolites in a single cell under particular conditions.
Collapse
Affiliation(s)
- Fei-Long Liu
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Tian-Tian Ye
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Ming Yin
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Ke Yang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Health Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Dai Y, Li M, Jiang B, Zhang T, Chen J. Whole-cell biosynthesis of d-tagatose from maltodextrin by engineered Escherichia coli with multi-enzyme co-expression system. Enzyme Microb Technol 2021; 145:109747. [PMID: 33750537 DOI: 10.1016/j.enzmictec.2021.109747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/11/2023]
Abstract
d-tagatose is a functional sweetener that occurs in small quantity in nature. It is mainly produced through the isomerization of d-galactose by l-arabinose isomerase (l-AI; EC 5.3.1.4). However, the cost of d-galactose is much higher than those commonly used for the production of functional sweeteners such as glucose, maltodextrin, or starch. Here, a multi-enzyme catalytic system consists of five enzymes that utilizes maltodextrin as substrate to synthesize d-tagatose were co-expressed in E. coli, resulting in recombinant cells harboring the plasmids pETDuet-αgp-pgm and pCDFDuet-pgi-gatz-pgp. The activity of this whole-cell catalyst was optimal at 60 °C and pH 7.5, and 1 mM Mg2+ and 50 mM phosphate were the optimal cofactors for activity. Under the optimal reaction conditions, 2.08 and 3.2 g L-1d-tagatose were produced by using 10 and 20 g L-1 maltodextrin as substrates with recombinant cells for 24 h. This co-expression system provides a one-pot synthesis approach for the production of d-tagatose using inexpensive substrate, avoiding enzymes purification steps and supplementation of expensive cofactors.
Collapse
Affiliation(s)
- Yiwei Dai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
15
|
Wohlgemuth R. Key advances in biocatalytic phosphorylations in the last two decades: Biocatalytic syntheses in vitro and biotransformations in vivo (in humans). Biotechnol J 2020; 16:e2000090. [PMID: 33283467 DOI: 10.1002/biot.202000090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Indexed: 01/05/2023]
Abstract
Biocatalytic phosphorylation reactions provide several benefits, such as more direct, milder, more selective, and shorter access routes to phosphorylated products. Favorable characteristics of biocatalytic methodologies represent advantages for in vitro as well as for in vivo phosphorylation reactions, leading to important advances in the science of synthesis towards bioactive phosphorylated compounds in various areas. The scope of this review covers key advances of biocatalytic phosphorylation reactions over the last two decades, for biocatalytic syntheses in vitro and for biotransformations in vivo (in humans). From the origins of probiotic life to in vitro synthetic applications and in vivo formation of bioactive pharmaceuticals, the common purpose is to outline the importance, relevance, and underlying connections of biocatalytic phosphorylations of small molecules. Asymmetric phosphorylations attracting increased attention are highlighted. Phosphohydrolases, phosphotransferases, phosphorylases, phosphomutases, and other enzymes involved in phosphorus chemistry provide powerful toolboxes for resource-efficient and selective in vitro biocatalytic syntheses of phosphorylated metabolites, chiral building blocks, pharmaceuticals as well as in vivo enzymatic formation of biologically active forms of pharmaceuticals. Nature's large diversity of phosphoryl-group-transferring enzymes, advanced enzyme and reaction engineering toolboxes make biocatalytic asymmetric phosphorylations using enzymes a powerful and privileged phosphorylation methodology.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland.,Swiss Coordination Committee Biotechnology, Zurich, Switzerland
| |
Collapse
|
16
|
Abstract
Biocatalysis has undergone a remarkable transition in the last two decades, from being considered a niche technology to playing a much more relevant role in organic synthesis today. Advances in molecular biology and bioinformatics, and the decreasing costs for gene synthesis and sequencing contribute to the growing success of engineered biocatalysts in industrial applications. However, the incorporation of biocatalytic process steps in new or established manufacturing routes is not always straightforward. To realize the full synthetic potential of biocatalysis for the sustainable manufacture of chemical building blocks, it is therefore important to regularly analyze the success factors and existing hurdles for the implementation of enzymes in large scale small molecule synthesis. Building on our previous analysis of biocatalysis in the Swiss manufacturing environment, we present a follow-up study on how the industrial biocatalysis situation in Switzerland has evolved in the last four years. Considering the current industrial landscape, we record recent advances in biocatalysis in Switzerland as well as give suggestions where enzymatic transformations may be valuably employed to address some of the societal challenges we face today, particularly in the context of the current Coronavirus disease 2019 (COVID-19) pandemic.
Collapse
|
17
|
Using Microbial Aggregates to Entrap Aqueous Phosphorus. Trends Biotechnol 2020; 38:1292-1303. [DOI: 10.1016/j.tibtech.2020.03.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
|
18
|
Wohlgemuth R. Biocatalysis - Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis. N Biotechnol 2020; 60:113-123. [PMID: 33045418 DOI: 10.1016/j.nbt.2020.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
Abstract
In the area of human-made innovations to improve the quality of life, biocatalysis has already had a great impact and contributed enormously to a growing number of catalytic transformations aimed at the detection and analysis of compounds, the bioconversion of starting materials and the preparation of target compounds at any scale, from laboratory small scale to industrial large scale. The key enabling tools which have been developed in biocatalysis over the last decades also provide great opportunities for further development and numerous applications in various sectors of the global bioeconomy. Systems biocatalysis is a modular, bottom-up approach to designing the architecture of enzyme-catalyzed reaction steps in a synthetic route from starting materials to target molecules. The integration of biocatalysis and sustainable chemistry in vitro aims at ideal conversions with high molecular economy and their intensification. Retrosynthetic analysis in the chemical and biological domain has been a valuable tool for target-oriented synthesis while, on the other hand, diversity-oriented synthesis builds on forward-looking analysis. Bioinformatic tools for rapid identification of the required enzyme functions, efficient enzyme production systems, as well as generalized bioprocess design tools, are important for rapid prototyping of the biocatalytic reactions. The tools for enzyme engineering and the reaction engineering of each enzyme-catalyzed one-step reaction are also valuable for coupling reactions. The tools to overcome interaction issues with other components or enzymes are of great interest in designing multi-step reactions as well as in biocatalytic total synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland; Swiss Coordination Committee on Biotechnology (SKB), Nordstrasse 15, 8021 Zürich, Switzerland.
| |
Collapse
|
19
|
Unremitting progresses for phosphoprotein synthesis. Curr Opin Chem Biol 2020; 58:96-111. [PMID: 32889414 DOI: 10.1016/j.cbpa.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/03/2023]
Abstract
Phosphorylation, one of the important protein post-translational modifications, is involved in many essential cellular processes. Site-specifical and homogeneous phosphoproteins can be used as probes for elucidating the protein phosphorylation network and as potential therapeutics for interfering their involved biological events. However, the generation of phosphoproteins has been challenging owing to the limitation of chemical synthesis and protein expression systems. Despite the pioneering discoveries in phosphoprotein synthesis, over the past decade, great progresses in this field have also been made to promote the biofunctional exploration of protein phosphorylation largely. Therefore, in this review, we mainly summarize recent advances in phosphoprotein synthesis, which includes five sections: 1) synthesis of the nonhydrolyzable phosphorylated amino acid mimetic building blocks, 2) chemical total and semisynthesis strategy, 3) in-cell and in vitro genetic code expansion strategy, 4) the late-stage modification strategy, 5) nonoxygen phosphoprotein synthesis.
Collapse
|
20
|
Mordhorst S, Andexer JN. Round, round we go - strategies for enzymatic cofactor regeneration. Nat Prod Rep 2020; 37:1316-1333. [PMID: 32582886 DOI: 10.1039/d0np00004c] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to the beginning of 2020Enzymes depending on cofactors are essential in many biosynthetic pathways of natural products. They are often involved in key steps: catalytic conversions that are difficult to achieve purely with synthetic organic chemistry. Hence, cofactor-dependent enzymes have great potential for biocatalysis, on the condition that a corresponding cofactor regeneration system is available. For some cofactors, these regeneration systems require multiple steps; such complex enzyme cascades/multi-enzyme systems are (still) challenging for in vitro biocatalysis. Further, artificial cofactor analogues have been synthesised that are more stable, show an altered reaction range, or act as inhibitors. The development of bio-orthogonal systems that can be used for the production of modified natural products in vivo is an ongoing challenge. In light of the recent progress in this field, this review aims to provide an overview of general strategies involving enzyme cofactors, cofactor analogues, and regeneration systems; highlighting the current possibilities for application of enzymes using some of the most common cofactors.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | | |
Collapse
|
21
|
Tasnádi G, Staśko M, Ditrich K, Hall M, Faber K. Preparative-Scale Enzymatic Synthesis of rac-Glycerol-1-phosphate from Crude Glycerol Using Acid Phosphatases and Phosphate. CHEMSUSCHEM 2020; 13:1759-1763. [PMID: 31944595 PMCID: PMC7187357 DOI: 10.1002/cssc.201903236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Glycerol is a byproduct of biodiesel production and is generated in large amounts, which has resulted in an increased interest in its valorization. In addition to its use as an energy source directly, the chemical modification of glycerol may result in value-added derivatives. Herein, acid phosphatases employed in the synthetic mode were evaluated for the enzymatic phosphorylation of glycerol. Nonspecific acid phosphatases could tolerate glycerol concentrations up to 80 wt % and pyrophosphate concentrations up to 20 wt % and led to product titers up to 167 g L-1 in a kinetic approach. In the complementary thermodynamic approach, phytases were able to condense glycerol and inorganic monophosphate directly. This unexpected behavior enabled the simple and cost-effective production of rac-glycerol-1-phosphate from crude glycerol obtained from a biodiesel plant. A preparative-scale synthesis on a 100 mL-scale resulted in the production of 16.6 g of rac-glycerol-1-phosphate with a reasonable purity (≈75 %).
Collapse
Affiliation(s)
- Gábor Tasnádi
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Austrian Centre of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Marcin Staśko
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
- Current address: Opole University of TechnologyFaculty of Mechanical Engineering, 5 Mikołajczyka Street45-271OpolePoland
| | - Klaus Ditrich
- White Biotechnology Research BiocatalysisBASF SECarl-Bosch-Strasse 3867056LudwigshafenGermany
| | - Mélanie Hall
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Department of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
22
|
Biocatalysis in drug discovery and development. Curr Opin Chem Biol 2020; 55:151-160. [DOI: 10.1016/j.cbpa.2020.01.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
|
23
|
Zhang X, Cui X, Li Z. Characterization of Two Polyphosphate Kinase 2 Enzymes Used for ATP Synthesis. Appl Biochem Biotechnol 2020; 191:881-892. [PMID: 31907778 DOI: 10.1007/s12010-019-03224-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023]
Abstract
Enzymes used for adenosine triphosphate (ATP) synthesis play important roles in energy-dependent cascade reactions in vitro. In this study, two novel polyphosphate kinase 2 (PPK2) enzymes, HbPPK2 from Hydrogenophilaceae bacterium and NdPPK2 from Nocardioides dokdonensis, were characterized for ATP synthesis with the substrate polyphosphate (polyP). The optimum temperature and pH of both purified HbPPK2 and NdPPK2 were 30 °C and 6.5. HbPPK2 and NdPPK2 retained 30% and 14% of the initial activity at 30 °C for 12 h, respectively, whereas the presence of polyP significantly enhanced the stability of enzymes. The two PPK2s preferentially catalyzed the long-chain polyP hexametaphosphate as the phosphate donor. Adenosine monophosphate could not be used by HbPPK2 and NdPPK2 to synthesize ATP, indicating that they belonged to the class I subfamily of PPK2. HbPPK2 was used for ATP regeneration to produce glutathione by a two-enzyme cascade in vitro. 47.1 ± 0.4 mM glutathione was synthesized with a productivity of 13.5 ± 0.1 mM/h. ATP was regenerated approximately 471 times in the system within 3.5 h. HbPPK2 showed potential application for ATP regeneration in cascade reaction.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiangwei Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
24
|
Laurent V, Hélaine V, Vergne-Vaxelaire C, Nauton L, Traikia M, Petit JL, Salanoubat M, de Berardinis V, Lemaire M, Guérard-Hélaine C. Achiral Hydroxypyruvaldehyde Phosphate as a Platform for Multi-Aldolases Cascade Synthesis of Diuloses and for a Quadruple Acetaldehyde Addition Catalyzed by 2-Deoxyribose-5-Phosphate Aldolases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Victor Laurent
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Carine Vergne-Vaxelaire
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91000 Evry, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Mounir Traikia
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91000 Evry, France
| | - Marcel Salanoubat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91000 Evry, France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91000 Evry, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
25
|
Schoenenberger B, Kind S, Meier R, Eggert T, Obkircher M, Wohlgemuth R. Efficient biocatalytic synthesis of D-tagatose 1,6-diphosphate by LacC-catalysed phosphorylation of D-tagatose 6-phosphate. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1634694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | | | - Roland Wohlgemuth
- Sigma-Aldrich/Merck KGaA, Buchs, Switzerland
- Institute of Technical Biochemistry, Technical University Lodz, Lodz, Poland
| |
Collapse
|
26
|
Sánchez-Moreno I, Trachtmann N, Ilhan S, Hélaine V, Lemaire M, Guérard-Hélaine C, Sprenger GA. 2-Ketogluconate Kinase from Cupriavidus necator H16: Purification, Characterization, and Exploration of Its Substrate Specificity. Molecules 2019; 24:molecules24132393. [PMID: 31261738 PMCID: PMC6651773 DOI: 10.3390/molecules24132393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022] Open
Abstract
We have cloned, overexpressed, purified, and characterized a 2-ketogluconate kinase (2-dehydrogluconokinase, EC 2.7.1.13) from Cupriavidus necator (Ralstonia eutropha) H16. Exploration of its substrate specificity revealed that three ketoacids (2-keto-3-deoxy-d-gluconate, 2-keto-d-gulonate, and 2-keto-3-deoxy-d-gulonate) with structures close to the natural substrate (2-keto-d-gluconate) were successfully phosphorylated at an efficiency lower than or comparable to 2-ketogluconate, as depicted by the measured kinetic constant values. Eleven aldo and keto monosaccharides of different chain lengths and stereochemistries were also assayed but not found to be substrates. 2-ketogluconate-6-phosphate was synthesized at a preparative scale and was fully characterized for the first time.
Collapse
Affiliation(s)
- Israel Sánchez-Moreno
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Natalia Trachtmann
- University of Stuttgart, Institute of Microbiology, D-70569 Stuttgart, Germany
| | - Sibel Ilhan
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
- University of Stuttgart, Institute of Microbiology, D-70569 Stuttgart, Germany
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - Georg A Sprenger
- University of Stuttgart, Institute of Microbiology, D-70569 Stuttgart, Germany.
| |
Collapse
|
27
|
Hardt N, Kind S, Schoenenberger B, Eggert T, Obkircher M, Wohlgemuth R. Facile synthesis of D-xylulose-5-phosphate and L-xylulose-5-phosphate by xylulokinase-catalyzed phosphorylation. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1630385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | | | | | - Roland Wohlgemuth
- Sigma-Aldrich/Merck KGaA, Buchs, Switzerland
- Institute of Technical Biochemistry, Technical University Lodz, Lodz, Poland
| |
Collapse
|
28
|
Xu J, Wang C, Cong Z. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis. Chemistry 2019; 25:6853-6863. [PMID: 30698852 DOI: 10.1002/chem.201806383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/29/2019] [Indexed: 01/13/2023]
Abstract
Cytochrome P450 enzymes (P450s) catalyze the monooxygenation of various organic substrates. These enzymes are fascinating and promising biocatalysts for synthetic applications. Despite the impressive abilities of P450s in the oxidation of C-H bonds, their practical applications are restricted by intrinsic drawbacks, such as poor stability, low turnover rates, the need for expensive cofactors (e.g., NAD(P)H), and the narrow scope of useful non-native substrates. These issues may be overcome through the general strategy of protein engineering, which focuses on the improvement of the catalysts themselves. Alternatively, several emerging strategies have been developed that regulate the P450 catalytic process from the viewpoint of the substrate. These strategies include substrate engineering, decoy molecule, and dual-functional small-molecule co-catalysis. Substrate engineering focuses on improving the substrate acceptance and reaction selectivity by means of an anchoring group. The latter two strategies utilize co-substrate-like small molecules that either are proposed to reform the active site, thereby switching the substrate specificity, or directly participate in the catalytic process, thereby creating new catalytic peroxygenation capabilities towards non-native substrates. For at least 10 years, these approaches have played unique roles in solving the problems highlighted above, either alone or in conjunction with protein engineering. Herein, we review three strategies for substrate regulation in the P450-catalyzed oxidation of non-native substrates. Furthermore, we address remaining challenges and potential solutions associated with these approaches.
Collapse
Affiliation(s)
- Jiakun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Chunlan Wang
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of, Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| |
Collapse
|
29
|
Meng D, Wei X, Zhang YHPJ, Zhu Z, You C, Ma Y. Stoichiometric Conversion of Cellulosic Biomass by in Vitro Synthetic Enzymatic Biosystems for Biomanufacturing. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02473] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongdong Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| |
Collapse
|
30
|
Pasek MA. The Origin of the Ionized Linker: Geochemical Predestination for Phosphate? ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-93584-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
31
|
Coevolution of both Thermostability and Activity of Polyphosphate Glucokinase from Thermobifida fusca YX. Appl Environ Microbiol 2018; 84:AEM.01224-18. [PMID: 29884753 DOI: 10.1128/aem.01224-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 01/23/2023] Open
Abstract
Thermostability and specific activity of enzymes are two of the most important properties for industrial biocatalysts. Here, we developed a petri dish-based double-layer high-throughput screening (HTS) strategy for rapid identification of desired mutants of polyphosphate glucokinase (PPGK) from a thermophilic actinobacterium, Thermobifida fusca YX, with both enhanced thermostability and activity. Escherichia coli colonies representing a PPGK mutant library were grown on the first-layer Phytagel-based plates, which can remain solid for 1 h, even at heat treatment temperatures of more than 100°C. The second layer that was poured on the first layer contained agarose, substrates, glucose 6-phosphate dehydrogenase (G6PDH), the redox dye tetranitroblue tetrazolium (TNBT), and phenazine methosulfate. G6PDH was able to oxidize the product from the PPGK-catalyzed reaction and generate NADH, which can be easily examined by a TNBT-based colorimetric assay. The best mutant obtained after four rounds of directed evolution had a 7,200-fold longer half-life at 55°C, 19.8°C higher midpoint of unfolding temperature (Tm ), and a nearly 3-fold enhancement in specific activities compared to those of the wild-type PPGK. The best mutant was used to produce 9.98 g/liter myo-inositol from 10 g/liter glucose, with a theoretical yield of 99.8%, along with two other hyperthermophilic enzymes at 70°C. This PPGK mutant featuring both great thermostability and high activity would be useful for ATP-free production of glucose 6-phosphate or its derived products.IMPORTANCE Polyphosphate glucokinase (PPGK) is an enzyme that transfers a terminal phosphate group from polyphosphate to glucose, producing glucose 6-phosphate. A petri dish-based double-layer high-throughput screening strategy was developed by using ultrathermostable Phytagel as the first layer instead of agar or agarose, followed by a redox dye-based assay for rapid identification of ultrathermostable PPGK mutants. The best mutant featuring both great thermostability and high activity could produce glucose 6-phosphate from glucose and polyphosphate without in vitro ATP regeneration.
Collapse
|
32
|
Tasnádi G, Jud W, Hall M, Baldenius K, Ditrich K, Faber K. Evaluation of Natural and Synthetic Phosphate Donors for the Improved Enzymatic Synthesis of Phosphate Monoesters. Adv Synth Catal 2018; 360:2394-2401. [PMID: 30333715 PMCID: PMC6174958 DOI: 10.1002/adsc.201800306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/11/2018] [Indexed: 11/18/2022]
Abstract
Undesired product hydrolysis along with large amounts of waste in form of inorganic monophosphate by-product are the main obstacles associated with the use of pyrophosphate in the phosphatase-catalyzed synthesis of phosphate monoesters on large scale. In order to overcome both limitations, we screened a broad range of natural and synthetic organic phosphate donors with several enzymes on a broad variety of hydroxyl-compounds. Among them, acetyl phosphate delivered stable product levels and high phospho-transfer efficiency at the lower functional pH-limit, which translated into excellent productivity. The protocol is generally applicable to acid phosphatases and compatible with a range of diverse substrates. Preparative-scale transformations using acetyl phosphate synthesized from cheap starting materials yielded multiple grams of various sugar phosphates with up to 433 g L-1 h-1 space-time yield and 75% reduction of barium phosphate waste.
Collapse
Affiliation(s)
- Gábor Tasnádi
- Austrian Centre of Industrial Biotechnology, c/o
- Department of Chemistry, Organic & Bioorganic Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Wolfgang Jud
- Department of Chemistry, Organic & Bioorganic Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Mélanie Hall
- Department of Chemistry, Organic & Bioorganic Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| | - Kai Baldenius
- White Biotechnology Research Biocatalysis BASF SE Carl-Bosch-Strasse 38 67056 Ludwigshafen Germany
| | - Klaus Ditrich
- White Biotechnology Research Biocatalysis BASF SE Carl-Bosch-Strasse 38 67056 Ludwigshafen Germany
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry University of Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
33
|
Wohlgemuth R. Horizons of Systems Biocatalysis and Renaissance of Metabolite Synthesis. Biotechnol J 2018; 13:e1700620. [DOI: 10.1002/biot.201700620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Roland Wohlgemuth
- European Federation of Biotechnology; Section on Applied Biocatalysis (ESAB); Theodor-Heuss-Allee 25,Frankfurt am Main 60486 Germany
- Sigma-Aldrich; Member of Merck Group; Industriestrasse 25,Buchs 9470 Switzerland
| |
Collapse
|
34
|
Schoenenberger B, Wszolek A, Meier R, Brundiek H, Obkircher M, Wohlgemuth R. Recombinant AroL-Catalyzed Phosphorylation for the Efficient Synthesis of Shikimic Acid 3-Phosphate. Biotechnol J 2018; 13:e1700529. [PMID: 29697210 DOI: 10.1002/biot.201700529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Shikimic acid 3-phosphate, as a central metabolite of the shikimate pathway, is of high interest as enzyme substrate for 5-enolpyruvoyl-shikimate 3-phosphate synthase, a drug target in infectious diseases and a prime enzyme target for the herbicide glyphosate. As the important substrate shikimic acid 3-phosphate is only accessible via a chemical multi-step route, a new straightforward preparative one-step enzymatic phosphorylation of shikimate using a stable recombinant shikimate kinase has been developed for the selective phosphorylation of shikimate in the 3-position. Highly active shikimate kinase is produced by straightforward expression of a synthetic aroL gene in Escherichia coli. The time course of the shikimate kinase-catalyzed phosphorylation is investigated by 1 H- and 31 P-NMR, using the phosphoenolpyruvate/pyruvate kinase system for the regeneration of the ATP cofactor. This enables the development of a quantitative biocatalytic 3-phosphorylation of shikimic acid. After a standard workup procedure, a good yield of shikimic acid 3-phosphate, with high HPLC- and NMR purity, is obtained. This efficient biocatalytic synthesis of shikimic acid 3-phosphate is superior to any other method and has been successfully scaled up to multi-gram scale.
Collapse
Affiliation(s)
| | - Agata Wszolek
- Enzymicals, Walther-Rathenau-Strasse 49a, 17489, Greifswald, Germany
| | - Roland Meier
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| | - Henrike Brundiek
- Enzymicals, Walther-Rathenau-Strasse 49a, 17489, Greifswald, Germany
| | - Markus Obkircher
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| | - Roland Wohlgemuth
- Sigma-Aldrich, Member of Merck Group, Industriestrasse 25, CH-9470, Buchs, Switzerland
| |
Collapse
|
35
|
Gauss D, Sánchez-Moreno I, Oroz-Guinea I, García-Junceda E, Wohlgemuth R. Phosphorylation Catalyzed by Dihydroxyacetone Kinase. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dominik Gauss
- Member of Merck Group; Sigma-Aldrich; Industriestrasse 25, CH -9470 Buchs Switzerland
| | - Israel Sánchez-Moreno
- Departamento de Química Bioorgánica; Instituto de Química Orgánica General; CSIC (IQOG-CSIC); Instituto de Química Orgánica General; 28006 Madrid Spain
| | - Isabel Oroz-Guinea
- Departamento de Química Bioorgánica; Instituto de Química Orgánica General; CSIC (IQOG-CSIC); Instituto de Química Orgánica General; 28006 Madrid Spain
| | - Eduardo García-Junceda
- Departamento de Química Bioorgánica; Instituto de Química Orgánica General; CSIC (IQOG-CSIC); Instituto de Química Orgánica General; 28006 Madrid Spain
| | - Roland Wohlgemuth
- Member of Merck Group; Sigma-Aldrich; Industriestrasse 25, CH -9470 Buchs Switzerland
| |
Collapse
|
36
|
Vergne-Vaxelaire C, Mariage A, Petit JL, Fossey-Jouenne A, Guérard-Hélaine C, Darii E, Debard A, Nepert S, Pellouin V, Lemaire M, Zaparucha A, Salanoubat M, de Berardinis V. Characterization of a thermotolerant ROK-type mannofructokinase from Streptococcus mitis: application to the synthesis of phosphorylated sugars. Appl Microbiol Biotechnol 2018; 102:5569-5583. [DOI: 10.1007/s00253-018-9018-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/29/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023]
|
37
|
Laurent V, Darii E, Aujon A, Debacker M, Petit JL, Hélaine V, Liptaj T, Breza M, Mariage A, Nauton L, Traïkia M, Salanoubat M, Lemaire M, Guérard-Hélaine C, de Berardinis V. Synthesis of Branched-Chain Sugars with a DHAP-Dependent Aldolase: Ketones are Electrophile Substrates of Rhamnulose-1-phosphate Aldolases. Angew Chem Int Ed Engl 2018. [PMID: 29542859 DOI: 10.1002/anie.201712851] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent rhamnulose aldolases display an unprecedented versatility for ketones as electrophile substrates. We selected and characterized a rhamnulose aldolase from Bacteroides thetaiotaomicron (RhuABthet) to provide a proof of concept. DHAP was added as a nucleophile to several α-hydroxylated ketones used as electrophiles. This aldol addition was stereoselective and produced branched-chain monosaccharide adducts with a tertiary alcohol moiety. Several aldols were readily obtained in good to excellent yields (from 76 to 95 %). These results contradict the general view that aldehydes are the only electrophile substrates for DHAP-dependent aldolases and provide a new C-C bond-forming enzyme for stereoselective synthesis of tertiary alcohols.
Collapse
Affiliation(s)
- Victor Laurent
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| | - Angelina Aujon
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Marine Debacker
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Tibor Liptaj
- Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinského 9, 81237, Bratislava, Slovakia
| | - Martin Breza
- Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinského 9, 81237, Bratislava, Slovakia
| | - Aline Mariage
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Mounir Traïkia
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Marcel Salanoubat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Univ Paris-Saclay, 91057, Evry, France
| |
Collapse
|
38
|
Laurent V, Darii E, Aujon A, Debacker M, Petit JL, Hélaine V, Liptaj T, Breza M, Mariage A, Nauton L, Traïkia M, Salanoubat M, Lemaire M, Guérard-Hélaine C, de Berardinis V. Synthesis of Branched-Chain Sugars with a DHAP-Dependent Aldolase: Ketones are Electrophile Substrates of Rhamnulose-1-phosphate Aldolases. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Victor Laurent
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Angelina Aujon
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Marine Debacker
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Tibor Liptaj
- Slovak University of Technology; Faculty of Chemical and Food Technology; Radlinského 9 81237 Bratislava Slovakia
| | - Martin Breza
- Slovak University of Technology; Faculty of Chemical and Food Technology; Radlinského 9 81237 Bratislava Slovakia
| | - Aline Mariage
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Mounir Traïkia
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Marcel Salanoubat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont; Institut de Chimie de Clermont-Ferrand; 63000 Clermont-Ferrand France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry; Univ Paris-Saclay; 91057 Evry France
| |
Collapse
|
39
|
Wu Y, Mao G, Fan H, Song A, Zhang YHP, Chen H. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity. Sci Rep 2017; 7:4849. [PMID: 28687766 PMCID: PMC5501786 DOI: 10.1038/s41598-017-05289-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/26/2017] [Indexed: 11/10/2022] Open
Abstract
A hypothetic gene (THA_1941) encoding a putative cellobiose phosphorylase (CBP) from Thermosipho africanus TCF52B has very low amino acid identities (less than 12%) to all known GH94 enzymes. This gene was cloned and over-expressed in Escherichia coli BL21(DE3). The recombinant protein was hypothesized to be a CBP enzyme and it showed an optimum temperature of 75 °C and an optimum pH of 7.5. Beyond its CBP activity, this enzyme can use cellobiose and long-chain cellodextrins with a degree of polymerization of greater than two as a glucose acceptor, releasing phosphate from glucose 1-phosphate. The catalytic efficiencies (kcat/Km) indicated that cellotetraose and cellopentaose were the best substrates for the phosphorolytic and reverse synthetic reactions, respectively. These results suggested that this enzyme was the first enzyme having both cellodextrin and cellobiose phosphorylases activities. Because it preferred cellobiose and cellodextrins to glucose in the synthetic direction, it was categorized as a cellodextrin phosphorylase (CDP). Due to its unique ability of the reverse synthetic reaction, this enzyme could be a potential catalyst for the synthesis of various oligosaccharides. The speculative function of this CDP in the carbohydrate metabolism of T. africanus TCF52B was also discussed.
Collapse
Affiliation(s)
- Yuanyuan Wu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Guotao Mao
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Haiyan Fan
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Andong Song
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Yi-Heng Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061, USA
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.
| |
Collapse
|
40
|
ATP-free biosynthesis of a high-energy phosphate metabolite fructose 1,6-diphosphate by in vitro metabolic engineering. Metab Eng 2017. [DOI: 10.1016/j.ymben.2017.06.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Hardt N, Kinfu BM, Chow J, Schoenenberger B, Streit WR, Obkircher M, Wohlgemuth R. Biocatalytic Asymmetric Phosphorylation Catalyzed by Recombinant Glycerate-2-Kinase. Chembiochem 2017; 18:1518-1522. [DOI: 10.1002/cbic.201700201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Norman Hardt
- Sigma-Aldrich; Member of Merck Group; Industriestrasse 25 9470 Buchs Switzerland
| | - Birhanu M. Kinfu
- Universität Hamburg; Abteilung für Mikrobiologie und Biotechnologie; Ohnhorststrasse 18 22609 Hamburg Germany
| | - Jennifer Chow
- Universität Hamburg; Abteilung für Mikrobiologie und Biotechnologie; Ohnhorststrasse 18 22609 Hamburg Germany
| | | | - Wolfgang R. Streit
- Universität Hamburg; Abteilung für Mikrobiologie und Biotechnologie; Ohnhorststrasse 18 22609 Hamburg Germany
| | - Markus Obkircher
- Sigma-Aldrich; Member of Merck Group; Industriestrasse 25 9470 Buchs Switzerland
| | - Roland Wohlgemuth
- Sigma-Aldrich; Member of Merck Group; Industriestrasse 25 9470 Buchs Switzerland
| |
Collapse
|