1
|
Yuan Z, Jiang Q, Liang G. Inspired by nature: Bioluminescent systems for bioimaging applications. Talanta 2025; 281:126821. [PMID: 39255622 DOI: 10.1016/j.talanta.2024.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Bioluminescence is a natural process where biological organisms produce light through chemical reactions. These reactions predominantly occur between small-molecule substrates and luciferase within bioluminescent organisms. Bioluminescence imaging (BLI) has shown significant potential in biomedical research owing to its non-invasive, real-time observation and quantification. In this review, we introduced the chemical mechanism of bioluminescent systems and categorized several strategies that successfully addressed the native limitations, including improvements on the chemical structures of luciferase-luciferin bioluminescence system and bioluminescence resonance energy transfer (BRET) methods. In addition, we also reviewed and summarized recent advances in bioimaging applications. We hope that this review can provide effective guidance for the development and application of bioluminescent systems in the field of bioimaging.
Collapse
Affiliation(s)
- Zihan Yuan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiaochu Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Handan Norman Technology Co., Ltd., Guantao, 057750, China.
| |
Collapse
|
2
|
Cao M, Li Y, Tang Y, Chen M, Mao J, Yang X, Li D, Zhang F, Shen J. Quantification of the Engraftment Status of Mesenchymal Stem Cells in Glioma Using Dual-Modality Magnetic Resonance Imaging and Bioluminescence Imaging. Acad Radiol 2025; 32:334-346. [PMID: 39054246 DOI: 10.1016/j.acra.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
RATIONALE AND OBJECTIVES The tumor-tropic properties of mesenchymal stem cells (MSCs) enable them to serve as appealing cellular vehicles for delivering therapeutic agents to treat malignant glioma. However, the exact engraftment status of MSCs in glioma via different administration routes remains unclear due to the lack of quantitative analysis. This study aimed to quantify the engraftment of MSCs in glioma after administration via different routes using non-invasive dual-modality magnetic resonance imaging (MRI) and bioluminescence imaging (BLI). MATERIALS AND METHODS MSCs were transduced with a lentivirus overexpressing ferritin heavy chain (FTH) and firefly luciferase (FLUC) reporter genes to yield FTH- and FLUC-overexpressed MSCs (FTH-FLUC-MSCs). Wistar rats bearing intracranial C6 glioma received peritumoral, intratumoral, intra-arterial, and intravenous injection of FTH-FLUC-MSCs, respectively. MRI and BLI were performed to monitor FTH-FLUC-MSCs in vivo. RESULTS FTH-FLUC-MSCs administered via peritumoral, intratumoral and intra-arterial routes migrated specially toward the intracranial glioma in vivo, as detected by MRI and BLI. As quantified by the BLI signal intensity, the percentages of FTH-FLUC-MSCs in the glioma were significantly higher with peritumoral injection (61%) and intratumoral injection (71%) compared to intra-arterial injection (30%) and intravenous injection (0%). Peritumorally injected FTH-FLUC-MSCs showed a gradual decline, with approximately 6% of FTH-FLUC-MSCs still retained within the tumor up to 11 days after injection. Meanwhile, the number of FTH-FLUC-MSCs injected via other routes dropped quickly, and none were detectable by day 11 post-injection. CONCLUSION Peritumoral delivery of FTH-FLUC-MSCs offers robust engraftment and could be used as the optimal delivery route for treating malignant glioma.
Collapse
Affiliation(s)
- Minghui Cao
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Yunhua Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Yingmei Tang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Meiwei Chen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Jiaji Mao
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Xieqing Yang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Dongye Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China; Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, No. 135 Xingang Road West, Guangzhou 510275, China.
| |
Collapse
|
3
|
Chen Z, Yang Y, Qiu X, Zhou H, Wang R, Xiong H. Crown-like Biodegradable Lipids Enable Lung-Selective mRNA Delivery and Dual-Modal Tumor Imaging In Vivo. J Am Chem Soc 2024; 146:34209-34220. [PMID: 39586009 DOI: 10.1021/jacs.4c14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Systemic mRNA delivery to specific cell types remains a great challenge. We herein report a new class of crown-like biodegradable ionizable lipids (CBILs) for predictable lung-selective mRNA delivery by leveraging the metal coordination chemistry. Each CBIL contains an impressive crown-like amino core that coordinates with various metal ions such as Zn2+ and further regulates the in vivo organ-targeting behavior of lipid nanoparticles (LNPs). The representative CBIL (Zn-9C-SCC-10)-formulated LNPs could exclusively deliver mRNA to the lung after systemic administration. Notably, following intravenous administration of 0.2 mg kg-1 Cre mRNA, Zn-9C-SCC-10 LNPs enabled the highly efficient gene editing of all lung epithelial and endothelial cells up to 43 and 61%, respectively, outperforming the current state-of-the-art LNPs in lung epithelial cell delivery. Moreover, compared to DLin-MC3-DMA LNPs with the addition of cationic lipid (DOTAP), our approach yielded a 44.6-fold enhancement in pulmonary mRNA expression and significantly improved biosafety in vivo. Taking advantage of paramagnetic gadolinium ion, Gd-12C-SCC-10 LNPs allowed the potent mRNA delivery to cancer cells and successfully illuminated lung tumors by magnetic and bioluminescent dual-mode imaging, facilitating the early discovery and diagnosis of lung cancer. This work will open a new avenue to rationally design predictable LNPs, as well as address the major challenges of mRNA delivery to specific cells in the lung tissues for treating a wide variety of diseases.
Collapse
Affiliation(s)
- Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuexia Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinyu Qiu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rui Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Sangeetha B, Leroy KI, Udaya Kumar B. Harnessing Bioluminescence: A Comprehensive Review of In Vivo Imaging for Disease Monitoring and Therapeutic Intervention. Cell Biochem Funct 2024; 42:e70020. [PMID: 39673353 DOI: 10.1002/cbf.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
The technique of using naturally occurring light-emitting reactants (photoproteins and luciferases] that have been extracted from a wide range of animals is known as bioluminescence imaging, or BLI. This imaging offers important details on the location and functional state of regenerative cells inserted into various disease-modeling animals. Reports on gene expression patterns, cell motions, and even the actions of individual biomolecules in whole tissues and live animals have all been made possible by bioluminescence. Generally speaking, bioluminescent light in animals may be found down to a few centimetres, while the precise limit depends on the signal's brightness and the detector's sensitivity. We can now spatiotemporally visualize cell behaviors in any body region of a living animal in a time frame process, including proliferation, apoptosis, migration, and immunological responses, thanks to BLI. The biological applications of in vivo BLI in nondestructively monitoring biological processes in intact small animal models are reviewed in this work, along with some of the advancements that will make BLI a more versatile molecular imaging tool.
Collapse
Affiliation(s)
- B Sangeetha
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - K I Leroy
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| | - B Udaya Kumar
- Department of Biotechnology, St Joseph's College of Engineering, Chennai, Tamilnadu, India
| |
Collapse
|
5
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
6
|
Bonardi A, Turelli M, Moro G, Greco C, Cosentino U, Adamo C. Behind the glow: unveiling the nature of NanoLuc reactants and products. Phys Chem Chem Phys 2024; 26:27447-27458. [PMID: 39446158 DOI: 10.1039/d4cp02551b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Due to the largely recognized utility of bioluminescence in many fields, a wide variety of luciferase-luciferin systems have been investigated in order to find the best-suited for a number of different applications. The collected knowledge has allowed the identification of a few necessary, or at least desirable, properties, such as bright luminescence, low background signal and small dimension of the enzyme that must exhibit structural stability at operating conditions. The NanoLuc-furimazine pair seems to meet all these requirements, but the mechanism of the reaction and the characteristics of the species responsible for the emission remain unknown. The aim of this study is to identify the luminescent product among the possible forms of oxidized furimazine and to understand how the chemical form and structure of the system, before and after the oxidation, are involved into the reaction mechanism and determine emission. To do this, we consider two possible forms of furimazine, the keto and the enol one, and test which of them is the most plausible candidate in the bioluminescence process on the basis of enzyme-substrate interactions from docking calculations. A similar procedure is repeated for three possible forms of the furimamide luminescent product, and their properties in the protein environment are then evaluated via QM/MM calculations. In contrast with previous indications, our simulations well support the involvement of the enol form of furimazine as reagent and point to the zwitterionic forms of furimamide as emissive species.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Chimie ParisTech, CNRS, Institute of Chemistry for Health and Life Sciences, PSL Research University, F-75005 Paris, France.
- Department of Earth and Environmental Sciences, Milano-Bicocca University, I-20126 Milano, Italy.
| | - Michele Turelli
- Chimie ParisTech, CNRS, Institute of Chemistry for Health and Life Sciences, PSL Research University, F-75005 Paris, France.
| | - Giorgio Moro
- Department of Biotechnology and Biosciences, Milano-Bicocca University, I-20126 Milano, Milano, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, Milano-Bicocca University, I-20126 Milano, Italy.
| | - Ugo Cosentino
- Department of Earth and Environmental Sciences, Milano-Bicocca University, I-20126 Milano, Italy.
| | - Carlo Adamo
- Chimie ParisTech, CNRS, Institute of Chemistry for Health and Life Sciences, PSL Research University, F-75005 Paris, France.
| |
Collapse
|
7
|
Chen X, Luo F, Yuan M, Bai C, Chen Q, Zhang K, Fan Y, Cao C, Wang L, Ye F, Jin J. Alginate/chitosan-based hemostatic microspheres loaded with doxorubicin liposomes for postoperative local drug delivery in solid tumor. Int J Biol Macromol 2024; 282:137090. [PMID: 39486744 DOI: 10.1016/j.ijbiomac.2024.137090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
In clinical solid tumor treatment, intraoperative bleeding, compromised postoperative recovery, and increased non-specific toxicity from chemotherapy are always challenges. To address these limitations, we developed and well characterized novel alginate/chitosan-based hemostatic microspheres loaded with doxorubicin liposomes. The multifunctional microspheres exhibited optimal drug loading capacity and excellent drug encapsulation efficiency. Remarkably, this unique structural composition enhanced the hemostatic performance by improving their swelling and adhesion properties, surpassing those of commercial hemostatic microspheres CELOX® in both rat tail amputation and hepatic injury models. In a tumor recurrence model, SCs-lip microspheres, designed with a multi-release in situ drug delivery system, achieved sustained release of doxorubicin over an extended period, effectively reducing its toxic side effects while enhancing therapeutic efficacy. Biocompatibility experiments further validated the safety profile of this multifunctional materials. The development of this drug delivery system presents a promising opportunity to bridge the "treatment gap" between solid tumor resection surgery and chemotherapy, offering a potentially transformative approach for the application of anti-tumor drugs.
Collapse
Affiliation(s)
- Xin Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fulin Luo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengting Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chongbin Bai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kui Zhang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaohua Fan
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huancheng North Road, Jiaxing 314000, China
| | - Chenxi Cao
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, No. 397, Huancheng North Road, Jiaxing 314000, China
| | - Lei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jia Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Fu X, Diao W, Luo Y, Liu Y, Wang Z. Theoretical Insight into the Fluorescence Spectral Tuning Mechanism: A Case Study of Flavin-Dependent Bacterial Luciferase. J Chem Theory Comput 2024; 20:8652-8664. [PMID: 39298275 DOI: 10.1021/acs.jctc.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Bioluminescence of bacteria is widely applied in biological imaging, environmental toxicant detection, and many other situations. Understanding the spectral tuning mechanism not only helps explain the diversity of colors observed in nature but also provides principles for bioengineering new color variants for practical applications. In this study, time-dependent density functional theory (TD-DFT) and quantum mechanics and molecular mechanics (QM/MM) calculations have been employed to understand the fluorescence spectral tuning mechanism of bacterial luciferase with a focus on the electrostatic effect. The spectrum can be tuned by both a homogeneous dielectric environment and oriented external electric fields (OEEFs). Increasing the solvent polarity leads to a redshift of the fluorescence emission maximum, λF, accompanied by a substantial increase in density. In contrast, applying an OEEF along the long axis of the isoalloxazine ring (X-axis) leads to a significant red- or blue-shift in λF, depending on the direction of the OEEF, yet with much smaller changes in intensity. The effect of polar solvents is directionless, and the red-shifts can be attributed to the larger dipole moment of the S1 state compared with that of the S0 state. However, the effect of OEEFs directly correlates with the difference dipole moment between the S1 and S0 states, which is directional and is determined by the charge redistribution upon deexcitation. Moreover, the electrostatic effect of bacterial luciferase is in line with the presence of an internal electric field (IEF) pointing in the negative X direction. Finally, the key residues that contribute to this IEF and strategies for modulating the spectrum through site-directed point mutations are discussed.
Collapse
Affiliation(s)
- Xiaodi Fu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Wenwen Diao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| | - Yanling Luo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Liu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
9
|
Djavani-Tabrizi I, Lindkvist TT, Langeland J, Kjær C, Graham M, Kjaergaard HG, Nielsen SB. Tautomer-Selective Fluorescence Spectroscopy of Oxyluciferin Anions. J Am Chem Soc 2024; 146:26975-26982. [PMID: 39298372 DOI: 10.1021/jacs.4c08596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Bioluminescence in fireflies and related insects arises as emission from the fluorophore oxyluciferin, yet the color of the emission in these insects can range from red to green. The chromophore's microenvironment or multiple tautomeric forms may be responsible for the color tuning; however, these effects are difficult to separate in condensed phases. To investigate the role of oxyluciferin tautomerization in the color tuning mechanism, gas-phase spectroscopy eliminates solvent effects and allows us to study the fluorescence from individual tautomers. Using a home-built mass-spectrometry setup with a cylindrical ion trap cooled with liquid nitrogen, we measure fluorescence from the enol-locked form of oxyluciferin in the gas phase and characterize the photophysics of both keto and enol forms. At 100 K, the enol-locked form has an emission maximum of 564 ± 1 nm, coinciding with a previously reported assignment in oxyluciferin. We measure the absorption spectrum and find a maximum at 560.5 ± 0.5 nm, which implies a Stokes shift of 110 cm-1. The absorption spectrum is compared to Franck-Condon simulated spectra that identify one dominant vibrational mode in the transition. Additionally, we ultimately separated the emission by the enol and keto forms present in the trap by selectively exciting each form. We demonstrate that fluorescence measured close to the 0-0 transition limits the reheating of the ions, thereby providing the coldest ions and therefore the narrowest emission spectra. These experimental data are also crucial benchmarks for computational studies, offering actual emission spectra in the gas phase for both tautomeric forms. Thus, our findings serve as essential reference points for excited-state calculations aimed at understanding the color tuning mechanism of bioluminescence computationally.
Collapse
Affiliation(s)
- Iden Djavani-Tabrizi
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Thomas Toft Lindkvist
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Marlowe Graham
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Steen Brøndsted Nielsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| |
Collapse
|
10
|
Wu R, Li C, Li J, Sjollema J, Geertsema-Doornbusch GI, de Haan-Visser HW, Dijkstra ESC, Ren Y, Zhang Z, Liu J, Flemming HC, Busscher HJ, van der Mei HC. Bacterial killing and the dimensions of bacterial death. NPJ Biofilms Microbiomes 2024; 10:87. [PMID: 39289404 PMCID: PMC11408613 DOI: 10.1038/s41522-024-00559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Bacteria can be dead, alive, or exhibit slowed or suspended life forms, making bacterial death difficult to establish. Here, agar-plating, microscopic-counting, SYTO9/propidium-iodide staining, MTT-conversion, and bioluminescence-imaging were used to determine bacterial death upon exposure to different conditions. Rank correlations between pairs of assay outcomes were low, indicating different assays measure different aspects of bacterial death. Principal-component analysis yielded two principal components, named "reproductive-ability" (PC1) and "metabolic-activity" (PC2). Plotting of these principal components in two-dimensional space revealed a dead region, with borders defined by the PC1 and PC2 values. Sensu stricto implies an unpractical reality that all assays determining PC1 and PC2 must be carried out in order to establish bacterial death. Considering this unpracticality, it is suggested that at least one assay determining reproductive activity (PC1) and one assay determining metabolic activity (PC2) should be used to establish bacterial death. Minimally, researchers should specifically describe which dimension of bacterial death is assessed, when addressing bacterial death.
Collapse
Affiliation(s)
- Renfei Wu
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Cong Li
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gésinda I Geertsema-Doornbusch
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - H Willy de Haan-Visser
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Emma S C Dijkstra
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, 215123, Jiangsu, P. R. China
| | - Hans C Flemming
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Universitätsstrasse 5, 45141, Essen, Germany
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), 7 Nanhai Rd, Qingdao, 266071, China
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
11
|
Zhong BL, Elliot JM, Wang P, Li H, Hall RN, Wang B, Prakash M, Dunn AR. Split Luciferase Molecular Tension Sensors for Bioluminescent Readout of Mechanical Forces in Biological Systems. ACS Sens 2024; 9:3489-3495. [PMID: 38973210 PMCID: PMC11839233 DOI: 10.1021/acssensors.3c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The ability of proteins to sense and transmit mechanical forces underlies many biological processes, but characterizing these forces in biological systems remains a challenge. Existing genetically encoded force sensors typically rely on fluorescence or bioluminescence resonance energy transfer (FRET or BRET) to visualize tension. However, these force sensing modules are relatively large, and interpreting measurements requires specialized image analysis and careful control experiments. Here, we report a compact molecular tension sensor that generates a bioluminescent signal in response to tension. This sensor (termed PILATeS) makes use of the split NanoLuc luciferase and consists of the H. sapiens titin I10 domain with the insertion of a 10-15 amino acid tag derived from the C-terminal β-strand of NanoLuc. Mechanical load across PILATeS mediates exposure of this tag to recruit the complementary split NanoLuc fragment, resulting in force-dependent bioluminescence. We demonstrate the ability of PILATeS to report biologically meaningful forces by visualizing forces at the interface between integrins and extracellular matrix substrates. We further use PILATeS as a genetically encoded sensor of tension experienced by the mechanosensing protein vinculin. We anticipate that PILATeS will provide an accessible means of visualizing molecular-scale forces in biological systems.
Collapse
Affiliation(s)
- Brian L Zhong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeandele M Elliot
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pengli Wang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - R Nelson Hall
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Kuchimaru T. Emerging Synthetic Bioluminescent Reactions for Non-Invasive Imaging of Freely Moving Animals. Int J Mol Sci 2024; 25:7338. [PMID: 39000448 PMCID: PMC11242611 DOI: 10.3390/ijms25137338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Bioluminescence imaging (BLI) is an indispensable technique for visualizing the dynamics of diverse biological processes in mammalian animal models, including cancer, viral infections, and immune responses. However, a critical scientific challenge remains: non-invasively visualizing homeostatic and disease mechanisms in freely moving animals to understand the molecular basis of exercises, social behavior, and other phenomena. Classical BLI relies on prolonged camera exposure to accumulate the limited number of photons that traveled from deep tissues in anesthetized or constrained animals. Recent advancements in synthetic bioluminescence reactions, utilizing artificial luciferin-luciferase pairs, have considerably increased the number of detectable photons from deep tissues, facilitating high-speed BLI to capture moving objects. In this review, I provide an overview of emerging synthetic bioluminescence reactions that enable the non-invasive imaging of freely moving animals. This approach holds the potential to uncover unique physiological processes that are inaccessible with current methodologies.
Collapse
Affiliation(s)
- Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| |
Collapse
|
13
|
Amaral DT, Kaplan RA, Takishita TKE, de Souza DR, Oliveira AG, Rosa SP. Glowing wonders: exploring the diversity and ecological significance of bioluminescent organisms in Brazil. Photochem Photobiol Sci 2024; 23:1373-1392. [PMID: 38733516 DOI: 10.1007/s43630-024-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.
Collapse
Affiliation(s)
- Danilo T Amaral
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC (UFABC), Santo André, São Paulo, Brazil.
- Programa de Pós Graduação Em Biotecnociência, Universidade Federal Do ABC (UFABC), Avenida Dos Estados, Bloco A, Room 504-3. ZIP 09210-580, Santo André, São Paulo, 5001, Brazil.
| | - Rachel A Kaplan
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | | | - Daniel R de Souza
- Laboratório de Estudos Avançados Em Jornalismo, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Anderson G Oliveira
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Simone Policena Rosa
- Instituto de Recursos Naturais (IRN), Universidade Federal de Itajubá (UNIFEI), Itajubá, MG, Brazil
| |
Collapse
|
14
|
Russo F, Civili B, Winssinger N. Bright Red Bioluminescence from Semisynthetic NanoLuc (sNLuc). ACS Chem Biol 2024; 19:1035-1039. [PMID: 38717306 PMCID: PMC11106743 DOI: 10.1021/acschembio.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Red-shifted bioluminescence is highly desirable for diagnostic and imaging applications. Herein, we report a semisynthetic NanoLuc (sNLuc) based on complementation of a split NLuc (LgBiT) with a synthetic peptide (SmBiT) functionalized with a fluorophore for BRET emission. We observed exceptional BRET ratios with diverse fluorophores, notably in the red (I674/I450 > 14), with a brightness that is sufficient for naked eye detection in blood or through tissues. To exemplify its utility, LgBiT was fused to a miniprotein that binds HER2 (affibody, ZHER2), and the selective detection of HER2+ SK-BR-3 cells over HER2- HeLa cells was demonstrated.
Collapse
Affiliation(s)
- Francesco Russo
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Beatrice Civili
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
15
|
Tamura T, Ito H, Torii S, Wang L, Suzuki R, Tsujino S, Kamiyama A, Oda Y, Tsuda M, Morioka Y, Suzuki S, Shirakawa K, Sato K, Yoshimatsu K, Matsuura Y, Iwano S, Tanaka S, Fukuhara T. Akaluc bioluminescence offers superior sensitivity to track in vivo dynamics of SARS-CoV-2 infection. iScience 2024; 27:109647. [PMID: 38638572 PMCID: PMC11025001 DOI: 10.1016/j.isci.2024.109647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. Because the gene size of RNA viruses is typically small, NanoLuc is the primary choice for accommodation within viral genome. However, NanoLuc/Furimazine and also the conventional firefly luciferase/D-luciferin are known to exhibit relatively low tissue permeability and thus less sensitivity for visualization of deep tissue including lungs. Here, we demonstrated in vivo sufficient visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using the pair of a codon-optimized Akaluc and AkaLumine. We engineered the codon-optimized Akaluc gene possessing the similar GC ratio of SARS-CoV-2. Using the SARS-CoV-2 recombinants carrying the codon-optimized Akaluc, we visualized in vivo infection of respiratory organs, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of antivirals by monitoring changes in Akaluc signals. Overall, we offer an effective technology for monitoring viral dynamics in live animals.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Shiho Torii
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Akifumi Kamiyama
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yuhei Morioka
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Tokyo 113-0033, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Kumamoto 860-0811, Japan
| | - Kumiko Yoshimatsu
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoshi Iwano
- Institute for Tenure Track Promotion, University of Miyazaki, Miyazaki, Miyazaki 889-2192, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Tokyo 100-0004, Japan
| |
Collapse
|
16
|
Wu J, Kang Y, Luo X, Dai S, Shi Y, Li Z, Tang Z, Chen Z, Zhu R, Yang P, Li Z, Wang H, Chen X, Zhao Z, Ji W, Niu Y. Long-term in vivo chimeric cells tracking in non-human primate. Protein Cell 2024; 15:207-222. [PMID: 37758041 PMCID: PMC10903985 DOI: 10.1093/procel/pwad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.
Collapse
Affiliation(s)
- Junmo Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xiang Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Shaoxing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuxi Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhuoyao Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zengli Tang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhenzhen Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ran Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Pengpeng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zifan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ziyi Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
17
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
18
|
Lainšček D, Golob-Urbanc A, Orehek S. In Vivo Bioluminescence and Fluorescence Imaging: Optical Tool for Cancer Research. Methods Mol Biol 2024; 2773:105-123. [PMID: 38236541 DOI: 10.1007/978-1-0716-3714-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In vivo whole-body imaging, using optical tools based on bioluminescence and fluorescence detection, offers tremendous opportunities to specifically determine the spatiotemporal resolution of cancer cells within the tested animals. This enables the study of many aspects of cancer biology, including cell proliferation, trafficking, and invasions. The antitumor therapeutic properties of various tested compounds (e.g., CD19 CAR-T cells, used for cancer immunotherapy) can be monitored within the same animal at different time points, significantly reducing the number of animals used in the study as indicated in this method.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| | - Anja Golob-Urbanc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Navarro MX, Brennan CK, Love AC, Prescher JA. Caged luciferins enable rapid multicomponent bioluminescence imaging. Photochem Photobiol 2024; 100:67-74. [PMID: 37259257 PMCID: PMC10687313 DOI: 10.1111/php.13814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Bioluminescence is a sensitive technique for imaging biological features over time. Historically, though, the modality has been challenging to employ for multiplexed tracking due to a lack of resolvable luciferase-luciferin pairs. Recent years have seen the development of numerous orthogonal probes for multi-parameter imaging. While successful, generating such tools often requires complex syntheses and lengthy enzyme evolution campaigns. This work showcases an alternative strategy for multiplexed bioluminescence that takes advantage of already-orthogonal caged luciferins and established uncaging enzymes. These probes generate unique bioluminescent signals that can be distinguished via a linear unmixing algorithm. Caged luciferins enabled two- and three-component imaging on the minutes time scale. We further showed that the tools can be used in conjunction with endogenous enzymes for multiplexed studies. Collectively, this approach lowers the barrier to multicomponent bioluminescence imaging and can be readily adopted by the broader community.
Collapse
Affiliation(s)
- Mariana X. Navarro
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
| | - Caroline K. Brennan
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
| | - Anna C. Love
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine 1120 Natural Science II, Irvine, CA 92617 (USA)
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92716 (USA)
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA 92617 (USA)
| |
Collapse
|
20
|
Yang J, Yan M, Wang Z, Zhang C, Guan M, Sun Z. Optical and MRI Multimodal Tracing of Stem Cells In Vivo. Mol Imaging 2023; 2023:4223485. [PMID: 38148836 PMCID: PMC10751174 DOI: 10.1155/2023/4223485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
Stem cell therapy has shown great clinical potential in oncology, injury, inflammation, and cardiovascular disease. However, due to the technical limitations of the in vivo visualization of transplanted stem cells, the therapeutic mechanisms and biosafety of stem cells in vivo are poorly defined, which limits the speed of clinical translation. The commonly used methods for the in vivo tracing of stem cells currently include optical imaging, magnetic resonance imaging (MRI), and nuclear medicine imaging. However, nuclear medicine imaging involves radioactive materials, MRI has low resolution at the cellular level, and optical imaging has poor tissue penetration in vivo. It is difficult for a single imaging method to simultaneously achieve the high penetration, high resolution, and noninvasiveness needed for in vivo imaging. However, multimodal imaging combines the advantages of different imaging modalities to determine the fate of stem cells in vivo in a multidimensional way. This review provides an overview of various multimodal imaging technologies and labeling methods commonly used for tracing stem cells, including optical imaging, MRI, and the combination of the two, while explaining the principles involved, comparing the advantages and disadvantages of different combination schemes, and discussing the challenges and prospects of human stem cell tracking techniques.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Min Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhong Wang
- Affiliated Mental Health Center of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Cong Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| |
Collapse
|
21
|
Shang W, Hu Z, Li M, Wang Y, Rao Y, Tan L, Chen J, Huang X, Liu L, Liu H, Guo Z, Peng H, Yang Y, Hu Q, Li S, Hu X, Zou J, Rao X. Optimizing a high-sensitivity NanoLuc-based bioluminescence system for in vivo evaluation of antimicrobial treatment. MLIFE 2023; 2:462-478. [PMID: 38818266 PMCID: PMC10989145 DOI: 10.1002/mlf2.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 06/01/2024]
Abstract
Focal and systemic infections are serious threats to human health. Preclinical models enable the development of new drugs and therapeutic regimens. In vivo, animal bioluminescence (BL) imaging has been used with bacterial reporter strains to evaluate antimicrobial treatment effects. However, high-sensitivity bioluminescent systems are required because of the limited tissue penetration and low brightness of the BL signals of existing approaches. Here, we report that NanoLuc (Nluc) showed better performance than LuxCDABE in bacteria. However, the retention rate of plasmid constructs in bacteria was low. To construct stable Staphylococcus aureus reporter strains, a partner protein enolase (Eno) was identified by screening of S. aureus strain USA300 for fusion expression of Nluc-based luciferases, including Nluc, Teluc, and Antares2. Different substrates, such as hydrofurimazine (HFZ), furimazine (FUR), and diphenylterazine (DTZ), were used to optimize a stable reporter strain/substrate pair for BL imaging. S. aureus USA300/Eno-Antares2/HFZ produced the highest number of photons of orange-red light in vitro and enabled sensitive BL tracking of S. aureus in vivo, with sensitivities of approximately 10 CFU from mouse skin and 750 CFU from mouse kidneys. USA300/Eno-Antares2/HFZ was a powerful combination based on the longitudinal evaluation of the therapeutic efficacy of antibiotics. The optimized S. aureus Eno-Antares2/HFZ pair provides a technological advancement for the in vivo evaluation of antimicrobial treatment.
Collapse
Affiliation(s)
- Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Mengyang Li
- Department of Microbiology, School of MedicineChongqing UniversityChongqingChina
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yifan Rao
- Department of Emergency Medicine, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Juan Chen
- Department of Pharmacy, Xinqiao HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Lu Liu
- Department of Microbiology, School of MedicineChongqing UniversityChongqingChina
| | - He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Zuwen Guo
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of PsychologyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in ChongqingArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
22
|
Chen Z, Tian Y, Yang J, Wu F, Liu S, Cao W, Xu W, Hu T, Siegwart DJ, Xiong H. Modular Design of Biodegradable Ionizable Lipids for Improved mRNA Delivery and Precise Cancer Metastasis Delineation In Vivo. J Am Chem Soc 2023; 145:24302-24314. [PMID: 37853662 DOI: 10.1021/jacs.3c09143] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Lipid nanoparticles (LNPs) represent the most clinically advanced nonviral mRNA delivery vehicles; however, the full potential of the LNP platform is greatly hampered by inadequate endosomal escape capability. Herein, we rationally introduce a disulfide bond-bridged ester linker to modularly synthesize a library of 96 linker-degradable ionizable lipids (LDILs) for improved mRNA delivery in vivo. The top-performing LDILs are composed of one 4A3 amino headgroup, four disulfide bond-bridged linkers, and four 10-carbon tail chains, whose unique GSH-responsive cone-shaped architectures endow optimized 4A3-SCC-10 and 4A3-SCC-PH lipids with superior endosomal escape and rapid mRNA release abilities, outperforming their parent lipids 4A3-SC-10/PH without a disulfide bond and control lipids 4A3-SSC-10/PH with a disulfide bond in the tail. Notably, compared to DLin-MC3-DMA via systematic administration, 4A3-SCC-10- and 4A3-SCC-PH-formulated LNPs significantly improved mRNA delivery in livers by 87-fold and 176-fold, respectively. Moreover, 4A3-SCC-PH LNPs enabled the highly efficient gene editing of 99% hepatocytes at a low Cre mRNA dose in tdTomato mice following intravenous administration. Meanwhile, 4A3-SCC-PH LNPs were able to selectively deliver firefly luciferase mRNA and facilitate luciferase expression in tumor cells after intraperitoneal injection, further improving cancer metastasis delineation and surgery via bioluminescence imaging. We envision that the chemistry adopted here can be further extended to develop new biodegradable ionizable lipids for broad applications such as gene editing and cancer immunotherapy.
Collapse
Affiliation(s)
- Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jieyu Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weijia Xu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Daniel J Siegwart
- Department of Biochemistry, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Balasubramanian H, Hobson CM, Chew TL, Aaron JS. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun Biol 2023; 6:1096. [PMID: 37898673 PMCID: PMC10613274 DOI: 10.1038/s42003-023-05468-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
The optical microscope has revolutionized biology since at least the 17th Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges. Here, we delve into the current state of live imaging to explore the barriers that must be overcome and the possibilities that lie ahead. We venture to envision a future where we can visualize and study everything, everywhere, all at once - from the intricate inner workings of a single cell to the dynamic interplay across entire organisms, and a world where scientists could access the necessary microscopy technologies anywhere.
Collapse
Affiliation(s)
| | - Chad M Hobson
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA.
| |
Collapse
|
24
|
Xu X, Deng Z, Sforza D, Tong Z, Tseng YP, Newman C, Reinhart M, Tsouchlos P, Devling T, Dehghani H, Iordachita I, Wong JW, Wang KKH. Characterization of a commercial bioluminescence tomography-guided system for pre-clinical radiation research. Med Phys 2023; 50:6433-6453. [PMID: 37633836 PMCID: PMC10592094 DOI: 10.1002/mp.16669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Widely used Cone-beam computed tomography (CBCT)-guided irradiators have limitations in localizing soft tissue targets growing in a low-contrast environment. This hinders small animal irradiators achieving precise focal irradiation. PURPOSE To advance image-guidance for soft tissue targeting, we developed a commercial-grade bioluminescence tomography-guided system (BLT, MuriGlo) for pre-clinical radiation research. We characterized the system performance and demonstrated its capability in target localization. We expect this study can provide a comprehensive guideline for the community in utilizing the BLT system for radiation studies. METHODS MuriGlo consists of four mirrors, filters, lens, and charge-coupled device (CCD) camera, enabling a compact imaging platform and multi-projection and multi-spectral BLT. A newly developed mouse bed allows animals imaged in MuriGlo and transferred to a small animal radiation research platform (SARRP) for CBCT imaging and BLT-guided irradiation. Methods and tools were developed to evaluate the CCD response linearity, minimal detectable signal, focusing, spatial resolution, distortion, and uniformity. A transparent polycarbonate plate covering the middle of the mouse bed was used to support and image animals from underneath the bed. We investigated its effect on 2D Bioluminescence images and 3D BLT reconstruction accuracy, and studied its dosimetric impact along with the rest of mouse bed. A method based on pinhole camera model was developed to map multi-projection bioluminescence images to the object surface generated from CBCT image. The mapped bioluminescence images were used as the input data for the optical reconstruction. To account for free space light propagation from object surface to optical detector, a spectral derivative (SD) method was implemented for BLT reconstruction. We assessed the use of the SD data (ratio imaging of adjacent wavelength) in mitigating out of focusing and non-uniformity seen in the images. A mouse phantom was used to validate the data mapping. The phantom and an in vivo glioblastoma model were utilized to demonstrate the accuracy of the BLT target localization. RESULTS The CCD response shows good linearity with < 0.6% residual from a linear fit. The minimal detectable level is 972 counts for 10 × 10 binning. The focal plane position is within the range of 13-18 mm above the mouse bed. The spatial resolution of 2D optical imaging is < 0.3 mm at Rayleigh criterion. Within the region of interest, the image uniformity is within 5% variation, and image shift due to distortion is within 0.3 mm. The transparent plate caused < 6% light attenuation. The use of the SD imaging data can effectively mitigate out of focusing, image non-uniformity, and the plate attenuation, to support accurate multi-spectral BLT reconstruction. There is < 0.5% attenuation on dose delivery caused by the bed. The accuracy of data mapping from the 2D bioluminescence images to CBCT image is within 0.7 mm. Our phantom test shows the BLT system can localize a bioluminescent target within 1 mm with an optimal threshold and only 0.2 mm deviation was observed for the case with and without a transparent plate. The same localization accuracy can be maintained for the in vivo GBM model. CONCLUSIONS This work is the first systematic study in characterizing the commercial BLT-guided system. The information and methods developed will be useful for the community to utilize the imaging system for image-guided radiation research.
Collapse
Affiliation(s)
- Xiangkun Xu
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zijian Deng
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Sforza
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhishen Tong
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu-Pei Tseng
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ciara Newman
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Iulian Iordachita
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland, USA
| | - John W. Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ken Kang-Hsin Wang
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Syed OA, Tsang B, Petranker R, Gerlai R. A perspective on psychedelic teratogenicity: the utility of zebrafish models. Trends Pharmacol Sci 2023; 44:664-673. [PMID: 37659901 DOI: 10.1016/j.tips.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/04/2023]
Abstract
Psychedelic drugs have experienced an unprecedented surge in recreational use within the past few years. Among recreational users, the risks of psychedelic use by pregnant and breastfeeding women are severely understudied and there is little information on the potential teratogenic effects of these drugs. We provide an overview of the previous data on psychedelic teratogenicity from rodent studies and human surveys, discuss their limitations, and propose the utility of the zebrafish as a potential effective model for investigating psychedelic teratogenicity. Recent years have validated the use of zebrafish in the study of fetal exposure and developmental biology; we highlight these properties of the zebrafish for its suitability in psychedelic toxicity research.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Ontario, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Ontario, Canada.
| | - Rotem Petranker
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, McMaster University, Ontario, Canada
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Ontario, Canada; Department of Psychology, University of Toronto Mississauga, Ontario, Canada.
| |
Collapse
|
26
|
Yang J, Zhu B, Ran C. The Application of Bio-orthogonality for In Vivo Animal Imaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:434-447. [PMID: 37655167 PMCID: PMC10466453 DOI: 10.1021/cbmi.3c00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
The application of bio-orthogonality has greatly facilitated numerous aspects of biological studies in recent years. In particular, bio-orthogonal chemistry has transformed biological research, including in vitro conjugate chemistry, target identification, and biomedical imaging. In this review, we highlighted examples of bio-orthogonal in vivo imaging published in recent years. We grouped the references into two major categories: bio-orthogonal chemistry-related imaging and in vivo imaging with bio-orthogonal nonconjugated pairing. Lastly, we discussed the challenges and opportunities of bio-orthogonality for in vivo imaging.
Collapse
Affiliation(s)
- Jun Yang
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Biyue Zhu
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, Massachusetts 02129, United States
| |
Collapse
|
27
|
Hersh J, Yang YP, Roberts E, Bilbao D, Tao W, Pollack A, Daunert S, Deo SK. Targeted Bioluminescent Imaging of Pancreatic Ductal Adenocarcinoma Using Nanocarrier-Complexed EGFR-Binding Affibody-Gaussia Luciferase Fusion Protein. Pharmaceutics 2023; 15:1976. [PMID: 37514162 PMCID: PMC10384630 DOI: 10.3390/pharmaceutics15071976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In vivo imaging has enabled impressive advances in biological research, both preclinical and clinical, and researchers have an arsenal of imaging methods available. Bioluminescence imaging is an advantageous method for in vivo studies that allows for the simple acquisition of images with low background signals. Researchers have increasingly been looking for ways to improve bioluminescent imaging for in vivo applications, which we sought to achieve by developing a bioluminescent probe that could specifically target cells of interest. We chose pancreatic ductal adenocarcinoma (PDAC) as the disease model because it is the most common type of pancreatic cancer and has an extremely low survival rate. We targeted the epidermal growth factor receptor (EGFR), which is frequently overexpressed in pancreatic cancer cells, using an EGFR-specific affibody to selectively identify PDAC cells and delivered a Gaussia luciferase (GLuc) bioluminescent protein for imaging by engineering a fusion protein with both the affibody and the bioluminescent protein. This fusion protein was then complexed with a G5-PAMAM dendrimer nanocarrier. The dendrimer was used to improve the protein stability in vivo and increase signal strength. Our targeted bioluminescent complex had an enhanced uptake into PDAC cells in vitro and localized to PDAC tumors in vivo in pancreatic cancer xenograft mice. The bioluminescent complexes could delineate the tumor shape, identify multiple masses, and locate metastases. Through this work, an EGFR-targeted bioluminescent-dendrimer complex enabled the straightforward identification and imaging of pancreatic cancer cells in vivo in preclinical models. This argues for the targeted nanocarrier-mediated delivery of bioluminescent proteins as a way to improve in vivo bioluminescent imaging.
Collapse
Affiliation(s)
- Jessica Hersh
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Yu-Ping Yang
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Evan Roberts
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
- Department of Pathology and Laboratory Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
- Department of Radiation Oncology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alan Pollack
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
- Department of Radiation Oncology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| | - Sapna K. Deo
- Department of Biochemistry & Molecular Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.H.); (Y.-P.Y.); (S.D.)
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (E.R.); (D.B.); (W.T.); (A.P.)
| |
Collapse
|
28
|
McMorrow R, Zambito G, Nigg A, Lila K, van den Bosch TPP, Lowik CWGM, Mezzanotte L. Whole-body bioluminescence imaging of T-cell response in PDAC models. Front Immunol 2023; 14:1207533. [PMID: 37497236 PMCID: PMC10367003 DOI: 10.3389/fimmu.2023.1207533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction The location of T-cells during tumor progression and treatment provides crucial information in predicting the response in vivo. Methods Here, we investigated, using our bioluminescent, dual color, T-cell reporter mouse, termed TbiLuc, T-cell location and function during murine PDAC tumor growth and checkpoint blockade treatment with anti-PD-1 and anti-CTLA-4. Using this model, we could visualize T-cell location and function in the tumor and the surrounding tumor microenvironment longitudinally. We used murine PDAC clones that formed in vivo tumors with either high T-cell infiltration (immunologically 'hot') or low T-cell infiltration (immunologically 'cold'). Results Differences in total T-cell bioluminescence could be seen between the 'hot' and 'cold' tumors in the TbiLuc mice. During checkpoint blockade treatment we could see in the tumor-draining lymph nodes an increase in bioluminescence on day 7 after treatment. Conclusions In the current work, we showed that the TbiLuc mice can be used to monitor T-cell location and function during tumor growth and treatment.
Collapse
Affiliation(s)
- Roisin McMorrow
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, Rotterdam, Netherlands
- Erasmus Medical Centre, Department of Molecular Genetics, Rotterdam, Netherlands
- Percuros BV, Leiden, Netherlands
| | - Giorgia Zambito
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, Rotterdam, Netherlands
- Erasmus Medical Centre, Department of Molecular Genetics, Rotterdam, Netherlands
| | - Alex Nigg
- Erasmus Medical Centre, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Karishma Lila
- Erasmus Medical Centre, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | - Clemens W. G. M. Lowik
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, Rotterdam, Netherlands
| | - Laura Mezzanotte
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, Rotterdam, Netherlands
- Erasmus Medical Centre, Department of Molecular Genetics, Rotterdam, Netherlands
| |
Collapse
|
29
|
Li J, Wang N, Xiong M, Dai M, Xie C, Wang Q, Quan K, Zhou Y, Qing Z. A Reaction-Based Ratiometric Bioluminescent Platform for Point-of-Care and Quantitative Detection Using a Smartphone. Anal Chem 2023; 95:7142-7149. [PMID: 37122064 DOI: 10.1021/acs.analchem.2c05422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fluorescent probes have emerged as powerful tools for the detection of different analytes by virtue of structural tenability. However, the requirement of an excitation source largely hinders their applicability in point-of-care detection, as well as causing autofluorescence interference in complex samples. Herein, based on bioluminescence resonance energy transfer (BRET), we developed a reaction-based ratiometric bioluminescent platform, which allows the excitation-free detection of analytes. The platform has a modular design consisting of a NanoLuc-HaloTag fusion as an energy donor, to which a synthetic fluorescent probe is bioorthogonally labeled as recognition moiety and energy acceptor. Once activated by the target, the fluorescent probe can be excited by NanoLuc to generate a remarkable BRET signal, resulting in obvious color changes of luminescence, which can be easily recorded and quantitatively analyzed by a smartphone. As a proof of concept, a fluorescent probe for HOCl was synthesized to construct the bioluminescent system. Results demonstrated the system showed a constant blue/red emission ratio which is independent to the signal intensity, allowing the quantification of HOCl concentration with high sensitivity (limit of detection (LOD) = 13 nM) and accuracy. Given the universality, this reaction-based bioluminescent platform holds great potential for point-of-care and quantitative detection of reactive species.
Collapse
Affiliation(s)
- Junbin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Na Wang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Min Dai
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Cheng Xie
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Qianqian Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ke Quan
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
| |
Collapse
|
30
|
Xie JM, Leng Y, Cui XY, Min CG, Ren AM, Liu G, Yin Q. Theoretical Study on the Formation and Decomposition Mechanisms of Coelenterazine Dioxetanone. J Phys Chem A 2023; 127:3804-3813. [PMID: 37083412 DOI: 10.1021/acs.jpca.3c00453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Bioluminescence has been drawing broad attention due to its high signal-to-noise ratio and high bioluminescence quantum yields, which has been widely applied in the fields of biomedicine, bioanalysis, and so on. Among numerous bioluminescent substrates, coelenterazine is famous for its wide distribution. However, the oxygenation reaction mechanism of coelenterazine is far from being completely understood. In this paper, the formation and decomposition mechanisms of coelenterazine dioxetanone were investigated via density functional theory (DFT) and time-dependent (TD) DFT approaches. The results showed that the oxygenation reaction first occurred along the triplet-state potential energy surface (PES), after the intersystem crossing (ISC), second jumped to the diradical-state PES, and ultimately formed coelenterazine dioxetanone. For the decomposition mechanism of dioxetanone, the computational results showed that the chemiexcitation of neutral dioxetanone was more efficient than that of other dioxetanone species. Moreover, the diradical properties and the degree of ionic character are modified by the counter ions.
Collapse
Affiliation(s)
- Jin-Mei Xie
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
| | - Yan Leng
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093 P. R. China
| | - Xiao-Ying Cui
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093 P. R. China
| | - Chun-Gang Min
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093 P. R. China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Gang Liu
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun 130052, P. R. China
| | - Qinhong Yin
- Faculty of Narcotics Control, Yunnan Police College, Kunming 650223, P. R. China
| |
Collapse
|
31
|
Dimond A, Van de Pette M, Taylor-Bateman V, Brown K, Sardini A, Whilding C, Feytout A, Prinjha RK, Merkenschlager M, Fisher AG. Drug-induced loss of imprinting revealed using bioluminescent reporters of Cdkn1c. Sci Rep 2023; 13:5626. [PMID: 37024615 PMCID: PMC10079848 DOI: 10.1038/s41598-023-32747-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Genomic imprinting is an epigenetically mediated mechanism that regulates allelic expression of genes based upon parent-of-origin and provides a paradigm for studying epigenetic silencing and release. Here, bioluminescent reporters for the maternally-expressed imprinted gene Cdkn1c are used to examine the capacity of chromatin-modifying drugs to reverse paternal Cdkn1c silencing. Exposure of reporter mouse embryonic stem cells (mESCs) to 5-Azacytidine, HDAC inhibitors, BET inhibitors or GSK-J4 (KDM6A/B inhibitor) relieved repression of paternal Cdkn1c, either selectively or by inducing biallelic effects. Treatment of reporter fibroblasts with HDAC inhibitors or GSK-J4 resulted in similar paternal Cdkn1c activation, whereas BET inhibitor-induced loss of imprinting was specific to mESCs. Changes in allelic expression were generally not sustained in dividing cultures upon drug removal, indicating that the underlying epigenetic memory of silencing was maintained. In contrast, Cdkn1c de-repression by GSK-J4 was retained in both mESCs and fibroblasts following inhibitor removal, although this impact may be linked to cellular stress and DNA damage. Taken together, these data introduce bioluminescent reporter cells as tools for studying epigenetic silencing and disruption, and demonstrate that Cdkn1c imprinting requires distinct and cell-type specific chromatin features and modifying enzymes to enact and propagate a memory of silencing.
Collapse
Affiliation(s)
- Andrew Dimond
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Mathew Van de Pette
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Victoria Taylor-Bateman
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Karen Brown
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Amelie Feytout
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Rab K Prinjha
- Immunology and Epigenetics Research Unit, Research, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, Herts, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
32
|
Beyond luciferase-luciferin system: Modification, improved imaging and biomedical application. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Hu X, Tang R, Bai L, Liu S, Liang G, Sun X. CBT‐Cys click reaction for optical bioimaging in vivo. VIEW 2023. [DOI: 10.1002/viw.20220065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
34
|
Croci D, Zomer A, Kowal J, Joyce JA. Cranial imaging window implantation technique for longitudinal multimodal imaging of the brain environment in live mice. STAR Protoc 2023; 4:102197. [PMID: 36964905 PMCID: PMC10050773 DOI: 10.1016/j.xpro.2023.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 03/26/2023] Open
Abstract
Intravital two-photon microscopy of the mouse brain requires visual access without affecting normal cognitive functions, which is crucial for longitudinal imaging studies that may last several months. In this protocol, we describe the surgical implantation of a metal-free cranial imaging window, which can be used to perform two-photon microscopy and magnetic resonance imaging in the same animal. This multimodal imaging platform enables the investigation of dynamic processes in the central nervous system at a cellular and macroscopic level. For complete details on the use and execution of this protocol in the context of brain cancer, please refer to Zomer et al.1.
Collapse
Affiliation(s)
- Davide Croci
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
| | - Anoek Zomer
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
| | - Joanna Kowal
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, 1011 Lausanne, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland.
| |
Collapse
|
35
|
Garrigós MM, Oliveira FA, Nucci MP, Mamani JB, Dias OFM, Rego GNA, Junqueira MS, Costa CJS, Silva LRR, Alves AH, Valle NME, Marti L, Gamarra LF. Bioluminescence Imaging and ICP-MS Associated with SPION as a Tool for Hematopoietic Stem and Progenitor Cells Homing and Engraftment Evaluation. Pharmaceutics 2023; 15:pharmaceutics15030828. [PMID: 36986690 PMCID: PMC10057125 DOI: 10.3390/pharmaceutics15030828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 µg Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 ± 0.37 µg Fe/mL in the control and 6.61 ± 0.84 µg Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 ± 0.66 mg Fe/g in the spleen of the control group and 2.17 ± 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.
Collapse
Affiliation(s)
| | | | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | | | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil
| | | | | | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | | | - Luciana Marti
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
36
|
Nyström NN, McRae SW, Martinez FM, Kelly JJ, Scholl TJ, Ronald JA. A Genetically Encoded Magnetic Resonance Imaging Reporter Enables Sensitive Detection and Tracking of Spontaneous Metastases in Deep Tissues. Cancer Res 2023; 83:673-685. [PMID: 36512633 DOI: 10.1158/0008-5472.can-22-2770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Metastasis is the leading cause of cancer-related death. However, it remains a poorly understood aspect of cancer biology, and most preclinical cancer studies do not examine metastasis, focusing solely on the primary tumor. One major factor contributing to this paradox is a gap in available tools for accurate spatiotemporal measurements of metastatic spread in vivo. Here, our objective was to develop an imaging reporter system that offers sensitive three-dimensional (3D) detection of cancer cells at high resolutions in live mice. An organic anion-transporting polypeptide 1b3 (oatp1b3) was used as an MRI reporter gene, and its sensitivity was systematically optimized for in vivo tracking of viable cancer cells in a spontaneous metastasis model. Metastases with oatp1b3-MRI could be observed at the single lymph node level and tracked over time as cancer cells spread to multiple lymph nodes and different organ systems in individual animals. While initial single lesions were successfully imaged in parallel via bioluminescence, later metastases were largely obscured by light scatter from the initial node. Importantly, MRI could detect micrometastases in lung tissue comprised on the order of 1,000 cancer cells. In summary, oatp1b3-MRI enables longitudinal tracking of cancer cells with combined high resolution and high sensitivity that provides 3D spatial information and the surrounding anatomical context. SIGNIFICANCE An MRI reporter gene system optimized for tracking metastasis in deep tissues at high resolutions and able to detect spontaneous micrometastases in lungs of mice provides a useful tool for metastasis research.
Collapse
Affiliation(s)
- Nivin N Nyström
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Sean W McRae
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Francisco M Martinez
- Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - John J Kelly
- Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physics and Astronomy, Western University, London, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John A Ronald
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Imaging Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
37
|
Park SY, Kim MW, Kang JH, Jung HJ, Hwang JH, Yang SJ, Woo JK, Jeon Y, Lee H, Yoon YS, Seong JK, Oh SH. Novel NF-κB reporter mouse for the non-invasive monitoring of inflammatory diseases. Sci Rep 2023; 13:3556. [PMID: 36864088 PMCID: PMC9981691 DOI: 10.1038/s41598-023-29689-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023] Open
Abstract
Bioluminescence imaging is useful for non-invasively monitoring inflammatory reactions associated with disease progression, and since NF-κB is a pivotal transcription factor that alters expressions of inflammatory genes, we generated novel NF-κB luciferase reporter (NF-κB-Luc) mice to understand the dynamics of inflammatory responses in whole body, and also in various type of cells by crossing NF-κB-Luc mice with cell-type specific Cre expressing mice (NF-κB-Luc:[Cre]). Bioluminescence intensity was significantly increased in NF-κB-Luc (NKL) mice exposed to inflammatory stimuli (PMA or LPS). Crossing NF-κB-Luc mice with Alb-cre mice or Lyz-cre mice generated NF-κB-Luc:Alb (NKLA) and NF-κB-Luc:Lyz2 (NKLL) mice, respectively. NKLA and NKLL mice showed enhanced bioluminescence in liver and macrophages, respectively. To confirm that our reporter mice could be utilized for the non-invasive monitoring of inflammation in preclinical models, we conducted a DSS-induced colitis model and a CDAHFD-induced NASH model in our reporter mice. In both models, our reporter mice reflected the development of these diseases over time. In conclusion, we believe that our novel reporter mouse can be utilized as a non-invasive monitoring platform for inflammatory diseases.
Collapse
Affiliation(s)
- Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Woo Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jung Ho Hwang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Soo Jung Yang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jong Kyu Woo
- Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yeo Sung Yoon
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
38
|
Love AC, Caldwell DR, Kolbaba-Kartchner B, Townsend KM, Halbers LP, Yao Z, Brennan CK, Ivanic J, Hadjian T, Mills JH, Schnermann MJ, Prescher JA. Red-Shifted Coumarin Luciferins for Improved Bioluminescence Imaging. J Am Chem Soc 2023; 145:3335-3345. [PMID: 36745536 PMCID: PMC10519142 DOI: 10.1021/jacs.2c07220] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multicomponent bioluminescence imaging in vivo requires an expanded collection of tissue-penetrant probes. Toward this end, we generated a new class of near-infrared (NIR) emitting coumarin luciferin analogues (CouLuc-3s). The scaffolds were easily accessed from commercially available dyes. Complementary mutant luciferases for the CouLuc-3 analogues were also identified. The brightest probes enabled sensitive imaging in vivo. The CouLuc-3 scaffolds are also orthogonal to popular bioluminescent reporters and can be used for multicomponent imaging applications. Collectively, this work showcases a new set of bioluminescent tools that can be readily implemented for multiplexed imaging in a variety of biological settings.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Cancer for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Bethany Kolbaba-Kartchner
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Katherine M Townsend
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Lila P Halbers
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Zi Yao
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Caroline K Brennan
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, United States
| | - Tanya Hadjian
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jeremy H Mills
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Cancer for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
39
|
An optimized bioluminescent substrate for non-invasive imaging in the brain. Nat Chem Biol 2023; 19:731-739. [PMID: 36759751 DOI: 10.1038/s41589-023-01265-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
Bioluminescence imaging (BLI) allows non-invasive visualization of cells and biochemical events in vivo and thus has become an indispensable technique in biomedical research. However, BLI in the central nervous system remains challenging because luciferases show relatively poor performance in the brain with existing substrates. Here, we report the discovery of a NanoLuc substrate with improved brain performance, cephalofurimazine (CFz). CFz paired with Antares luciferase produces greater than 20-fold more signal from the brain than the standard combination of D-luciferin with firefly luciferase. At standard doses, Antares-CFz matches AkaLuc-AkaLumine/TokeOni in brightness, while occasional higher dosing of CFz can be performed to obtain threefold more signal. CFz should allow the growing number of NanoLuc-based indicators to be applied to the brain with high sensitivity. Using CFz, we achieve video-rate non-invasive imaging of Antares in brains of freely moving mice and demonstrate non-invasive calcium imaging of sensory-evoked activity in genetically defined neurons.
Collapse
|
40
|
Hao Y, Luo J, Wang Y, Li Z, Wang X, Yan F. Ultrasound molecular imaging of p32 protein translocation for evaluation of tumor metastasis. Biomaterials 2023; 293:121974. [PMID: 36566551 DOI: 10.1016/j.biomaterials.2022.121974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Protein translocation is an essential process for living cells to respond to different physiological, pathological or environmental stimuli. However, its abnormal occurrence usually results in undesirable outcomes such as tumors. To date, there is still a lack of appropriate methods to detect this event in live animals in a real-time manner. Here, we identified the gradually increased cell-surface translocation of p32 protein from mitochondria during tumor progression. LyP-1-modified gas vesicles (LyP-1-GVs) were developed through conjugating LyP-1 (p32-targeting peptide) to the biosynthetic GVs to monitor the cell-surface level of p32 translocation. The resulting LyP-1-GVs have about 200 nm particle size and good tumor cell targeting performance. Upon systemic administration, LyP-1-GVs can traverse through blood vessels and bind to the tumor cells, producing strong contrast imaging signals in comparison with the non-targeted GVs. The contrast imaging signals correlate well with the cell-surface translocation level of p32 protein and tumor metastatic ability. To our knowledge, this is the first report about the in vivo detection of protein translocation to cell membrane from mitochondria by ultrasound molecular imaging. Our study provides a new strategy to explore the molecular events of protein membrane translocations for evaluation of tumor metastasis at the live animal level.
Collapse
Affiliation(s)
- Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen College of Advanced Technology, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingna Luo
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, PR China; Shenzhen University Health Science Center, Shenzhen 518000, PR China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, PR China; Shenzhen University Health Science Center, Shenzhen 518000, PR China
| | - Xiangwei Wang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518055, PR China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
41
|
Li S, Wang K, Wang Z, Zhang W, Liu Z, Cheng Y, Zhu J, Zhong M, Hu S, Zhang Y. Application and trend of bioluminescence imaging in metabolic syndrome research. Front Chem 2023; 10:1113546. [PMID: 36700071 PMCID: PMC9868317 DOI: 10.3389/fchem.2022.1113546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Bioluminescence imaging is a non-invasive technology used to visualize physiological processes in animals and is useful for studying the dynamics of metabolic syndrome. Metabolic syndrome is a broad spectrum of diseases which are rapidly increasing in prevalence, and is closely associated with obesity, type 2 diabetes, nonalcoholic fatty liver disease, and circadian rhythm disorder. To better serve metabolic syndrome research, researchers have established a variety of animal models expressing luciferase, while also committing to finding more suitable luciferase promoters and developing more efficient luciferase-luciferin systems. In this review, we systematically summarize the applications of different models for bioluminescence imaging in the study of metabolic syndrome.
Collapse
Affiliation(s)
- Shirui Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Kang Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,Postgraduate Department, Shandong First Medical University, Jinan, China
| | - Zeyu Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,Postgraduate Department, Shandong First Medical University, Jinan, China
| | - Wenjie Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zenglin Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yugang Cheng
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Sanyuan Hu, ; Yun Zhang,
| | - Yun Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China,*Correspondence: Sanyuan Hu, ; Yun Zhang,
| |
Collapse
|
42
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
43
|
Mei B, Rong S, Li Z, Gu E, Zhou Z, Qi Y. Evaluation of traditional Chinese medicine fitness' effect on improving the health of adults' intestinal flora: An optical tool based on ultrasensitive bioluminescent imaging and applications. Med Eng Phys 2023; 111:103943. [PMID: 36609015 DOI: 10.1016/j.medengphy.2022.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The design of the probes is based on bioluminescence imaging, which has been widely adopted in studies of many important biological processes. Traditional Chinese Medicine (TCM) fitness could improve the state of health of adults' intestinal flora. The research aims at analyzing the impact of TCM fitness on the intestinal probiotics (Bifidobacterium, Lactobacillus) and opportunistic pathogen (Enterococcus, Enterobacteriaceae) by the noninvasive imaging. In accordance with the searching results, the researchers have found that TCM fitness has a significant impact on improving Bifidobacterium (SDM = 1.55; P = 0.02) and Lactobacillus (SDM = 1.26; P <0.01), while the impact could not be seen on Enterococcus (SDM = 0.29;P = 0.68) and Enterobacteriaceae (SDM = 0.05;P = 0.94). And there is no significant difference between the two interventions of Tai Chi and Fitness Qigong. The results of the present review show that TCM fitness could significantly better the probiotics of intestinal flora while the influence on opportunistic pathogen needs to be further investigated with the precise and reasonable proof of scientific studies.The findings suggest that TCM fitness can be used as an effective intervention, and there is no significant difference between the two interventions on the improvement of the intestinal flora. The using of optical tool based on ultrasensitive bioluminescent imaging may lead to better precision medicine treatments in the future.
Collapse
Affiliation(s)
- Bowei Mei
- Wuhan Sports University, 461 Luoyu Rd., Hongshan District, Wuhan, China
| | - Siyu Rong
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China
| | - Zhong Li
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China
| | - Erya Gu
- Department of Foreign Language School, Central South University, 932 Lushan South Rd., Changsha, China
| | - Zeng Zhou
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China
| | - Yufei Qi
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China.
| |
Collapse
|
44
|
Qin YT, Li YP, He XW, Wang X, Li WY, Zhang YK. Biomaterials promote in vivo generation and immunotherapy of CAR-T cells. Front Immunol 2023; 14:1165576. [PMID: 37153571 PMCID: PMC10157406 DOI: 10.3389/fimmu.2023.1165576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy based on functional immune cell transfer is showing a booming situation. However, complex manufacturing processes, high costs, and disappointing results in the treatment of solid tumors have limited its use. Encouragingly, it has facilitated the development of new strategies that fuse immunology, cell biology, and biomaterials to overcome these obstacles. In recent years, CAR-T engineering assisted by properly designed biomaterials has improved therapeutic efficacy and reduced side effects, providing a sustainable strategy for improving cancer immunotherapy. At the same time, the low cost and diversity of biomaterials also offer the possibility of industrial production and commercialization. Here, we summarize the role of biomaterials as gene delivery vehicles in the generation of CAR-T cells and highlight the advantages of in-situ construction in vivo. Then, we focused on how biomaterials can be combined with CAR-T cells to better enable synergistic immunotherapy in the treatment of solid tumors. Finally, we describe biomaterials' potential challenges and prospects in CAR-T therapy. This review aims to provide a detailed overview of biomaterial-based CAR-T tumor immunotherapy to help investigators reference and customize biomaterials for CAR-T therapy to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ya-Ting Qin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Ya-Ping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
| | - Xi Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- *Correspondence: Xi Wang, ; Wen-You Li,
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- *Correspondence: Xi Wang, ; Wen-You Li,
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
45
|
Schmidtchen A, Mirza H, van der Plas MJA, Nadeem A, Puthia M. Editorial: Methods and applications in inflammation pharmacology. Front Pharmacol 2022; 13:1108263. [PMID: 36578538 PMCID: PMC9792174 DOI: 10.3389/fphar.2022.1108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden,Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Haris Mirza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden,*Correspondence: Manoj Puthia,
| |
Collapse
|
46
|
Wang J, Wang Y, Jia J, Liu C, Ni D, Sun L, Guo Z. Dual-Modality Molecular Imaging of Tumor via Quantum Dots-Liposome-Microbubble Complexes. Pharmaceutics 2022; 14:pharmaceutics14112510. [PMID: 36432701 PMCID: PMC9699378 DOI: 10.3390/pharmaceutics14112510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular imaging has demonstrated promise for evaluating the expression levels of biomarkers for the early prediction of tumor progression and metastasis. However, most of the commonly used molecular imaging modalities are relatively single and have difficulties imaging complex biological processes. Here, we fabricated αvβ3-integrin-targeted quantum-dots-loaded liposome-microbubble (iRGD-QDLM) complexes that combined ultrasound imaging with optical imaging. The resulting iRGD-QDLM has excellent binding capability to 4T1 breast cancer cells. Ultrasound molecular imaging of 4T1 tumors demonstrated that significantly enhanced ultrasound molecular signals could be observed in comparison with non-targeted QDLM. Importantly, our study also suggested that iRGD-QDL on the surface of microbubbles could be delivered into a tumor by ultrasound-mediated microbubble destruction and adhered to αvβ3 integrin on breast cancer cells, achieving transvascular fluorescent imaging. Our study provides a novel approach to dual-modality molecular imaging of αvβ3 integrin in the tumor tissue.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Chenxing Liu
- Center for Cell and Gene Circuit Design, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Ni
- Medical Ultrasound Image Computing (MUSIC) Laboratory, Shenzhen University, Shenzhen 518055, China
| | - Litao Sun
- Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Hangzhou Medical College Affiliated People’s Hospital), Hangzhou 310014, China
- Correspondence: (L.S.); (Z.G.); Tel.: +86-755-2962-9333 (Z.G.)
| | - Zhijie Guo
- Department of Ultrasound, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518133, China
- Correspondence: (L.S.); (Z.G.); Tel.: +86-755-2962-9333 (Z.G.)
| |
Collapse
|
47
|
Macromolecular assembly of bioluminescent protein nanoparticles for enhanced imaging. Mater Today Bio 2022; 17:100455. [PMID: 36304975 PMCID: PMC9593766 DOI: 10.1016/j.mtbio.2022.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
Bioluminescence imaging has advantages over fluorescence imaging, such as minimal photobleaching and autofluorescence, and greater signal-to-noise ratios in many complex environments. Although significant achievements have been made in luciferase engineering for generating bright and stable reporters, the full capability of luciferases for nanoparticle tracking has not been comprehensively examined. In biocatalysis, enhanced enzyme performance after immobilization on nanoparticles has been reported. Thus, we hypothesized that by assembling luciferases onto a nanoparticle, the resulting complex could lead to substantially improved imaging properties. Using a modular bioconjugation strategy, we attached NanoLuc (NLuc) or Akaluc bioluminescent proteins to a protein nanoparticle platform (E2), yielding nanoparticles NLuc-E2 and Akaluc-E2, both with diameters of ∼45 nm. Although no significant differences were observed between different conditions involving Akaluc and Akaluc-E2, free NLuc at pH 5.0 showed significantly lower emission values than free NLuc at pH 7.4. Interestingly, NLuc immobilization on E2 nanoparticles (NLuc-E2) emitted increased luminescence at pH 7.4, and at pH 5.0 showed over two orders of magnitude (>200-fold) higher luminescence (than free NLuc), expanding the potential for imaging detection using the nanoparticle even upon endocytic uptake. After uptake by macrophages, the resulting luminescence with NLuc-E2 nanoparticles was up to 7-fold higher than with free NLuc at 48 h. Cells incubated with NLuc-E2 could also be imaged using live bioluminescence microscopy. Finally, biodistribution of nanoparticles into lymph nodes was detected through imaging using NLuc-E2, but not with conventionally-labeled fluorescent E2. Our data demonstrate that NLuc-bound nanoparticles have advantageous properties that can be utilized in applications ranging from single-cell imaging to in vivo biodistribution.
Collapse
|
48
|
A bioluminescent-based probe for in vivo non-invasive monitoring of nicotinamide riboside uptake reveals a link between metastasis and NAD+ metabolism. Biosens Bioelectron 2022; 220:114826. [DOI: 10.1016/j.bios.2022.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 02/03/2023]
|
49
|
Ng KK, Prescher JA. Generalized Bioluminescent Platform To Observe and Track Cellular Interactions. Bioconjug Chem 2022; 33:1876-1884. [PMID: 36166258 DOI: 10.1021/acs.bioconjchem.2c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-to-cell communications are critical to biological processes ranging from embryonic development to cancer progression. Several imaging strategies have been developed to capture such interactions, but many are challenging to deploy in thick tissues and other complex environments. Here, we report a platform termed Luminescence to Observe and Track Intercellular Interactions (LOTIIS). The approach features split fragments of a luciferase enzyme that reassemble when target cells come into proximity. One fragment is secreted by "sender" cells, and the complementary piece is secreted by "receiver" cells. Split reporter assembly is facilitated by a single chain variable fragment (scFv)-peptide interaction on the receiver cell, resulting in localized light production. We demonstrate that LOTIIS can rapidly label cells in close proximity in a time- and distance-dependent fashion. The platform is also compatible with bioluminescence resonance energy transfer probes for multiplexed imaging. Collectively, these data suggest that LOTIIS will enable a variety of cellular interactions to be tracked in biological settings.
Collapse
Affiliation(s)
- Kevin K Ng
- Departments of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States.,Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
50
|
Aimaletdinov AM, Gomzikova MO. Tracking of Extracellular Vesicles' Biodistribution: New Methods and Approaches. Int J Mol Sci 2022; 23:11312. [PMID: 36232613 PMCID: PMC9569979 DOI: 10.3390/ijms231911312] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer vesicles that are released by almost all cell types. They range in diameter from 30 nm to several micrometres and have the ability to carry biologically active molecules such as proteins, lipids, RNA, and DNA. EVs are natural vectors and play an important role in many physiological and pathological processes. The amount and composition of EVs in human biological fluids serve as biomarkers and are used for diagnosing diseases and monitoring the effectiveness of treatment. EVs are promising for use as therapeutic agents and as natural vectors for drug delivery. However, the successful use of EVs in clinical practice requires an understanding of their biodistribution in an organism. Numerous studies conducted so far on the biodistribution of EVs show that, after intravenous administration, EVs are mostly localized in organs rich in blood vessels and organs associated with the reticuloendothelial system, such as the liver, lungs, spleen, and kidneys. In order to improve resolution, new dyes and labels are being developed and detection methods are being optimized. In this work, we review all available modern methods and approaches used to assess the biodistribution of EVs, as well as discuss their advantages and limitations.
Collapse
Affiliation(s)
| | - Marina O. Gomzikova
- Laboratory of Intercellular Communication, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|