1
|
Longo GMC, Sayols S, Kotini AG, Heinen S, Möckel MM, Beli P, Roukos V. Linking CRISPR-Cas9 double-strand break profiles to gene editing precision with BreakTag. Nat Biotechnol 2025; 43:608-622. [PMID: 38740992 PMCID: PMC11994453 DOI: 10.1038/s41587-024-02238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Cas9 can cleave DNA in both blunt and staggered configurations, resulting in distinct editing outcomes, but what dictates the type of Cas9 incisions is largely unknown. In this study, we developed BreakTag, a versatile method for profiling Cas9-induced DNA double-strand breaks (DSBs) and identifying the determinants of Cas9 incisions. Overall, we assessed cleavage by SpCas9 at more than 150,000 endogenous on-target and off-target sites targeted by approximately 3,500 single guide RNAs. We found that approximately 35% of SpCas9 DSBs are staggered, and the type of incision is influenced by DNA:gRNA complementarity and the use of engineered Cas9 variants. A machine learning model shows that Cas9 incision is dependent on the protospacer sequence and that human genetic variation impacts the configuration of Cas9 cuts and the DSB repair outcome. Matched datasets of Cas9 and engineered variant incisions with repair outcomes show that Cas9-mediated staggered breaks are linked with precise, templated and predictable single-nucleotide insertions, demonstrating that a scission-based gRNA design can be used to correct clinically relevant pathogenic single-nucleotide deletions.
Collapse
Affiliation(s)
| | - Sergi Sayols
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Andriana G Kotini
- Department of Biology, Medical School, University of Patras, Patras, Greece
| | - Sabine Heinen
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
- Johannes Gutenberg University (JGU), Mainz, Germany
| | - Vassilis Roukos
- Institute of Molecular Biology (IMB), Mainz, Germany.
- Department of Biology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
2
|
Vollen K, Alonso JM, Stepanova AN. Beyond a few bases: methods for large DNA insertion and gene targeting in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70099. [PMID: 40121601 PMCID: PMC11930290 DOI: 10.1111/tpj.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Genome editing technologies like CRISPR/Cas have greatly accelerated the pace of both fundamental research and translational applications in agriculture. However, many plant biologists are functionally limited to creating small, targeted DNA changes or large, random DNA insertions. The ability to efficiently generate large, yet precise, DNA changes will massively accelerate crop breeding cycles, enabling researchers to more efficiently engineer crops amidst a rapidly changing agricultural landscape. This review provides an overview of existing technologies that allow plant biologists to integrate large DNA sequences within a plant host and some associated technical bottlenecks. Additionally, this review explores a selection of emerging techniques in other host systems to inspire tool development in plants.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Jose M. Alonso
- Department of Plant BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| | - Anna N. Stepanova
- Department of Plant BiologyNorth Carolina State UniversityRaleighNorth Carolina27695USA
| |
Collapse
|
3
|
Seale C, Barazas M, van Schendel R, Tijsterman M, Gonçalves JP. MUSICiAn: Genome-wide Identification of Genes Involved in DNA Repair via Control-Free Mutational Spectra Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635038. [PMID: 39975194 PMCID: PMC11838396 DOI: 10.1101/2025.01.27.635038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Motivation Understanding the factors involved in DNA double-strand break (DSB) repair is crucial for the development of targeted anti-cancer therapies, yet the roles of many genes remain unclear. Recent studies show that perturbations of certain genes can alter the distribution of sequence-specific mutations left behind after DSB repair. This suggests that genome-wide screening could reveal novel DSB repair factors by identifying genes whose perturbation causes the mutational distribution spectra observed at a given DSB site to deviate significantly from the wild-type. However, designing proper controls for a genome-wide perturbation screen could be challenging. We explore the idea that a genome-wide screen might allow us to forgo the use of traditional non-targeting controls by reframing the analysis as an outlier detection problem, assuming that most genes have minimal influence on DSB repair. Results We propose MUSICiAn (Mutational Signature Catalogue Analysis), a compositional data analysis method that ranks gene perturbation-specific mutational spectra without controls by measuring deviations from the central tendency in the distributions of all spectra. We show that MUSICiAn can effectively estimate pseudo-controls for the existing Repair-seq dataset, screening 476 genes and 60 non-targeting controls. We further apply MUSICiAn to a genome-wide dataset profiling mutational outcomes induced by CRISPR-Cas9 at three target sites across cells with individual perturbations of 18,406 genes. MUSICiAn successfully recovers known genes, highlights the spliceosome as a lesser-appreciated player in DSB repair, and reveals candidates for further investigation. Availability github.com/joanagoncalveslab/MUSICiAn.
Collapse
Affiliation(s)
- Colm Seale
- Pattern Recognition & Bioinformatics, Department of Intelligent Systems, EEMCS Faculty, Delft University of Technology, Delft, The Netherlands
- Holland Proton Therapy Center, Delft, The Netherlands
| | - Marco Barazas
- Human Genetics Department, EEMCS Faculty, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robin van Schendel
- Human Genetics Department, EEMCS Faculty, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marcel Tijsterman
- Human Genetics Department, EEMCS Faculty, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joana P. Gonçalves
- Pattern Recognition & Bioinformatics, Department of Intelligent Systems, EEMCS Faculty, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
4
|
Cohen S, Bergman S, Lynn N, Tuller T. A tool for CRISPR-Cas9 sgRNA evaluation based on computational models of gene expression. Genome Med 2024; 16:152. [PMID: 39716183 DOI: 10.1186/s13073-024-01420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND CRISPR is widely used to silence genes by inducing mutations expected to nullify their expression. While numerous computational tools have been developed to design single-guide RNAs (sgRNAs) with high cutting efficiency and minimal off-target effects, only a few tools focus specifically on predicting gene knockouts following CRISPR. These tools consider factors like conservation, amino acid composition, and frameshift likelihood. However, they neglect the impact of CRISPR on gene expression, which can dramatically affect the success of CRISPR-induced gene silencing attempts. Furthermore, information regarding gene expression can be useful even when the objective is not to silence a gene. Therefore, a tool that considers gene expression when predicting CRISPR outcomes is lacking. RESULTS We developed EXPosition, the first computational tool that combines models predicting gene knockouts after CRISPR with models that forecast gene expression, offering more accurate predictions of gene knockout outcomes. EXPosition leverages deep-learning models to predict key steps in gene expression: transcription, splicing, and translation initiation. We showed our tool performs better at predicting gene knockout than existing tools across 6 datasets, 4 cell types and ~207k sgRNAs. We also validated our gene expression models using the ClinVar dataset by showing enrichment of pathogenic mutations in high-scoring mutations according to our models. CONCLUSIONS We believe EXPosition will enhance both the efficiency and accuracy of genome editing projects, by directly predicting CRISPR's effect on various aspects of gene expression. EXPosition is available at http://www.cs.tau.ac.il/~tamirtul/EXPosition . The source code is available at https://github.com/shaicoh3n/EXPosition .
Collapse
Affiliation(s)
- Shai Cohen
- Department of Biomedical Engineering, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Nicolas Lynn
- Department of Biomedical Engineering, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel-Aviv, 6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, 6997801, Israel.
| |
Collapse
|
5
|
Zhang G, Xie H, Dai X. DeepIndel: An Interpretable Deep Learning Approach for Predicting CRISPR/Cas9-Mediated Editing Outcomes. Int J Mol Sci 2024; 25:10928. [PMID: 39456711 PMCID: PMC11507043 DOI: 10.3390/ijms252010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
CRISPR/Cas9 has been applied to edit the genome of various organisms, but our understanding of editing outcomes at specific sites after Cas9-mediated DNA cleavage is still limited. Several deep learning-based methods have been proposed for repair outcome prediction; however, there is still room for improvement in terms of performance regarding frameshifts and model interpretability. Here, we present DeepIndel, an end-to-end multi-label regression model for predicting repair outcomes based on the BERT-base module. We demonstrate that our model outperforms existing methods in terms of accuracy and generalizability across various metrics. Furthermore, we utilized Deep SHAP to visualize the importance of nucleotides at various positions for DNA sequence and found that mononucleotides and trinucleotides in DNA sequences surrounding the cut site play a significant role in repair outcome prediction.
Collapse
Affiliation(s)
- Guishan Zhang
- College of Engineering, Shantou University, Shantou 515063, China; (G.Z.); (H.X.)
| | - Huanzeng Xie
- College of Engineering, Shantou University, Shantou 515063, China; (G.Z.); (H.X.)
| | - Xianhua Dai
- School of Cyber Science and Technology, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Li VR, Wu T, Tadych A, Wong A, Zhang Z. Widespread Impact of Natural Genetic Variations in CRISPR-Cas9 Outcomes. CRISPR J 2024; 7:283-292. [PMID: 39436278 DOI: 10.1089/crispr.2024.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) is a genome editing tool widely used in biological research and clinical therapeutics. Natural human genetic variations, through altering the sequence context of CRISPR-Cas9 target regions, can significantly affect its DNA repair outcomes and ultimately lead to different editing efficiencies. However, these effects have not been systematically studied, even as CRISPR-Cas9 is broadly applied to primary cells and patient samples that harbor such genetic diversity. Here, we present comprehensive investigations of natural genetic variations on CRISPR-Cas9 outcomes across the human genome. The utility of our analysis is illustrated in two case studies, on both preclinical discoveries of CD33 knockout in chimeric antigen receptor-T cell therapy and clinical applications of transthyretin (TTR) inactivation for treating TTR amyloidosis. We further expand our analysis to genome-scale, population-stratified common variants that may lead to gene editing disparity. Our analyses demonstrate pitfalls of failing to account for the widespread genetic variations in Cas9 target selection and how they can be effectively examined and avoided using our method. To facilitate broad access to our analysis, a web platform CROTONdb is developed, which provides predictions for all possible CRISPR-Cas9 target sites in the coding and noncoding regulatory regions, spanning over 5.38 million guide RNA targets and 90.82 million estimated variant effects. We anticipate CROTONdb having broad clinical utilities in gene and cellular therapies.
Collapse
Affiliation(s)
- Victoria R Li
- School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Tinghui Wu
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alicja Tadych
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Aaron Wong
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Zijun Zhang
- Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
7
|
Freitas-Alves NS, Moreira-Pinto CE, Távora FTPK, Paes-de-Melo B, Arraes FBM, Lourenço-Tessutti IT, Moura SM, Oliveira AC, Morgante CV, Qi Y, Fatima Grossi-de-Sa M. CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks. J Adv Res 2024:S2090-1232(24)00367-9. [PMID: 39163906 DOI: 10.1016/j.jare.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Soybean is a worldwide-cultivated crop due to its applications in the food, feed, and biodiesel industries. Genome editing in soybean began with ZFN and TALEN technologies; however, CRISPR/Cas has emerged and shortly became the preferable approach for soybean genome manipulation since it is more precise, easy to handle, and cost-effective. Recent reports have focused on the conventional Cas9 nuclease, Cas9 nickase (nCas9) derived base editors, and Cas12a (formally Cpf1) as the most commonly used genome editors in soybean. Nonetheless, several challenges in the complex plant genetic engineering pipeline need to be overcome to effectively edit the genome of an elite soybean cultivar. These challenges include (1) optimizing CRISPR cassette design (i.e., gRNA and Cas promoters, gRNA design and testing, number of gRNAs, and binary vector), (2) improving transformation frequency, (3) increasing the editing efficiency ratio of targeted plant cells, and (4) improving soybean crop production. AIM OF REVIEW This review provides an overview of soybean genome editing using CRISPR/Cas technology, discusses current challenges, and highlights theoretical (insights) and practical suggestions to overcome the existing bottlenecks. KEY SCIENTIFIC CONCEPTS OF REVIEW The CRISPR/Cas system was discovered as part of the bacterial innate immune system. It has been used as a biotechnological tool for genome editing and efficiently applied in soybean to unveil gene function, improve agronomic traits such as yield and nutritional grain quality, and enhance biotic and abiotic stress tolerance. To date, the efficiency of gRNAs has been validated using protoplasts and hairy root assays, while stable plant transformation relies on Agrobacterium-mediated and particle bombardment methods. Nevertheless, most steps of the CRISPR/Cas workflow require optimizations to achieve a more effective genome editing in soybean plants.
Collapse
Affiliation(s)
- Nayara Sabrina Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Clidia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabiano T P K Távora
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Stéfanie M Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Embrapa Semi-Arid, Petrolina, PE, Brazil
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil; Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande, MS, Brazil.
| |
Collapse
|
8
|
Manzoor S, Nabi SU, Rather TR, Gani G, Mir ZA, Wani AW, Ali S, Tyagi A, Manzar N. Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production. Front Genome Ed 2024; 6:1399051. [PMID: 38988891 PMCID: PMC11234172 DOI: 10.3389/fgeed.2024.1399051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024] Open
Abstract
Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.
Collapse
Affiliation(s)
- Subaya Manzoor
- Division of Plant Pathology, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar, India
| | | | - Gousia Gani
- Division of Basic Science and Humanities, FOA-SKUAST-K, Wadura, Srinagar, India
| | - Zahoor Ahmad Mir
- Department of Plant Science and Agriculture, University of Manitoba, Winnipeg, MB, Canada
| | - Ab Waheed Wani
- Department of Horticulture, LPU, Jalander, Punjab, India
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganism, Mau, Uttar Pradesh, India
| |
Collapse
|
9
|
Chen L, Liu G, Zhang T. Integrating machine learning and genome editing for crop improvement. ABIOTECH 2024; 5:262-277. [PMID: 38974863 PMCID: PMC11224061 DOI: 10.1007/s42994-023-00133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 07/09/2024]
Abstract
Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.
Collapse
Affiliation(s)
- Long Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
10
|
Masani MYA, Norfaezah J, Bahariah B, Fizree MDPMAA, Sulaiman WNSW, Shaharuddin NA, Rasid OA, Parveez GKA. Towards DNA-free CRISPR/Cas9 genome editing for sustainable oil palm improvement. 3 Biotech 2024; 14:166. [PMID: 38817736 PMCID: PMC11133284 DOI: 10.1007/s13205-024-04010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The CRISPR/Cas9 genome editing system has been in the spotlight compared to programmable nucleases such as ZFNs and TALENs due to its simplicity, versatility, and high efficiency. CRISPR/Cas9 has revolutionized plant genetic engineering and is broadly used to edit various plants' genomes, including those transformation-recalcitrant species such as oil palm. This review will comprehensively present the CRISPR-Cas9 system's brief history and underlying mechanisms. We then highlighted the establishment of the CRISPR/Cas9 system in plants with an emphasis on the strategies of highly efficient guide RNA design, the establishment of various CRISPR/Cas9 vector systems, approaches of multiplex editing, methods of transformation for stable and transient techniques, available methods for detecting and analyzing mutations, which have been applied and could be adopted for CRISPR/Cas9 genome editing in oil palm. In addition, we also provide insight into the strategy of DNA-free genome editing and its potential application in oil palm.
Collapse
Affiliation(s)
- Mat Yunus Abdul Masani
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Jamaludin Norfaezah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Bohari Bahariah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | | | | | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Malaysia
| | - Omar Abdul Rasid
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Ghulam Kadir Ahmad Parveez
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
11
|
Kamoen L, Kralemann LEM, van Schendel R, van Tol N, Hooykaas PJJ, de Pater S, Tijsterman M. Genetic dissection of mutagenic repair and T-DNA capture at CRISPR-induced DNA breaks in Arabidopsis thaliana. PNAS NEXUS 2024; 3:pgae094. [PMID: 38463035 PMCID: PMC10923293 DOI: 10.1093/pnasnexus/pgae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
A practical and powerful approach for genome editing in plants is delivery of CRISPR reagents via Agrobacterium tumefaciens transformation. The double-strand break (DSB)-inducing enzyme is expressed from a transferred segment of bacterial DNA, the T-DNA, which upon transformation integrates at random locations into the host genome or is captured at the self-inflicted DSB site. To develop efficient strategies for precise genome editing, it is thus important to define the mechanisms that repair CRISPR-induced DSBs, as well as those that govern random and targeted integration of T-DNA. In this study, we present a detailed and comprehensive genetic analysis of Cas9-induced DSB repair and T-DNA capture in the model plant Arabidopsis thaliana. We found that classical nonhomologous end joining (cNHEJ) and polymerase theta-mediated end joining (TMEJ) are both, and in part redundantly, acting on CRISPR-induced DSBs to produce very different mutational outcomes. We used newly developed CISGUIDE technology to establish that 8% of mutant alleles have captured T-DNA at the induced break site. In addition, we find T-DNA shards within genomic DSB repair sites indicative of frequent temporary interactions during TMEJ. Analysis of thousands of plant genome-T-DNA junctions, followed up by genetic dissection, further reveals that TMEJ is responsible for attaching the 3' end of T-DNA to a CRISPR-induced DSB, while the 5' end can be attached via TMEJ as well as cNHEJ. By identifying the mechanisms that act to connect recombinogenic ends of DNA molecules at chromosomal breaks, and quantifying their contributions, our study supports the development of tailor-made strategies toward predictable engineering of crop plants.
Collapse
Affiliation(s)
- Lycka Kamoen
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Lejon E M Kralemann
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Niels van Tol
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Paul J J Hooykaas
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Sylvia de Pater
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Marcel Tijsterman
- Department of Plant Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
12
|
Koller F, Cieslak M. A perspective from the EU: unintended genetic changes in plants caused by NGT-their relevance for a comprehensive molecular characterisation and risk assessment. Front Bioeng Biotechnol 2023; 11:1276226. [PMID: 37965049 PMCID: PMC10641861 DOI: 10.3389/fbioe.2023.1276226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Several regions in the world are currently holding discussions in regard to the regulation of new genomic techniques (NGTs) and their application in agriculture. The European Commission, for instance, is proposing the introduction of specific regulation for NGT plants. Various questions need to be answered including e.g., the extent to which NGT-induced intended and unintended genetic modifications must be subjected to a mandatory risk assessment as part of an approval procedure. This review mostly focuses on findings in regard to unintended genetic changes that can be caused by the application of NGTs. More specifically, the review deals with the application of the nuclease CRISPR/Cas, which is currently the most important tool for developing NGT plants, and its potential to introduce double strand breaks (DSBs) at a targeted DNA sequence. For this purpose, we identified the differences in comparison to non-targeted mutagenesis methods used in conventional breeding. The review concludes that unintended genetic changes caused by NGT processes are relevant to risk assessment. Due to the technical characteristics of NGTs, the sites of the unintended changes, their genomic context and their frequency (in regard to specific sites) mean that the resulting gene combinations (intended or unintended) may be unlikely to occur with conventional methods. This, in turn, implies that the biological effects (phenotypes) can also be different and may cause risks to health and the environment. Therefore, we conclude that the assessment of intended as well as unintended genetic changes should be part of a mandatory comprehensive molecular characterisation and risk assessment of NGT plants that are meant for environmental releases or for market authorisation.
Collapse
Affiliation(s)
- Franziska Koller
- Fachstelle Gentechnik und Umwelt (FGU), Munich, Bavaria, Germany
| | | |
Collapse
|
13
|
Liu J, Wang FZ, Li C, Li Y, Li JF. Hidden prevalence of deletion-inversion bi-alleles in CRISPR-mediated deletions of tandemly arrayed genes in plants. Nat Commun 2023; 14:6787. [PMID: 37880225 PMCID: PMC10600118 DOI: 10.1038/s41467-023-42490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Tandemly arrayed genes (TAGs) with functional redundancy and chromosomal linkage constitute 14 ~ 35% in sequenced plant genomes. The multiplex CRISPR system is the tool of choice for creating targeted TAG deletions. Here, we show that up to ~80% of CRISPR-mediated TAG knockout alleles in Arabidopsis and rice are deletion-inversion (delinver) bi-alleles, which are easily misidentified as homozygous deletion alleles by routine PCR-based genotyping. This can lead to misinterpretation of experimental data and production of progenies with genetic heterogeneity in an unnoticed manner. In ~2,650 transgenic events, delinver mutation frequencies are predominantly correlated with deletion frequencies but unrelated to chromosomal locations or deletion sizes. Delinver mutations also occur frequently at genomic non-TAG loci during multiplexed CRISPR editing. Our work raises the alarm about delinver mutations as common unwanted products of targeted TAG deletions in plants and helps prevent false interpretation of plant TAG functions due to this hidden genotype issue.
Collapse
Affiliation(s)
- Jiuer Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yujia Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
14
|
de Koning R, Daryanavard H, Garmyn J, Kiekens R, Toili MEM, Angenon G. Fine-tuning CRISPR/Cas9 gene editing in common bean ( Phaseolus vulgaris L.) using a hairy root transformation system and in silico prediction models. FRONTIERS IN PLANT SCIENCE 2023; 14:1233418. [PMID: 37929181 PMCID: PMC10623320 DOI: 10.3389/fpls.2023.1233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The stable transformation of common bean is a challenging and time-consuming process. Although CRISPR/Cas9 has revolutionized gene editing with its high efficiency and specificity, the performance of the system can be affected by multiple factors, such as sgRNA specificity and effectiveness, and the choice of promoter used to drive Cas9 expression. The use of a hairy root transformation system to initially check the efficiency of sgRNAs and the impact of different promoters could speed up this process and increase the chances of success. We initially tested three different transformation methods to induce hairy roots and selected a preferred method suitable for a variety of different common bean genotypes. This method involved inoculating a severed radicle with Rhizobium rhizogenes K599 and was fast, had a high transformation frequency of 42-48%, and resulted in numerous hairy roots. This method was further used for the transformation of explants using R. rhizogenes harboring different CRISPR/Cas9 constructs and evaluated the on-target activity of sgRNAs targeting raffinose family oligosaccharides biosynthetic genes and the impact of different promoters driving Cas9 on the gene editing efficiency. Additionally, we evaluated the reliability of the in silico tools, CRISPOR, CRISPR RGEN, and inDelphi to predict the sgRNA efficiencies and resulting mutations. Our results showed that the hairy root transformation system allows for rapid evaluation of multiple sgRNAs and promoters. We also identified several highly efficient sgRNAs that induced frameshift mutations at rates of up to 70% when a parsley ubiquitin promoter was driving Cas9 expression, providing valuable information for the selection of the most effective sgRNAs and promoters for future transformation experiments. Although most of the computational models used to predict the sgRNA efficiency did not match the in planta results, the Lindel model proved to be the most reliable for P. vulgaris, accurately predicting the sgRNA efficiency and the type of induced mutation in most hairy roots. Furthermore, the inDelphi algorithm could correctly predict deletions and single nucleotide insertions resulting from DNA double-strand breaks in common bean. These results offer promising implications for enhancing precise editing in plants because they provide the possibility of predicting repair outcomes.
Collapse
Affiliation(s)
- Ramon de Koning
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hana Daryanavard
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joyce Garmyn
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raphaël Kiekens
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
15
|
Aliaga Goltsman DS, Alexander LM, Lin JL, Fregoso Ocampo R, Freeman B, Lamothe RC, Perez Rivas A, Temoche-Diaz MM, Chadha S, Nordenfelt N, Janson OP, Barr I, Devoto AE, Cost GJ, Butterfield CN, Thomas BC, Brown CT. Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nat Commun 2022; 13:7602. [PMID: 36522342 PMCID: PMC9755519 DOI: 10.1038/s41467-022-35257-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Programmable, RNA-guided nucleases are diverse enzymes that have been repurposed for biotechnological applications. However, to further expand the therapeutic application of these tools there is a need for targetable systems that are small enough to be delivered efficiently. Here, we mined an extensive genome-resolved metagenomics database and identified families of uncharacterized RNA-guided, compact nucleases (between 450 and 1,050 aa). We report that Cas9d, a new CRISPR type II subtype, contains Zinc-finger motifs and high arginine content, features that we also found in nucleases related to HEARO effectors. These enzymes exhibit diverse biochemical characteristics and are broadly targetable. We show that natural Cas9d enzymes are capable of genome editing in mammalian cells with >90% efficiency, and further engineered nickase variants into the smallest base editors active in E. coli and human cells. Their small size, broad targeting potential, and translatability suggest that Cas9d and HEARO systems will enable a variety of genome editing applications.
Collapse
Affiliation(s)
| | | | - Jyun-Liang Lin
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | | | | | | | | | | | | | | | - Owen P Janson
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | - Ian Barr
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | - Audra E Devoto
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | - Gregory J Cost
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | | | - Brian C Thomas
- Metagenomi Inc. 1545 Park Ave, Emeryville, CA, 94608, USA
| | | |
Collapse
|
16
|
Fierlej Y, Jacquier NMA, Guille L, Just J, Montes E, Richard C, Loue-Manifel J, Depège-Fargeix N, Gaillard A, Widiez T, Rogowsky PM. Evaluation of genome and base editing tools in maize protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1010030. [PMID: 36518521 PMCID: PMC9744195 DOI: 10.3389/fpls.2022.1010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Despite its rapid worldwide adoption as an efficient mutagenesis tool, plant genome editing remains a labor-intensive process requiring often several months of in vitro culture to obtain mutant plantlets. To avoid a waste in time and money and to test, in only a few days, the efficiency of molecular constructs or novel Cas9 variants (clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9) prior to stable transformation, rapid analysis tools are helpful. METHODS To this end, a streamlined maize protoplast system for transient expression of CRISPR/Cas9 tools coupled to NGS (next generation sequencing) analysis and a novel bioinformatics pipeline was established. RESULTS AND DISCUSSION Mutation types found with high frequency in maize leaf protoplasts had a trend to be the ones observed after stable transformation of immature maize embryos. The protoplast system also allowed to conclude that modifications of the sgRNA (single guide RNA) scaffold leave little room for improvement, that relaxed PAM (protospacer adjacent motif) sites increase the choice of target sites for genome editing, albeit with decreased frequency, and that efficient base editing in maize could be achieved for certain but not all target sites. Phenotypic analysis of base edited mutant maize plants demonstrated that the introduction of a stop codon but not the mutation of a serine predicted to be phosphorylated in the bHLH (basic helix loop helix) transcription factor ZmICEa (INDUCER OF CBF EXPRESSIONa) caused abnormal stomata, pale leaves and eventual plant death two months after sowing.
Collapse
Affiliation(s)
- Yannick Fierlej
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
- Department Research and Development, MAS Seeds, Haut-Mauco, France
| | - Nathanaël M. A. Jacquier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Loïc Guille
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Jérémy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Emilie Montes
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Christelle Richard
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Jeanne Loue-Manifel
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Nathalie Depège-Fargeix
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Antoine Gaillard
- Department Research and Development, MAS Seeds, Haut-Mauco, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| | - Peter M. Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure (ENS) de Lyon, Université Claude Bernard (UCB) Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), Lyon, France
| |
Collapse
|
17
|
Seidel S, Stadler T. TiDeTree: a Bayesian phylogenetic framework to estimate single-cell trees and population dynamic parameters from genetic lineage tracing data. Proc Biol Sci 2022; 289:20221844. [PMID: 36350216 PMCID: PMC9653226 DOI: 10.1098/rspb.2022.1844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The development of organisms and tissues is dictated by an elaborate balance between cell division, apoptosis and differentiation: the cell population dynamics. To quantify these dynamics, we propose a phylodynamic inference approach based on single-cell lineage recorder data. We developed a Bayesian phylogenetic framework-time-scaled developmental trees (TiDeTree)-that uses lineage recorder data to estimate time-scaled single-cell trees. By implementing TiDeTree within BEAST 2, we enable joint inference of the time-scaled trees and the cell population dynamics. We validated TiDeTree using simulations and showed that performance further improves when including multiple independent sources of information into the inference, such as frequencies of editing outcomes or experimental replicates. We benchmarked TiDeTree against state-of-the-art methods and show comparable performance in terms of tree topology, plus direct assessment of uncertainty and co-estimation of additional parameters. To demonstrate TiDeTree's use in practice, we analysed a public dataset containing lineage data from approximately 100 stem cell colonies. We estimated a time-scaled phylogeny for each colony; as well as the cell division and apoptosis rates underlying the growth dynamics of all colonies. We envision that TiDeTree will find broad application in the analysis of single-cell lineage tracing data, which will improve our understanding of cellular processes during development.
Collapse
Affiliation(s)
- Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
18
|
Robertson G, Burger J, Campa M. CRISPR/Cas-based tools for the targeted control of plant viruses. MOLECULAR PLANT PATHOLOGY 2022; 23:1701-1718. [PMID: 35920132 PMCID: PMC9562834 DOI: 10.1111/mpp.13252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Plant viruses are known to infect most economically important crops and pose a major threat to global food security. Currently, few resistant host phenotypes have been delineated, and while chemicals are used for crop protection against insect pests and bacterial or fungal diseases, these are inefficient against viral diseases. Genetic engineering emerged as a way of modifying the plant genome by introducing functional genes in plants to improve crop productivity under adverse environmental conditions. Recently, new breeding technologies, and in particular the exciting CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) technology, was shown to be a powerful alternative to engineer resistance against plant viruses, thus has great potential for reducing crop losses and improving plant productivity to directly contribute to food security. Indeed, it could circumvent the "Genetic modification" issues because it allows for genome editing without the integration of foreign DNA or RNA into the genome of the host plant, and it is simpler and more versatile than other new breeding technologies. In this review, we describe the predominant features of the major CRISPR/Cas systems and outline strategies for the delivery of CRISPR/Cas reagents to plant cells. We also provide an overview of recent advances that have engineered CRISPR/Cas-based resistance against DNA and RNA viruses in plants through the targeted manipulation of either the viral genome or susceptibility factors of the host plant genome. Finally, we provide insight into the limitations and challenges that CRISPR/Cas technology currently faces and discuss a few alternative applications of the technology in virus research.
Collapse
Affiliation(s)
- Gaëlle Robertson
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
- Department of Experimental and Health SciencesUniversitat Pompeu FabraBarcelonaSpain
| | - Johan Burger
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| | - Manuela Campa
- Department of GeneticsStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
19
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
20
|
Biswas S, Bridgeland A, Irum S, Thomson MJ, Septiningsih EM. Optimization of Prime Editing in Rice, Peanut, Chickpea, and Cowpea Protoplasts by Restoration of GFP Activity. Int J Mol Sci 2022; 23:9809. [PMID: 36077206 PMCID: PMC9456013 DOI: 10.3390/ijms23179809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 01/23/2023] Open
Abstract
Precise editing of the plant genome has long been desired for functional genomic research and crop breeding. Prime editing is a newly developed precise editing technology based on CRISPR-Cas9, which uses an engineered reverse transcriptase (RT), a catalytically impaired Cas9 endonuclease (nCas9), and a prime editing guide RNA (pegRNA). In addition, prime editing has a wider range of editing types than base editing and can produce nearly all types of edits. Although prime editing was first established in human cells, it has recently been applied to plants. As a relatively new technique, optimization will be needed to increase the editing efficiency in different crops. In this study, we successfully edited a mutant GFP in rice, peanut, chickpea, and cowpea protoplasts. In rice, up to 16 times higher editing efficiency was achieved with a dual pegRNA than the single pegRNA containing vectors. Edited-mutant GFP protoplasts have also been obtained in peanut, chickpea, and cowpea after transformation with the dual pegRNA vectors, albeit with much lower editing efficiency than in rice, ranging from 0.2% to 0.5%. These initial results promise to expedite the application of prime editing in legume breeding programs to accelerate crop improvement.
Collapse
Affiliation(s)
- Sudip Biswas
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Aya Bridgeland
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Samra Irum
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
Increasing disease resistance in host plants through genome editing. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Predicting CRISPR/Cas9 Repair Outcomes by Attention-Based Deep Learning Framework. Cells 2022; 11:cells11111847. [PMID: 35681543 PMCID: PMC9180579 DOI: 10.3390/cells11111847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
As a simple and programmable nuclease-based genome editing tool, the CRISPR/Cas9 system has been widely used in target-gene repair and gene-expression regulation. The DNA mutation generated by CRISPR/Cas9-mediated double-strand breaks determines its biological and phenotypic effects. Experiments have demonstrated that CRISPR/Cas9-generated cellular-repair outcomes depend on local sequence features. Therefore, the repair outcomes after DNA break can be predicted by sequences near the cleavage sites. However, existing prediction methods rely on manually constructed features or insufficiently detailed prediction labels. They cannot satisfy clinical-level-prediction accuracy, which limit the performance of these models to existing knowledge about CRISPR/Cas9 editing. We predict 557 repair labels of DNA, covering the vast majority of Cas9-generated mutational outcomes, and build a deep learning model called Apindel, to predict CRISPR/Cas9 editing outcomes. Apindel, automatically, trains the sequence features of DNA with the GloVe model, introduces location information through Positional Encoding (PE), and embeds the trained-word vector matrixes into a deep learning model, containing BiLSTM and the Attention mechanism. Apindel has better performance and more detailed prediction categories than the most advanced DNA-mutation-predicting models. It, also, reveals that nucleotides at different positions relative to the cleavage sites have different influences on CRISPR/Cas9 editing outcomes.
Collapse
|
23
|
Hong J, Meng Z, Zhang Z, Su H, Fan Y, Huang R, Ding R, Zhang N, Li F, Wang S. Comprehensive Analysis of CRISPR-Cas9 Editing Outcomes in Yeast Xanthophyllomyces dendrorhous. CRISPR J 2022; 5:558-570. [PMID: 35506993 DOI: 10.1089/crispr.2021.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA repair after Cas9 cutting can result in deletions/insertions, genomic rearrangements, and rare nucleotide substitutions. However, most work has only focused on deletions/insertions resulting from repair after CRISPR-Cas9 action. Here, we comprehensively analyzed the editing outcomes induced by CRISPR-Cas9 treatment in yeast Xanthophyllomyces dendrorhous by Sanger and Illumina sequencing and identified diverse DNA repair patterns, including DNA deletions, interchromosomal translocations, and on-target nucleotide substitutions (point mutations). Some deletions were observed repeatedly, and others, especially large deletions, varied in size. Genome sequencing and structural variation analysis showed that the interchromosomal translocations happened between Cas9 target sites and the endogenous ADH4 promoter. In contrast to previous studies, analysis revealed that the on-target point mutations were not random. Importantly, these point mutations showed strong sequence dependence that is not consistent with previous work in Hela cells, where CRISPR-mediated substitutions were found to lack sequence dependence and conversion preferences. Finally, we found that the non-homologous end joining components Ku70, Ku80, Mre11, or RAD50, and the overlapping roles of non-essential DNA polymerases were necessary for the production of both point mutations and deletions. This work expands our knowledge of CRISPR-Cas9 mediated DNA repair.
Collapse
Affiliation(s)
- Jixuan Hong
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ziyue Meng
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zixi Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hang Su
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ruilin Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ruirui Ding
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Molecular and Microbial Engineering Group, Shandong Energy Institute, Qingdao, China
| | - Shi'an Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Molecular and Microbial Engineering Group, Shandong Energy Institute, Qingdao, China
| |
Collapse
|
24
|
Niazian M, Belzile F, Torkamaneh D. CRISPR/Cas9 in Planta Hairy Root Transformation: A Powerful Platform for Functional Analysis of Root Traits in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:1044. [PMID: 35448772 PMCID: PMC9027312 DOI: 10.3390/plants11081044] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Sequence and expression data obtained by next-generation sequencing (NGS)-based forward genetics methods often allow the identification of candidate causal genes. To provide true experimental evidence of a gene's function, reverse genetics techniques are highly valuable. Site-directed mutagenesis through transfer DNA (T-DNA) delivery is an efficient reverse screen method in plant functional analysis. Precise modification of targeted crop genome sequences is possible through the stable and/or transient delivery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) reagents. Currently, CRISPR/Cas9 is the most powerful reverse genetics approach for fast and precise functional analysis of candidate genes/mutations of interest. Rapid and large-scale analyses of CRISPR/Cas-induced mutagenesis is achievable through Agrobacterium rhizogenes-mediated hairy root transformation. The combination of A. rhizogenes hairy root-CRISPR/Cas provides an extraordinary platform for rapid, precise, easy, and cost-effective "in root" functional analysis of genes of interest in legume plants, including soybean. Both hairy root transformation and CRISPR/Cas9 techniques have their own complexities and considerations. Here, we discuss recent advancements in soybean hairy root transformation and CRISPR/Cas9 techniques. We highlight the critical factors required to enhance mutation induction and hairy root transformation, including the new generation of reporter genes, methods of Agrobacterium infection, accurate gRNA design strategies, Cas9 variants, gene regulatory elements of gRNAs and Cas9 nuclease cassettes and their configuration in the final binary vector to study genes involved in root-related traits in soybean.
Collapse
Affiliation(s)
- Mohsen Niazian
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada; (M.N.); (F.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj 6616936311, Iran
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada; (M.N.); (F.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada; (M.N.); (F.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
25
|
Modulating DNA Repair Pathways to Diversify Genomic Alterations in Saccharomyces cerevisiae. Microbiol Spectr 2022; 10:e0232621. [PMID: 35352941 PMCID: PMC9045378 DOI: 10.1128/spectrum.02326-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nuclease based genome editing systems have emerged as powerful tools to drive genomic alterations and enhance genome evolution via precise engineering in the various human and microbial cells. However, error-prone DNA repair has not been well studied previously to generate diverse genomic alterations and novel phenotypes. Here, we systematically investigated the potential interplay between DNA double strand break (DSB) repair and genome editing tools, and found that modulating the DSB end resection proteins could significantly improve mutational efficiency and diversity without exogenous DNA template in yeast. Deleting SAE2, EXO1, or FUN30, or overexpressing MRE11-H125N (nuclease-dead allele of MRE11), for DSB end resection markedly increased the efficiency of CRISPR/SpCas9 (more than 22-fold) and CRISPR/AsCpf1 (more than 30-fold)-induced mutagenesis. Deleting SAE2 or overexpressing MRE11-H125N substantially diversified CRISPR/SpCas9 or AsCpf1-induced mutation 2–3-fold at URA3 locus, and 3–5-fold at ADE2 locus. Thus, the error-prone DNA repair protein was employed to develop a novel mutagenic genome editing (mGE) strategy, which can increase the mutation numbers and effectively improve the ethanol/glycerol ratio of Saccharomyces cerevisiae through modulating the expression of FPS1 and GPD1. This study highlighted the feasibility of potentially reshaping the capability of genome editing by regulating the different DSB repair proteins and can thus expand the application of genome editing in diversifying gene expression and enhancing genome evolution. IMPORTANCE Most of the published papers about nuclease-assisted genome editing focused on precision engineering in human cells. However, the topic of inducing mutagenesis via error-prone repair has often been ignored in yeast. In this study, we reported that perturbing DNA repair, especially modifications of the various DSB end resection-related proteins, could greatly improve the mutational efficiency and diversity, and thus functionally reshape the capability of the different genome editing tools without requiring an exogenous DNA template in yeast. Specifically, mutagenic genome editing (mGE) was developed based on CRISPR/AsCpf1 and MRE11-H125N overexpression, and used to generate promoters of different strengths more efficiently. Thus, this work provides a novel method to diversify gene expression and enhance genome evolution.
Collapse
|
26
|
Molla KA, Shih J, Wheatley MS, Yang Y. Predictable NHEJ Insertion and Assessment of HDR Editing Strategies in Plants. Front Genome Ed 2022; 4:825236. [PMID: 35481279 PMCID: PMC9037586 DOI: 10.3389/fgeed.2022.825236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Canonical CRISPR-Cas9 genome editing technique has profoundly impacted the fields of plant biology, biotechnology, and crop improvement. Since non-homologous end joining (NHEJ) is usually considered to generate random indels, its high efficiency mutation is generally not pertinent to precise editing. Homology-directed repair (HDR) can mediate precise editing with supplied donor DNA, but it suffers from extreme low efficiency in higher plants. Therefore, precision editing in plants will be facilitated by the ability to predict NHEJ repair outcome and to improve HDR efficiency. Here, we report that NHEJ-mediated single nucleotide insertion at different rice genes is predictable based on DNA sequences at the target loci. Three mutation prediction tools (inDelphi, FORECasT, and SPROUT) have been validated in the rice plant system. We also evaluated the chimeric guide RNA (cgRNA) and Cas9-Retron precISe Parallel Editing via homologY (CRISPEY) strategies to facilitate donor template supply for improving HDR efficiency in Nicotiana benthamiana and rice. However, neither cgRNA nor CRISPEY improved plant HDR editing efficiency in this study. Interestingly, our data indicate that tethering of 200-250 nucleotides long sequence to either 5' or 3' ends of guide RNA did not significantly affect Cas9 cleavage activity.
Collapse
Affiliation(s)
- Kutubuddin A Molla
- Department of Plant Pathology and Environmental Microbiology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
- ICAR-National Rice Research Institute, Cuttack, India
| | - Justin Shih
- Department of Plant Pathology and Environmental Microbiology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Matthew S Wheatley
- Department of Plant Pathology and Environmental Microbiology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
27
|
Dalvie NC, Lorgeree T, Biedermann AM, Love KR, Love JC. Simplified Gene Knockout by CRISPR-Cas9-Induced Homologous Recombination. ACS Synth Biol 2022; 11:497-501. [PMID: 34882409 PMCID: PMC8787811 DOI: 10.1021/acssynbio.1c00194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
Genetic engineering
of industrial cell lines often requires knockout
of multiple endogenous genes. Tools like CRISPR-Cas9 have enabled
serial or parallelized gene disruption in a wide range of industrial
organisms, but common practices for the screening and validation of
genome edits are lacking. For gene disruption, DNA repair by homologous
recombination offers several advantages over nonhomologous end joining,
including more efficient screening for knockout clones and improved
genomic stability. Here we designed and characterized a knockout fragment
intended to repair Cas9-induced gene disruptions by homologous recombination.
We identified knockout clones of Komagataella phaffii with high fidelity by PCR, removing the need for Sanger sequencing.
Short overlap sequences for homologous recombination (30 bp) enabled
the generation of gene-specific knockout fragments by PCR, removing
the need for subcloning. Finally, we demonstrated that the genotype
conferred by the knockout fragment is stable under common cultivation
conditions.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy Lorgeree
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew M. Biedermann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kerry R. Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Abstract
Over the last century research in Drosophila has resulted in many fundamental contributions to our understanding of the biology of multicellular organisms. Many of these breakthroughs have been based on the identification of novel gene functions in large-scale genetic screens. However, conventional forward-genetic screens have been limited by the random nature of mutagenesis and difficulties in mapping causal mutations, while reverse-genetic RNAi screens suffer from incomplete knockdown of gene expression. Recently developed large-scale CRISPR-Cas9 libraries promise to address these limitations by allowing the induction of targeted mutations in genes with spatial and temporal control. Here, we provide a guide for tissue-specific CRISPR screening in Drosophila, including the characterization of Gal4 UAS-Cas9 lines, selection of sgRNA libraries, and various quality control measures. We also discuss confounding factors that can give rise to false-positive and false-negative results in such experiments and suggest strategies on how to detect and avoid them. Conditional CRISPR screening represents an exciting new approach for functional genomics in vivo and is set to further expand our knowledge of the molecular underpinning of development, homeostasis, and disease.
Collapse
Affiliation(s)
- Fillip Port
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
29
|
Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. NATURE PLANTS 2021; 7:1166-1187. [PMID: 34518669 DOI: 10.1038/s41477-021-00991-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 05/06/2023]
Abstract
The development of CRISPR-Cas systems has sparked a genome editing revolution in plant genetics and breeding. These sequence-specific RNA-guided nucleases can induce DNA double-stranded breaks, resulting in mutations by imprecise non-homologous end joining (NHEJ) repair or precise DNA sequence replacement by homology-directed repair (HDR). However, HDR is highly inefficient in many plant species, which has greatly limited precise genome editing in plants. To fill the vital gap in precision editing, base editing and prime editing technologies have recently been developed and demonstrated in numerous plant species. These technologies, which are mainly based on Cas9 nickases, can introduce precise changes into the target genome at a single-base resolution. This Review provides a timely overview of the current status of base editors and prime editors in plants, covering both technological developments and biological applications.
Collapse
Affiliation(s)
- Kutubuddin A Molla
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Kailash C Bansal
- The Alliance of Bioversity International and the International Centre for Tropical Agriculture, Asia-India, New Delhi, India
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
30
|
Tang N, Zhang Y, Shen Z, Yao Y, Nair V. Application of CRISPR-Cas9 Editing for Virus Engineering and the Development of Recombinant Viral Vaccines. CRISPR J 2021; 4:477-490. [PMID: 34406035 DOI: 10.1089/crispr.2021.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas technology, discovered originally as a bacterial defense system, has been extensively repurposed as a powerful tool for genome editing for multiple applications in biology. In the field of virology, CRISPR-Cas9 technology has been widely applied on genetic recombination and engineering of genomes of various viruses to ask some fundamental questions about virus-host interactions. Its high efficiency, specificity, versatility, and low cost have also provided great inspiration and hope in the field of vaccinology to solve a series of bottleneck problems in the development of recombinant viral vaccines. This review highlights the applications of CRISPR editing in the technological advances compared to the traditional approaches used for the construction of recombinant viral vaccines and vectors, the main factors affecting their application, and the challenges that need to be overcome for further streamlining their effective usage in the prevention and control of diseases. Factors affecting efficiency, target specificity, and fidelity of CRISPR-Cas editing in the context of viral genome editing and development of recombinant vaccines are also discussed.
Collapse
Affiliation(s)
- Na Tang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yaoyao Zhang
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Zhiqiang Shen
- Shandong Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, P.R. China; University of Oxford, Oxford, United Kingdom
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash road, Guildford, Surrey, United Kingdom; University of Oxford, Oxford, United Kingdom.,The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Li VR, Zhang Z, Troyanskaya OG. CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes. Bioinformatics 2021; 37:i342-i348. [PMID: 34252931 PMCID: PMC8275342 DOI: 10.1093/bioinformatics/btab268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
MOTIVATION CRISPR/Cas9 is a revolutionary gene-editing technology that has been widely utilized in biology, biotechnology and medicine. CRISPR/Cas9 editing outcomes depend on local DNA sequences at the target site and are thus predictable. However, existing prediction methods are dependent on both feature and model engineering, which restricts their performance to existing knowledge about CRISPR/Cas9 editing. RESULTS Herein, deep multi-task convolutional neural networks (CNNs) and neural architecture search (NAS) were used to automate both feature and model engineering and create an end-to-end deep-learning framework, CROTON (CRISPR Outcomes Through cONvolutional neural networks). The CROTON model architecture was tuned automatically with NAS on a synthetic large-scale construct-based dataset and then tested on an independent primary T cell genomic editing dataset. CROTON outperformed existing expert-designed models and non-NAS CNNs in predicting 1 base pair insertion and deletion probability as well as deletion and frameshift frequency. Interpretation of CROTON revealed local sequence determinants for diverse editing outcomes. Finally, CROTON was utilized to assess how single nucleotide variants (SNVs) affect the genome editing outcomes of four clinically relevant target genes: the viral receptors ACE2 and CCR5 and the immune checkpoint inhibitors CTLA4 and PDCD1. Large SNV-induced differences in CROTON predictions in these target genes suggest that SNVs should be taken into consideration when designing widely applicable gRNAs. AVAILABILITY AND IMPLEMENTATION https://github.com/vli31/CROTON. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Zijun Zhang
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
33
|
Wu Q, Shou J. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. J Mol Cell Biol 2021; 12:828-856. [PMID: 33125070 PMCID: PMC7883824 DOI: 10.1093/jmcb/mjaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ever since gene targeting or specific modification of genome sequences in mice was achieved in the early 1980s, the reverse genetic approach of precise editing of any genomic locus has greatly accelerated biomedical research and biotechnology development. In particular, the recent development of the CRISPR/Cas9 system has greatly expedited genetic dissection of 3D genomes. CRISPR gene-editing outcomes result from targeted genome cleavage by ectopic bacterial Cas9 nuclease followed by presumed random ligations via the host double-strand break repair machineries. Recent studies revealed, however, that the CRISPR genome-editing system is precise and predictable because of cohesive Cas9 cleavage of targeting DNA. Here, we synthesize the current understanding of CRISPR DNA fragment-editing mechanisms and recent progress in predictable outcomes from precise genetic engineering of 3D genomes. Specifically, we first briefly describe historical genetic studies leading to CRISPR and 3D genome engineering. We then summarize different types of chromosomal rearrangements by DNA fragment editing. Finally, we review significant progress from precise 1D gene editing toward predictable 3D genome engineering and synthetic biology. The exciting and rapid advances in this emerging field provide new opportunities and challenges to understand or digest 3D genomes.
Collapse
Affiliation(s)
- Qiang Wu
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Shou
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Fu YW, Dai XY, Wang WT, Yang ZX, Zhao JJ, Zhang JP, Wen W, Zhang F, Oberg KC, Zhang L, Cheng T, Zhang XB. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucleic Acids Res 2021; 49:969-985. [PMID: 33398341 PMCID: PMC7826255 DOI: 10.1093/nar/gkaa1251] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Investigations of CRISPR gene knockout editing profiles have contributed to enhanced precision of editing outcomes. However, for homology-directed repair (HDR) in particular, the editing dynamics and patterns in clinically relevant cells, such as human iPSCs and primary T cells, are poorly understood. Here, we explore the editing dynamics and DNA repair profiles after the delivery of Cas9-guide RNA ribonucleoprotein (RNP) with or without the adeno-associated virus serotype 6 (AAV6) as HDR donors in four cell types. We show that editing profiles have distinct differences among cell lines. We also reveal the kinetics of HDR mediated by the AAV6 donor template. Quantification of T50 (time to reach half of the maximum editing frequency) indicates that short indels (especially +A/T) occur faster than longer (>2 bp) deletions, while the kinetics of HDR falls between NHEJ (non-homologous end-joining) and MMEJ (microhomology-mediated end-joining). As such, AAV6-mediated HDR effectively outcompetes the longer MMEJ-mediated deletions but not NHEJ-mediated indels. Notably, a combination of small molecular compounds M3814 and Trichostatin A (TSA), which potently inhibits predominant NHEJ repairs, leads to a 3-fold increase in HDR efficiency.
Collapse
Affiliation(s)
- Ya-Wen Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xin-Yue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wen-Tian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Juan-Juan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
- Tianjin Laboratory of Blood Disease Gene Therapy, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
35
|
Molla KA, Qi Y, Karmakar S, Baig MJ. Base Editing Landscape Extends to Perform Transversion Mutation. Trends Genet 2020; 36:899-901. [DOI: 10.1016/j.tig.2020.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/29/2022]
|
36
|
Veillet F, Durand M, Kroj T, Cesari S, Gallois JL. Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. PLANT COMMUNICATIONS 2020; 1:100102. [PMID: 33367260 PMCID: PMC7747970 DOI: 10.1016/j.xplc.2020.100102] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Since its discovery as a bacterial adaptive immune system and its development for genome editing in eukaryotes, the CRISPR technology has revolutionized plant research and precision crop breeding. The CRISPR toolbox holds great promise in the production of crops with genetic disease resistance to increase agriculture resilience and reduce chemical crop protection with a strong impact on the environment and public health. In this review, we provide an extensive overview on recent breakthroughs in CRISPR technology, including the newly developed prime editing system that allows precision gene editing in plants. We present how each CRISPR tool can be selected for optimal use in accordance with its specific strengths and limitations, and illustrate how the CRISPR toolbox can foster the development of genetically pathogen-resistant crops for sustainable agriculture.
Collapse
Affiliation(s)
- Florian Veillet
- IGEPP, INRAE, Institut Agro, Univ Rennes, Ploudaniel 29260, France
- Germicopa Breeding, Kerguivarch, Chateauneuf Du Faou 29520, France
- INRAE, BGPI, Biology and Genetics of Plant-Pathogen Interactions, Campus International de Baillarguet, Montpellier, France
| | - Mickael Durand
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| | - Thomas Kroj
- INRAE, BGPI, Biology and Genetics of Plant-Pathogen Interactions, Campus International de Baillarguet, Montpellier, France
| | - Stella Cesari
- INRAE, BGPI, Biology and Genetics of Plant-Pathogen Interactions, Campus International de Baillarguet, Montpellier, France
| | | |
Collapse
|
37
|
Naert T, Tulkens D, Edwards NA, Carron M, Shaidani NI, Wlizla M, Boel A, Demuynck S, Horb ME, Coucke P, Willaert A, Zorn AM, Vleminckx K. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. Sci Rep 2020; 10:14662. [PMID: 32887910 PMCID: PMC7473854 DOI: 10.1038/s41598-020-71412-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 genome editing has revolutionized functional genomics in vertebrates. However, CRISPR/Cas9 edited F0 animals too often demonstrate variable phenotypic penetrance due to the mosaic nature of editing outcomes after double strand break (DSB) repair. Even with high efficiency levels of genome editing, phenotypes may be obscured by proportional presence of in-frame mutations that still produce functional protein. Recently, studies in cell culture systems have shown that the nature of CRISPR/Cas9-mediated mutations can be dependent on local sequence context and can be predicted by computational methods. Here, we demonstrate that similar approaches can be used to forecast CRISPR/Cas9 gene editing outcomes in Xenopus tropicalis, Xenopus laevis, and zebrafish. We show that a publicly available neural network previously trained in mouse embryonic stem cell cultures (InDelphi-mESC) is able to accurately predict CRISPR/Cas9 gene editing outcomes in early vertebrate embryos. Our observations can have direct implications for experiment design, allowing the selection of guide RNAs with predicted repair outcome signatures enriched towards frameshift mutations, allowing maximization of CRISPR/Cas9 phenotype penetrance in the F0 generation.
Collapse
Affiliation(s)
- Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Dieter Tulkens
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Nicole A Edwards
- Division of Developmental Biology, Perinatal Institute, and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital, Cincinnati, USA
| | - Marjolein Carron
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nikko-Ideen Shaidani
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Annekatrien Boel
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Suzan Demuynck
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Marko E Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Paul Coucke
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Aaron M Zorn
- Division of Developmental Biology, Perinatal Institute, and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital, Cincinnati, USA
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, 9052, Ghent (Zwijnaarde), Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
38
|
Single-nucleotide editing for zebra3 and wsl5 phenotypes in rice using CRISPR/Cas9-mediated adenine base editors. ABIOTECH 2020; 1:106-118. [PMID: 36304716 PMCID: PMC9590491 DOI: 10.1007/s42994-020-00018-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
The CRISPR/Cas9-mediated base editing technology can efficiently generate point mutations in the genome without introducing a double-strand break (DSB) or supplying a DNA donor template for homology-directed repair (HDR). In this study, adenine base editors (ABEs) were used for rapid generation of precise point mutations in two distinct genes, OsWSL5, and OsZEBRA3 (Z3), in both rice protoplasts and regenerated plants. The precisely engineered point mutations were stably inherited to subsequent generations. These single nucleotide alterations resulted in single amino acid changes and associated wsl5 and z3 phenotypes as evidenced by white stripe leaf and light green/dark green leaf pattern, respectively. Through selfing and genetic segregation, transgene-free, base edited wsl5 and z3 mutants were obtained in a short period of time. We noticed a novel mutation (V540A) in Z3 locus could also mimic the phenotype of Z3 mutation (S542P). Furthermore, we observed unexpected non- A/G or T/C mutations in the ABE editing window in a few of the edited plants. The ABE vectors and the method from this study could be used to simultaneously generate point mutations in multiple target genes in a single transformation and serve as a useful base editing tool for crop improvement as well as basic studies in plant biology.
Collapse
|
39
|
Redesigning small ruminant genomes with CRISPR toolkit: Overview and perspectives. Theriogenology 2020; 147:25-33. [PMID: 32086048 DOI: 10.1016/j.theriogenology.2020.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
Genetic modification is a rapidly developing field in which numerous significant breakthroughs have been achieved. Over the last few decades, genetic modification has evolved from insertional transgenesis to gene targeting and editing and, more recently, to base and prime editing using CRISPR-derived systems. Currently, CRISPR-based genome editing systems are showing great potential for generating gene-edited offspring with defined genetic characteristics. Domestic small ruminants (sheep and goats) have shown great potential as large animal models for genome engineering. Ovine and caprine genomes have been engineered using CRISPR-based systems for numerous purposes. These include generating superior agricultural breeds, expression of therapeutic agents in mammary glands, and developing animal models to be used in the study of human genetic disorders and regenerative medicine. The creation of these models has been facilitated by the continuous emergence and development of genetic modification tools. In this review, we provide an overview on how CRISPR-based systems have been used in the generation of gene-edited small ruminants through the two main pathways (embryonic microinjection and somatic cell nuclear transfer) and highlight the ovine and caprine genes that have been targeted via knockout, knockin, HDR-mediated point mutation, and base editing approaches, as well as the aims of these specific manipulations.
Collapse
|
40
|
March OP, Kocher T, Koller U. Context-Dependent Strategies for Enhanced Genome Editing of Genodermatoses. Cells 2020; 9:E112. [PMID: 31906492 PMCID: PMC7016731 DOI: 10.3390/cells9010112] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022] Open
Abstract
The skin provides direct protection to the human body from assault by the harsh external environment. The crucial function of this organ is significantly disrupted in genodermatoses patients. Genodermatoses comprise a heterogeneous group of largely monogenetic skin disorders, typically involving mutations in genes encoding structural proteins. Therapeutic options for this debilitating group of diseases, including epidermolysis bullosa, primarily consist of wound management. Genome editing approaches co-opt double-strand break repair pathways to introduce desired sequence alterations at specific loci. Rapid advances in genome editing technologies have the potential to propel novel genetic therapies into the clinic. However, the associated phenotypes of many mutations may be treated via several genome editing strategies. Therefore, for potential clinical applications, implementation of efficient approaches based upon mutation, gene and disease context is necessary. Here, we describe current genome editing approaches for the treatment of genodermatoses, along with a discussion of the optimal strategy for each genetic context, in order to achieve enhanced genome editing approaches.
Collapse
Affiliation(s)
| | | | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.P.M.); (T.K.)
| |
Collapse
|