1
|
Ghimire N, Oh TJ. Cell-free system for one-pot production of protocatechuate via a two-enzyme cascade with coenzyme regeneration. Int J Biol Macromol 2025; 306:141269. [PMID: 40020799 DOI: 10.1016/j.ijbiomac.2025.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Protocatechuate, an aromatic compound with significant industrial application, has garnered increasing interest in its production through various metabolic engineering methods. However, these methods still face limitations that hinder their feasibility for large-scale industrial application. Therefore cell-free systems could serve as a better alternative in this field. Here, we describe a two-enzyme cascade system utilizing benzaldehyde dehydrogenase (AspBADH) and p-hydroxybenzoate hydroxylase (AspPHBH) for protocatechuate production from 4-hydroxybenzaldehyde (4-HBAL), with coenzyme regeneration enabled within the system. We first characterized the enzymatic activity of AspBADH and then integrated AspPHBH into an in-vitro system for protocatechuate production. Optimal conditions were identified as pH 7.4 and a temperature range of 20-40 °C, achieving approximately 50 % substrate conversion with a 1:1 enzyme ratio at a concentration of 15 mg/ml. Notably, increasing the ratio of AspBADH to AspPHBH further enhanced conversion efficiency. To improve industrial applicability, we immobilized the enzymes in glutaraldehyde-crosslinked chitosan beads, which enhanced reusability and stability. The immobilized enzyme cascade exhibited over 90 % substrate conversion in a single cycle and a 60 % total yield after purification. Although the specific activity decreased compared to the free enzymes, the immobilized system demonstrated reusability, maintaining activity through 8 cycles.
Collapse
Affiliation(s)
- Nisha Ghimire
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea; Genome-based BioIT Convergence Institute, Asan 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea.
| |
Collapse
|
2
|
Cardiff RAL, Chowdhury S, Sugianto W, Tickman BI, Burbano DA, Meyer PA, Cook M, King B, Garenne D, Beliaev AS, Noireaux V, Pamela PY, Carothers JM. Carbon-conserving bioproduction of malate in an E. coli-based cell-free system. Metab Eng 2025; 91:59-76. [PMID: 40210085 DOI: 10.1016/j.ymben.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/02/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
Formate, a biologically accessible form of CO2, has attracted interest as a renewable feedstock for bioproduction. However, approaches are needed to investigate efficient routes for biological formate assimilation due to its toxicity and limited utilization by microorganisms. Cell-free systems hold promise due to their potential for efficient use of carbon and energy sources and compatibility with diverse feedstocks. However, bioproduction using purified cell-free systems is limited by costly enzyme purification, whereas lysate-based systems must overcome loss of flux to background reactions in the cell extract. Here, we engineer an E. coli-based system for an eight-enzyme pathway from DNA and incorporate strategies to regenerate cofactors and minimize loss of flux through background reactions. We produce the industrial di-acid malate from glycine, bicarbonate, and formate by engineering the carbon-conserving reductive TCA and formate assimilation pathways. We show that in situ regeneration of NADH drives metabolic flux towards malate, improving titer by 15-fold. Background reactions can also be reduced 6-fold by diluting the lysate following expression and introducing chemical inhibitors of competing reactions. Together, these results establish a carbon-conserving, lysate-based cell-free platform for malate production, producing 64 μM malate after 8 h. This system conserves 43 % of carbon otherwise lost as CO2 through the TCA cycle and incorporates 0.13 mol CO2 equivalents/mol glycine fed. Finally, techno-economic analysis of cell-free malate production from formate revealed that the high cost of lysate is a key challenge to the economic feasibility of the process, even assuming efficient cofactor recycling. This work demonstrates the capabilities of cell-free expression systems for both the prototyping of carbon-conserving pathways and the sustainable bioproduction of platform chemicals.
Collapse
Affiliation(s)
- Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Shaafique Chowdhury
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Benjamin I Tickman
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Pimphan A Meyer
- Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Margaret Cook
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States
| | - Brianne King
- Department of Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - David Garenne
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Alexander S Beliaev
- Pacific Northwest National Laboratory, Richland, WA, 99354, United States; Centre for Agriculture and the Bioeconomy, School of Biological and Environmental Sciences, Queensland University of Technology, Gardens Point Campus, P.O. Box 2434, Brisbane, 4001, Queensland, Australia; ARC Centre of Excellence in Synthetic Biology, Brisbane, Queensland, Australia
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Peralta-Yahya Pamela
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, United States.
| | - James M Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States; Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States.
| |
Collapse
|
3
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2025; 18:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Rasor BJ, Erb TJ. Cell-Free Systems to Mimic and Expand Metabolism. ACS Synth Biol 2025; 14:316-322. [PMID: 39878226 PMCID: PMC11852204 DOI: 10.1021/acssynbio.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Cell-free synthetic biology incorporates purified components and/or crude cell extracts to carry out metabolic and genetic programs. While protein synthesis has historically been the primary focus, more metabolism researchers are now turning toward cell-free systems either to prototype pathways for cellular implementation or to design new-to-nature reaction networks that incorporate environmentally relevant substrates or new energy sources. The ability to design, build, and test enzyme combinations in vitro has accelerated efforts to understand metabolic bottlenecks and engineer high-yielding pathways. However, only a small fraction of metabolic possibilities has been explored in cell-free systems, and extracts from model organisms remain the most common starting points. Expanding the scope of cell-free metabolism to include extracts from new organisms, alternative metabolic pathways, and non-natural chemistries will enhance our ability to understand and engineer bio-based chemical conversions.
Collapse
Affiliation(s)
- Blake J. Rasor
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
5
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Barthel S, Brenker L, Diehl C, Bohra N, Giaveri S, Paczia N, Erb TJ. In vitro transcription-based biosensing of glycolate for prototyping of a complex enzyme cascade. Synth Biol (Oxf) 2024; 9:ysae013. [PMID: 39399720 PMCID: PMC11470758 DOI: 10.1093/synbio/ysae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
In vitro metabolic systems allow the reconstitution of natural and new-to-nature pathways outside of their cellular context and are of increasing interest in bottom-up synthetic biology, cell-free manufacturing, and metabolic engineering. Yet, the analysis of the activity of such in vitro networks is very often restricted by time- and cost-intensive methods. To overcome these limitations, we sought to develop an in vitro transcription (IVT)-based biosensing workflow that is compatible with the complex conditions of in vitro metabolism, such as the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle, a 27-component in vitro metabolic system that converts CO2 into glycolate. As proof of concept, we constructed a novel glycolate sensor module that is based on the transcriptional repressor GlcR from Paracoccus denitrificans and established an IVT biosensing workflow that allows us to quantify glycolate from CETCH samples in the micromolar to millimolar range. We investigate the influence of 13 (shared) cofactors between the two in vitro systems to show that Mg2+, adenosine triphosphate , and other phosphorylated metabolites are critical for robust signal output. Our optimized IVT biosensor correlates well with liquid chromatography-mass spectrometry-based glycolate quantification of CETCH samples, with one or multiple components varying (linear correlation 0.94-0.98), but notably at ∼10-fold lowered cost and ∼10 times faster turnover time. Our results demonstrate the potential and challenges of IVT-based systems to quantify and prototype the activity of complex reaction cascades and in vitro metabolic networks.
Collapse
Affiliation(s)
- Sebastian Barthel
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Luca Brenker
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Christoph Diehl
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Nitin Bohra
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
- Max Planck School Matter to Life, Heidelberg 69120, Germany
| | - Simone Giaveri
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Tobias J Erb
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg 35043, Germany
| |
Collapse
|
7
|
Park H, Jin H, Kim D, Lee J. Cell-Free Systems: Ideal Platforms for Accelerating the Discovery and Production of Peptide-Based Antibiotics. Int J Mol Sci 2024; 25:9109. [PMID: 39201795 PMCID: PMC11354240 DOI: 10.3390/ijms25169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peptide-based antibiotics (PBAs), including antimicrobial peptides (AMPs) and their synthetic mimics, have received significant interest due to their diverse and unique bioactivities. The integration of high-throughput sequencing and bioinformatics tools has dramatically enhanced the discovery of enzymes, allowing researchers to identify specific genes and metabolic pathways responsible for producing novel PBAs more precisely. Cell-free systems (CFSs) that allow precise control over transcription and translation in vitro are being adapted, which accelerate the identification, characterization, selection, and production of novel PBAs. Furthermore, these platforms offer an ideal solution for overcoming the limitations of small-molecule antibiotics, which often lack efficacy against a broad spectrum of pathogens and contribute to the development of antibiotic resistance. In this review, we highlight recent examples of how CFSs streamline these processes while expanding our ability to access new antimicrobial agents that are effective against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hyeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Haneul Jin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Dayeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| |
Collapse
|
8
|
Hooe SL, Green CM, Susumu K, Stewart MH, Breger JC, Medintz IL. Optimizing the conversion of phosphoenolpyruvate to lactate by enzymatic channeling with mixed nanoparticle display. CELL REPORTS METHODS 2024; 4:100764. [PMID: 38714198 PMCID: PMC11133815 DOI: 10.1016/j.crmeth.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (kflux) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in kflux is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs. Cluster formation was characterized with gel electrophoresis and transmission electron microscopy (TEM) imaging. The generalizability of this mixed-NP approach to improving flux is confirmed by application to a seven-enzyme system. This represents a powerful approach for accessing channeling with almost any choice of enzymes constituting a multienzyme cascade.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Kimihiro Susumu
- Optical Sciences Division Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Michael H Stewart
- Optical Sciences Division Code 5611, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
9
|
Singh R, Yadav RK, Satyanath, Singh S, Shahin R, Umar A, Ibrahim AA, Singh O, Gupta NK, Singh C, Baeg JO, Baskoutas S. Nature-inspired polymer photocatalysts for green NADH regeneration and nitroarene transformation. CHEMOSPHERE 2024; 353:141491. [PMID: 38395365 DOI: 10.1016/j.chemosphere.2024.141491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Photocatalysis has emerged as a promising approach for generating solar chemical and organic transformations under the solar light spectrum, employing polymer photocatalysts. In this study, our aim is to achieve the regeneration of NADH and fixation of nitroarene compounds, which hold significant importance in various fields such as pharmaceuticals, biology, and chemistry. The development of an in-situ nature-inspired artificial photosynthetic pathway represents a challenging task, as it involves harnessing solar energy for efficient solar chemical production and organic transformation. In this work, we have successfully synthesized a novel artificial photosynthetic polymer, named TFc photocatalyst, through the Friedel-Crafts alkylation reaction between triptycene (T) and a ferrocene motif (Fc). The TFC photocatalyst is a promising material with excellent optical properties, an appropriate band gap, and the ability to facilitate the regeneration of NADH and the fixation of nitroarene compounds through photocatalysis. These characteristics are necessary for several applications, including organic synthesis and environmental remediation. Our research provides a significant step forward in establishing a reliable pathway for the regeneration and fixation of solar chemicals and organic compounds under the solar light spectrum.
Collapse
Affiliation(s)
- Ranjeet Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India.
| | - Satyanath
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Rehana Shahin
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Omvir Singh
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Navneet K Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Chandani Singh
- Artificial Photosynthesis Research group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jin OoK Baeg
- Artificial Photosynthesis Research group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | | |
Collapse
|
10
|
Hooe SL, Smith AD, Dean SN, Breger JC, Ellis GA, Medintz IL. Multienzymatic Cascades and Nanomaterial Scaffolding-A Potential Way Forward for the Efficient Biosynthesis of Novel Chemical Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309963. [PMID: 37944537 DOI: 10.1002/adma.202309963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Synthetic biology is touted as the next industrial revolution as it promises access to greener biocatalytic syntheses to replace many industrial organic chemistries. Here, it is shown to what synthetic biology can offer in the form of multienzyme cascades for the synthesis of the most basic of new materials-chemicals, including especially designer chemical products and their analogs. Since achieving this is predicated on dramatically expanding the chemical space that enzymes access, such chemistry will probably be undertaken in cell-free or minimalist formats to overcome the inherent toxicity of non-natural substrates to living cells. Laying out relevant aspects that need to be considered in the design of multi-enzymatic cascades for these purposes is begun. Representative multienzymatic cascades are critically reviewed, which have been specifically developed for the synthesis of compounds that have either been made only by traditional organic synthesis along with those cascades utilized for novel compound syntheses. Lastly, an overview of strategies that look toward exploiting bio/nanomaterials for accessing channeling and other nanoscale materials phenomena in vitro to direct novel enzymatic biosynthesis and improve catalytic efficiency is provided. Finally, a perspective on what is needed for this field to develop in the short and long term is presented.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, Washington, DC, 20001, USA
| | - Aaron D Smith
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Scott N Dean
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
11
|
Hooe S, Thakur M, Lasarte-Aragonés G, Breger JC, Walper SA, Medintz IL, Ellis GA. Exploration of the In Vitro Violacein Synthetic Pathway with Substrate Analogues. ACS OMEGA 2024; 9:3894-3904. [PMID: 38284012 PMCID: PMC10809250 DOI: 10.1021/acsomega.3c08233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024]
Abstract
Evolution has gifted enzymes with the ability to synthesize an abundance of small molecules with incredible control over efficiency and selectivity. Central to an enzyme's role is the ability to selectively catalyze reactions in the milieu of chemicals within a cell. However, for chemists it is often desirable to extend the substrate scope of reactions to produce analogue(s) of a desired product and therefore some degree of enzyme promiscuity is often desired. Herein, we examine this dichotomy in the context of the violacein biosynthetic pathway. Importantly, we chose to interrogate this pathway with tryptophan analogues in vitro, to mitigate possible interference from cellular components and endogenous tryptophan. A total of nine tryptophan analogues were screened for by analyzing the substrate promiscuity of the initial enzyme, VioA, and compared to the substrate tryptophan. These results suggested that for VioA, substitutions at either the 2- or 4-position of tryptophan were not viable. The seven analogues that showed successful substrate conversion by VioA were then applied to the five enzyme cascade (VioABEDC) for the production of violacein, where l-tryptophan and 6-fluoro-l-tryptophan were the only substrates which were successfully converted to the corresponding violacein derivative(s). However, many of the other tryptophan analogues did convert to various substituted intermediaries. Overall, our results show substrate promiscuity with the initial enzyme, VioA, but much less for the full pathway. This work demonstrates the complexity involved when attempting to analyze substrate analogues within multienzymatic cascades, where each enzyme involved within the cascade possesses its own inherent promiscuity, which must be compatible with the remaining enzymes in the cascade for successful formation of a desired product.
Collapse
Affiliation(s)
- Shelby
L. Hooe
- National
Research Council, Washington, D.C. 20001, United States
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Meghna Thakur
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Guillermo Lasarte-Aragonés
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Joyce C. Breger
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Gregory A. Ellis
- Center
for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
12
|
Ducrot L, López IL, Orrego AH, López-Gallego F. Coenzyme A Thioester Intermediates as Platform Molecules in Cell-Free Chemical Biomanufacturing. Chembiochem 2024; 25:e202300673. [PMID: 37994376 DOI: 10.1002/cbic.202300673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/06/2023] [Indexed: 11/24/2023]
Abstract
The in vitro synthesis of Coenzyme A (CoA)-thioester intermediates opens new avenues to transform simple molecules into more complex and multifunctional ones by assembling cell-free biosynthetic cascades. In this review, we have systematically cataloged known CoA-dependent enzyme reactions that have been successfully implemented in vitro. To faciliate their identification, we provide their UniProt ID when available. Based on this catalog, we have organized enzymes into three modules: activation, modification, and removal. i) The activation module includes enzymes capable of fusing CoA with organic molecules. ii) The modification module includes enzymes capable of catalyzing chemical modifications in the structure of acyl-CoA intermediates. And iii) the removal module includes enzymes able to remove the CoA and release an organic molecule different from the one activated in the upstream. Based on these reactions, we constructed a reaction network that summarizes the most relevant CoA-dependent biosynthetic pathways reported until today. From the information available in the articles, we have plotted the total turnover number of CoA as a function of the product titer, observing a positive correlation between both parameters. Therefore, the success of a CoA-dependent in vitro pathway depends on its ability to regenerate CoA, but also to regenerate other cofactors such as NAD(P)H and ATP.
Collapse
Affiliation(s)
- Laurine Ducrot
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Idania L López
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Alejandro H Orrego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
13
|
Yi X, Rasor BJ, Boadi N, Louie K, Northen TR, Karim AS, Jewett MC, Alper HS. Establishing a versatile toolkit of flux enhanced strains and cell extracts for pathway prototyping. Metab Eng 2023; 80:241-253. [PMID: 37890611 DOI: 10.1016/j.ymben.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Building and optimizing biosynthetic pathways in engineered cells holds promise to address societal needs in energy, materials, and medicine, but it is often time-consuming. Cell-free synthetic biology has emerged as a powerful tool to accelerate design-build-test-learn cycles for pathway engineering with increased tolerance to toxic compounds. However, most cell-free pathway prototyping to date has been performed in extracts from wildtype cells which often do not have sufficient flux towards the pathways of interest, which can be enhanced by engineering. Here, to address this gap, we create a set of engineered Escherichia coli and Saccharomyces cerevisiae strains rewired via CRISPR-dCas9 to achieve high-flux toward key metabolic precursors; namely, acetyl-CoA, shikimate, triose-phosphate, oxaloacetate, α-ketoglutarate, and glucose-6-phosphate. Cell-free extracts generated from these strains are used for targeted enzyme screening in vitro. As model systems, we assess in vivo and in vitro production of triacetic acid lactone from acetyl-CoA and muconic acid from the shikimate pathway. The need for these platforms is exemplified by the fact that muconic acid cannot be detected in wildtype extracts provided with the same biosynthetic enzymes. We also perform metabolomic comparison to understand biochemical differences between the cellular and cell-free muconic acid synthesis systems (E. coli and S. cerevisiae cells and cell extracts with and without metabolic rewiring). While any given pathway has different interfaces with metabolism, we anticipate that this set of pre-optimized, flux enhanced cell extracts will enable prototyping efforts for new biosynthetic pathways and the discovery of biochemical functions of enzymes.
Collapse
Affiliation(s)
- Xiunan Yi
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Nathalie Boadi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Katherine Louie
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent R Northen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
14
|
Liu J, Hu Y, Gu W, Lan H, Zhang Z, Jiang L, Xu X. Research progress on the application of cell-free synthesis systems for enzymatic processes. Crit Rev Biotechnol 2023; 43:938-955. [PMID: 35994247 DOI: 10.1080/07388551.2022.2090314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022]
Abstract
Cell-free synthesis systems can complete the transcription and translation process in vitro to produce complex proteins that are difficult to be expressed in traditional cell-based systems. Such systems also can be used for the assembly of efficient localized multienzyme cascades to synthesize products that are toxic to cells. Cell-free synthesis systems provide a simpler and faster engineering solution than living cells, allowing unprecedented design freedom. This paper reviews the latest progress on the application of cell-free synthesis systems in the field of enzymatic catalysis, including cell-free protein synthesis and cell-free metabolic engineering. In cell-free protein synthesis: complex proteins, toxic proteins, membrane proteins, and artificial proteins containing non-natural amino acids can be easily synthesized by directly controlling the reaction conditions in the cell-free system. In cell-free metabolic engineering, the synthesis of desired products can be made more specific and efficient by designing metabolic pathways and screening biocatalysts based on purified enzymes or crude extracts. Through the combination of cell-free synthesis systems and emerging technologies, such as: synthetic biology, microfluidic control, cofactor regeneration, and artificial scaffolds, we will be able to build increasingly complex biomolecule systems. In the next few years, these technologies are expected to mature and reach industrialization, providing innovative platforms for a wide range of biotechnological applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yongqi Hu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wanyi Gu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haiquan Lan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Kang Q, Fang H, Xiang M, Xiao K, Jiang P, You C, Lee SY, Zhang D. A synthetic cell-free 36-enzyme reaction system for vitamin B 12 production. Nat Commun 2023; 14:5177. [PMID: 37620358 PMCID: PMC10449867 DOI: 10.1038/s41467-023-40932-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Adenosylcobalamin (AdoCbl), a biologically active form of vitamin B12 (coenzyme B12), is one of the most complex metal-containing natural compounds and an essential vitamin for animals. However, AdoCbl can only be de novo synthesized by prokaryotes, and its industrial manufacturing to date was limited to bacterial fermentation. Here, we report a method for the synthesis of AdoCbl based on a cell-free reaction system performing a cascade of catalytic reactions from 5-aminolevulinic acid (5-ALA), an inexpensive compound. More than 30 biocatalytic reactions are integrated and optimized to achieve the complete cell-free synthesis of AdoCbl, after overcoming feedback inhibition, the complicated detection, instability of intermediate products, as well as imbalance and competition of cofactors. In the end, this cell-free system produces 417.41 μg/L and 5.78 mg/L of AdoCbl using 5-ALA and the purified intermediate product hydrogenobyrate as substrates, respectively. The strategies of coordinating synthetic modules of complex cell-free system describe here will be generally useful for developing cell-free platforms to produce complex natural compounds with long and complicated biosynthetic pathways.
Collapse
Affiliation(s)
- Qian Kang
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Huan Fang
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Mengjie Xiang
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Kaixing Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Pingtao Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China
| | - Chun You
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 four program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Dawei Zhang
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, 100049, Beijing, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, 300308, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China.
| |
Collapse
|
16
|
Seo K, Ichihashi N. Investigation of Compatibility between DNA Replication, Transcription, and Translation for in Vitro Central Dogma. ACS Synth Biol 2023; 12:1813-1822. [PMID: 37271965 DOI: 10.1021/acssynbio.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent advances in in vitro synthetic biology have made it possible to reconstitute various cellular functions in a test tube. However, the integration of these functions remains a major challenge. This study aimed to identify a suitable condition to achieve all three reactions that constitute the central dogma: transcription, translation, and DNA replication. Specifically, we investigated the effect of the concentrations of 11 nonprotein factors required for in vitro transcription, translation, and DNA replication on each of these reactions. Our results indicate that certain factors have opposing effects on the three reactions. For example, while dNTP is necessary for DNA replication, it inhibited translation, and both rNTP and tRNA, which are essential for transcription and translation, inhibited DNA replication with several DNA polymerases. We also found that these opposing effects were partially alleviated by optimizing the magnesium concentration. Using this knowledge, we successfully demonstrated transcription/translation-coupled DNA replication with higher levels of transcription and translation while maintaining a certain level of DNA replication. These findings not only provide useful insights for the development of a complex artificial system with the central dogma but also raise the question of how natural cells overcome the incompatibility between the three reactions.
Collapse
Affiliation(s)
- Kaito Seo
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
17
|
Dinglasan JLN, Doktycz MJ. Rewiring cell-free metabolic flux in E. coli lysates using a block-push-pull approach. Synth Biol (Oxf) 2023; 8:ysad007. [PMID: 37908558 PMCID: PMC10615139 DOI: 10.1093/synbio/ysad007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cell-free systems can expedite the design and implementation of biomanufacturing processes by bypassing troublesome requirements associated with the use of live cells. In particular, the lack of survival objectives and the open nature of cell-free reactions afford engineering approaches that allow purposeful direction of metabolic flux. The use of lysate-based systems to produce desired small molecules can result in competitive titers and productivities when compared to their cell-based counterparts. However, pathway crosstalk within endogenous lysate metabolism can compromise conversion yields by diverting carbon flow away from desired products. Here, the 'block-push-pull' concept of conventional cell-based metabolic engineering was adapted to develop a cell-free approach that efficiently directs carbon flow in lysates from glucose and toward endogenous ethanol synthesis. The approach is readily adaptable, is relatively rapid and allows for the manipulation of central metabolism in cell extracts. In implementing this approach, a block strategy is first optimized, enabling selective enzyme removal from the lysate to the point of eliminating by-product-forming activity while channeling flux through the target pathway. This is complemented with cell-free metabolic engineering methods that manipulate the lysate proteome and reaction environment to push through bottlenecks and pull flux toward ethanol. The approach incorporating these block, push and pull strategies maximized the glucose-to-ethanol conversion in an Escherichia coli lysate that initially had low ethanologenic potential. A 10-fold improvement in the percent yield is demonstrated. To our knowledge, this is the first report of successfully rewiring lysate carbon flux without source strain optimization and completely transforming the consumed input substrate to a desired output product in a lysate-based, cell-free system.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
18
|
Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol Adv 2023; 65:108151. [PMID: 37037288 DOI: 10.1016/j.biotechadv.2023.108151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Terpenoids are a large class of plant-derived compounds, that constitute the main components of essential oils and are widely used as natural flavors and fragrances. The biosynthesis approach presents a promising alternative route in terpenoid production compared to plant extraction or chemical synthesis. In the past decade, the production of terpenoids using biotechnology has attracted broad attention from both academia and the industry. With the growing market of flavor and fragrance, the production of terpenoids directed by synthetic biology shows great potential in promoting future market prospects. Here, we reviewed the latest advances in terpenoid biosynthesis. The engineering strategies for biosynthetic terpenoids were systematically summarized from the enzyme, metabolic, and cellular dimensions. Additionally, we analyzed the key challenges from laboratory production to scalable production, such as key enzyme improvement, terpenoid toxicity, and volatility loss. To provide comprehensive technical guidance, we collected milestone examples of biosynthetic mono- and sesquiterpenoids, compared the current application status of chemical synthesis and biosynthesis in terpenoid production, and discussed the cost drivers based on the data of techno-economic assessment. It is expected to provide critical insights into developing translational research of terpenoid biomanufacturing.
Collapse
Affiliation(s)
- Hui Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China
| | - Xi Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.
| |
Collapse
|
19
|
Yuan Q, Wu M, Liao Y, Liang S, Lu Y, Lin Y. Rapid prototyping enzyme homologs to improve titer of nicotinamide mononucleotide using a strategy combining cell-free protein synthesis with split GFP. Biotechnol Bioeng 2023; 120:1133-1146. [PMID: 36585353 DOI: 10.1002/bit.28326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Engineering biological systems to test new pathway variants containing different enzyme homologs is laborious and time-consuming. To tackle this challenge, a strategy was developed for rapidly prototyping enzyme homologs by combining cell-free protein synthesis (CFPS) with split green fluorescent protein (GFP). This strategy featured two main advantages: (1) dozens of enzyme homologs were parallelly produced by CFPS within hours, and (2) the expression level and activity of each homolog was determined simultaneously by using the split GFP assay. As a model, this strategy was applied to optimize a 3-step pathway for nicotinamide mononucleotide (NMN) synthesis. Ten enzyme homologs from different organisms were selected for each step. Here, the most productive homolog of each step was identified within 24 h rather than weeks or months. Finally, the titer of NMN was increased to 1213 mg/L by improving physiochemical conditions, tuning enzyme ratios and cofactor concentrations, and decreasing the feedback inhibition, which was a more than 12-fold improvement over the initial setup. This strategy would provide a promising way to accelerate design-build-test cycles for metabolic engineering to improve the production of desired products.
Collapse
Affiliation(s)
- Qingyan Yuan
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Minhui Wu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yibo Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
20
|
Rasor BJ, Karim AS, Alper HS, Jewett MC. Cell Extracts from Bacteria and Yeast Retain Metabolic Activity after Extended Storage and Repeated Thawing. ACS Synth Biol 2023; 12:904-908. [PMID: 36848582 DOI: 10.1021/acssynbio.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cell-free synthetic biology enables rapid prototyping of biological parts and synthesis of proteins or metabolites in the absence of cell growth constraints. Cell-free systems are frequently made from crude cell extracts, where composition and activity can vary significantly based on source strain, preparation and processing, reagents, and other considerations. This variability can cause extracts to be treated as black boxes for which empirical observations guide practical laboratory practices, including a hesitance to use dated or previously thawed extracts. To better understand the robustness of cell extracts over time, we assessed the activity of cell-free metabolism during storage. As a model, we studied conversion of glucose to 2,3-butanediol. We found that cell extracts from Escherichia coli and Saccharomyces cerevisiae subjected to an 18-month storage period and repeated freeze-thaw cycles retain consistent metabolic activity. This work gives users of cell-free systems a better understanding of the impacts of storage on extract behavior.
Collapse
|
21
|
Xiao K, Kang Q, Xiang M, Gong D, Fang H, Tu X, Zhang D. Optimization of Hydrogenobyrinic Acid Synthesis in a Cell-Free Multienzyme Reaction by Novel S-Adenosyl-methionine Regeneration. ACS Synth Biol 2023; 12:1339-1348. [PMID: 36924041 DOI: 10.1021/acssynbio.3c00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Hydrogenobyrinic acid, a modified tetrapyrrole composed of eight five-carbon compounds, is a key intermediate and central framework of vitamin B12. Synthesis of hydrogenobyrinic acid requires eight S-adenosyl-methionine working as the methyl group donor catalyzed by 12 enzymes including six methyltransferases, causing the great shortage of S-adenosyl-methionine and accumulation of S-adenosyl-homocysteine, which is uneconomic and unsustainable for the cascade reaction. Here, we report a cell-free synthetic system for producing hydrogenobyrinic acid by integrating 12 enzymes using 5-aminolevulininate as a substrate and develop a novel S-adenosyl-methionine regeneration system to steadily supply S-adenosyl-methionine and avoid the accumulated inhibition of S-adenosyl-homocysteine by consuming a cheaper substrate (l-methionine and polyphosphate). By combination of the reaction system optimization and S-adenosyl-methionine regeneration, the titer of hydrogenobyrinic acid was improved from 0.61 to 29.39 mg/L in a 12 h reaction period, representing an increase of 48.18-fold, raising an efficient and rapidly evolutional alternative method to produce high-value-added compounds and intermediate products.
Collapse
Affiliation(s)
- Kaixing Xiao
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Kang
- University of Chinese Academy of Science, Beijing 100049, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Mengjie Xiang
- University of Chinese Academy of Science, Beijing 100049, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dachun Gong
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Huan Fang
- University of Chinese Academy of Science, Beijing 100049, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Xuan Tu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Dawei Zhang
- University of Chinese Academy of Science, Beijing 100049, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
22
|
Cell-free protein synthesis system for bioanalysis: Advances in methods and applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
23
|
Martin JP, Rasor BJ, DeBonis J, Karim AS, Jewett MC, Tyo KEJ, Broadbelt LJ. A dynamic kinetic model captures cell-free metabolism for improved butanol production. Metab Eng 2023; 76:133-145. [PMID: 36724840 DOI: 10.1016/j.ymben.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Cell-free systems are useful tools for prototyping metabolic pathways and optimizing the production of various bioproducts. Mechanistically-based kinetic models are uniquely suited to analyze dynamic experimental data collected from cell-free systems and provide vital qualitative insight. However, to date, dynamic kinetic models have not been applied with rigorous biological constraints or trained on adequate experimental data to the degree that they would give high confidence in predictions and broadly demonstrate the potential for widespread use of such kinetic models. In this work, we construct a large-scale dynamic model of cell-free metabolism with the goal of understanding and optimizing butanol production in a cell-free system. Using a combination of parameterization methods, the resultant model captures experimental metabolite measurements across two experimental conditions for nine metabolites at timepoints between 0 and 24 h. We present analysis of the model predictions, provide recommendations for butanol optimization, and identify the aldehyde/alcohol dehydrogenase as the primary bottleneck in butanol production. Sensitivity analysis further reveals the extent to which various parameters are constrained, and our approach for probing valid parameter ranges can be applied to other modeling efforts.
Collapse
Affiliation(s)
- Jacob P Martin
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathon DeBonis
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
24
|
Rasor BJ, Chirania P, Rybnicky GA, Giannone RJ, Engle NL, Tschaplinski TJ, Karim AS, Hettich RL, Jewett MC. Mechanistic Insights into Cell-Free Gene Expression through an Integrated -Omics Analysis of Extract Processing Methods. ACS Synth Biol 2023; 12:405-418. [PMID: 36700560 DOI: 10.1021/acssynbio.2c00339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.
Collapse
Affiliation(s)
- Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Payal Chirania
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Grant A Rybnicky
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nancy L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
25
|
Teshima M, Willers VP, Sieber V. Cell-free enzyme cascades - application and transition from development to industrial implementation. Curr Opin Biotechnol 2023; 79:102868. [PMID: 36563481 DOI: 10.1016/j.copbio.2022.102868] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
In the vision to realize a circular economy aiming for net carbon neutrality or even negativity, cell-free bioconversion of sustainable and renewable resources emerged as a promising strategy. The potential of in vitro systems is enormous, delivering technological, ecological, and ethical added values. Innovative concepts arose in cell-free enzymatic conversions to reduce process waste production and preserve fossil resources, as well as to redirect and assimilate released industrial pollutions back into the production cycle again. However, the great challenge in the near future will be the jump from a concept to an industrial application. The transition process in industrial implementation also requires economic aspects such as productivity, scalability, and cost-effectiveness. Here, we briefly review the latest proof-of-concept cascades using carbon dioxide and other C1 or lignocellulose-derived chemicals as blueprints to efficiently recycle greenhouse gases, as well as cutting-edge technologies to maturate these concepts to industrial pilot plants.
Collapse
Affiliation(s)
- Mariko Teshima
- Technical University of Munich, Campus Straubing, 94315 Straubing, Germany
| | | | - Volker Sieber
- Technical University of Munich, Campus Straubing, 94315 Straubing, Germany; SynBioFoundry@TUM, Technical University of Munich, 94315 Straubing, Germany; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia 4072, Australia.
| |
Collapse
|
26
|
Aminian A, Motamedian E. Investigating ethanol production using the Zymomonas mobilis crude extract. Sci Rep 2023; 13:1165. [PMID: 36670195 PMCID: PMC9860009 DOI: 10.1038/s41598-023-28396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Cell-free systems have become valuable investigating tools for metabolic engineering research due to their easy access to metabolism without the interference of the membrane. Therefore, we applied Zymomonas mobilis cell-free system to investigate whether ethanol production is controlled by the genes of the metabolic pathway or is limited by cofactors. Initially, different glucose concentrations were added to the extract to determine the crude extract's capability to produce ethanol. Then, we investigated the genes of the metabolic pathway to find the limiting step in the ethanol production pathway. Next, to identify the bottleneck gene, a systemic approach was applied based on the integration of gene expression data on a cell-free metabolic model. ZMO1696 was determined as the bottleneck gene and an activator for its enzyme was added to the extract to experimentally assess its effect on ethanol production. Then the effect of NAD+ addition at the high concentration of glucose (1 M) was evaluated, which indicates no improvement in efficiency. Finally, the imbalance ratio of ADP/ATP was found as the controlling factor by measuring ATP levels in the extract. Furthermore, sodium gluconate as a carbon source was utilized to investigate the expansion of substrate consumption by the extract. 100% of the maximum theoretical yield was obtained at 0.01 M of sodium gluconate while it cannot be consumed by Z. mobilis. This research demonstrated the challenges and advantages of using Z. mobilis crude extract for overproduction.
Collapse
Affiliation(s)
- Amirhossein Aminian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran.
| |
Collapse
|
27
|
Ruccolo S, Brito G, Christensen M, Itoh T, Mattern K, Stone K, Strotman NA, Sun AC. Electrochemical Recycling of Adenosine Triphosphate in Biocatalytic Reaction Cascades. J Am Chem Soc 2022; 144:22582-22588. [PMID: 36449284 DOI: 10.1021/jacs.2c08955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Adenosine triphosphate (ATP) provides the driving force necessary for critical biological functions in all living organisms. In synthetic biocatalytic reactions, this cofactor is recycled in situ using high-energy stoichiometric reagents, an approach that generates waste and poses challenges with enzyme stability. On the other hand, an electrochemical recycling system would use electrons as a convenient source of energy. We report a method that uses electricity to turn over enzymes for ATP generation in a simplified cellular respiration mimic. The method is simple, robust, and scalable, as well as broadly applicable to complex enzymatic processes including a four-enzyme biocatalytic cascade in the synthesis of the antiviral molnupiravir.
Collapse
Affiliation(s)
- Serge Ruccolo
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Gilmar Brito
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Melodie Christensen
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Tetsuji Itoh
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Keith Mattern
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Kevin Stone
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Neil A Strotman
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| | - Alexandra C Sun
- Process Research and Development, Merck & Company Incorporated, Rahway, New Jersey 07065, United States
| |
Collapse
|
28
|
Hooe SL, Ellis GA, Medintz IL. Alternative design strategies to help build the enzymatic retrosynthesis toolbox. RSC Chem Biol 2022; 3:1301-1313. [PMID: 36349225 PMCID: PMC9627731 DOI: 10.1039/d2cb00096b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/11/2022] [Indexed: 05/30/2024] Open
Abstract
Most of the complex molecules found in nature still cannot be synthesized by current organic chemistry methods. Given the number of enzymes that exist in nature and the incredible potential of directed evolution, the field of synthetic biology contains perhaps all the necessary building blocks to bring about the realization of applied enzymatic retrosynthesis. Current thinking anticipates that enzymatic retrosynthesis will be implemented using conventional cell-based synthetic biology approaches where requisite native, heterologous, designer, and evolved enzymes making up a given multi-enzyme pathway are hosted by chassis organisms to carry out designer synthesis. In this perspective, we suggest that such an effort should not be limited by solely exploiting living cells and enzyme evolution and describe some useful yet less intensive complementary approaches that may prove especially productive in this grand scheme. By decoupling reactions from the environment of a living cell, a significantly larger portion of potential synthetic chemical space becomes available for exploration; most of this area is currently unavailable to cell-based approaches due to toxicity issues. In contrast, in a cell-free reaction a variety of classical enzymatic approaches can be exploited to improve performance and explore and understand a given enzyme's substrate specificity and catalytic profile towards non-natural substrates. We expect these studies will reveal unique enzymatic capabilities that are not accessible in living cells.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory Washington DC 20375 USA
- National Research Council Washington DC 20001 USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory Washington DC 20375 USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory Washington DC 20375 USA
| |
Collapse
|
29
|
Kwak S, Crook N, Yoneda A, Ahn N, Ning J, Cheng J, Dantas G. Functional mining of novel terpene synthases from metagenomes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:104. [PMID: 36209178 PMCID: PMC9548185 DOI: 10.1186/s13068-022-02189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/29/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Terpenes are one of the most diverse and abundant classes of natural biomolecules, collectively enabling a variety of therapeutic, energy, and cosmetic applications. Recent genomics investigations have predicted a large untapped reservoir of bacterial terpene synthases residing in the genomes of uncultivated organisms living in the soil, indicating a vast array of putative terpenoids waiting to be discovered. RESULTS We aimed to develop a high-throughput functional metagenomic screening system for identifying novel terpene synthases from bacterial metagenomes by relieving the toxicity of terpene biosynthesis precursors to the Escherichia coli host. The precursor toxicity was achieved using an inducible operon encoding the prenyl pyrophosphate synthetic pathway and supplementation of the mevalonate precursor. Host strain and screening procedures were finely optimized to minimize false positives arising from spontaneous mutations, which avoid the precursor toxicity. Our functional metagenomic screening of human fecal metagenomes yielded a novel β-farnesene synthase, which does not show amino acid sequence similarity to known β-farnesene synthases. Engineered S. cerevisiae expressing the screened β-farnesene synthase produced 120 mg/L β-farnesene from glucose (2.86 mg/g glucose) with a productivity of 0.721 g/L∙h. CONCLUSIONS A unique functional metagenomic screening procedure was established for screening terpene synthases from metagenomic libraries. This research proves the potential of functional metagenomics as a sequence-independent avenue for isolating targeted enzymes from uncultivated organisms in various environmental habitats.
Collapse
Affiliation(s)
- Suryang Kwak
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| | - Nathan Crook
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Aki Yoneda
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| | - Naomi Ahn
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| | - Jiye Cheng
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, Room 5121, Campus Box 8510, Saint Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130 USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO 63110 USA
| |
Collapse
|
30
|
Partipilo M, Yang G, Mascotti ML, Wijma HJ, Slotboom DJ, Fraaije MW. A conserved sequence motif in the Escherichia coli soluble FAD-containing pyridine nucleotide transhydrogenase is important for reaction efficiency. J Biol Chem 2022; 298:102304. [PMID: 35933012 PMCID: PMC9460512 DOI: 10.1016/j.jbc.2022.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022] Open
Abstract
Soluble pyridine nucleotide transhydrogenases (STHs) are flavoenzymes involved in the redox homeostasis of the essential cofactors NAD(H) and NADP(H). They catalyze the reversible transfer of reducing equivalents between the two nicotinamide cofactors. The soluble transhydrogenase from Escherichia coli (SthA) has found wide use in both in vivo and in vitro applications to steer reducing equivalents toward NADPH-requiring reactions. However, mechanistic insight into SthA function is still lacking. In this work, we present a biochemical characterization of SthA, focusing for the first time on the reactivity of the flavoenzyme with molecular oxygen. We report on oxidase activity of SthA that takes place both during transhydrogenation and in the absence of an oxidized nicotinamide cofactor as an electron acceptor. We find that this reaction produces the reactive oxygen species hydrogen peroxide and superoxide anion. Furthermore, we explore the evolutionary significance of the well-conserved CXXXXT motif that distinguishes STHs from the related family of flavoprotein disulfide reductases in which a CXXXXC motif is conserved. Our mutational analysis revealed the cysteine and threonine combination in SthA leads to better coupling efficiency of transhydrogenation and reduced reactive oxygen species release compared to enzyme variants with mutated motifs. These results expand our mechanistic understanding of SthA by highlighting reactivity with molecular oxygen and the importance of the evolutionarily conserved sequence motif.
Collapse
Affiliation(s)
- Michele Partipilo
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Guang Yang
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Maria Laura Mascotti
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Hein J Wijma
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands.
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
31
|
Zhang L, King E, Black WB, Heckmann CM, Wolder A, Cui Y, Nicklen F, Siegel JB, Luo R, Paul CE, Li H. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform. Nat Commun 2022; 13:5021. [PMID: 36028482 PMCID: PMC9418148 DOI: 10.1038/s41467-022-32727-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/13/2022] [Indexed: 11/09/2022] Open
Abstract
Noncanonical redox cofactors are attractive low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)+) in biotransformation. However, engineering enzymes to utilize them is challenging. Here, we present a high-throughput directed evolution platform which couples cell growth to the in vivo cycling of a noncanonical cofactor, nicotinamide mononucleotide (NMN+). We achieve this by engineering the life-essential glutathione reductase in Escherichia coli to exclusively rely on the reduced NMN+ (NMNH). Using this system, we develop a phosphite dehydrogenase (PTDH) to cycle NMN+ with ~147-fold improved catalytic efficiency, which translates to an industrially viable total turnover number of ~45,000 in cell-free biotransformation without requiring high cofactor concentrations. Moreover, the PTDH variants also exhibit improved activity with another structurally deviant noncanonical cofactor, 1-benzylnicotinamide (BNA+), showcasing their broad applications. Structural modeling prediction reveals a general design principle where the mutations and the smaller, noncanonical cofactors together mimic the steric interactions of the larger, natural cofactors NAD(P)+.
Collapse
Affiliation(s)
- Linyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - William B Black
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Christian M Heckmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Allison Wolder
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Youtian Cui
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Francis Nicklen
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Suite 2102, Sacramento, CA, 95817, USA
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Ray Luo
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department Materials Science and Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
32
|
Wohlgemuth R, Littlechild J. Complexity reduction and opportunities in the design, integration and intensification of biocatalytic processes for metabolite synthesis. Front Bioeng Biotechnol 2022; 10:958606. [PMID: 35935499 PMCID: PMC9355135 DOI: 10.3389/fbioe.2022.958606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The biosynthesis of metabolites from available starting materials is becoming an ever important area due to the increasing demands within the life science research area. Access to metabolites is making essential contributions to analytical, diagnostic, therapeutic and different industrial applications. These molecules can be synthesized by the enzymes of biological systems under sustainable process conditions. The facile synthetic access to the metabolite and metabolite-like molecular space is of fundamental importance. The increasing knowledge within molecular biology, enzyme discovery and production together with their biochemical and structural properties offers excellent opportunities for using modular cell-free biocatalytic systems. This reduces the complexity of synthesizing metabolites using biological whole-cell approaches or by classical chemical synthesis. A systems biocatalysis approach can provide a wealth of optimized enzymes for the biosynthesis of already identified and new metabolite molecules.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
- Swiss Coordination Committee for Biotechnology, Zurich, Switzerland
| | - Jennifer Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
33
|
Pandi A, Diehl C, Yazdizadeh Kharrazi A, Scholz SA, Bobkova E, Faure L, Nattermann M, Adam D, Chapin N, Foroughijabbari Y, Moritz C, Paczia N, Cortina NS, Faulon JL, Erb TJ. A versatile active learning workflow for optimization of genetic and metabolic networks. Nat Commun 2022; 13:3876. [PMID: 35790733 PMCID: PMC9256728 DOI: 10.1038/s41467-022-31245-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Optimization of biological networks is often limited by wet lab labor and cost, and the lack of convenient computational tools. Here, we describe METIS, a versatile active machine learning workflow with a simple online interface for the data-driven optimization of biological targets with minimal experiments. We demonstrate our workflow for various applications, including cell-free transcription and translation, genetic circuits, and a 27-variable synthetic CO2-fixation cycle (CETCH cycle), improving these systems between one and two orders of magnitude. For the CETCH cycle, we explore 1025 conditions with only 1,000 experiments to yield the most efficient CO2-fixation cascade described to date. Beyond optimization, our workflow also quantifies the relative importance of individual factors to the performance of a system identifying unknown interactions and bottlenecks. Overall, our workflow opens the way for convenient optimization and prototyping of genetic and metabolic networks with customizable adjustments according to user experience, experimental setup, and laboratory facilities. Optimization of biological networks is often limited by wet lab labor and cost, and the lack of convenient computational tools. Here, aimed at democratization and standardization, the authors describe METIS, a modular and versatile active machine learning workflow with a simple online interface for the optimization of biological target functions with minimal experimental datasets.
Collapse
Affiliation(s)
- Amir Pandi
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| | - Christoph Diehl
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Scott A Scholz
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Elizaveta Bobkova
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Léon Faure
- Micalis Institute, INRAE, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas, France
| | - Maren Nattermann
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - David Adam
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nils Chapin
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Yeganeh Foroughijabbari
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Charles Moritz
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Niña Socorro Cortina
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,LiVeritas Biosciences, Inc., 432N Canal St.; Ste. 20, South San Francisco, CA, 94080, USA
| | - Jean-Loup Faulon
- Micalis Institute, INRAE, AgroParisTech, University of Paris-Saclay, Jouy-en-Josas, France.,Genomique Metabolique, Genoscope, Institut Francois Jacob, CEA, CNRS, Univ Evry, University of Paris-Saclay, Evry, France.,Manchester Institute of Biotechnology, SYNBIOCHEM center, School of Chemistry, The University of Manchester, Manchester, UK
| | - Tobias J Erb
- Department of Biochemistry & Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany. .,SYNMIKRO Center of Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
34
|
Toward modular construction of cell-free multienzyme systems. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Li X, Liu LP, Hassoun S. Boost-RS: boosted embeddings for recommender systems and its application to enzyme-substrate interaction prediction. Bioinformatics 2022; 38:2832-2838. [PMID: 35561204 PMCID: PMC9113267 DOI: 10.1093/bioinformatics/btac201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
MOTIVATION Despite experimental and curation efforts, the extent of enzyme promiscuity on substrates continues to be largely unexplored and under documented. Providing computational tools for the exploration of the enzyme-substrate interaction space can expedite experimentation and benefit applications such as constructing synthesis pathways for novel biomolecules, identifying products of metabolism on ingested compounds, and elucidating xenobiotic metabolism. Recommender systems (RS), which are currently unexplored for the enzyme-substrate interaction prediction problem, can be utilized to provide enzyme recommendations for substrates, and vice versa. The performance of Collaborative-Filtering (CF) RSs; however, hinges on the quality of embedding vectors of users and items (enzymes and substrates in our case). Importantly, enhancing CF embeddings with heterogeneous auxiliary data, specially relational data (e.g. hierarchical, pairwise or groupings), remains a challenge. RESULTS We propose an innovative general RS framework, termed Boost-RS that enhances RS performance by 'boosting' embedding vectors through auxiliary data. Specifically, Boost-RS is trained and dynamically tuned on multiple relevant auxiliary learning tasks Boost-RS utilizes contrastive learning tasks to exploit relational data. To show the efficacy of Boost-RS for the enzyme-substrate prediction interaction problem, we apply the Boost-RS framework to several baseline CF models. We show that each of our auxiliary tasks boosts learning of the embedding vectors, and that contrastive learning using Boost-RS outperforms attribute concatenation and multi-label learning. We also show that Boost-RS outperforms similarity-based models. Ablation studies and visualization of learned representations highlight the importance of using contrastive learning on some of the auxiliary data in boosting the embedding vectors. AVAILABILITY AND IMPLEMENTATION A Python implementation for Boost-RS is provided at https://github.com/HassounLab/Boost-RS. The enzyme-substrate interaction data is available from the KEGG database (https://www.genome.jp/kegg/).
Collapse
Affiliation(s)
- Xinmeng Li
- Department of Computer Science, Tufts University, Medford, MA 02155, USA
| | - Li-Ping Liu
- To whom correspondence should be addressed. and
| | | |
Collapse
|
36
|
Liu H, Arbing MA, Bowie JU. Expanding the use of ethanol as a feedstock for cell-free synthetic biochemistry by implementing acetyl-CoA and ATP generating pathways. Sci Rep 2022; 12:7700. [PMID: 35546163 PMCID: PMC9095697 DOI: 10.1038/s41598-022-11653-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022] Open
Abstract
Ethanol is a widely available carbon compound that can be increasingly produced with a net negative carbon balance. Carbon-negative ethanol might therefore provide a feedstock for building a wider range of sustainable chemicals. Here we show how ethanol can be converted with a cell free system into acetyl-CoA, a central precursor for myriad biochemicals, and how we can use the energy stored in ethanol to generate ATP, another key molecule important for powering biochemical pathways. The ATP generator produces acetone as a value-added side product. Our ATP generator reached titers of 27 ± 6 mM ATP and 59 ± 15 mM acetone with maximum ATP synthesis rate of 2.8 ± 0.6 mM/h and acetone of 7.8 ± 0.8 mM/h. We illustrated how the ATP generating module can power cell-free biochemical pathways by converting mevalonate into isoprenol at a titer of 12.5 ± 0.8 mM and a maximum productivity of 1.0 ± 0.05 mM/h. These proof-of-principle demonstrations may ultimately find their way to the manufacture of diverse chemicals from ethanol and other simple carbon compounds.
Collapse
Affiliation(s)
- Hongjiang Liu
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute of Genomics and Proteomics, University of California Los Angeles, Boyer Hall, 611 Charles E. Young Dr. E, Los Angeles, CA, 90095-1570, USA
| | - Mark A Arbing
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute of Genomics and Proteomics, University of California Los Angeles, Boyer Hall, 611 Charles E. Young Dr. E, Los Angeles, CA, 90095-1570, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA-DOE Institute of Genomics and Proteomics, University of California Los Angeles, Boyer Hall, 611 Charles E. Young Dr. E, Los Angeles, CA, 90095-1570, USA.
| |
Collapse
|
37
|
Sheldon RA, Brady D. Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. CHEMSUSCHEM 2022; 15:e202102628. [PMID: 35026060 DOI: 10.1002/cssc.202102628] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels. Biotechnology is well suited to a future chemical industry that must adapt to widely distributed and diverse biological chemical feedstocks. Our increasing mastery of biotechnology is allowing us to develop enzymes and organisms that can synthesize a widening selection of desirable bulk chemicals, including plastics, at commercially viable productivities. Integration of bioreactors with electrochemical systems will permit new production opportunities with enhanced productivities and the advantage of using a low-carbon electricity from renewable and sustainable sources.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
38
|
Shang L, Ye F, Li M, Zhao Y. Spatial confinement toward creating artificial living systems. Chem Soc Rev 2022; 51:4075-4093. [PMID: 35502858 DOI: 10.1039/d1cs01025e] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lifeforms are regulated by many physicochemical factors, and these factors could be controlled to play a role in the construction of artificial living systems. Among these factors, spatial confinement is an important one, which mediates biological behaviors at multiscale levels and participates in the biomanufacturing processes accordingly. This review describes how spatial confinement, as a fundamental biological phenomenon, provides cues for the construction of artificial living systems. Current knowledge about the role of spatial confinement in mediating individual cell behavior, collective cellular behavior, and tissue-level behavior are categorized. Endeavors on the synthesis of biomacromolecules, artificial cells, engineered tissues, and organoids in spatially confined bioreactors are then emphasized. After that, we discuss the cutting-edge applications of spatially confined artificial living systems in biomedical fields. Finally, we conclude by assessing the remaining challenges and future trends in the context of fundamental science, technical improvement, and practical applications.
Collapse
Affiliation(s)
- Luoran Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
39
|
A kinase-cGAS cascade to synthesize a therapeutic STING activator. Nature 2022; 603:439-444. [PMID: 35296845 DOI: 10.1038/s41586-022-04422-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/10/2022] [Indexed: 01/02/2023]
Abstract
The introduction of molecular complexity in an atom- and step-efficient manner remains an outstanding goal in modern synthetic chemistry. Artificial biosynthetic pathways are uniquely able to address this challenge by using enzymes to carry out multiple synthetic steps simultaneously or in a one-pot sequence1-3. Conducting biosynthesis ex vivo further broadens its applicability by avoiding cross-talk with cellular metabolism and enabling the redesign of key biosynthetic pathways through the use of non-natural cofactors and synthetic reagents4,5. Here we describe the discovery and construction of an enzymatic cascade to MK-1454, a highly potent stimulator of interferon genes (STING) activator under study as an immuno-oncology therapeutic6,7 (ClinicalTrials.gov study NCT04220866 ). From two non-natural nucleotide monothiophosphates, MK-1454 is assembled diastereoselectively in a one-pot cascade, in which two thiotriphosphate nucleotides are simultaneously generated biocatalytically, followed by coupling and cyclization catalysed by an engineered animal cyclic guanosine-adenosine synthase (cGAS). For the thiotriphosphate synthesis, three kinase enzymes were engineered to develop a non-natural cofactor recycling system in which one thiotriphosphate serves as a cofactor in its own synthesis. This study demonstrates the substantial capacity that currently exists to use biosynthetic approaches to discover and manufacture complex, non-natural molecules.
Collapse
|
40
|
Rasor BJ, Vögeli B, Jewett MC, Karim AS. Cell-Free Protein Synthesis for High-Throughput Biosynthetic Pathway Prototyping. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:199-215. [PMID: 34985746 DOI: 10.1007/978-1-0716-1998-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biological systems provide a sustainable and complimentary approach to synthesizing useful chemical products. Metabolic engineers seeking to establish economically viable biosynthesis platforms strive to increase product titers, rates, and yields. Despite continued advances in genetic tools and metabolic engineering techniques, cellular workflows remain limited in throughput. It may take months to test dozens of unique pathway designs even in a robust model organism, such as Escherichia coli. In contrast, cell-free protein synthesis enables the rapid generation of enzyme libraries that can be combined to reconstitute metabolic pathways in vitro for biochemical synthesis in days rather than weeks. Cell-free reactions thereby enable comparison of hundreds to thousands of unique combinations of enzyme homologs and concentrations, which can quickly identify the most productive pathway variants to test in vivo or further characterize in vitro. This cell-free pathway prototyping strategy provides a complementary approach to accelerate cellular metabolic engineering efforts toward highly productive strains for metabolite production.
Collapse
Affiliation(s)
- Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, Center for Synthetic Biology, Robert H. Lurie Comprehensive Cancer Center, and Simpson Querrey Institute, Northwestern University, Evanston, IL, USA.
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
41
|
|
42
|
Wu S, Bornscheuer UT. A chemoenzymatic cascade with the potential to feed the world and allow humans to live in space. ENGINEERING MICROBIOLOGY 2022; 2:100006. [PMID: 39628617 PMCID: PMC11611034 DOI: 10.1016/j.engmic.2021.100006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/06/2024]
Abstract
While the typical targets of (chemo-)enzymatic cascades are fine chemicals (e.g., pharmaceuticals), a chemoenzymatic cascade, artificial starch anabolic pathway (ASAP), was recently developed to synthesize starch from CO2. The key results and outstanding features of ASAP are discussed here. We envision that ASAP and its microbial counterpart may enable efficient synthesis of food and sequestration of CO2 in a circular manner, thus contributing to a sustainable and hunger-free world and future habitation in space.
Collapse
Affiliation(s)
- Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, D-17487 Greifswald, Germany
| |
Collapse
|
43
|
Li F, Wei X, Zhang L, Liu C, You C, Zhu Z. Installing a Green Engine To Drive an Enzyme Cascade: A Light‐Powered In Vitro Biosystem for Poly(3‐hydroxybutyrate) Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Li
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Lin Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences 20 Nanxincun, Xiangshan Beijing 100093 P. R. China
| | - Cheng Liu
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences 20 Nanxincun, Xiangshan Beijing 100093 P. R. China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- National Technology Innovation Center of Synthetic Biology 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- National Technology Innovation Center of Synthetic Biology 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| |
Collapse
|
44
|
Moore SJ, Tosi T, Bell D, Hleba YB, Polizzi KM, Freemont PS. High-yield 'one-pot' biosynthesis of raspberry ketone, a high-value fine chemical. Synth Biol (Oxf) 2021; 6:ysab021. [PMID: 34712844 PMCID: PMC8546603 DOI: 10.1093/synbio/ysab021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 11/14/2022] Open
Abstract
Cell-free extract and purified enzyme-based systems provide an attractive solution to study biosynthetic strategies towards a range of chemicals. 4-(4-hydroxyphenyl)-butan-2-one, also known as raspberry ketone, is the major fragrance component of raspberry fruit and is used as a natural additive in the food and sports industry. Current industrial processing of the natural form of raspberry ketone involves chemical extraction from a yield of ∼1–4 mg kg−1 of fruit. Due to toxicity, microbial production provides only low yields of up to 5–100 mg L−1. Herein, we report an efficient cell-free strategy to probe into a synthetic enzyme pathway that converts either L-tyrosine or the precursor, 4-(4-hydroxyphenyl)-buten-2-one, into raspberry ketone at up to 100% conversion. As part of this strategy, it is essential to recycle inexpensive cofactors. Specifically, the final enzyme step in the pathway is catalyzed by raspberry ketone/zingerone synthase (RZS1), an NADPH-dependent double bond reductase. To relax cofactor specificity towards NADH, the preferred cofactor for cell-free biosynthesis, we identify a variant (G191D) with strong activity with NADH. We implement the RZS1 G191D variant within a ‘one-pot’ cell-free reaction to produce raspberry ketone at high-yield (61 mg L−1), which provides an alternative route to traditional microbial production. In conclusion, our cell-free strategy complements the growing interest in engineering synthetic enzyme cascades towards industrially relevant value-added chemicals.
Collapse
Affiliation(s)
- Simon J Moore
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London, UK
| | - Tommaso Tosi
- Department of Medicine, Imperial College London, South Kensington Campus, London, UK
| | - David Bell
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London, UK
| | - Yonek B Hleba
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London, UK
| | - Karen M Polizzi
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London, UK
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
45
|
Li F, Wei X, Zhang L, Liu C, You C, Zhu Z. Installing a Green Engine To Drive an Enzyme Cascade: A Light-Powered In Vitro Biosystem for Poly(3-hydroxybutyrate) Synthesis. Angew Chem Int Ed Engl 2021; 61:e202111054. [PMID: 34664348 DOI: 10.1002/anie.202111054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Many existing in vitro biosystems harness power from the chemical energy contained in substrates and co-substrates, and light or electric energy provided from abiotic parts, leading to a compromise in atom economy, incompatibility between biological and abiotic parts, and most importantly, incapability to spatiotemporally co-regenerate ATP and NADPH. In this study, we developed a light-powered in vitro biosystem for poly(3-hydroxybutyrate) (PHB) synthesis using natural thylakoid membranes (TMs) to regenerate ATP and NADPH for a five-enzyme cascade. Through effective coupling of cofactor regeneration and mass conversion, 20 mM PHB was yielded from 50 mM sodium acetate with a molar conversion efficiency of carbon of 80.0 % and a light-energy conversion efficiency of 3.04 %, which are much higher than the efficiencies of similar in vitro PHB synthesis biosystems. This suggests the promise of installing TMs as a green engine to drive more enzyme cascades.
Collapse
Affiliation(s)
- Fei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Lin Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, P. R. China
| | - Cheng Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, P. R. China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
46
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
47
|
Martins LS, Guimarães LF, Botelho Junior AB, Tenório JAS, Espinosa DCR. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113091. [PMID: 34171777 DOI: 10.1016/j.jenvman.2021.113091] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Li-ion batteries are daily present in our electronic devices. These batteries are used in electric and hybrid vehicles supporting the current agreements to decrease greenhouse gas emissions. As a result, the electric vehicle demand has increased in the world. As Li-ion batteries are composed of critical metals in which there is a risk of interruption of supply in the medium term, recycling is the key to a sustainable future without internal combustion vehicles. Understanding the current scenario and future perspectives is important for strategies of new battery design, recycling routes and reverse logistics, as well as policies for sustainable development. This paper presents an overview of current and future vehicles used worldwide. An increase from 1.3 to 2 billion vehicles is expected worldwide until 2030; an outstanding demand will occur mainly in BRICS countries. The data demonstrated a correlation between the number of vehicles in use and GDP. Patents and processes designed for recycling Li-ion batteries and the new developments on pyro-, hydro-, and bio-metallurgical routes have been revised. The manuscript describes the importance and benefits of recycling as regards the supply of critical metals and future trends towards a circular economy.
Collapse
Affiliation(s)
- Lívia Salles Martins
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil
| | - Lucas Fonseca Guimarães
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil
| | - Amilton Barbosa Botelho Junior
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil.
| | - Jorge Alberto Soares Tenório
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil
| | - Denise Crocce Romano Espinosa
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil
| |
Collapse
|
48
|
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 2021; 12:5139. [PMID: 34446711 PMCID: PMC8390474 DOI: 10.1038/s41467-021-25233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.
Collapse
|
49
|
Lim HJ, Kim DM. Cell-free synthesis of industrial chemicals and biofuels from carbon feedstocks. Curr Opin Biotechnol 2021; 73:158-163. [PMID: 34450473 DOI: 10.1016/j.copbio.2021.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022]
Abstract
The power of biological systems can be harnessed with higher efficiency when biosynthetic reactions are decoupled from cellular physiology. This can be achieved by cell-free synthesis, which relies on the in vitro use of cellular machinery under optimized reaction conditions. As exemplified by the recent development of mRNA vaccines and therapeutics, the cell-free synthesis of biomolecules is fast, efficient and flexible. Cell-free synthesis of industrial chemicals and biofuels is drawing considerable attention as a promising alternative to microbial fermentation processes, which currently show low conversion yields and toxicity to host cells. Here, we provide a brief overview of the history of cell-free synthesis systems and the state-of-the-art cell-free technologies used to produce diverse chemicals and biofuels. We also discuss the future directions of cell-free synthesis that can fully harness the synthetic power of biological systems.
Collapse
Affiliation(s)
- Hye Jin Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
50
|
Zhang YQ, Feng TT, Cao YF, Zhang XY, Wang T, Huanca Nina MR, Wang LC, Yu HL, Xu JH, Ge J, Bai YP. Confining Enzyme Clusters in Bacteriophage P22 Enhances Cofactor Recycling and Stereoselectivity for Chiral Alcohol Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yan-Qing Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Tao-Tao Feng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Yu-Fei Cao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Tao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Mario Roque Huanca Nina
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Li-Cheng Wang
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|