1
|
Tong B, Yu Y, Shi S. Rhodotorula sp. as a promising host for microbial cell factories. Metab Eng 2025; 90:178-196. [PMID: 40139654 DOI: 10.1016/j.ymben.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Rhodotorula sp. is a red yeast that has emerged as a promising host for microbial cell factories. Under specific conditions, Rhodotorula sp. can accumulate lipids that constitute over 70% of its dry cell weight, underscoring its potential in lipid compound production. Additionally, it can utilize a variety of carbon sources, including glucose, xylose, and volatile fatty acids, and exhibits high tolerance to low-cost carbon sources and industrial by-products, showcasing its excellent performance in industrial processes. Furthermore, the native mevalonate pathway of Rhodotorula sp. enables its efficient synthesis of antioxidant carotenoids and other terpenoids, which are widely applied in the food, pharmaceutical, and cosmetic industries. Due to its excellent accumulation ability of lipophilic compounds, metabolic diversity, and environmental adaptability, this review summarizes recent advances in genetic elements and metabolic engineering technologies for Rhodotorula sp., emphasizing its potential as a chassis cell factory for the production of lipids, carotenoids, and other chemicals. It also highlights key factors influencing commercial fermentation processes and concludes with challenges and solutions for further developing Rhodotorula sp. as microbial chassis.
Collapse
Affiliation(s)
- Baisong Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, Beijing, China
| | - Yi Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, Beijing, China.
| |
Collapse
|
2
|
Guo Y, Xiong Z, Zhai H, Wang Y, Qi Q, Hou J. The advances in creating Crabtree-negative Saccharomyces cerevisiae and the application for chemicals biosynthesis. FEMS Yeast Res 2025; 25:foaf014. [PMID: 40121184 PMCID: PMC11974387 DOI: 10.1093/femsyr/foaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Saccharomyces cerevisiae is a promising microbial cell factory. However, the overflow metabolism, known as the Crabtree effect, directs the majority of the carbon source toward ethanol production, in many cases, resulting in low yields of other target chemicals and byproducts accumulation. To construct Crabtree-negative S. cerevisiae, the deletion of pyruvate decarboxylases and/or ethanol dehydrogenases is required. However, these modifications compromises the growth of the strains on glucose. This review discusses the metabolic engineering approaches used to eliminate ethanol production, the efforts to alleviate growth defect of Crabtree-negative strains, and the underlying mechanisms of the growth rescue. In addition, it summarizes the applications of Crabtree-negative S. cerevisiae in the synthesis of various chemicals such as lactic acid, 2,3-butanediol, malic acid, succinic acid, isobutanol, and others.
Collapse
Affiliation(s)
- Yalin Guo
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Zhen Xiong
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Haotian Zhai
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Yuqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, PR China
| |
Collapse
|
3
|
Wang Y, Wang Y, Cui J, Wu C, Yu B, Wang L. Non-conventional yeasts: promising cell factories for organic acid bioproduction. Trends Biotechnol 2025:S0167-7799(24)00364-0. [PMID: 39799011 DOI: 10.1016/j.tibtech.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025]
Abstract
Microbial production of organic acids has been hindered by the poor acid tolerance of microorganisms and the high costs of waste salt reprocessing. The robustness of non-conventional microorganisms in an acidic environment makes it possible to produce organic acids at low pH and greatly simplifies downstream processing. In this review we discuss the environmental adaptability features of non-conventional yeasts, as well as the latest developments in genomic engineering strategies that have facilitated metabolic engineering of these strains. We also use selected examples of three-carbon (C3), C4, and C6 organic acids to illustrate the ongoing efforts and challenges of using non-conventional yeasts for organic acid production. This review provides theoretical guidance for the construction of highly robust organic acid producers.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakai Cui
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Chenchen Wu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Limin Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Sun D, Li Y, Yin X, Fan Y, Liu J, Wang Y, Liu X, Bai G, Li K, Shi Y, Liu P, Zhang Y, Wang H. Utilizing Engineered Bacteria as "Cell Factories" In Vivo for Intracellular RNA-Loaded Outer Membrane Vesicles' Self-Assembly in Tumor Treatment. ACS NANO 2024; 18:35296-35309. [PMID: 39692732 DOI: 10.1021/acsnano.4c11412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Delivery systems play a crucial role in RNA therapy. However, the current RNA delivery system involves complex preparation and transport processes, requiring RNA preassembly in vitro, transportation at low temperatures throughout, and possibly multiple injections for improved therapeutic efficacy. To address these challenges, we developed a simple and efficient RNA delivery system. This system only requires the injection of engineered bacteria, which serve as in vivo "cell factories" for continuous production of the target RNA. The RNA can self-assemble with engineered bacteria's outer membrane vesicles (OMVs), facilitating in vivo RNA delivery. Experimental results demonstrated that this system allowed effective delivery with excellent stability and continuity for various types of RNA, including mRNA, miRNA, and siRNA. And the relative abundance of target RNA in the OMVs was 104-107 times higher than that in the mock group. We took the delivery of PD-L1 siRNA for tumor treatment as an example and found that this system could effectively downregulate the gene expression of PD-L1 by approximately twofold. Notably, a single injection of engineered bacteria achieved a significant tumor suppression of 49.37% in vivo. This research provides promising insights into the RNA delivery system for tumor therapy.
Collapse
Affiliation(s)
- Dawei Sun
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Yize Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxuan Yin
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Yali Fan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Liu
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Yaxin Wang
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Xinyu Liu
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Guijie Bai
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Ke Li
- Tianjin Children's Hospital, Tianjin 300072, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Peiyuan Liu
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Hanjie Wang
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Yin MQ, Xu K, Luan T, Kang XL, Yang XY, Li HX, Hou YH, Zhao JZ, Bao XM. Metabolic engineering for compartmentalized biosynthesis of the valuable compounds in Saccharomyces cerevisiae. Microbiol Res 2024; 286:127815. [PMID: 38944943 DOI: 10.1016/j.micres.2024.127815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Saccharomyces cerevisiae is commonly used as a microbial cell factory to produce high-value compounds or bulk chemicals due to its genetic operability and suitable intracellular physiological environment. The current biosynthesis pathway for targeted products is primarily rewired in the cytosolic compartment. However, the related precursors, enzymes, and cofactors are frequently distributed in various subcellular compartments, which may limit targeted compounds biosynthesis. To overcome above mentioned limitations, the biosynthesis pathways are localized in different subcellular organelles for product biosynthesis. Subcellular compartmentalization in the production of targeted compounds offers several advantages, mainly relieving competition for precursors from side pathways, improving biosynthesis efficiency in confined spaces, and alleviating the cytotoxicity of certain hydrophobic products. In recent years, subcellular compartmentalization in targeted compound biosynthesis has received extensive attention and has met satisfactory expectations. In this review, we summarize the recent advances in the compartmentalized biosynthesis of the valuable compounds in S. cerevisiae, including terpenoids, sterols, alkaloids, organic acids, and fatty alcohols, etc. Additionally, we describe the characteristics and suitability of different organelles for specific compounds, based on the optimization of pathway reconstruction, cofactor supplementation, and the synthesis of key precursors (metabolites). Finally, we discuss the current challenges and strategies in the field of compartmentalized biosynthesis through subcellular engineering, which will facilitate the production of the complex valuable compounds and offer potential solutions to improve product specificity and productivity in industrial processes.
Collapse
Affiliation(s)
- Meng-Qi Yin
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tao Luan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiu-Long Kang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiao-Yu Yang
- Institute of Food and Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hong-Xing Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yun-Hua Hou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian-Zhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; A State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, China.
| | - Xiao-Ming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
6
|
Guo E, Zhao L, Li Z, Chen L, Li J, Lu F, Wang F, Lu K, Liu Y. Biodegradation of bisphenol A by a Pichia pastoris whole-cell biocatalyst with overexpression of laccase from Bacillus pumilus and investigation of its potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134779. [PMID: 38850935 DOI: 10.1016/j.jhazmat.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.
Collapse
Affiliation(s)
- Enping Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Kui Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Seligmann B, Liu S, Franke J. Chemical tools for unpicking plant specialised metabolic pathways. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102554. [PMID: 38820646 DOI: 10.1016/j.pbi.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Elucidating the biochemical pathways of specialised metabolites in plants is key to enable or improve their sustainable biotechnological production. Chemical tools can greatly facilitate the discovery of biosynthetic genes and enzymes. Here, we summarise transdisciplinary approaches where methods from chemistry and chemical biology helped to overcome key challenges of pathway elucidation. Based on recent examples, we describe how state-of-the-art isotope labelling experiments can guide the selection of biosynthetic gene candidates, how affinity-based probes enable the identification of novel enzymes, how semisynthesis can improve the availability of elusive pathway intermediates, and how biomimetic reactions provide a better understanding of inherent chemical reactivity. We anticipate that a wider application of such chemical methods will accelerate the pace of pathway elucidation in plants.
Collapse
Affiliation(s)
- Benedikt Seligmann
- Leibniz University Hannover, Institute of Botany, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Shenyu Liu
- Leibniz University Hannover, Centre of Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| | - Jakob Franke
- Leibniz University Hannover, Institute of Botany, Herrenhäuser Str. 2, 30419 Hannover, Germany; Leibniz University Hannover, Centre of Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany.
| |
Collapse
|
8
|
Liu F, Sun X, Zhou J, Li J, Chen J, Du G, Zhao X. Efficient biosynthesis of active hemoglobins through enhancing the import of heme in Saccharomyces cerevisiae. FEBS J 2024; 291:3737-3748. [PMID: 38865576 DOI: 10.1111/febs.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/22/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Hemoglobins, with heme as a cofactor, are functional proteins that have extensive applications in the fields of artificial oxygen carriers and foods. Although Saccharomyces cerevisiae is an ideal host for hemoglobin synthesis, it lacks a suitable transport system to utilize additional heme for active expression of hemoglobins, resulting in the cellular aggregation and degradation of the latter. Here, an effective heme importer, heme-responsive gene 4 (Hrg-4), was selected from six candidates through the comparison of effects on the growth rates of Δhem1 S. cerevisiae strain and the activities of various hemoglobins when supplemented with 5 mg·L-1 exogenous heme. Additionally, to counter the instability of plasmid-based expression and the metabolic burden introduced from overexpressing Hrg-4, a series of hrg-4 integrated strains were constructed and the best engineered strain with five copies of hrg-4 was chosen. We found that this engineered strain was associated with an increased binding rate of heme in monomeric leghemoglobin and multimeric human hemoglobin (76.3% and 16.5%, respectively), as well as an enhanced expression of both hemoglobins (52.8% and 17.0%, respectively). Thus, the engineered strain with improved heme uptake can be used to efficiently synthesize other heme-binding proteins and enzymes in S. cerevisiae.
Collapse
Affiliation(s)
- Fan Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyan Sun
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Perrot T, Marc J, Lezin E, Papon N, Besseau S, Courdavault V. Emerging trends in production of plant natural products and new-to-nature biopharmaceuticals in yeast. Curr Opin Biotechnol 2024; 87:103098. [PMID: 38452572 DOI: 10.1016/j.copbio.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Natural products represent an inestimable source of valuable compounds for human health. Notably, those produced by plants remain challenging to access due to their low production. Potential shortages of plant-derived biopharmaceuticals caused by climate change or pandemics also regularly tense the market trends. Thus, biotechnological alternatives of supply based on synthetic biology have emerged. These innovative strategies mostly rely on the use of engineered microbial systems for compound synthesis. In this regard, yeasts remain the easiest-tractable eukaryotic models and a convenient chassis for reconstructing whole biosynthetic routes for the heterologous production of plant-derived metabolites. Here, we highlight the recent discoveries dedicated to the bioproduction of new-to-nature compounds in yeasts and provide an overview of emerging strategies for optimising bioproduction.
Collapse
Affiliation(s)
- Thomas Perrot
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Jillian Marc
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France.
| |
Collapse
|
10
|
Su B, Lai P, Deng MR, Zhu H. Global rewiring of lipid metabolism to produce carotenoid by deleting the transcription factor genes ino2/ino4 in Saccharomyces cerevisiae. Int J Biol Macromol 2024; 264:130400. [PMID: 38412934 DOI: 10.1016/j.ijbiomac.2024.130400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/03/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
The transcription factor complex INO2 and INO4 in Saccharomyces cerevisiae plays a vital role in lipid biosynthesis by activating multiple genes in the biosynthetic pathways of phospholipid, fatty acid, and sterol. Previous studies have reported conflicting results regarding the effects of ino2 and ino4 gene expression levels on target chemicals. Therefore, this study aimed to examine the influence of different ino2 and ino4 expression levels on carotenoid production (e.g., lycopene), which shares a common precursor, acetyl-CoA, with lipid metabolism. Surprisingly, 2.6- and 1.8-fold increase in lycopene yield in the ino2 and ino4 deletion strains were found, respectively. In contrast, ino2 overexpression did not promote lycopene accumulation. Additionally, there was a decrease in intracellular free fatty acids in the ino2 deletion strain. Comparative transcriptome analysis revealed a significant downregulation of genes related to lipid biosynthesis in the ino2 deletion strain. To our knowledge, this is the first report showing that deletion of transcription factor genes ino2 and ino4 can facilitate lycopene accumulation. These findings hold significant implications for the development of metabolically engineered S. cerevisiae with enhanced carotenoid production.
Collapse
Affiliation(s)
- Buli Su
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Peixuan Lai
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China.
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China.
| |
Collapse
|
11
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Zhou P, Gao C, Song W, Wei W, Wu J, Liu L, Chen X. Engineering status of protein for improving microbial cell factories. Biotechnol Adv 2024; 70:108282. [PMID: 37939975 DOI: 10.1016/j.biotechadv.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
With the development of metabolic engineering and synthetic biology, microbial cell factories (MCFs) have provided an efficient and sustainable method to synthesize a series of chemicals from renewable feedstocks. However, the efficiency of MCFs is usually limited by the inappropriate status of protein. Thus, engineering status of protein is essential to achieve efficient bioproduction with high titer, yield and productivity. In this review, we summarize the engineering strategies for metabolic protein status, including protein engineering for boosting microbial catalytic efficiency, protein modification for regulating microbial metabolic capacity, and protein assembly for enhancing microbial synthetic capacity. Finally, we highlight future challenges and prospects of improving microbial cell factories by engineering status of protein.
Collapse
Affiliation(s)
- Pei Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Current achievements, strategies, obstacles, and overcoming the challenges of the protein engineering in Pichia pastoris expression system. World J Microbiol Biotechnol 2023; 40:39. [PMID: 38062216 DOI: 10.1007/s11274-023-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Luo Z, Yan Y, Du S, Zhu Y, Pan F, Wang R, Xu Z, Xu X, Li S, Xu H. Recent advances and prospects of Bacillus amyloliquefaciens as microbial cell factories: from rational design to industrial applications. Crit Rev Biotechnol 2023; 43:1073-1091. [PMID: 35997331 DOI: 10.1080/07388551.2022.2095499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Bacillus amyloliquefaciens is one of the most characterized Gram-positive bacteria. This species has unique characteristics that are beneficial for industrial applications, including its utilization of: cheap carbon as a substrate, a transparent genetic background, and large-scale robustness in fermentation. Indeed, the productivity characteristics of B. amyloliquefaciens have been thoroughly analyzed and further optimized through systems biology and synthetic biology techniques. Following the analysis of multiple engineering design strategies, B. amyloliquefaciens is now considered an efficient cell factory capable of producing large quantities of multiple products from various raw materials. In this review, we discuss the significant potential advantages offered by B. amyloliquefaciens as a platform for metabolic engineering and industrial applications. In addition, we systematically summarize the recent laboratory research and industrial application of B. amyloliquefaciens, including: relevant advances in systems and synthetic biology, various strategies adopted to improve the cellular performances of synthetic chemicals, as well as the latest progress in the synthesis of certain important products by B. amyloliquefaciens. Finally, we propose the current challenges and essential strategies to usher in an era of broader B. amyloliquefaciens use as microbial cell factories.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
15
|
Zhao B, Zhao J, Wang M, Guo Y, Mehmood A, Wang W, Xiong Y, Luo S, Wei DQ, Zhao XQ, Wang Y. Exploring microproteins from various model organisms using the mip-mining database. BMC Genomics 2023; 24:661. [PMID: 37919660 PMCID: PMC10623795 DOI: 10.1186/s12864-023-09735-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Microproteins, prevalent across all kingdoms of life, play a crucial role in cell physiology and human health. Although global gene transcription is widely explored and abundantly available, our understanding of microprotein functions using transcriptome data is still limited. To mitigate this problem, we present a database, Mip-mining ( https://weilab.sjtu.edu.cn/mipmining/ ), underpinned by high-quality RNA-sequencing data exclusively aimed at analyzing microprotein functions. The Mip-mining hosts 336 sets of high-quality transcriptome data from 8626 samples and nine representative living organisms, including microorganisms, plants, animals, and humans, in our Mip-mining database. Our database specifically provides a focus on a range of diseases and environmental stress conditions, taking into account chemical, physical, biological, and diseases-related stresses. Comparatively, our platform enables customized analysis by inputting desired data sets with self-determined cutoff values. The practicality of Mip-mining is demonstrated by identifying essential microproteins in different species and revealing the importance of ATP15 in the acetic acid stress tolerance of budding yeast. We believe that Mip-mining will facilitate a greater understanding and application of microproteins in biotechnology. Moreover, it will be beneficial for designing therapeutic strategies under various biological conditions.
Collapse
Affiliation(s)
- Bowen Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muyao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangfan Guo
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Aamir Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weibin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China
| | - Shenggan Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China.
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, 518055, Guangdong, China.
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
17
|
Perrot T, Besseau S, Papon N, Courdavault V. Gaining access to acetyl-CoA by peroxisomal surface display. Synth Syst Biotechnol 2023; 8:224-226. [PMID: 36936387 PMCID: PMC10020669 DOI: 10.1016/j.synbio.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Synthetic biology is constantly making progress for producing compounds on demand. Recently, Yocum and collaborators have developed an outstanding approach based on the anchoring of biosynthetic enzymes to the peroxisomal membrane. This allowed access to an untapped resource of acetyl-CoA and stimulated the synthesis of a valuable polyketide.
Collapse
Affiliation(s)
- Thomas Perrot
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université de Tours, Tours, France
- Corresponding author.
| |
Collapse
|
18
|
Xu YS, Ma W, Li J, Huang PW, Sun XM, Huang H. Metal cofactor regulation combined with rational genetic engineering of Schizochytrium sp. for high-yield production of squalene. Biotechnol Bioeng 2023; 120:1026-1037. [PMID: 36522292 DOI: 10.1002/bit.28311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The increasing market demand for squalene requires novel biotechnological production platforms. Schizochytrium sp. is an industrial oleaginous host with a high potential for squalene production due to its abundant native acetyl-CoA pool. We first found that iron starvation led to the accumulation of 1.5 g/L of squalene by Schizochytrium sp., which was 40-fold higher than in the control. Subsequent transcriptomic and lipidomic analyses showed that the high squalene titer is due to the diversion of precursors from lipid biosynthesis and increased triglycerides (TAG) content for squalene storage. Furthermore, we constructed the engineered acetyl-CoA C-acetyltransferase (ACAT)-overexpressing strain 18S::ACAT, which produced 2.79 g/L of squalene, representing an 86% increase over the original strain. Finally, a nitrogen-rich feeding strategy was developed to further increase the squalene titer of the engineered strain, which reached 10.78 g/L in fed-batch fermentation, a remarkable 161-fold increase over the control. To our best knowledge, this is the highest squalene yield in thraustochytrids reported to date.
Collapse
Affiliation(s)
- Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
19
|
Wu Y, Gong FL, Li S. Leveraging yeast to characterize plant biosynthetic gene clusters. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102314. [PMID: 36463029 PMCID: PMC10664738 DOI: 10.1016/j.pbi.2022.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Plant biosynthetic gene clusters (BGCs) contain multiple physically clustered non-homologous genes that encode enzymes catalyzing diverse reactions in one plant natural product biosynthetic pathway. A growing number of plant BGCs have emerged as an underlying resource for understanding plant specialized metabolism and evolution, but the characterization remains challenging. Recent studies have demonstrated that baker's yeast can serve as a versatile platform for the characterization of plant BGCs, from single-gene characterization to multiple genes and hitherto unknown putative BGC validation and elucidation. In this review, we will summarize the strategies and examples of the applications of yeast in plant BGC characterization and share our perspective on the development of a systematic pipeline to fully leverage yeast to advance the understanding of plant BGCs and plant natural product biomanufacturing.
Collapse
Affiliation(s)
- Yinan Wu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Franklin L Gong
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Harnessing Cellular Organelles to Bring New Functionalities into Yeast. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-022-0195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Perrin J, Besseau S, Papon N, Courdavault V. Boosting lignan-precursor synthesis in yeast cell factories through co-factor supply optimization. Front Bioeng Biotechnol 2022; 10:1079801. [DOI: 10.3389/fbioe.2022.1079801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
|
22
|
Szent-Gyorgyi C, Perkins LA, Schmidt BF, Liu Z, Bruchez MP, van de Weerd R. Bottom-Up Design: A Modular Golden Gate Assembly Platform of Yeast Plasmids for Simultaneous Secretion and Surface Display of Distinct FAP Fusion Proteins. ACS Synth Biol 2022; 11:3681-3698. [PMID: 36260923 DOI: 10.1021/acssynbio.2c00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A need in synthetic biology is the ability to precisely and efficiently make flexible fully designed vectors that addresses challenging cloning strategies of single plasmids that rely on combinatorial co-expression of a multitude of target and bait fusion reporters useful in projects like library screens. For these strategies, the regulatory elements and functional components need to correspond perfectly to project specific sequence elements that facilitate easy exchange of these elements. This requires systematic implementation and building on recent improvements in Golden Gate (GG) that ensures high cloning efficiency for such complex vectors. Currently, this is not addressed in the variety of molecular GG cloning techniques in synthetic biology. Here, we present the bottom-up design and plasmid synthesis to prepare 10 kb functional yeast secrete and display plasmids that uses an optimized version of GG in combination with fluorogen-activating protein reporter technology. This allowed us to demonstrate nanobody/target protein interactions in a single cell, as detected by cell surface retention of secreted target proteins by cognate nanobodies. This validates the GG constructional approach and suggests a new approach for discovering protein interactions. Our GG assembly platform paves the way for vector-based library screening and can be used for other recombinant GG platforms.
Collapse
Affiliation(s)
- Christopher Szent-Gyorgyi
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lydia A Perkins
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Brigitte F Schmidt
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhen Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel P Bruchez
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert van de Weerd
- Molecular Biosensor & Imaging Center (MBIC), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Cuello C, Stander EA, Jansen HJ, Dugé de Bernonville T, Lanoue A, Giglioli-Guivarc'h N, Papon N, Dirks RP, Jensen MK, O'Connor SE, Besseau S, Courdavault V. Genome Assembly of the Medicinal Plant Voacanga thouarsii. Genome Biol Evol 2022; 14:evac158. [PMID: 36300641 PMCID: PMC9673491 DOI: 10.1093/gbe/evac158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/26/2023] Open
Abstract
The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alkaloids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumulates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential identification of new MIA biosynthetic genes for metabolic engineering purposes.
Collapse
Affiliation(s)
- Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | | | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| |
Collapse
|
24
|
Advances in Komagataella phaffii Engineering for the Production of Renewable Chemicals and Proteins. FERMENTATION 2022. [DOI: 10.3390/fermentation8110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The need for a more sustainable society has prompted the development of bio-based processes to produce fuels, chemicals, and materials in substitution for fossil-based ones. In this context, microorganisms have been employed to convert renewable carbon sources into various products. The methylotrophic yeast Komagataella phaffii has been extensively used in the production of heterologous proteins. More recently, it has been explored as a host organism to produce various chemicals through new metabolic engineering and synthetic biology tools. This review first summarizes Komagataella taxonomy and diversity and then highlights the recent approaches in cell engineering to produce renewable chemicals and proteins. Finally, strategies to optimize and develop new fermentative processes using K. phaffii as a cell factory are presented and discussed. The yeast K. phaffii shows an outstanding performance for renewable chemicals and protein production due to its ability to metabolize different carbon sources and the availability of engineering tools. Indeed, it has been employed in producing alcohols, carboxylic acids, proteins, and other compounds using different carbon sources, including glycerol, glucose, xylose, methanol, and even CO2.
Collapse
|
25
|
Tan YS, Zhang RK, Liu ZH, Li BZ, Yuan YJ. Microbial Adaptation to Enhance Stress Tolerance. Front Microbiol 2022; 13:888746. [PMID: 35572687 PMCID: PMC9093737 DOI: 10.3389/fmicb.2022.888746] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/28/2023] Open
Abstract
Microbial cell factories have been widely used in the production of various chemicals. Although synthetic biology is useful in improving the cell factories, adaptation is still widely applied to enhance its complex properties. Adaptation is an important strategy for enhancing stress tolerance in microbial cell factories. Adaptation involves gradual modifications of microorganisms in a stressful environment to enhance their tolerance. During adaptation, microorganisms use different mechanisms to enhance non-preferred substrate utilization and stress tolerance, thereby improving their ability to adapt for growth and survival. In this paper, the progress on the effects of adaptation on microbial substrate utilization capacity and environmental stress tolerance are reviewed, and the mechanisms involved in enhancing microbial adaptive capacity are discussed.
Collapse
Affiliation(s)
- Yong-Shui Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Ren-Kuan Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Su B, Lai P, Yang F, Li A, Deng MR, Zhu H. Engineering a Balanced Acetyl Coenzyme A Metabolism in Saccharomyces cerevisiae for Lycopene Production through Rational and Evolutionary Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4019-4029. [PMID: 35319878 DOI: 10.1021/acs.jafc.2c00531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Saccharomyces cerevisiae is increasingly being used for the production of chemicals derived from acetyl coenzyme A (acetyl-CoA). However, the inadequate supply of cytosolic acetyl-CoA often leads to low yields. Here, we developed a novel strategy for balancing acetyl-CoA metabolism and increasing the amount of the downstream product. First, the combination of acetaldehyde dehydrogenase (eutE) and acetoacetyl-CoA thiolase (AtoB) was optimized to redirect the acetyl-CoA flux toward the target pathway, with a 21-fold improvement in mevalonic acid production. Second, pathway engineering and evolutionary engineering were conducted to attenuate the growth deficiency, and a 10-fold improvement of the maximum productivity was achieved. Third, acetyl-CoA carboxylase (ACC1) was dynamically downregulated as the complementary acetyl-CoA pathway, and the yield was improved more than twofold. Fourth, the most efficient and complementary acetyl-CoA pathways were combined, and the final strain produced 68 mg/g CDW lycopene, which was among the highest yields reported in S. cerevisiae. This study demonstrates a new method of producing lycopene products by regulating acetyl-CoA metabolism.
Collapse
Affiliation(s)
- Buli Su
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Peixuan Lai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Fan Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Anzhang Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
27
|
Koudounas K, Guirimand G, Hoyos LFR, Carqueijeiro I, Cruz PL, Stander E, Kulagina N, Perrin J, Oudin A, Besseau S, Lanoue A, Atehortùa L, St-Pierre B, Giglioli-Guivarc'h N, Papon N, O'Connor SE, Courdavault V. Tonoplast and Peroxisome Targeting of γ-tocopherol N-methyltransferase Homologs Involved in the Synthesis of Monoterpene Indole Alkaloids. PLANT & CELL PHYSIOLOGY 2022; 63:200-216. [PMID: 35166361 DOI: 10.1093/pcp/pcab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.
Collapse
Affiliation(s)
- Konstantinos Koudounas
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Luisa Fernanda Rojas Hoyos
- Grupo de Biotransformación-Escuela de Microbiología, Universidad de Antioquia, Calle 70 No 52-21, A.A 1226, Medellín, Colombia
| | - Ines Carqueijeiro
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Pamela Lemos Cruz
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Emily Stander
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Natalja Kulagina
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Jennifer Perrin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Audrey Oudin
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Sébastien Besseau
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Arnaud Lanoue
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellin 50010, Colombia
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
| | | | - Nicolas Papon
- GEIHP, SFR ICAT, University of Angers, Université de Bretagne Occidentale, 4 rue de Larrey - F49933, Angers 49000, France
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Vincent Courdavault
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 31 Av. Monge, Tours 37200, France
- Graduate School of Sciences, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
28
|
Qian Z, Liu Q, Cai M. Investigating Fungal Biosynthetic Pathways Using Pichia pastoris as a Heterologous Host. Methods Mol Biol 2022; 2489:115-127. [PMID: 35524048 DOI: 10.1007/978-1-0716-2273-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal natural products have extensive biological activities, and thus have been largely commercialized in the pharmaceutical, agricultural, and food industries. Recently, heterologous expression has become an irreplaceable technique to functionalize fungal biosynthetic gene clusters and synthesize fungal natural products in various chassis organisms. This chapter describes the general method of using Pichia pastoris as a chassis host to investigate fungal biosynthetic pathways.
Collapse
Affiliation(s)
- Zhilan Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
29
|
Papon N, Copp BR, Courdavault V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol Adv 2021; 54:107871. [PMID: 34801661 DOI: 10.1016/j.biotechadv.2021.107871] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The marine environment is a huge reservoir of biodiversity and represents an excellent source of chemical compounds, some of which have large economical values. In the urgent quest for new pharmaceuticals, marine-based drug discovery has progressed significantly over the past several decades and we now benefit from a series of approved marine natural products (MNPs) to treat cancer and pain while an additional collection of promising leads are in clinical trials. However, the discovery and supply of MNPs has always been challenging given their low bioavailability and structural complexity. Their manufacture for pre-clinical and clinical development but also commercialization mainly relies upon marine source extraction and chemical synthesis, which are associated with high costs, unsustainability and severe environmental problems. In this review, we discuss how metabolic engineering now raises reasonable expectations for the implementation of microbial cell factories, which may provide a sustainable approach for MNP-based drug supply in the near future.
Collapse
Affiliation(s)
- Nicolas Papon
- Univ. Angers, Univ. Brest, GEIHP, SFR ICAT, F-49000 Angers, France.
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France.
| |
Collapse
|
30
|
Kulagina N, Guirimand G, Melin C, Lemos‐Cruz P, Carqueijeiro I, De Craene J, Oudin A, Heredia V, Koudounas K, Unlubayir M, Lanoue A, Imbault N, St‐Pierre B, Papon N, Clastre M, Giglioli‐Guivarc’h N, Marc J, Besseau S, Courdavault V. Enhanced bioproduction of anticancer precursor vindoline by yeast cell factories. Microb Biotechnol 2021; 14:2693-2699. [PMID: 34302444 PMCID: PMC8601169 DOI: 10.1111/1751-7915.13898] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022] Open
Abstract
The pharmaceutical industry faces a growing demand and recurrent shortages in many anticancer plant drugs given their extensive use in human chemotherapy. Efficient alternative strategies of supply of these natural products such as bioproduction by microorganisms are needed to ensure stable and massive manufacturing. Here, we developed and optimized yeast cell factories efficiently converting tabersonine to vindoline, a precursor of the major anticancer alkaloids vinblastine and vincristine. First, fine-tuning of heterologous gene copies restrained side metabolites synthesis towards vindoline production. Tabersonine to vindoline bioconversion was further enhanced through a rational medium optimization (pH, composition) and a sequential feeding strategy. Finally, a vindoline titre of 266 mg l-1 (88% yield) was reached in an optimized fed-batch bioreactor. This precursor-directed synthesis of vindoline thus paves the way towards future industrial bioproduction through the valorization of abundant tabersonine resources.
Collapse
Affiliation(s)
- Natalja Kulagina
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Grégory Guirimand
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
- Graduate School of Sciences, Technology and InnovationKobe UniversityKobeJapan
- Le Studium Loire Valley Institute for Advanced StudiesOrléans & ToursFrance
| | - Céline Melin
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Pamela Lemos‐Cruz
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Ines Carqueijeiro
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | | | - Audrey Oudin
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Vladimir Heredia
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | | | - Marianne Unlubayir
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Arnaud Lanoue
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Nadine Imbault
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Benoit St‐Pierre
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Nicolas Papon
- Université d'AngersEA3142 Groupe d'Etude des Interactions Hôte‐PathogèneAngersFrance
| | - Marc Clastre
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | | | - Jillian Marc
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Sébastien Besseau
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| | - Vincent Courdavault
- Université de ToursEA2106 Biomolécules et Biotechnologies VégétalesToursFrance
| |
Collapse
|
31
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
32
|
Efficient Terpene Production by Marine Thraustochytrids: Shedding Light on the Thermodynamic Driving Force. mBio 2021; 12:e0197621. [PMID: 34579577 PMCID: PMC8546548 DOI: 10.1128/mbio.01976-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Terpenoids, such as squalene, are valuable compounds for cosmetic and drug industries, the supply of which is often limited by natural sources. Alternative production strategies have been investigated for decades but remain challenging due to low yields. In a recent study, Zhang and coworkers (A. Zhang, K. Mernitz, C. Wu, W. Xiong, et al., mBio 12:e0088121, 2021, https://doi.org/10.1128/mBio.00881-21) report the potential use of marine thraustochytrid metabolic thermodynamics in effective terpene engineering. Through comparative proteomics and metabolomics, as well as thermodynamic modeling, the authors demonstrated sodium-induced changes in thraustochytrid metabolism leading to a twofold increase in squalene accumulation. The differential abundances of the metabolic enzymes and metabolites, as well as higher respiration, indicated the metabolic shift from carbohydrate to lipid oxidation and increased ATP input to the mevalonate pathway and squalene synthesis. This breakthrough provides new important insights into microbial terpene metabolic engineering but above all displays thermodynamics as a valuable tool in metabolic engineering.
Collapse
|
33
|
Kulagina N, Besseau S, Godon C, Goldman GH, Papon N, Courdavault V. Yeasts as Biopharmaceutical Production Platforms. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733492. [PMID: 37744146 PMCID: PMC10512354 DOI: 10.3389/ffunb.2021.733492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 09/26/2023]
Affiliation(s)
- Natalja Kulagina
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Sébastien Besseau
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Charlotte Godon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Gustavo H. Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nicolas Papon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| |
Collapse
|
34
|
Torres-Haro A, Verdín J, Kirchmayr MR, Arellano-Plaza M. Metabolic engineering for high yield synthesis of astaxanthin in Xanthophyllomyces dendrorhous. Microb Cell Fact 2021; 20:175. [PMID: 34488760 PMCID: PMC8420053 DOI: 10.1186/s12934-021-01664-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Astaxanthin is a carotenoid with a number of assets useful for the food, cosmetic and pharmaceutical industries. Nowadays, it is mainly produced by chemical synthesis. However, the process leads to an enantiomeric mixture where the biologically assimilable forms (3R, 3'R or 3S, 3'S) are a minority. Microbial production of (3R, 3'R) astaxanthin by Xanthophyllomyces dendrorhous is an appealing alternative due to its fast growth rate and easy large-scale production. In order to increase X. dendrorhous astaxanthin yields, random mutant strains able to produce from 6 to 10 mg/g dry mass have been generated; nevertheless, they often are unstable. On the other hand, site-directed mutant strains have also been obtained, but they increase only the yield of non-astaxanthin carotenoids. In this review, we insightfully analyze the metabolic carbon flow converging in astaxanthin biosynthesis and, by integrating the biological features of X. dendrorhous with available metabolic, genomic, transcriptomic, and proteomic data, as well as the knowledge gained with random and site-directed mutants that lead to increased carotenoids yield, we propose new metabolic engineering targets to increase astaxanthin biosynthesis.
Collapse
Affiliation(s)
- Alejandro Torres-Haro
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Jorge Verdín
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Manuel R Kirchmayr
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Melchor Arellano-Plaza
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, Col. El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico.
| |
Collapse
|
35
|
Kang NK, Lee JW, Ort DR, Jin YS. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Biotechnol J 2021; 17:e2000431. [PMID: 34390209 DOI: 10.1002/biot.202000431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/07/2022]
Abstract
L-malic acid is widely used in the food, chemical, and pharmaceutical industries. Here, we report on production of malic acid from xylose, the second most abundant sugar in lignocellulosic hydrolysates, by engineered Saccharomyces cerevisiae. To enable malic acid production in a xylose-assimilating S. cerevisiae, we overexpressed PYC1 and PYC2, coding for pyruvate carboxylases, a truncated MDH3 coding for malate dehydrogenase, and SpMAE1, coding for a Schizosaccharomyces pombe malate transporter. Additionally, both the ethanol and glycerol-producing pathways were blocked to enhance malic acid production. The resulting strain produced malic acid from both glucose and xylose, but it produced much higher titers of malic acid from xylose than glucose. Interestingly, the engineered strain had higher malic acid yield from lower concentrations (10 g/L) of xylose, with no ethanol production, than from higher xylose concentrations (20 g/L and 40 g/L). As such, a fed-batch culture maintaining xylose concentrations at low levels was conducted and 61.2 g/L of malic acid was produced, with a productivity of 0.32 g/L∙h. These results represent successful engineering of S. cerevisiae for the production of malic acid from xylose, confirming that that xylose offers the efficient production of various biofuels and chemicals by engineered S. cerevisiae. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jae Won Lee
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
36
|
Lemos Cruz P, Kulagina N, Guirimand G, De Craene JO, Besseau S, Lanoue A, Oudin A, Giglioli-Guivarc’h N, Papon N, Clastre M, Courdavault V. Optimization of Tabersonine Methoxylation to Increase Vindoline Precursor Synthesis in Yeast Cell Factories. Molecules 2021; 26:3596. [PMID: 34208368 PMCID: PMC8231165 DOI: 10.3390/molecules26123596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Plant specialized metabolites are widely used in the pharmaceutical industry, including the monoterpene indole alkaloids (MIAs) vinblastine and vincristine, which both display anticancer activity. Both compounds can be obtained through the chemical condensation of their precursors vindoline and catharanthine extracted from leaves of the Madagascar periwinkle. However, the extensive use of these molecules in chemotherapy increases precursor demand and results in recurrent shortages, explaining why the development of alternative production approaches, such microbial cell factories, is mandatory. In this context, the precursor-directed biosynthesis of vindoline from tabersonine in yeast-expressing heterologous biosynthetic genes is of particular interest but has not reached high production scales to date. To circumvent production bottlenecks, the metabolic flux was channeled towards the MIA of interest by modulating the copy number of the first two genes of the vindoline biosynthetic pathway, namely tabersonine 16-hydroxylase and tabersonine-16-O-methyltransferase. Increasing gene copies resulted in an optimized methoxylation of tabersonine and overcame the competition for tabersonine access with the third enzyme of the pathway, tabersonine 3-oxygenase, which exhibits a high substrate promiscuity. Through this approach, we successfully created a yeast strain that produces the fourth biosynthetic intermediate of vindoline without accumulation of other intermediates or undesired side-products. This optimization will probably pave the way towards the future development of yeast cell factories to produce vindoline at an industrial scale.
Collapse
Affiliation(s)
- Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Natalja Kulagina
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Grégory Guirimand
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans & Tours, France
| | - Johan-Owen De Craene
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Nathalie Giglioli-Guivarc’h
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, F-49000 Angers, France;
| | - Marc Clastre
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37000 Tours, France; (P.L.C.); (N.K.); (G.G.); (J.-O.D.C.); (S.B.); (A.L.); (A.O.); (N.G.-G.); (M.C.)
| |
Collapse
|
37
|
Courdavault V, O'Connor SE, Jensen MK, Papon N. Metabolic engineering for plant natural products biosynthesis: new procedures, concrete achievements and remaining limits. Nat Prod Rep 2021; 38:2145-2153. [PMID: 33969366 DOI: 10.1039/d0np00092b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microorganisms and plants represent major sources of natural compounds with a plethora of bioactive properties. Among these, plant natural products (PNPs) remain indispensable to human health. With few exceptions, PNP-based pharmaceuticals come from plant specialized metabolisms and display a structure far too complex for a profitable production by total chemical synthesis. Accordingly, their industrial processes of supply are still mostly based on the extraction of final products or precursors directly from plant materials. This implies that particular contexts (e.g. pandemics, climate changes) and natural resource overexploitation are main drivers for the high production cost and recurrent supply shortages. Recently, biotechnological manufacturing alternatives gave rise to a multitude of benchmark studies implementing the production of important PNPs in various heterologous hosts. Here, we spotlight unprecedented advancements in the field of metabolic engineering dedicated to the heterologous production of a prominent series of PNPs that were achieved during the year 2020. We also discuss how the knowledge accumulated in recent years could pave the way for a broader manufacturing palette of natural products from a wide range of natural resources.
Collapse
Affiliation(s)
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, UNIV Angers, SFR 4208 ICAT, Angers, France
| |
Collapse
|
38
|
Kulagina N, Besseau S, Papon N, Courdavault V. Peroxisomes: A New Hub for Metabolic Engineering in Yeast. Front Bioeng Biotechnol 2021; 9:659431. [PMID: 33898407 PMCID: PMC8058402 DOI: 10.3389/fbioe.2021.659431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Natalja Kulagina
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Sébastien Besseau
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Nicolas Papon
- Université d'Angers, EA3142 "Groupe d'Etude des Interactions Hôte-Pathogène", Angers, France
| | - Vincent Courdavault
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| |
Collapse
|
39
|
Yocum HC, Pham A, Da Silva NA. Successful Enzyme Colocalization Strategies in Yeast for Increased Synthesis of Non-native Products. Front Bioeng Biotechnol 2021; 9:606795. [PMID: 33634084 PMCID: PMC7901933 DOI: 10.3389/fbioe.2021.606795] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Yeast cell factories, particularly Saccharomyces cerevisiae, have proven valuable for the synthesis of non-native compounds, ranging from commodity chemicals to complex natural products. One significant challenge has been ensuring sufficient carbon flux to the desired product. Traditionally, this has been addressed by strategies involving "pushing" and "pulling" the carbon flux toward the products by overexpression while "blocking" competing pathways via downregulation or gene deletion. Colocalization of enzymes is an alternate and complementary metabolic engineering strategy to control flux and increase pathway efficiency toward the synthesis of non-native products. Spatially controlling the pathway enzymes of interest, and thus positioning them in close proximity, increases the likelihood of reaction along that pathway. This mini-review focuses on the recent developments and applications of colocalization strategies, including enzyme scaffolding, construction of synthetic organelles, and organelle targeting, in both S. cerevisiae and non-conventional yeast hosts. Challenges with these techniques and future directions will also be discussed.
Collapse
Affiliation(s)
- Hannah C Yocum
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Anhuy Pham
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Nancy A Da Silva
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| |
Collapse
|