1
|
Yang Q, Dong W, Ye Z, Wei Z, Wu Q, Qiu R, Li M, Chen Y. Effect of environmental factors on laccase-mediated 17β-estradiol coupling reaction. Sci Rep 2025; 15:14765. [PMID: 40295589 PMCID: PMC12037733 DOI: 10.1038/s41598-025-98586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Hazardous 17β-estradiol (E2) with a higher estrogen effect, has attracted the attention of many scholars. How to transform and remove E2 in the environment becomes a research hotspot. This paper systematically explores the impacts of environmental elements like temperature, pH value, laccase concentration, humic acid concentration, and the type and concentration of metal ions on the laccase-catalyzed oxidation process of E2. The results show that the optimal environmental conditions for laccase-catalyzed oxidation of E2 are temperatures of 25 °C to 30 °C, pH values of 4 to 5, laccase concentration of 30 unit·L-1, no addition of humic acid, and the addition of Cu2+ at a density of 1 mmol·L-1. The conversion rate of E2 by laccase remained above 70%. The coupling products were formed through covalent coupling mechanisms mediated by functional groups such as C-C and C-O-C, with the main product being E2 dimers. E2 underwent chain extension polymerization during the reaction. Laccase has the potential to remediate E2 contaminated environment in a green and efficient manner.
Collapse
Affiliation(s)
- Qainhui Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxiu Dong
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zesen Ye
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zebin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qitang Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Mi Li
- Center for Renewable Carbon, School of Natural Resources, University of Tennessee, Knoxville, TN, 37996, USA
| | - Yangmei Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Center for Renewable Carbon, School of Natural Resources, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Liang Y, Dong M, Yang S, Lin L, Huang H, Li D, Ji M, Xu M. Electroactive bacteria-established long-distance electron transfer to oxygen facilitates bio-transformation of dissolved organic matter for sediment remediation. WATER RESEARCH 2025; 270:122829. [PMID: 39616684 DOI: 10.1016/j.watres.2024.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025]
Abstract
Electroactive bacteria (EAB) in sediment commonly establish long-distance electron transfer (LDET) to access O2, facilitating the degradation of organic contaminants, which we hypothesize is mediated by the bio-transformation of dissolved organic matter (DOM). This study confirmed that EAB-established LDET to O2 via a microbial electrochemical snorkel raised the electric potential of sediment by increasing HCl-extracted Fe(III) and NO3- concentrations while reducing DOM concentrations, which further modified microbial diversity and composition, notably reduced the relative abundance of fermentative bacteria. As a result, DOM showed the highest SUVA254 value (3.88) and SUVA280 value (1.61), preliminarily suggesting their enhanced aromaticity, humification and average molecular weight. Additionally, these DOM exhibited the highest electron transfer capacity (174.14±3.62 μmol e- /g C) and redox current. Based on these findings, we propose four possible avenues through which EAB-established LDET to O2 facilitates sediment remediation, mainly including DOM involved affinity, direct and indirect electron transfer, and induced photochemical reaction in degradation or humification process of organic contaminants. Although these proposed avenues require further verification, this work sheds light on deciphering the mechanisms underlying the augmented degradation of organic contaminants facilitated by EAB-established LDET to O2, offering fresh insights into sediment remediation.
Collapse
Affiliation(s)
- Yinxiu Liang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Lizhou Lin
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Haobin Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Daobo Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
| |
Collapse
|
3
|
Sui W, Li S, Chen Y, Wang G, Liu D, Jia H, Wu T, Zhang M. Insights into hydrothermal deconstruction and humification of vegetable waste by non-catalytic steam explosion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123342. [PMID: 39642829 DOI: 10.1016/j.jenvman.2024.123342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
Source minimization and valorization of vegetable waste has attracted considerable interests recently, but has been limited by its distinctive features of high humidity and perishability. To mitigate these challenges and draw upon its features, this study provides a novel non-catalytic hydrothermal process for rapid humification of broccoli waste by steam explosion (SE). The highest humic substance, fulvic acid (FA) and humic acid yields of 23.48 wt%, 18.70 wt% and 6.07 wt% were obtained within 30 min. Thermal-acidic condition and instantaneous decompression action proved to be favorable for substrate deconstruction, precursor production and humus formation. Potential pathways of hydrothermal humification of vegetable waste were revealed after clarifying the molecular level structure of FA by EA, FTIR, XPS, 2D-NMR and Py-GCMS. This work fills the knowledge gap in the mechanism of hydrothermal humification of vegetable waste and provides technical support for enhancing its agronomic value and efficient cycle in clean production.
Collapse
Affiliation(s)
- Wenjie Sui
- Jinan Fruit Research Institute, All-China Federation of Supply & Marketing Co-operatives, Jinan, 250014, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yue Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Guanhua Wang
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dan Liu
- Tianjin Jianfeng Natural Product R&D Co., Ltd. Tianjin 300457, China.
| | - Hongyu Jia
- Shandong Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment, Jinan, 250132, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
4
|
Li S, Jiang X, Xu W, Li M, Liu Z, Han W, Yu C, Li J, Wang H, Yeung KL. Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal. WATER RESEARCH 2024; 267:122456. [PMID: 39357158 DOI: 10.1016/j.watres.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m-3·order-1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
Collapse
Affiliation(s)
- Shuai Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Chenglong Yu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| |
Collapse
|
5
|
Liu G, Li C, Li D, Xue W, Hua T, Li F. Application of catalytic technology based on the piezoelectric effect in wastewater purification. J Colloid Interface Sci 2024; 673:113-133. [PMID: 38875783 DOI: 10.1016/j.jcis.2024.06.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
The demands of human life and industrial activities result in a significant influx of toxic contaminants into aquatic ecosystems. In particular, organic pollutants such as antibiotics and dye molecules, bacteria, and heavy metal ions are represented, posing a severe risk to the health and continued existence of living organisms. The method of removing pollutants from water bodies by utilizing the principle of the piezoelectric effect in combination with chemical catalytic processes is superior to other wastewater purification technologies because it can collect water energy, mechanical energy, etc. to achieve cleanliness and high removal efficiency. Herein, we briefly introduced the piezoelectric mechanisms and then reviewed the latest advances in the design and synthesis of piezoelectric materials, followed by a summary of applications based on the principle of piezoelectric effect to degrade pollutants in water for wastewater purification. Moreover, water purification technologies incorporating the piezoelectric effect, including piezoelectric effect-assisted membrane filtration, activation of persulfate, and battery electrocatalysis are elaborated. Finally, future challenges and research directions for the piezoelectric effect are proposed.
Collapse
Affiliation(s)
- Gaolei Liu
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chengzhi Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Wendan Xue
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, China Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, China Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
6
|
Dong S, Li R, Zhou K, Wei Y, Li J, Cheng M, Chen P, Hu X. Response of humification process to fungal inoculant in corn straw composting with two different kinds of nitrogen sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174461. [PMID: 38964380 DOI: 10.1016/j.scitotenv.2024.174461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Inoculation is widely used in composting to improve the mineralization process, however, the link of fungal inoculant to humification is rarely proposed. The objective of this study was to investigate the effect of compound fungal inoculation on humification process and fungal community dynamics in corn straw composting with two different kinds of nitrogen sources [pig manure (PM) and urea (UR)]. Structural equation modeling and random forest analysis were conducted to identify key fungi and explore the fungi-mediated humification mechanism. Results showed that fungal inoculation increased the content of humic acids in PM and UR by 71.76 % and 53.01 % compared to control, respectively. High-throughput sequencing indicated that there were more key fungal genera for lignin degradation in PM especially in the later stage of composting, but a more complex fungal (genera) connections with lower humification degree was found in UR. Network analysis and random forest suggested that inoculation promoted dominant genus such as Coprinus, affecting lignocellulose degradation. Structural equation modeling indicated that fungal inoculation could promote humification by direct pathway based on lignin degradation and indirect pathway based on stimulating the indigenous microbes such as Scedosporiu and Coprinus for the accumulation of carboxyl and polyphenol hydroxyl groups. In summary, fungal inoculation is suitable to be used combining with complex nitrogen source such as pig manure in straw composting.
Collapse
Affiliation(s)
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaomei Hu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Zhang X, Ye G, Zhao Z, Wu D. Contribution of complexed Fe(Ⅱ) oxygenation to norfloxacin humification and stabilization: Producing and trapping of more humified products. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135251. [PMID: 39068885 DOI: 10.1016/j.jhazmat.2024.135251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Organic pollutants polymerization in advanced oxidation processes or environmental matrices has attracted increasing attention, but little is known about stabilization of the polymerization products. The results in this work revealed the contribution of Fe(Ⅱ) oxygenation to stabilization of the products from norfloxacin (NOR) humification. It was found that upon oxygenation of Fe(Ⅱ) complexed by catechol (CT), NOR polymerized into the products with larger molecular weight through nucleophilic addition. Around 83.9-89.7 % organic carbon (OC) can be retained in the reaction solution and the precipitates at different Fe(II)/CT molar ratio. In this system with humification potential, the produced hydroxyl radical (HO•) dominantly modified, instead of decomposed, the structure of transformation products (TPs). TPs with diversified side chains were formed through hydroxylation and ring-opening, leading to the more humified products. In the subsequent Fe(Ⅱ) oxidative precipitation, Fe-TPs composites were formed as spherical particle clusters, which could steadily incorporate OC species with molecular fractionation. Specifically, lignin-like, tannins-like, condensed aromatic and high-molecular-weight TPs were preferentially preserved in the precipitates, while the recalcitrant aliphatic products mainly retained in the solution. These findings shed light on the role of Fe(Ⅱ) oxygenation in stabilizing the products from pollutants humification, which could strengthen both decontamination and organics sequestration.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Guojie Ye
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Zhenyu Zhao
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Deli Wu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
8
|
Gao Y, Zhang Y, Ge X, Gong Y, Chen H, Su J, Xi B, Tan W. Differential responses of the electron transfer capacities of soil humic acid and fulvic acid to long-term wastewater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173114. [PMID: 38740205 DOI: 10.1016/j.scitotenv.2024.173114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Wastewater irrigation is used to supplement agricultural irrigation because of its benefits and freshwater resource scarcity. However, whether wastewater irrigation for many years affects the electron transfer capacity (ETC) of natural organic matter in soil remains unclear, and organic matter could influence the decomposition and mineralization of substances with redox characteristics in soil through electron transfer, ultimately affecting the soil environment. The composition of soil humic substances (HS) is highly complex, and the effects of soil humic acid (HA) and fulvic acid (FA) on ETC is poorly understood. In this study, we separately evaluated the responses of the electron-accepting capacity (EAC) and electron-donating capacity (EDC) of soil HA and FA in agricultural fields to various durations of wastewater irrigation. Results showed that the EAC of HA and FA increased significantly with increasing the duration of wastewater irrigation. When wastewater irrigation lasted for 56 years, the EAC of HA showed a higher increment (590 %) than that of FA (223 %). The EDC of soil HA and FA, conversely, decreased compared to the control, with the highest reduction of 35.6 % for HA and 65.9 % for FA. Specifically, the EDC of HA gradually decreased starting from 29 years of wastewater irrigation, whereas the decrease in the EDC of FA exhibited no clear pattern in relation to the duration of wastewater irrigation. Increased soil organic matter and total nitrogen content under long-term wastewater irrigation led to an increase in sucrase and phosphatase activities, along with an increase in EAC and a decrease in EDC of HS. This suggests that soil enzyme activities may ultimately lead to changes in ETC. The results of this research provide practical insights into the redox system in soil and its driving role in soil organic matter transformation and nutrient cycling under wastewater irrigation.
Collapse
Affiliation(s)
- Yiman Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Zhang
- Institute of Geographical Sciences, Hebei Academy of Sciences, Hebei Technology Innovation Center for Geographic Information Application, Shijiazhuang 050011, China
| | - Xiaoyuan Ge
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Lan Zhou Jiao Tong University, Lanzhou 730070, China
| | - Yi Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Beijing University of Chemical Technology, Beijing 100029, China
| | - Huiru Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; North China University of Water Resources and Electric Power, Zheng Zhou 450046, China
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
9
|
Zhao L, Fan Y, Chen H. Natural flocculant chitosan inhibits short-chain fatty acid production in anaerobic fermentation of waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 403:130892. [PMID: 38795922 DOI: 10.1016/j.biortech.2024.130892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Chitosan (CTS) serves as an excellent natural flocculant in wastewater purification and sludge conditioning, but its potential impact on anaerobic fermentation of waste-activated sludge is unclear. The current study investigated the role of CTS in short-chain fatty acids (SCFAs) generation via sludge alkaline anaerobic fermentation. The results showed a drastic reduction in SCFA production with CTS, showing a maximum inhibition of 33 % at 6 mg/g of total suspended solids. CTS hindered sludge solubilization through flocculation, and acted as a humus precursor, promoting humus formation, and consequently reduced the amount of available substrates. Further, CTS promoted free ammonia production, posing a challenge to enzymes and cell viability. Additionally, CTS increased the population of Rikenellaceae sp. and weakened the dominance of hydrolyzing and acidifying bacteria. This study deepens the understanding of the potential impact of CTS on anaerobic fermentation and provides a theoretical basis for reducing the risk of polymeric flocculants.
Collapse
Affiliation(s)
- Lina Zhao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yanchen Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
10
|
Yang Q, Liao W, Wei Z, Qiu R, Zheng Q, Wu Q, Chen Y. Degradation and humification of steroidal estrogens in the soil environment: A review. CHEMOSPHERE 2024; 357:142043. [PMID: 38626810 DOI: 10.1016/j.chemosphere.2024.142043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Emerging pollutants are toxic and harmful chemical substances characterized by environmental persistence, bioaccumulation and biotoxicity, which can harm the ecological environment and even threaten human health. There are four categories of emerging pollutants that are causing widespread concern, namely, persistent organic pollutants, endocrine disruptors, antibiotics, and microplastics. The distribution of emerging pollutants has spatial and temporal heterogeneity, which is influenced by factors such as geographical location, climatic conditions, population density, emission amount, etc. Steroidal estrogens (SEs) discussed in this paper belong to the category of endocrine disruptors. There are generally three types of fate for SEs in the soil environment: sorption, degradation and humification. Humification is a promising pathway for the removal of SEs, especially for those that are difficult to degrade. Through humification, these difficult-to-degrade SEs can be effectively transferred or fixed, thus reducing their impact on the environment and organisms. Contrary to the well-studied process of sorption and degradation, the role and promise of the humification process for the removal of SEs has been underestimated. Based on the existing research, this paper reviews the sources, classification, properties, hazards and environmental behaviors of SEs in soil, and focuses on the degradation and humification processes of SEs and the environmental factors affecting their processes, such as temperature, pH, etc. It aims to provide references for the follow-up research of SEs, and advocates further research on the humification of organic pollutants in future studies.
Collapse
Affiliation(s)
- Qianhui Yang
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Weishan Liao
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Zebin Wei
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Qian Zheng
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Qitang Wu
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Yangmei Chen
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
11
|
Qi X, Niu Z, Xiao S, Waigi MG, Lin H, Sun K. Novel insights into the mechanism of laccase-driven rhizosphere humification for alleviating wheat 17β-estradiol contamination. ENVIRONMENT INTERNATIONAL 2024; 185:108576. [PMID: 38490070 DOI: 10.1016/j.envint.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/18/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Global-scale crop contamination with environmental estrogens has posed a huge risk to agri-food safety and human health. Laccase is regarded as an unexceptionable biocatalyst for regulating pollution and expediting humification, but the knowledge of estrogen bioremediation and C storage strengthened by laccase-driven rhizosphere humification (LDRH) remains largely unknown. Herein, a greenhouse microcosm was performed to explore the migration and fate of 17β-estradiol (E2) in water-wheat (Triticum aestivum L.) matrices by LDRH. Compared to the non-added laccase, the pseudo-first-order decay rate constants of E2 in the rhizosphere solution after 10 and 50 μM exposures by LDRH increased from 0.03 and 0.02 h-1 to 0.36 and 0.09 h-1, respectively. Furthermore, LDRH conferred higher yield, polymerizability, O-containing groups, and functional-C signals in the humified precipitates, because it accelerated the formation of highly complex precipitates by radical-controlled continuous polymerization. In particular, not only did LDRH mitigate the phytotoxicity of E2, but it also diminished the metabolic load of E2 in wheat tissues. This was attributed to the rapid attenuation of E2 in the rhizosphere solution during LDRH, which limited E2 uptake and accumulation in each subcellular fraction of the wheat roots and shoots. Although several typical intermediate products such as estrone, estriol, and E2 oligomers were detected in roots, only small-molecule species were found in shoots, evidencing that the polymeric products of E2 were unable to be translocated acropetally due to the vast hydrophobicity and biounavailability. For the first time, our study highlights a novel, eco-friendly, and sustainable candidate for increasing the low-C treatment of organics in rhizosphere microenvironments and alleviating the potential risks of estrogenic contaminants in agroenvironments.
Collapse
Affiliation(s)
- Xuemin Qi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Ziyan Niu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Michael Gatheru Waigi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
12
|
Cai X, Lei S, Li Y, Li J, Xu J, Lyu H, Li J, Dong X, Wang G, Zeng S. Humification levels of dissolved organic matter in the eastern plain lakes of China based on long-term satellite observations. WATER RESEARCH 2024; 250:120991. [PMID: 38113596 DOI: 10.1016/j.watres.2023.120991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Under the influence of intensive human activities and global climate change, the sources and compositions of dissolved organic matter (DOM) in the eastern plain lake (EPL) region in China have fluctuated sharply. It has been successfully proven that the humification index (HIX), which can be derived from three-dimensional excitation-emission matrix fluorescence spectroscopy, can be an effective proxy for the sources and compositions of DOM. Therefore, combined with remote sensing technology, the sources and compositions of DOM can be tracked on a large scale by associating the HIX with optically active components. Here, we proposed a novel HIX remote sensing retrieval (IRHIX) model suitable for Landsat series sensors based on the comprehensive analysis of the covariation mechanism between HIX and optically active components in different water types. The validation results showed that the model runs well on the independent validation dataset and the satellite-ground synchronous sampling dataset, with an uncertainty ranging from 30.85 % to 36.92 % (average ± standard deviation = 33.6 % ± 3.07 %). The image-derived HIX revealed substantial spatiotemporal variations in the sources and compositions of DOM in 474 lakes in the EPL during 1986-2021. Subsequently, we obtained three long-term change modes of the HIX trend, namely, significant decline, gentle change, and significant rise, accounting for 74.68 %, 17.09 %, and 8.23 % of the lake number, respectively. The driving factor analysis showed that human activities had the most extensive influence on the DOM humification level. In addition, we also found that the HIX increased slightly with increasing lake area (R2 = 0.07, P < 0.05) or significantly with decreasing trophic state (R2 = 0.83, P < 0.05). Our results provide a new exploration for the effective acquisition of long-term dynamic information about the sources and compositions of DOM in inland lakes and provide important support for lake water quality management and restoration.
Collapse
Affiliation(s)
- Xiaolan Cai
- School of Geography, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China
| | - Shaohua Lei
- National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yunmei Li
- School of Geography, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China.
| | - Jianzhong Li
- School of Geography, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China
| | - Jie Xu
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological Environment, Wuhan 430010, China
| | - Heng Lyu
- School of Geography, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China
| | - Junda Li
- School of Geography, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China
| | - Xianzhang Dong
- School of Geography, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China
| | - Gaolun Wang
- School of Geography, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China
| | - Shuai Zeng
- Ministry of Ecology and Environment, South China Institute of Environmental Science, Guangzhou 510535, China
| |
Collapse
|
13
|
Pan C, Yang H, Gao W, Wei Z, Song C, Mi J. Optimization of organic solid waste composting process through iron-related additives: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119952. [PMID: 38171126 DOI: 10.1016/j.jenvman.2023.119952] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Composting is an environmentally friendly method that facilitates the biodegradation of organic solid waste, ultimately transforming it into stable end-products suitable for various applications. The element iron (Fe) exhibits flexibility in form and valence. The typical Fe-related additives include zero-valent-iron, iron oxides, ferric and ferrous ion salts, which can be targeted to drive composting process through different mechanisms and are of keen interest to academics. Therefore, this review integrated relevant literature from recent years to provide more comprehensive overview about the influence and mechanisms of various Fe-related additives on composting process, including organic components conversion, humus formation and sequestration, changes in biological factors, stability and safety of composting end-products. Meanwhile, it was recommended that further research be conducted on the deep action mechanisms, biochemical pathways, budget balance analysis, products stability and application during organic solid waste composting with Fe-related additives. This review provided guidance for the subsequent targeted application of Fe-related additives in compost, thereby facilitating cost reduction and promoting circular economy objectives.
Collapse
Affiliation(s)
- Chaonan Pan
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Jiaying Mi
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
14
|
Zhu Y, Cao Y, Fu B, Wang C, Shu S, Zhu P, Wang D, Xu H, Zhong N, Cai D. Waste milk humification product can be used as a slow release nano-fertilizer. Nat Commun 2024; 15:128. [PMID: 38167856 PMCID: PMC10761720 DOI: 10.1038/s41467-023-44422-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The demand for milk has increased globally, accompanied by an increase in waste milk. Here, we provide an artificial humification technology to recycle waste milk into an agricultural nano-fertilizer. We use KOH-activated persulfate to convert waste milk into fulvic-like acid and humic-like acid. We mix the product with attapulgite to obtain a slow-release nano fulvic-like acid fertilizer. We apply this nano-fertilizer to chickweeds growing in pots, resulting in improved yield and root elongation. These results indicate that waste milk could be recycled for agricultural purposes, however, this nano-fertilizer needs to be tested further in field experiments.
Collapse
Affiliation(s)
- Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yuxuan Cao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Bingbing Fu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chengjin Wang
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Shihu Shu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Pengjin Zhu
- Guangxi Subtropical Crops Research Institute, Nanning, 530000, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Naiqin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
15
|
Li S, Hong D, Sun K. Lignin precursors enhance exolaccase-started humification of bisphenol A to form functional polymers. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:219-226. [PMID: 38435360 PMCID: PMC10902508 DOI: 10.1016/j.eehl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 03/05/2024]
Abstract
Humification plays a significant role in converting phenolic pollutants and forming heterogeneous polymers, but few studies have been performed to investigate exolaccase-started humification (ESH). Herein, the influences of lignin precursors (LPs) on exolaccase-induced bisphenol A (BPA) removal and humification were explored. In particular, the architectural features and botanical effects of the formed humification products were also tested. ESH was extremely beneficial in boosting BPA removal in the presence of LPs. Compared with LP-free (58.49%), 100% of BPA was eliminated after the reaction with ESH for 72 h. Such a process was controlled by an exolaccase-caused random assembly of radicals, which generated a large number of hydrophobic polymers through nonspecific covalent binding of C-C and/or C-O. These humified polymers were extremely stable at pH 2.0-10.0 and -20 °C to 80 °C and displayed unique functions, i.e., scavenged 2,2-diphenyl-1-picrylhydrazyl/2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid radicals and exerted antioxidant capacities. More importantly, the functional polymers could act as auxin analogs to increase the germination index (>100%), plant biomass, and salt tolerance of radish seedlings. Our findings disclosed that ESH could not only be optimized to mitigate the ecological risks of phenolic pollutants and sequester organic carbon in environmental bioremediation, but the resulting abundant auxin analogs also contributed to agricultural productivity.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, China
| | - Dan Hong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Song Y, Huang R, Li L, Du K, Zhu F, Song C, Yuan X, Wang M, Wang S, Ferry JG, Zhou S, Yan Z. Humic acid-dependent respiratory growth of Methanosarcina acetivorans involves pyrroloquinoline quinone. THE ISME JOURNAL 2023; 17:2103-2111. [PMID: 37737251 PMCID: PMC10579383 DOI: 10.1038/s41396-023-01520-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Although microbial humus respiration plays a critical role in organic matter decomposition and biogeochemical cycling of elements in diverse anoxic environments, the role of methane-producing species (methanogens) is not well defined. Here we report that a major fraction of humus, humic acid reduction enhanced the growth of Methanosarcina acetivorans above that attributed to methanogenesis when utilizing the energy sources methanol or acetate, results which showed both respiratory and fermentative modes of energy conservation. Growth characteristics with methanol were the same for an identically cultured mutant deleted for the gene encoding a multi-heme cytochrome c (MmcA), results indicating MmcA is not essential for respiratory electron transport to humic acid. Transcriptomic analyses revealed that growth with humic acid promoted the upregulation of genes annotated as cell surface pyrroloquinoline quinone (PQQ)-binding proteins. Furthermore, PQQ isolated from the membrane fraction was more abundant in humic acid-respiring cells, and the addition of PQQ improved efficiency of the extracellular electron transport. Given that the PQQ-binding proteins are widely distributed in methanogens, the findings extend current understanding of microbial humus respiration in the context of global methane dynamics.
Collapse
Affiliation(s)
- Yuanxu Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Rui Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, 266237, Shandong, China
| | - Kaifeng Du
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fanping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, 266237, Shandong, China.
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
- Suzhou Research Institute, Shandong University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
17
|
Cai X, Wu L, Li Y, Lei S, Xu J, Lyu H, Li J, Wang H, Dong X, Zhu Y, Wang G. Remote sensing identification of urban water pollution source types using hyperspectral data. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132080. [PMID: 37499493 DOI: 10.1016/j.jhazmat.2023.132080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Owing to accelerated urbanisation, increased pollutants have degraded urban water quality. Timely identification and control of pollution sources enable relevant departments to effectively perform water treatment and restoration. To achieve this goal, a remote sensing identification method for urban water pollution sources applicable to unmanned aerial vehicle (UAV) hyperspectral images was established. First, seven fluorescent components were obtained through three-dimensional excitation-emission matrix fluorescence spectroscopy of dissolved organic matter (DOM) combined with parallel factor analysis. Based on the hierarchical cluster analysis of the seven fluorescence components and three spectral indices, four pollution source (PS) types were determined, namely, domestic sewage, terrestrial input, agricultural and algal, and industrial wastewater sources. Second, several water colour and optical parameters, including the absorption coefficient of chromophoric DOM at 254 nm, humification index, chlorophyll-a concentration, and hue angle, were utilised to develop an identification method with a recognition accuracy exceeding 70% for the four PSs that is suitable for UAV hyperspectral data. This study demonstrated the potential of identifying PSs by combining the fluorescence characteristics of DOM with the optical properties of water, thus expanding the application of remote sensing technologies and providing more comprehensive and reliable information for urban water quality management.
Collapse
Affiliation(s)
- Xiaolan Cai
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Luyao Wu
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Yunmei Li
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| | - Shaohua Lei
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Jie Xu
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological Environment, Wuhan 430010, China
| | - Heng Lyu
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Junda Li
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Huaijing Wang
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Xianzhang Dong
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Yuxing Zhu
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Gaolun Wang
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment of Education Ministry, Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing 210023, China
| |
Collapse
|
18
|
Liu X, Zhang L, Shen R, Lu Q, Zeng Q, Zhang X, He Z, Rossetti S, Wang S. Reciprocal Interactions of Abiotic and Biotic Dechlorination of Chloroethenes in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14036-14045. [PMID: 37665676 DOI: 10.1021/acs.est.3c04262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Chloroethenes (CEs) as common organic pollutants in soil could be attenuated via abiotic and biotic dechlorination. Nonetheless, information on the key catalyzing matter and their reciprocal interactions remains scarce. In this study, FeS was identified as a major catalyzing matter in soil for the abiotic dechlorination of CEs, and acetylene could be employed as an indicator of the FeS-mediated abiotic CE-dechlorination. Organohalide-respiring bacteria (OHRB)-mediated dechlorination enhanced abiotic CEs-to-acetylene potential by providing dichloroethenes (DCEs) and trichloroethene (TCE) since chlorination extent determined CEs-to-acetylene potential with an order of trans-DCE > cis-DCE > TCE > tetrachloroethene/PCE. In contrast, FeS was shown to inhibit OHRB-mediated dechlorination, inhibition of which could be alleviated by the addition of soil humic substances. Moreover, sulfate-reducing bacteria and fermenting microorganisms affected FeS-mediated abiotic dechlorination by re-generation of FeS and providing short chain fatty acids, respectively. A new scenario was proposed to elucidate major abiotic and biotic processes and their reciprocal interactions in determining the fate of CEs in soil. Our results may guide the sustainable management of CE-contaminated sites by providing insights into interactions of the abiotic and biotic dechlorination in soil.
Collapse
Affiliation(s)
- Xiaokun Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Lian Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria, 00185 Roma, Italy
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
19
|
Li S, Sheng Y, Xiao S, Liu Q, Sun K. Exolaccase Propels Humification to Decontaminate Bisphenol A and Create Humic-like Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37470251 DOI: 10.1021/acs.jafc.3c02958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Exolaccase-propelled humification (E-PH) helps eliminate phenolic pollutants and produce macromolecular precipitates. Herein, we investigated the influencing mechanism of 12 humic precursors (HPs) on exolaccase-enabled bisphenol A (BPA) decontamination and humification. Catechol, vanillic acid, caffeic acid, and gentian acid not only expedited BPA removal but also created large amounts of copolymeric precipitates. These precipitates had rich functional groups similar to natural humic substances, which presented great aromatic and acidic characteristics. The releasing amounts of BPA monomer from four precipitates were 0.08-12.87% at pH 2.0-11.0, suggesting that BPA-HP copolymers had pH stability. More excitingly, certain copolymeric precipitates could stimulate the growth and development of radish seedlings. The radish growth-promotion mechanisms of copolymers were involved in two aspects: (1) Copolymers interacted with root exudates to accelerate nutrient uptake; (2) Copolymers released auxins to provoke radish growth. These results may provide an innovative strategy for decontaminating phenolic pollutants and yielding humic-like biostimulants in E-PH.
Collapse
Affiliation(s)
- Shunyao Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Yuehui Sheng
- Suzhou Zhongsheng Environmental Remediation Co., Ltd., Suzhou 215104, Jiangsu, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qingzhu Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
20
|
Thacharodi A, Hassan S, Singh T, Mandal R, Chinnadurai J, Khan HA, Hussain MA, Brindhadevi K, Pugazhendhi A. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. CHEMOSPHERE 2023; 328:138498. [PMID: 36996919 DOI: 10.1016/j.chemosphere.2023.138498] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A class of organic priority pollutants known as PAHs is of critical public health and environmental concern due to its carcinogenic properties as well as its genotoxic, mutagenic, and cytotoxic properties. Research to eliminate PAHs from the environment has increased significantly due to awareness about their negative effects on the environment and human health. Various environmental factors, including nutrients, microorganisms present and their abundance, and the nature and chemical properties of the PAH affect the biodegradation of PAHs. A large spectrum of bacteria, fungi, and algae have ability to degrade PAHs with the biodegradation capacity of bacteria and fungi receiving the most attention. A considerable amount of research has been conducted in the last few decades on analyzing microbial communities for their genomic organization, enzymatic and biochemical properties capable of degrading PAH. While it is true that PAH degrading microorganisms offer potential for recovering damaged ecosystems in a cost-efficient way, new advances are needed to make these microbes more robust and successful at eliminating toxic chemicals. By optimizing some factors like adsorption, bioavailability and mass transfer of PAHs, microorganisms in their natural habitat could be greatly improved to biodegrade PAHs. This review aims to comprehensively discuss the latest findings and address the current wealth of knowledge in the microbial bioremediation of PAHs. Additionally, recent breakthroughs in PAH degradation are discussed in order to facilitate a broader understanding of the bioremediation of PAHs in the environment.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Saqib Hassan
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, 110029, India; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Tripti Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Ramkrishna Mandal
- Department of Chemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Jeganathan Chinnadurai
- Department of Research and Development, Dr. Thacharodi's Laboratories, No. 24, 5th Cross, Thanthaiperiyar Nagar, Ellapillaichavadi, Puducherry, 605005, India
| | - Hilal Ahmad Khan
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Mir Ashiq Hussain
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali,140103, India.
| |
Collapse
|
21
|
Nurhayati M, You Y, Park J, Lee BJ, Kang HG, Lee S. Artificial neural network implementation for dissolved organic carbon quantification using fluorescence intensity as a predictor in wastewater treatment plants. CHEMOSPHERE 2023:139032. [PMID: 37236275 DOI: 10.1016/j.chemosphere.2023.139032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Although spectroscopic methods provide a fast and cost-effective means of monitoring dissolved organic carbon (DOC) in natural and engineered water systems, the prediction accuracy of these methods is limited by the complex relationship between optical properties and DOC concentration. In this study, we developed DOC prediction models using multiple linear/log-linear regression and feedforward artificial neural network (ANN) and investigated the effectiveness of spectroscopic properties, such as fluorescence intensity and UV absorption at 254 nm (UV254), as predictors. Optimum predictors were identified based on correlation analysis to construct models using single and multiple predictors. We compared the peak-picking and parallel factor analysis (PARAFAC) methods for selecting appropriate fluorescence wavelengths. Both methods had similar prediction capability (p-values >0.05), suggesting PARAFAC was not necessary for choosing fluorescence predictors. Fluorescence peak T was identified as a more accurate predictor than UV254. Combining UV254 and multiple fluorescence peak intensities as predictors further improved the prediction capability of the models. The ANN models outperformed the linear/log-linear regression models with multiple predictors, achieving higher prediction accuracy (peak-picking: R2 = 0.8978, RMSE = 0.3105 mg/L; PARAFAC: R2 = 0.9079, RMSE = 0.2989 mg/L). These findings suggest the potential to develop a real-time DOC concentration sensor based on optical properties using an ANN for signal processing.
Collapse
Affiliation(s)
- Mita Nurhayati
- Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea; Department of Chemistry, Indonesia University of Education, Setiabudhi 229, Bandung 40154, Indonesia
| | - Youngmin You
- Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea
| | - Jongkwan Park
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - Byung Joon Lee
- Department of Environmental and Safety Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea
| | - Ho Geun Kang
- BIN-TECH KOREA Co., Ltd., A 3S52, 158-10, Sajik-daero 361beon-gil, Sangdang-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sungyun Lee
- Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea; Department of Environmental and Safety Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Republic of Korea.
| |
Collapse
|
22
|
Wang Y, Xi B, Li Y, Dang Q, Zhang C, Zhao X. Insight into the fate of metal ions in response to the refined classification and transformation order of dissolved organic matter components during municipal solid waste composting. ENVIRONMENTAL RESEARCH 2023; 223:115468. [PMID: 36781015 DOI: 10.1016/j.envres.2023.115468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The refined classification and subtle transformation order of dissolved organic matter (DOM) components may govern the fate of metal ions (MIs) during composting. However, the classification of DOM components is still rough and the fate of MIs in response to the refined transformation order of DOM during municipal solid waste composting (MSWC) has not been studied. Here, the refined classification and evolution order of DOM components were redefined by two-dimensional correlation spectroscopy (2DCOS) analysis. Eight DOM components were redefined and their evolution order was: tyrosine-like (peak B)>humic acid-like (peak C1>peak C2)>terrestrial humic-like with small molecular size (peak A)>UVA humic-like with medium molecular size (peak D2)>UVC humic-like with medium molecular size (peak D1)>UVA humic-like with large molecular size (peak E2)>UVC humic-like with large molecular size (peak E1). Na and As were releasing in the whole process of DOM transformation. Cu and Al showed strong affinity with humic-like fraction, the anabolism of which leading to storage of Cu and Al in compost. Si, Fe, Mn, Co, Zn, Ni, Sr, Mg and Cr tend to combine with humic-like fraction with small molecular size. These responses were influenced by synergistic effect of key microorganisms (two bacterial groups and three fungal groups), in which the contribution of bacteria was greater than fungus. Finally, partial least-square path models of "environmental factors-key microorganisms-transformation order of DOM-MIs" were constructed. The combination of humic-like fractions continuously produced during MSWC and MIs made compost product with potential environmental risks. It is of great significance to develop abiotic factors regulation approach based on refined classification and transformation of organic components for reducing environmental risks of compost product.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yanhong Li
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
23
|
Yang F, Fu Q, Antonietti M. Anthropogenic, Carbon-Reinforced Soil as a Living Engineered Material. Chem Rev 2023; 123:2420-2435. [PMID: 36633446 PMCID: PMC9999422 DOI: 10.1021/acs.chemrev.2c00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, the simple synthesis of artificial humic substances (A-HS) by alkaline hydrothermal processing of waste biomass was described. This A-HS was shown to support water and mineral binding, to change soil structure, to avoid fertilizer mineralization, and to support plant growth. Many of the observed macroscopic effects could, however, not be directly related to the minute amounts of A-HS which have been added, and an A-HS stimulated microbiome was found to be the key for understanding. In this review, we describe such anthropogenic soil in the language of the modern concept of living engineered materials and identify natural and artificial HS as the enabler to set up the interactive microbial system along the interfaces of the mineral grains. In that, old chemical concepts as surface activity, redox mediation, and pH buffering are the base of the system structure build-up and the complex self-adaptability of biological systems. The resulting chemical/biological hybrid system has the potential to address world problems as soil fertility, nutrition of a growing world population, and climate change.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.,Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Markus Antonietti
- Department of Colloid Chemistry,Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
24
|
Xu S, Zhan J, Li L, Zhu Y, Liu J, Guo X. Total petroleum hydrocarbons and influencing factors in co-composting of rural sewage sludge and organic solid wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120911. [PMID: 36549453 DOI: 10.1016/j.envpol.2022.120911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Co-composting is an efficient strategy for collaborative disposal of multiple organic wastes in rural areas. In this study, we explored the co-composting of rural sewage sludge and other organic solid wastes (corn stalks and kitchen waste), with a focus on the variation of total petroleum hydrocarbons (TPH) during this process. 12% corn-derived biochar was applied in the composting (BC), with no additives applied as the control treatment (CK). The TPH contents of piles after composting ranged from 0.70 to 0.74 mg/g, with overall removal efficiencies of 35.6% and 61.1% for CK and BC, respectively. The results indicate that the addition of 12% biochar increased the rate of TPH degradation and accelerated the degradation process. 16s rDNA high-throughput sequencing was applied to investigate the biodiversity and bacterial community succession during the composting process. Diverse bacterial communities with TPH degradation functions were observed in the composting process, including Acinetobacter, Flavobacterium, Paenibacillus, Pseudomonas, and Bacillus spp. These functional bacteria synergistically degraded TPH, with cooperative behavior dominating during composting. Biochar amendment enhanced the microbial activity and effectively promoted the biodegradation of TPH. The physicochemical properties of the compost piles, including environmental factors (pH and temperature), nutrients (nitrogen, phosphorus, potassium), and humic substances produced in composting (humic acids and fulvic acids), directly and indirectly affected the variation in TPH contents. In conclusion, this work illustrates the variation in TPH content and associated influencing factors during co-composting of rural organic solid wastes, providing valuable guidance toward the further optimization of rural organic waste management.
Collapse
Affiliation(s)
- Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jun Zhan
- POWERCHINA Group Environmental Engineering Co.,LTD, Hangzhou, Zhejiang, 310005, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yingming Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
25
|
Liu J, Qi W, Xu M, Thomas T, Liu S, Yang M. Piezocatalytic Techniques in Environmental Remediation. Angew Chem Int Ed Engl 2023; 62:e202213927. [PMID: 36316280 DOI: 10.1002/anie.202213927] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022]
Abstract
As a consequence of rapid industrialization throughout the world, various environmental pollutants have begun to accumulate in water, air, and soil. This endangers the ecological environment of the earth, and environmental remediation has become an immediate priority. Among various environmental remediation techniques, piezocatalytic techniques, which uniquely take advantage of the piezoelectric effect, have attracted much attention. Piezoelectric effects allow pollutant degradation directly, while also enhancing photocatalysis by reducing the recombination of photogenerated carriers. In this Review, we provide a comprehensive summary of recent developments in piezocatalytic techniques for environmental remediation. The origin of the piezoelectric effect as well as classification of piezoelectric materials and their application in environmental remediation are systematically summarized. We also analyze the potential underlying mechanisms. Finally, urgent problems and the future development of piezocatalytic techniques are discussed.
Collapse
Affiliation(s)
- Jiahao Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Weiliang Qi
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Mengmeng Xu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Adyar, Chennai, 600036, Tamil Nadu, India
| | - Siqi Liu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
26
|
Zhang XY, Wang T, Wu LG, Guo HC. Construction of Ag@ZIF-8/PVDF mixed-matrix ultrafiltration membranes with high separation performance for dye from high-salinity wastewater by microemulsion coupling with blending. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Sun Q, Ren SY, Ni HG. Effects of microplastic sorption on microbial degradation of halogenated polycyclic aromatic hydrocarbons in water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120238. [PMID: 36152714 DOI: 10.1016/j.envpol.2022.120238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Halogenated PAHs (HPAHs) are ubiquitous in the environment and have a toxicity similar to that of dioxin. Microplastics exist widely in the environment, and their sorption allows them to act as carriers of HPAHs, potentially changing the bioavailability of HPAHs. However, to the best of our knowledge related studies are limited. In this study, degrading bacteria of five HPAHs were cultivated from mangrove sediments. Among them, the Hyphomicrobium genus has good degradation ability on 9-BrAnt, 2-BrPhe and 2-ClPhe. The degradation process is in line with the first-order degradation kinetic characteristics. The kinetic equations of five kinds of HPAHs showed that the degradation half-lives are 0.65 days (2-BrFle), 0.79 days (9-ClPhe), 1.50 days (2-ClAnt), 5.94 days (9-BrPhe) and 14.1 days (9-BrAnt). The greater the number of benzene rings and the heavier the halogen substituents, the slower the degradation of HPAHs. The sorption of microplastics inhibited the biodegradation of HPAHs, and the degradation half-life of HPAHs will be extended from 0.65 to 14.1 days (the average is 4.59 days) to 1.71-9.93 days (average 5.40 days) for PA, 0.70-35.2 days (average 12.8 days) for PE, 6.02-28.2 (average 15.7 days) days for POM, and 4.60-24.0 (average 19.2 days) days for PP, which is mainly related to the partition coefficient between microplastics and water. This study provides a reference for reducing the uncertainty of the ecological risk assessment of HOCs in the aquatic environment.
Collapse
Affiliation(s)
- Qing Sun
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shu-Yan Ren
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Abstract
Globally, phenolic contaminants have posed a considerable threat to agro-ecosystems. Exolaccase-boosted humification may be an admirable strategy for phenolic detoxification by creating multifunctional humic-like products (H-LPs). Nonetheless, the potential applicability of the formed H-LPs in agricultural production is still overlooked. This review describes immobilized exolaccase-enabled humification in eliminating phenolic pollutants and producing artificial H-LPs. The similarities and differences between artificial H-LPs and natural humic substances (HSs) in chemical properties are compared. In particular, the agronomic effects of these reproducible artificial H-LPs are highlighted. On the basis of the above summary, the granulation process is employed to prepare granular humic-like organic fertilizers, which can be applied to field crops by mechanical side-deep fertilization. Finally, the challenges and perspectives of exolaccase-boosted humification for practical applications are also discussed. This review is a first step toward a more profound understanding of phenolic detoxification, soil improvement, and agricultural production by exolaccase-boosted humification. Exolaccase-initiated humification is conductive to phenolic detoxification Multiple humic-like products are created in exolaccase-boosted humification Similarities and differences between artificial and natural humus are disclosed Humic-like products can be used to sustain soil health and increase crop yield
Collapse
|