1
|
Stone A, Youssef A, Rijal S, Zhang R, Tian XJ. Context-dependent redesign of robust synthetic gene circuits. Trends Biotechnol 2024; 42:895-909. [PMID: 38320912 PMCID: PMC11223972 DOI: 10.1016/j.tibtech.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cells provide dynamic platforms for executing exogenous genetic programs in synthetic biology, resulting in highly context-dependent circuit performance. Recent years have seen an increasing interest in understanding the intricacies of circuit-host relationships, their influence on the synthetic bioengineering workflow, and in devising strategies to alleviate undesired effects. We provide an overview of how emerging circuit-host interactions, such as growth feedback and resource competition, impact both deterministic and stochastic circuit behaviors. We also emphasize control strategies for mitigating these unwanted effects. This review summarizes the latest advances and the current state of host-aware and resource-aware design of synthetic gene circuits.
Collapse
Affiliation(s)
- Austin Stone
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Abdelrahaman Youssef
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Sadikshya Rijal
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Rong Zhang
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Xiao-Jun Tian
- School of Biological and Health System Engineering, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
2
|
Lean CH. Navigating the 'moral hazard' argument in synthetic biology's application. Synth Biol (Oxf) 2024; 9:ysae008. [PMID: 38828013 PMCID: PMC11141592 DOI: 10.1093/synbio/ysae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Synthetic biology has immense potential to ameliorate widespread environmental damage. The promise of such technology could, however, be argued to potentially risk the public, industry or governments not curtailing their environmentally damaging behavior or even worse exploit the possibility of this technology to do further damage. In such cases, there is the risk of a worse outcome than if the technology was not deployed. This risk is often couched as an objection to new technologies, that the technology produces a moral hazard. This paper describes how to navigate a moral hazard argument and mitigate the possibility of a moral hazard. Navigating moral hazard arguments and mitigating the possibility of a moral hazard will improve the public and environmental impact of synthetic biology.
Collapse
Affiliation(s)
- Christopher Hunter Lean
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- Department of Philosophy, Faculty of Arts, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
3
|
Shah MZ, Quraishi M, Sreejith A, Pandit S, Roy A, Khandaker MU. Sustainable degradation of synthetic plastics: A solution to rising environmental concerns. CHEMOSPHERE 2024; 352:141451. [PMID: 38368957 DOI: 10.1016/j.chemosphere.2024.141451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Plastics have a significant role in various sectors of the global economy since they are widely utilized in agriculture, architecture, and construction, as well as health and consumer goods. They play a crucial role in several industries as they are utilized in the production of diverse things such as defense materials, sanitary wares, tiles, plastic bottles, artificial leather, and various other household goods. Plastics are utilized in the packaging of food items, medications, detergents, and cosmetics. The overconsumption of plastics presents a significant peril to both the ecosystem and human existence on Earth. The accumulation of plastics on land and in the sea has sparked interest in finding ways to breakdown these polymers. It is necessary to employ suitable biodegradable techniques to decrease the accumulation of plastics in the environment. To address the environmental issues related to plastics, it is crucial to have a comprehensive understanding of the interaction between microorganisms and polymers. A wide range of creatures, particularly microbes, have developed techniques to survive and break down plastics. This review specifically examines the categorization of plastics based on their thermal and biodegradable properties, as well as the many types of degradation and biodegradation. It also discusses the various types of degradable plastics, the characterization of biodegradation, and the factors that influence the process of biodegradation. The plastic breakdown and bioremediation capabilities of these microbes make them ideal for green chemistry applications aimed at removing hazardous polymers from the ecosystem.
Collapse
Affiliation(s)
- Masirah Zahid Shah
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Marzuqa Quraishi
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Anushree Sreejith
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India.
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia; Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| |
Collapse
|
4
|
Bello AJ, Popoola A, Okpuzor J, Ihekwaba-Ndibe AE, Olorunniji FJ. A Genetic Circuit Design for Targeted Viral RNA Degradation. Bioengineering (Basel) 2023; 11:22. [PMID: 38247899 PMCID: PMC10813695 DOI: 10.3390/bioengineering11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Advances in synthetic biology have led to the design of biological parts that can be assembled in different ways to perform specific functions. For example, genetic circuits can be designed to execute specific therapeutic functions, including gene therapy or targeted detection and the destruction of invading viruses. Viral infections are difficult to manage through drug treatment. Due to their high mutation rates and their ability to hijack the host's ribosomes to make viral proteins, very few therapeutic options are available. One approach to addressing this problem is to disrupt the process of converting viral RNA into proteins, thereby disrupting the mechanism for assembling new viral particles that could infect other cells. This can be done by ensuring precise control over the abundance of viral RNA (vRNA) inside host cells by designing biological circuits to target vRNA for degradation. RNA-binding proteins (RBPs) have become important biological devices in regulating RNA processing. Incorporating naturally upregulated RBPs into a gene circuit could be advantageous because such a circuit could mimic the natural pathway for RNA degradation. This review highlights the process of viral RNA degradation and different approaches to designing genetic circuits. We also provide a customizable template for designing genetic circuits that utilize RBPs as transcription activators for viral RNA degradation, with the overall goal of taking advantage of the natural functions of RBPs in host cells to activate targeted viral RNA degradation.
Collapse
Affiliation(s)
- Adebayo J. Bello
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Biological Sciences, Redeemer’s University, Ede 232101, Osun State, Nigeria
| | - Abdulgafar Popoola
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Medical Laboratory Science, Kwara State University, Malete, Ilorin 241102, Kwara State, Nigeria
| | - Joy Okpuzor
- Department of Cell Biology & Genetics, University of Lagos, Akoka, Lagos 101017, Lagos State, Nigeria;
| | | | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
| |
Collapse
|
5
|
Bao T, Qian Y, Xin Y, Collins JJ, Lu T. Engineering microbial division of labor for plastic upcycling. Nat Commun 2023; 14:5712. [PMID: 37752119 PMCID: PMC10522701 DOI: 10.1038/s41467-023-40777-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Plastic pollution is rapidly increasing worldwide, causing adverse impacts on the environment, wildlife and human health. One tempting solution to this crisis is upcycling plastics into products with engineered microorganisms; however, this remains challenging due to complexity in conversion. Here we present a synthetic microbial consortium that efficiently degrades polyethylene terephthalate hydrolysate and subsequently produces desired chemicals through division of labor. The consortium involves two Pseudomonas putida strains, specializing in terephthalic acid and ethylene glycol utilization respectively, to achieve complete substrate assimilation. Compared with its monoculture counterpart, the consortium exhibits reduced catabolic crosstalk and faster deconstruction, particularly when substrate concentrations are high or crude hydrolysate is used. It also outperforms monoculture when polyhydroxyalkanoates serves as a target product and confers flexible tuning through population modulation for cis-cis muconate synthesis. This work demonstrates engineered consortia as a promising, effective platform that may facilitate polymer upcycling and environmental sustainability.
Collapse
Affiliation(s)
- Teng Bao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuanchao Qian
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yongping Xin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - James J Collins
- Department of Biological Engineering and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Longwood, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ting Lu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Zhou Y, He G, Jiang H, Pan K, Liu W. Nanoplastics induces oxidative stress and triggers lysosome-associated immune-defensive cell death in the earthworm Eisenia fetida. ENVIRONMENT INTERNATIONAL 2023; 174:107899. [PMID: 37054650 DOI: 10.1016/j.envint.2023.107899] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Nanoplastics (NPs) are increasingly perceived as an emerging threat to terrestrial environments, but the adverse impacts of NPs on soil fauna and the mechanisms behind these negative outcomes remain elusive. Here, a risk assessment of NPs was conducted on model organism (earthworm) from tissue to cell. Using palladium-doped polystyrene NPs, we quantitatively measured nanoplastic accumulation in earthworm and investigated its toxic effects by combining physiological assessment with RNA-Seq transcriptomic analyses. After a 42-day exposure, earthworm accumulated up to 15.9 and 143.3 mg kg-1 of NPs for the low (0.3 mg kg-1) and high (3 mg kg-1) dose groups, respectively. NPs retention led to the decrease of antioxidant enzyme activity and the accumulation of reactive oxygen species (O2- and H2O2), which reduced growth rate by 21.3 %-50.8 % and caused pathological abnormalities. These adverse effects were enhanced by the positively charged NPs. Furthermore, we observed that irrespective of surface charge, after 2 h of exposure, NPs were gradually internalized by earthworm coelomocytes (∼0.12 μg per cell) and mainly amassed at lysosomes. Those agglomerations stimulated lysosomal membranes to lose stability and even rupture, resulting in impeded autophagy process and cellular clearance, and eventually coelomocyte death. In comparison with negatively charged nanoplastics, the positively charged NPs exerted 83 % higher cytotoxicity. Our findings provide a better understanding of how NPs posed harmful effects on soil fauna and have important implications for evaluating the ecological risk of NPs.
Collapse
Affiliation(s)
- Yanfei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang He
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Jiang
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, China.
| |
Collapse
|