1
|
Krueger S, Martins de S. e Silva J, Santos de Oliveira C, Moritz G. Investigation of the spermathecal morphology, reproductive strategy and fate of stored spermatozoa in three important thysanopteran species. Sci Rep 2022; 12:18517. [PMID: 36323867 PMCID: PMC9630458 DOI: 10.1038/s41598-022-23104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
In insects, females can keep sperm capable of fertilisation over a long period with the help of the spermatheca. The effectiveness of storing fertile sperm is expected to reflect in the reproductive strategy and, thus, the morphology of the involved organs. In this work, we focused on the relationship between reproduction and morphology in the haplodiploid Thysanoptera, especially if a loss of these traits occurs under thelytoky. The spermathecal morphology and the fate of stored spermatozoa were studied by microscopic techniques (high-resolution x-ray computed tomography and transmission electron microscopy) in three species with different reproductive modes and lifestyles (Suocerathrips linguis, Echinothrips americanus, Hercinothrips femoralis). Mating experiments were conducted to analyse the use of the transferred sperm in the thelytokous H. femoralis. Results show that the spermathecae are relatively simple, which can be explained by the availability of sperm and the short lifespan of the females. However, the spermatheca in H. femoralis seems to be vestigial compared to the arrhenotokous species and females do not use sperm for fertilisation. No substantial change was observed in the structure of spermatozoa, despite an enlargement of the sperm organelles being measured during storage in all three species. The results of this work demonstrate differences in the morphology of the spermatheca, especially concerning the reproduction mode, promoting the understanding of the complex interaction between morphology and behaviour.
Collapse
Affiliation(s)
- Stephanie Krueger
- grid.9018.00000 0001 0679 2801Institute of Biology, Department Zoology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Juliana Martins de S. e Silva
- grid.9018.00000 0001 0679 2801Institute of Physics, Martin-Luther University Halle-Wittenberg, Halle, Germany ,grid.469857.10000 0004 5929 2706Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, Germany
| | - Cristine Santos de Oliveira
- grid.9018.00000 0001 0679 2801Institute of Physics, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Gerald Moritz
- grid.9018.00000 0001 0679 2801Institute of Biology, Department Zoology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
2
|
Krueger S, Moritz G. Sperm ultrastructure in arrhenotokous and thelytokous Thysanoptera. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 64:101084. [PMID: 34293581 DOI: 10.1016/j.asd.2021.101084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Thysanoptera are haplo-diploid insects that reproduce either via arrhenotoky or thelytoky. Beside genetically based thelytoky, this reproduction mode can also be endosymbiont induced. The recovery of these females from their infection again leads to the development of males. Functionality of these males ranges widely, and this might be associated with sperm structure. We analyzed the sperm ultrastructure in three different species belonging to both suborders with different reproduction systems via electron microscopy. Beside the different reproduction modes, and adaptations to their life style, the arrhenotokous species Suocerathrips linguis (Thysanoptera: Tubulifera) and Echinothrips americanus (Thysanoptera: Terebrantia) possess typical thysanopteran-like sperm structure. But endosymbiont-cured males from the thelytokous species Hercinothrips femoralis (Thysanoptera: Terebrantia) possess several malformed spermatozoa and a large amount of secretions in their testes. Spermiophagy seems to be typical. It indicates a highly conserved mechanism of the male developmental pathways, despite the observed decay. However, this decay would explain why in some species no stable arrhenotokous line can be re-established.
Collapse
Affiliation(s)
- Stephanie Krueger
- Martin-Luther University Halle- Wittenberg, Institute of Biology, Department Zoology, Heinrich-Damerow-Str.4, 06120 Halle, Germany.
| | - Gerald Moritz
- Martin-Luther University Halle- Wittenberg, Institute of Biology, Department Zoology, Heinrich-Damerow-Str.4, 06120 Halle, Germany.
| |
Collapse
|
3
|
Riparbelli MG, Persico V, Dallai R, Callaini G. Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models. Cells 2020; 9:E744. [PMID: 32197383 PMCID: PMC7140630 DOI: 10.3390/cells9030744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Centrioles are-widely conserved barrel-shaped organelles present in most organisms. They are indirectly involved in the organization of the cytoplasmic microtubules both in interphase and during the cell division by recruiting the molecules needed for microtubule nucleation. Moreover, the centrioles are required to assemble cilia and flagella by the direct elongation of their microtubule wall. Due to the importance of the cytoplasmic microtubules in several aspects of the cell life, any defect in centriole structure can lead to cell abnormalities that in humans may result in significant diseases. Many aspects of the centriole dynamics and function have been clarified in the last years, but little attention has been paid to the exceptions in centriole structure that occasionally appeared within the animal kingdom. Here, we focused our attention on non-canonical aspects of centriole architecture within the Hexapoda. The Hexapoda is one of the major animal groups and represents a good laboratory in which to examine the evolution and the organization of the centrioles. Although these findings represent obvious exceptions to the established rules of centriole organization, they may contribute to advance our understanding of the formation and the function of these organelles.
Collapse
Affiliation(s)
- Maria Giovanna Riparbelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Veronica Persico
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.G.R.); (V.P.); (R.D.)
- Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
4
|
Garcia ASG, Scudeler EL, Pinheiro PFF, Dos Santos DC. Can exposure to neem oil affect the spermatogenesis of predator Ceraeochrysa claveri? PROTOPLASMA 2019; 256:693-701. [PMID: 30460415 DOI: 10.1007/s00709-018-1329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Novel biological control methods and integrated pest management strategies are basic requirements for the development of sustainable agriculture. As a result, there is a growing demand for research on the use of plant extracts and natural enemies such as the green lacewing, Ceraeochrysa claveri, as natural pest control methods. Studies have shown that although natural compounds such as neem oil (Azadirachta indica) are effective as pest control strategies, they also cause sublethal effects on nontarget insects, such as C. claveri. The aim of this study was to examine the effects of neem oil on C. claveri testes. C. claveri larvae were fed Diatraea saccharalis eggs, which were pretreated with 0.5%, 1%, and 2% neem oil. Testes were collected from larvae, pupae, and adults and analyzed using light and electron (transmission and scanning) microscopy. Changes in cellular stress and possible cell death were also determined by TUNEL assay and the marker HSP-70. The results showed that neem oil affects the organization and distribution of cysts in the testes and the normal sequence of cyst development, causing a delay in spermatogenesis in the testes of treated insects. Tests for cellular stress and DNA fragmentation indicated there was no cellular alteration in the treated groups. Although neem oil does not induce cell death or changes in HSP-70 expression, this biopesticide negatively impacts the process of spermatogenesis and could decrease the perpetuation of this species in the agroecosystem, indicating that the use of neem oil in association with green lacewings as a biological control should be carefully evaluated.
Collapse
Affiliation(s)
- Ana Silvia Gimenes Garcia
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | - Elton Luiz Scudeler
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | | | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, 18618-689, Brazil.
- Electron Microscopy Center, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
5
|
The centriole adjunct of insects: Need to update the definition. Tissue Cell 2016; 48:104-13. [DOI: 10.1016/j.tice.2016.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
|
6
|
Dallai R, Gottardo M, Beutel RG. Structure and Evolution of Insect Sperm: New Interpretations in the Age of Phylogenomics. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:1-23. [PMID: 26982436 DOI: 10.1146/annurev-ento-010715-023555] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This comprehensive review of the structure of sperm in all orders of insects evaluates phylogenetic implications, with the background of a phylogeny based on transcriptomes. Sperm characters strongly support several major branches of the phylogeny of insects-for instance, Cercophora, Dicondylia, and Psocodea-and also different infraordinal groups. Some closely related taxa, such as Trichoptera and Lepidoptera (Amphiesmenoptera), differ greatly in sperm structure. Sperm characters are very conservative in some groups (Heteroptera, Odonata) but highly variable in others, including Zoraptera, a small and morphologically uniform group with a tremendously accelerated rate of sperm evolution. Unusual patterns such as sperm dimorphism, the formation of bundles, or aflagellate and immotile sperm have evolved independently in several groups.
Collapse
Affiliation(s)
- Romano Dallai
- Dipartimento di Scienze della Vita, Università di Siena, I-53100 Siena, Italy; ,
| | - Marco Gottardo
- Dipartimento di Scienze della Vita, Università di Siena, I-53100 Siena, Italy; ,
| | - Rolf Georg Beutel
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany;
| |
Collapse
|
7
|
Dallai R. Overview on spermatogenesis and sperm structure of Hexapoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:257-290. [PMID: 24732045 DOI: 10.1016/j.asd.2014.04.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
The main characteristics of the sperm structure of Hexapoda are reported in the review. Data are dealing with the process of spermatogenesis, including the aberrant models giving rise to a reduced number of sperm cells. The sperm heteromorphism and the giant sperm exceeding the usual sperm size for length and width are considered. The characteristics of several components of a typical insect sperm are described: the plasma membrane and its glycocalyx, the nucleus, the centriole region and the centriole adjunct, the accessory bodies, the mitochondrial derivatives and the flagellar axoneme. Finally, a detailed description of the main sperm features of each hexapodan group is given with emphasis on the flagellar components considered to have great importance in phylogenetic considerations. This study may be also useful to those requiring an introduction to hexapod reproduction.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
8
|
|
9
|
Araújo VA, Lino-Neto J, de Sousa Ramalho F, Zanuncio JC, Serrão JE. Ultrastructure and heteromorphism of spermatozoa in five species of bugs (Pentatomidae: Heteroptera). Micron 2011; 42:560-7. [DOI: 10.1016/j.micron.2011.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
10
|
Muto K, Kubota HY. Ultrastructural analysis of spermiogenesis in Rhacophorus arboreus (Amphibia, Anura, Rhacophoridae). J Morphol 2011; 272:1422-34. [PMID: 21780156 DOI: 10.1002/jmor.10994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/02/2011] [Accepted: 05/22/2011] [Indexed: 11/08/2022]
Abstract
The spermatozoa of the Japanese green tree frog, Rhacophorus arboreus (Amphibia, Anura, Rhacophoridae), have a characteristic corkscrew-shaped head and a thick tail that extends perpendicular to the longitudinal axis of the head. We examined the process of spermatogenesis in Rh. arboreus, particularly spermiogenesis, using light and transmission electron microscopy. Spermiogenesis was categorized into the early, mid, and late stages based on the spermatid morphology and their location within the cyst. Early spermatids had a round nucleus and two independent flagella that elongated from a pair of parallel centrioles. The centrioles became embedded in centriolar adjunct material and attached to the nucleus. Then, the flagella were covered with a mantle-like cytoplasm that contained many microtubules. An acrosome appeared on the pointed side of the slightly elongated nucleus. Mid spermatids had an elongated rod-like head. As the nucleus elongated, the chromatin fibers became thicker and were arranged parallel to the elongation axis. An elongated acrosome was attached helically along the lateral side of the elongated nucleus. The biflagellate spermatids transformed into monoflagellate spermatids with two axonemes through a process in which the plasma membrane of each flagellum expanded. Late spermatids had a coiled or corkscrew-shaped head. An acrosome was located on the inside of the coiled cone composed of a nucleus. Parallel microtubules were connected in rows, and then became crystallized in the tail. The present report contains the first morphological description of spermatogenesis in Rhacophorus and suggests that spermiogenesis evolved to adapt to the fertilization environment.
Collapse
Affiliation(s)
- Kohei Muto
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 6068502, Japan
| | | |
Collapse
|