1
|
Álvarez-Barrios A, Álvarez L, Sáenz de Santa María P, García M, Álvarez-Buylla JR, Pereiro R, González-Iglesias H. Dysregulated lipid metabolism in a retinal pigment epithelial cell model and serum of patients with age-related macular degeneration. BMC Biol 2025; 23:96. [PMID: 40221802 PMCID: PMC11993946 DOI: 10.1186/s12915-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a leading cause of blindness, characterized by retinal pigment epithelium (RPE) dysfunction, extracellular deposit formation, and disrupted lipid metabolism. Understanding the molecular changes underlying AMD is essential for identifying diagnostic markers and therapeutic targets. RESULTS This multiomic study employed a primary RPE culture model to investigate age-related changes associated with AMD. Over 25 weeks, RPE cells exhibited phenotypic deterioration, including depigmentation, cell shape deformation, and barrier integrity loss, accompanied by extracellular deposit formation. Transcriptomic analysis revealed dysregulation of genes involved in lipid metabolism, including pathways for cholesterol transport, glycerophospholipids, and ceramide biosynthesis. Metabolomic profiling further identified significant changes in glycerophospholipid and sphingolipid metabolism, highlighting a decline in phospholipid species and ceramide accumulation. Serum analysis of AMD patients revealed altered levels of 18 lipids identified in RPE cultures. Four lipids showed significant differences compared to controls: GlcCer(d16:1/18:0) (1.23-fold increase, adj. p value < 0.001), PE(19:1(9Z)/22:2(13Z,16Z)) (0.34-fold decrease, adj. p value < 0.001), PE(15:0/20:3(5Z,8Z,11Z)) (0.66-fold decrease, adj. p value < 0.05), and PC(22:2(13Z,16Z)/13:0) (0.71-fold decrease, adj. p value < 0.05). These findings underscore the systemic nature of lipid dysregulation in AMD and the translational relevance of the RPE model. CONCLUSIONS This study highlights the significant role of lipid metabolism dysregulation in AMD pathogenesis. The consistent lipidomic alterations observed in RPE cultures and AMD patient serum reinforce their potential as biomarkers for disease progression and therapeutic targets. These findings provide a robust framework for understanding AMD-associated lipid metabolism changes and their systemic impact.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica, Oviedo, Spain.
| | - Pilar Sáenz de Santa María
- Fundación de Investigación Oftalmológica, Oviedo, Spain
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
| | | | - Jorge R Álvarez-Buylla
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Oviedo, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Oviedo, Spain.
| |
Collapse
|
2
|
Shaw EM, Tate AJ, Periasamy R, Lipinski DM. Characterization of drusen formation in a primary porcine tissue culture model of dry AMD. Mol Ther Methods Clin Dev 2024; 32:101331. [PMID: 39434920 PMCID: PMC11492580 DOI: 10.1016/j.omtm.2024.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Age-related macular degeneration (AMD) affects millions of individuals worldwide and is a leading cause of blindness in the elderly. In dry AMD, lipoproteinaceous deposits called drusen accumulate between the retinal pigment epithelium (RPE) and Bruch's membrane, leading to impairment of oxygen and nutrient trafficking to the neural retina, and degeneration of the overlying photoreceptor cells. Owing to key differences in human and animal ocular anatomy and the slowly progressing nature of the disease, AMD is not easily modeled in vivo. In this study, we further characterize a "drusen-in-a-dish" primary porcine RPE model system by employing vital lipid staining to monitor sub-RPE deposition over time in monolayers of cells cultured on porous transwell membranes. We demonstrate for the first time using a semi-automated image analysis pipeline that the number and size of sub-RPE deposits increases gradually but significantly over time and confirm that sub-RPE deposits grown in culture immunostain positive for multiple known components found in human drusen. As a result, we propose that drusen-in-a-dish cell culture models represent a high-throughput and cost-scalable alternative to animal models in which to study the pathobiology of drusen accumulation and may serve as useful tools for screening novel therapeutics aimed at treating dry AMD.
Collapse
Affiliation(s)
- Erika M. Shaw
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander J. Tate
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ramesh Periasamy
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M. Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
4
|
Ravera S, Bertola N, Puddu A, Bruno S, Maggi D, Panfoli I. Crosstalk between the Rod Outer Segments and Retinal Pigmented Epithelium in the Generation of Oxidative Stress in an In Vitro Model. Cells 2023; 12:2173. [PMID: 37681906 PMCID: PMC10487269 DOI: 10.3390/cells12172173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Dysfunction of the retinal pigment epithelium (RPE) is associated with several diseases characterized by retinal degeneration, such as diabetic retinopathy (DR). However, it has recently been proposed that outer retinal neurons also participate in the damage triggering. Therefore, we have evaluated the possible crosstalk between RPE and photoreceptors in priming and maintaining oxidative damage of the RPE. For this purpose, we used ARPE-19 cells as a model of human RPE, grown in normal (NG, 5.6 mM) or high glucose (HG, 25 mM) and unoxidized (UOx) or oxidized (Ox) mammalian retinal rod outer segments (OSs). ARPE-19 cells were efficient at phagocytizing rod OSs in both NG and HG settings. However, in HG, ARPE-19 cells treated with Ox-rod OSs accumulated MDA and lipofuscins and displayed altered LC3, GRP78, and caspase 8 expression compared to untreated and UOx-rod-OS-treated cells. Data suggest that early oxidative damage may originate from the photoreceptors and subsequently extend to the RPE, providing a new perspective to the idea that retinal degeneration depends solely on a redox alteration of the RPE.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, Università di Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Nadia Bertola
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, Università di Genoa, Via De Toni 14, 16132 Genova, Italy
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties, University of Genova, Viale Benedetto XV 6, 16132 Genova, Italy
| | - Isabella Panfoli
- Department of Pharmacy-(DIFAR), Università di Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| |
Collapse
|
5
|
Cerna-Chavez R, Rozanska A, Poretti GL, Benvenisty N, Parulekar M, Lako M. Retinal pigment epithelium exhibits gene expression and phagocytic activity alterations when exposed to retinoblastoma chemotherapeutics. Exp Eye Res 2023; 233:109542. [PMID: 37331647 DOI: 10.1016/j.exer.2023.109542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Retinoblastoma (Rb) is a rare malignant disorder affecting the developing retina of children under the age of five. Chemotherapeutic agents used for treating Rb have been associated with defects of the retinal pigment epithelium (RPE), such as hyperplasia, gliosis, and mottling. Herein, we have developed two pluripotent stem cell (PSC)-RPE models to assess the cytotoxicity of known Rb chemotherapeutics such as Melphalan, Topotecan and TW-37. Our findings demonstrate that these drugs alter the RPE by decreasing the monolayer barrier's trans-epithelial resistance and affecting the cells' phagocytic activity. Transcriptional analyses demonstrate an altered expression of genes involved in melanin and retinol processing, tight junction and apical-basal polarity pathways in both models. When applied within the clinical range, none of the drug treatments caused significant cytotoxic effects, changes to the apical-basal polarity, tight junction network or cell cycle. Together, our results demonstrate that although the most commonly used Rb chemotherapeutic drugs do not cause cytotoxicity in RPE, their application in vitro leads to compromised phagocytosis and strength of the barrier function, in addition to changes in gene expression that could alter the visual cycle in vivo. Our data demonstrate that widely used Rb chemotherapeutic drugs can have a deleterious impact on RPE cells and thus great care has to be exercised with regard to their delivery so the adjacent healthy RPE is not damaged during the course of tumor eradication.
Collapse
Affiliation(s)
| | | | | | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
6
|
Abstract
Sorsby fundus dystrophy (SFD) is a rare autosomal dominant disorder with complete penetrance affecting the macula. This is caused by a mutation in the TIMP-3. This objective narrative review aims to provide an overview of the pathophysiology, current treatment modalities, and future perspectives. A literature search was performed using "PubMed," "Web of Science," "Scopus," "ScienceDirect," "Google Scholar," "medRxiv," and "bioRxiv." The molecular mechanisms underlying SFD are not completely understood. Novel advancements in cell culture techniques, including induced pluripotent stem cells, may enable more reliable modeling of SFD. These cell culture techniques aim to shed more light on the pathophysiology of SFD, and hopefully, this may lead to the future development of treatment strategies for SFD. Currently, no gene therapy is available. The main treatment is the use of anti-vascular endothelial growth factors (anti-VEGF) to treat secondary choroidal neovascular membrane (CNV), which is a major complication observed in this condition. If CNV is detected and treated promptly, patients with SFD have a good chance of maintaining a functional central vision. Other treatment modalities have been tried but have shown limited benefit, and therefore, have not managed to be more widely accepted. In summary, although there is no definitive cure yet, the use of anti-VEGF treatment for secondary CNV has provided the opportunity to maintain functional vision in individuals with SFD, provided CNV is detected and treated early.
Collapse
Affiliation(s)
- Georgios Tsokolas
- Medical Retina and Uveitis Fellow, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
7
|
Majidnia E, Ahmadian M, Salehi H, Amirpour N. Development of an electrospun poly(ε-caprolactone)/collagen-based human amniotic membrane powder scaffold for culturing retinal pigment epithelial cells. Sci Rep 2022; 12:6469. [PMID: 35440610 PMCID: PMC9018818 DOI: 10.1038/s41598-022-09957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
The common retinal diseases are age-related macular degeneration (AMD) and retinitis pigmentosa (RP). They are usually associated with the dysfunction of retinal pigment epithelial (RPE) cells and degeneration of underlying Bruch’s membrane. The RPE cell transplantation is the most promising therapeutic option to restore lost vision. This study aimed to construct an ultrathin porous fibrous film with properties similar to that of native Bruch’s membrane as carriers for the RPE cells. Human amniotic membrane powder (HAMP)/Polycaprolactone (PCL) scaffolds containing different concentrations of HAMP were fabricated by electrospinning technique. The results showed that with increasing the concentration of HAMP, the diameter of fibers increased. Moreover, hydrophilicity and degradation rate were improved from 119° to 92° and 14 to 56% after 28 days immersion in phosphate-buffered saline (PBS) solution, respectively. All scaffolds had a porosity above 85%. Proper cell adhesion was obtained one day after culture and no toxicity was observed. However, after seven days, the rate of growth and proliferation of ARPE-19 cells, a culture model of RPE, on the PCL-30HAMP scaffold (HAMP concentration in PCL 7.2% by weight) was higher compared to other scaffolds. These results indicated that PCL-30HAMP fibrous scaffold has a great potential to be used in retinal tissue engineering applications.
Collapse
Affiliation(s)
- Elahe Majidnia
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Mehdi Ahmadian
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
8
|
Grigoryan EN. Pigment Epithelia of the Eye: Cell-Type Conversion in Regeneration and Disease. Life (Basel) 2022; 12:life12030382. [PMID: 35330132 PMCID: PMC8955580 DOI: 10.3390/life12030382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Pigment epithelial cells (PECs) of the retina (RPE), ciliary body, and iris (IPE) are capable of altering their phenotype. The main pathway of phenotypic switching of eye PECs in vertebrates and humans in vivo and/or in vitro is neural/retinal. Besides, cells of amphibian IPE give rise to the lens and its derivatives, while mammalian and human RPE can be converted along the mesenchymal pathway. The PECs’ capability of conversion in vivo underlies the lens and retinal regeneration in lower vertebrates and retinal diseases such as proliferative vitreoretinopathy and fibrosis in mammals and humans. The present review considers these processes studied in vitro and in vivo in animal models and in humans. The molecular basis of conversion strategies in PECs is elucidated. Being predetermined onto- and phylogenetically, it includes a species-specific molecular context, differential expression of transcription factors, signaling pathways, and epigenomic changes. The accumulated knowledge regarding the mechanisms of PECs phenotypic switching allows the development of approaches to specified conversion for many purposes: obtaining cells for transplantation, creating conditions to stimulate natural regeneration of the retina and the lens, blocking undesirable conversions associated with eye pathology, and finding molecular markers of pathology to be targets of therapy.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
9
|
Neroeva NV, Neroev VV, Katargina LA, Ryabina MV, Ilyukhin PA, Karmokova AG, Losanova OA, Maybogin AM, Kharitonov AE, Eremeev AV, Lagarkova MA. [Experimental stem cell replacement transplantation in retinal pigment epithelium atrophy]. Vestn Oftalmol 2022; 138:7-15. [PMID: 35801874 DOI: 10.17116/oftalma20221380317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE To develop and evaluate the results of the modified surgical technique for transplantation of retinal pigment epithelium (RPE) differentiated from human induced pluripotent stem cells (iPSC-RPE) in the form of a cell suspension into the subretinal space of rabbits with previously induced RPE atrophy. MATERIAL AND METHODS The study was conducted on 10 New Zealand albino rabbits (20 eyes). One month after modeling RPE atrophy and retinal degeneration, rabbits were subjected to subretinal transplantation of iPSC-RPE cells in the form of a cell suspension. To prevent reflux of iPSC-RPE into the vitreal cavity, the injection site was sealed with 2-3 drops of autologous platelet-rich plasma (PRP). All rabbits underwent spectral optical coherence tomography (SOCT) and autofluorescence studies on the Heidelberg Spectralis system («Heidelberg Engineering», Germany). Enucleated animal eyes were studied with morphological and immunohistochemical methods. RESULTS In this study we developed and evaluated a modified surgical technique of transplantation of iPSC-RPE in the form of a cell suspension into the subretinal space of rabbits with induced RPE atrophy. It was found that the use of PRP helps seal the defect and prevents cell suspension reflux into the vitreous cavity, effectively minimizing intra- and postoperative complications. Morphological in vivo study and examination of histological sections showed that implantable iPSC-RPEs were correctly integrated and adhered to the choroid in the surgery site. Immunohistochemical analysis involving fluorescence-marked antibodies confirmed the survival of iPSC-RPE integrated into the retina of model animals. CONCLUSION This method improves the technology of iPSC-RPE transplantation on preclinical stages of the study, revealing new prospects in the treatment of degenerative diseases of the retina and the possibility of a personalized approach.
Collapse
Affiliation(s)
- N V Neroeva
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - V V Neroev
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - L A Katargina
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - M V Ryabina
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - P A Ilyukhin
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - A G Karmokova
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - O A Losanova
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - A M Maybogin
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia
| | - A E Kharitonov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - A V Eremeev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - M A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
10
|
Grigoryan EN, Markitantova YV. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Zeng Z, Lam PT, Robinson ML, Del Rio-Tsonis K, Saul JM. Design and Characterization of Biomimetic Kerateine Aerogel-Electrospun Polycaprolactone Scaffolds for Retinal Cell Culture. Ann Biomed Eng 2021; 49:1633-1644. [PMID: 33825081 DOI: 10.1007/s10439-021-02756-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 01/23/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal disease that affects 196 million people and causes nearly 9% of blindness worldwide. While several pharmacological approaches slow the effects of AMD, in our opinion, cell-based strategies offer the most likely path to a cure. We describe the design and initial characterization of a kerateine (obtained by reductive extraction from keratin proteins) aerogel-electrospun polycaprolactone fiber scaffold system. The scaffolds mimic key features of the choroid and the Bruch's membrane, which is the basement membrane to which the cells of the retinal pigment epithelium (RPE) attach. The scaffolds had elastic moduli of 2-7.2 MPa, a similar range as native choroid and Bruch's membrane. ARPE-19 cells attached to the polycaprolactone fibers, remained viable for one week, and proliferated to form a monolayer reminiscent of that needed for retinal repair. These constructs could serve as a model system for testing cell and/or drug treatment strategies or directing ex vivo retinal tissue formation in the treatment of AMD.
Collapse
Affiliation(s)
- Ziqian Zeng
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA
| | - Phuong T Lam
- Department of Biology, Miami University, Oxford, OH, USA, 45056
| | - Michael L Robinson
- Department of Biology, Miami University, Oxford, OH, USA, 45056.,Center for Visual Sciences at Miami University (CVSMU), Oxford, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA, 45056.,Center for Visual Sciences at Miami University (CVSMU), Oxford, OH, USA
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA.
| |
Collapse
|
12
|
Lynn SA, Johnston DA, Scott JA, Munday R, Desai RS, Keeling E, Weaterton R, Simpson A, Davis D, Freeman T, Chatelet DS, Page A, Cree AJ, Lee H, Newman TA, Lotery AJ, Ratnayaka JA. Oligomeric Aβ 1-42 Induces an AMD-Like Phenotype and Accumulates in Lysosomes to Impair RPE Function. Cells 2021; 10:413. [PMID: 33671133 PMCID: PMC7922851 DOI: 10.3390/cells10020413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease-associated amyloid beta (Aβ) proteins accumulate in the outer retina with increasing age and in eyes of age-related macular degeneration (AMD) patients. To study Aβ-induced retinopathy, wild-type mice were injected with nanomolar human oligomeric Aβ1-42, which recapitulate the Aβ burden reported in human donor eyes. In vitro studies investigated the cellular effects of Aβ in endothelial and retinal pigment epithelial (RPE) cells. Results show subretinal Aβ-induced focal AMD-like pathology within 2 weeks. Aβ exposure caused endothelial cell migration, and morphological and barrier alterations to the RPE. Aβ co-localized to late-endocytic compartments of RPE cells, which persisted despite attempts to clear it through upregulation of lysosomal cathepsin B, revealing a novel mechanism of lysosomal impairment in retinal degeneration. The rapid upregulation of cathepsin B was out of step with the prolonged accumulation of Aβ within lysosomes, and contrasted with enzymatic responses to internalized photoreceptor outer segments (POS). Furthermore, RPE cells exposed to Aβ were identified as deficient in cargo-carrying lysosomes at time points that are critical to POS degradation. These findings imply that Aβ accumulation within late-endocytic compartments, as well as lysosomal deficiency, impairs RPE function over time, contributing to visual defects seen in aging and AMD eyes.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - David A. Johnston
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Jenny A. Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Rosie Munday
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Roshni S. Desai
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Ruaridh Weaterton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Alexander Simpson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Dillon Davis
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Thomas Freeman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - David S. Chatelet
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.A.J.); (D.S.C.); (A.P.)
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP 806, Tremona Road, Southampton SO16 6YD, UK; (S.A.L.); (J.A.S.); (R.M.); (R.S.D.); (E.K.); (R.W.); (A.S.); (D.D.); (T.F.); (A.J.C.); (H.L.); (T.A.N.); (A.J.L.)
| |
Collapse
|
13
|
Kim J, Park JY, Kong JS, Lee H, Won JY, Cho DW. Development of 3D Printed Bruch's Membrane-Mimetic Substance for the Maturation of Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22031095. [PMID: 33499245 PMCID: PMC7865340 DOI: 10.3390/ijms22031095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Retinal pigment epithelium (RPE) is a monolayer of the pigmented cells that lies on the thin extracellular matrix called Bruch's membrane. This monolayer is the main component of the outer blood-retinal barrier (BRB), which plays a multifunctional role. Due to their crucial roles, the damage of this epithelium causes a wide range of diseases related to retinal degeneration including age-related macular degeneration, retinitis pigmentosa, and Stargardt disease. Unfortunately, there is presently no cure for these diseases. Clinically implantable RPE for humans is under development, and there is no practical examination platform for drug development. Here, we developed porcine Bruch's membrane-derived bioink (BM-ECM). Compared to conventional laminin, the RPE cells on BM-ECM showed enhanced functionality of RPE. Furthermore, we developed the Bruch's membrane-mimetic substrate (BMS) via the integration of BM-ECM and 3D printing technology, which revealed structure and extracellular matrix components similar to those of natural Bruch's membrane. The developed BMS facilitated the appropriate functions of RPE, including barrier and clearance functions, the secretion of anti-angiogenic growth factors, and enzyme formation for phototransduction. Moreover, it could be used as a basement frame for RPE transplantation. We established BMS using 3D printing technology to grow RPE cells with functions that could be used for an in vitro model and RPE transplantation.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
| | - Ju Young Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
| | - Jeong Sik Kong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
- Correspondence: (J.Y.W.); (D.W.C.)
| | - Dong Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (J.K.); (J.Y.P.); (H.L.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
- Correspondence: (J.Y.W.); (D.W.C.)
| |
Collapse
|
14
|
Keeling E, Chatelet DS, Tan NYT, Khan F, Richards R, Thisainathan T, Goggin P, Page A, Tumbarello DA, Lotery AJ, Ratnayaka JA. 3D-Reconstructed Retinal Pigment Epithelial Cells Provide Insights into the Anatomy of the Outer Retina. Int J Mol Sci 2020; 21:ijms21218408. [PMID: 33182490 PMCID: PMC7672636 DOI: 10.3390/ijms21218408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022] Open
Abstract
The retinal pigment epithelium (RPE) is located between the neuroretina and the choroid, and plays a critical role in vision. RPE cells internalise outer segments (OS) from overlying photoreceptors in the daily photoreceptor renewal. Changes to RPE structure are linked with age and retinopathy, which has been described in the past by conventional 2D electron microscopy. We used serial block face scanning electron microscopy (SBF-SEM) to reconstruct RPE cells from the central mouse retina. Three-dimensional-reconstructed OS revealed the RPE to support large numbers of photoreceptors (90–216 per RPE cell). Larger bi-nucleate RPE maintained more photoreceptors, although their cytoplasmic volume was comparable to smaller mono-nucleate RPE supporting fewer photoreceptors. Scrutiny of RPE microvilli and interdigitating OS revealed the angle and surface area of contact between RPE and photoreceptors. Bi-nucleate RPE contained more mitochondria compared to mono-nucleate RPE. Furthermore, bi-nucleate cells contained larger sub-RPE spaces, supporting a likely association with disease. Use of perfusion-fixed tissues ensured the highest possible standard of preservation, providing novel insights into the 3D RPE architecture and changes linked with retinopathy. This study serves as a benchmark for comparing retinal tissues from donor eyes with age-related macular degeneration (AMD) and other retinopathies.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - David S. Chatelet
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.S.C.); (P.G.); (A.P.)
| | - Nicole Y. T. Tan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - Farihah Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - Rhys Richards
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - Thibana Thisainathan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
| | - Patricia Goggin
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.S.C.); (P.G.); (A.P.)
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton SO16 6YD, UK; (D.S.C.); (P.G.); (A.P.)
| | - David A. Tumbarello
- Biological Sciences, Faculty of Environmental and Life Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK;
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (E.K.); (N.Y.T.T.); (F.K.); (R.R.); (T.T.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
15
|
An In-Vitro Cell Model of Intracellular Protein Aggregation Provides Insights into RPE Stress Associated with Retinopathy. Int J Mol Sci 2020; 21:ijms21186647. [PMID: 32932802 PMCID: PMC7555953 DOI: 10.3390/ijms21186647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired cargo trafficking and the aggregation of intracellular macromolecules are key features of neurodegeneration, and a hallmark of aged as well as diseased retinal pigment epithelial (RPE) cells in the eye. Here, photoreceptor outer segments (POS), which are internalized daily by RPE cells, were modified by UV-irradiation to create oxidatively modified POS (OxPOS). Oxidative modification was quantified by a protein carbonyl content assay. Human ARPE-19 cells were synchronously pulsed with POS or OxPOS to study whether oxidatively modified cargos can recapitulate features of RPE pathology associated with blinding diseases. Confocal immunofluorescence microscopy analysis showed that OxPOS was trafficked to LAMP1, LAMP2 lysosomes and to LC3b autophagy vacuoles. Whilst POS were eventually degraded, OxPOS cargos were sequestered in late compartments. Co-localization of OxPOS was also associated with swollen autolysosomes. Ultrastructural analysis revealed the presence of electron-dense OxPOS aggregates in RPE cells, which appeared to be largely resistant to degradation. Measurement of cellular autofluorescence, using parameters used to assess fundus autofluorescence (FAF) in age-related macular disease (AMD) patients, revealed that OxPOS contributed significantly to a key feature of aged and diseased RPE. This in vitro cell model therefore represents a versatile tool to study disease pathways linked with RPE damage and sight-loss.
Collapse
|
16
|
Murphy AR, Truong YB, O'Brien CM, Glattauer V. Bio-inspired human in vitro outer retinal models: Bruch's membrane and its cellular interactions. Acta Biomater 2020; 104:1-16. [PMID: 31945506 DOI: 10.1016/j.actbio.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Retinal degenerative disorders, such as age-related macular degeneration (AMD), are one of the leading causes of blindness worldwide, however, treatments to completely stop the progression of these debilitating conditions are non-existent. Researchers require sophisticated models that can accurately represent the native structure of human retinal tissue to study these disorders. Current in vitro models used to study the retina are limited in their ability to fully recapitulate the structure and function of the retina, Bruch's membrane and the underlying choroid. Recent developments in the field of induced pluripotent stem cell technology has demonstrated the capability of retinal pigment epithelial cells to recapitulate AMD-like pathology. However, such studies utilise unsophisticated, bio-inert membranes to act as Bruch's membrane and support iPSC-derived retinal cells. This review presents a concise summary of the properties and function of the Bruch's membrane-retinal pigment epithelium complex, the initial pathogenic site of AMD as well as the current status for materials and fabrication approaches used to generate in vitro models of this complex tissue. Finally, this review explores required advances in the field of in vitro retinal modelling. STATEMENT OF SIGNIFICANCE: Retinal degenerative disorders such as age-related macular degeneration are worldwide leading causes of blindness. Previous attempts to model the Bruch's membrane-retinal pigment epithelial complex, the initial pathogenic site of age-related macular degeneration, have lacked the sophistication to elucidate valuable insights into disease mechanisms. Here we provide a detailed account of the morphological, physical and chemical properties of Bruch's membrane which may aid the fabrication of more sophisticated and physiologically accurate in vitro models of the retina, as well as various fabrication techniques to recreate this structure. This review also further highlights some recent advances in some additional challenging aspects of retinal tissue modelling including integrated fluid flow and photoreceptor alignment.
Collapse
Affiliation(s)
- Ashley R Murphy
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yen B Truong
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | | |
Collapse
|
17
|
Keeling E, Chatelet DS, Johnston DA, Page A, Tumbarello DA, Lotery AJ, Ratnayaka JA. Oxidative Stress and Dysfunctional Intracellular Traffic Linked to an Unhealthy Diet Results in Impaired Cargo Transport in the Retinal Pigment Epithelium (RPE). Mol Nutr Food Res 2019; 63:e1800951. [PMID: 30835933 DOI: 10.1002/mnfr.201800951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/18/2019] [Indexed: 12/19/2022]
Abstract
SCOPE Oxidative stress and dysregulated intracellular trafficking are associated with an unhealthy diet which underlies pathology. Here, these effects on photoreceptor outer segment (POS) trafficking in the retinal pigment epithelium (RPE), a major pathway of disease underlying irreversible sight-loss, are studied. METHODS AND RESULTS POS trafficking is studied in ARPE-19 cells using an algorithm-based quantification of confocal-immunofluorescence data supported by ultrastructural studies. It is shown that although POS are tightly regulated and trafficked via Rab5, Rab7 vesicles, LAMP1/2 lysosomes and LC3b-autophagosomes, there is also a considerable degree of variation and flexibility in this process. Treatment with H2 O2 and bafilomycin A1 reveals that oxidative stress and dysregulated autophagy target intracellular compartments and trafficking in strikingly different ways. These effects appear limited to POS-containing vesicles, suggesting a cargo-specific effect. CONCLUSION The findings offer insights into how RPE cells cope with stress, and how mechanisms influencing POS transport/degradation can have different outcomes in the senescent retina. These shed new light on cellular processes underlying retinopathies such as age-related macular degeneration. The discoveries reveal how diet and nutrition can cause fundamental alterations at a cellular level, thus contributing to a better understanding of the diet-disease axis.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, SO16 6YD, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, SO16 6YD, UK
| | - David A Johnston
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, SO16 6YD, UK
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, SO16 6YD, UK
| | - David A Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, University of Southampton, Life Sciences Building 85, SO17 1BJ, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, SO16 6YD, UK
| |
Collapse
|
18
|
Ratnayaka JA, Keeling E, Chatelet DS. Study of Intracellular Cargo Trafficking and Co-localization in the Phagosome and Autophagy-Lysosomal Pathways of Retinal Pigment Epithelium (RPE) Cells. Methods Mol Biol 2019; 2150:167-182. [PMID: 30969403 DOI: 10.1007/7651_2019_223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The transport and targeting of internalized molecules to distinct intracellular organelles/compartments can prove challenging to visualize clearly, which can contribute to some of the difficulties associated with these studies. By combining several approaches, we show how the trafficking and processing of photoreceptor outer segments in the phagosome and autophagy-lysosomal pathways of the retinal pigment epithelium (RPE) can easily be quantified and visualized as 3D-reconstructed images. This protocol takes advantage of new developments in microscopy and image-analysis software which has the potential to help better understand dynamic intracellular processes that underlie RPE dysfunction associated with irreversible blinding diseases such as age-related macular degeneration. The method described herein can also be used to study the trafficking and co-localization of different intracellular cargos in other cell types and tissues.
Collapse
Affiliation(s)
- J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Pavan B, Dalpiaz A. Retinal pigment epithelial cells as a therapeutic tool and target against retinopathies. Drug Discov Today 2018; 23:1672-1679. [DOI: 10.1016/j.drudis.2018.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/15/2018] [Accepted: 06/08/2018] [Indexed: 01/19/2023]
|
20
|
Lynn SA, Keeling E, Dewing JM, Johnston DA, Page A, Cree AJ, Tumbarello DA, Newman TA, Lotery AJ, Ratnayaka JA. A convenient protocol for establishing a human cell culture model of the outer retina. F1000Res 2018; 7:1107. [PMID: 30271583 PMCID: PMC6137423 DOI: 10.12688/f1000research.15409.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays a key role in the pathogenesis of several blinding retinopathies. Alterations to RPE structure and function are reported in Age-related Macular Degeneration, Stargardt and Best disease as well as pattern dystrophies. However, the precise role of RPE cells in disease aetiology remains incompletely understood. Many studies into RPE pathobiology have utilised animal models, which only recapitulate limited disease features. Some studies are also difficult to carry out in animals as the ocular space remains largely inaccessible to powerful microscopes. In contrast, in-vitro models provide an attractive alternative to investigating pathogenic RPE changes associated with age and disease. In this article we describe the step-by-step approach required to establish an experimentally versatile in-vitro culture model of the outer retina incorporating the RPE monolayer and supportive Bruch's membrane (BrM). We show that confluent monolayers of the spontaneously arisen human ARPE-19 cell-line cultured under optimal conditions reproduce key features of native RPE. These models can be used to study dynamic, intracellular and extracellular pathogenic changes using the latest developments in microscopy and imaging technology. We also discuss how RPE cells from human foetal and stem-cell derived sources can be incorporated alongside sophisticated BrM substitutes to replicate the aged/diseased outer retina in a dish. The work presented here will enable users to rapidly establish a realistic in-vitro model of the outer retina that is amenable to a high degree of experimental manipulation which will also serve as an attractive alternative to using animals. This in-vitro model therefore has the benefit of achieving the 3Rs objective of reducing and replacing the use of animals in research. As well as recapitulating salient structural and physiological features of native RPE, other advantages of this model include its simplicity, rapid set-up time and unlimited scope for detailed single-cell resolution and matrix studies.
Collapse
Affiliation(s)
- Savannah A. Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - David A. Johnston
- Biomedical Imaging Unit, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Anton Page
- Biomedical Imaging Unit, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Angela J. Cree
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - David A. Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Tracey A. Newman
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, MP 806, Tremona Road, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| |
Collapse
|
21
|
Keeling E, Lotery AJ, Tumbarello DA, Ratnayaka JA. Impaired Cargo Clearance in the Retinal Pigment Epithelium (RPE) Underlies Irreversible Blinding Diseases. Cells 2018; 7:E16. [PMID: 29473871 PMCID: PMC5850104 DOI: 10.3390/cells7020016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic degeneration of the Retinal Pigment Epithelium (RPE) is a precursor to pathological changes in the outer retina. The RPE monolayer, which lies beneath the neuroretina, daily internalises and digests large volumes of spent photoreceptor outer segments. Impaired cargo handling and processing in the endocytic/phagosome and autophagy pathways lead to the accumulation of lipofuscin and pyridinium bis-retinoid A2E aggregates and chemically modified compounds such as malondialdehyde and 4-hydroxynonenal within RPE. These contribute to increased proteolytic and oxidative stress, resulting in irreversible damage to post-mitotic RPE cells and development of blinding conditions such as age-related macular degeneration, Stargardt disease and choroideremia. Here, we review how impaired cargo handling in the RPE results in their dysfunction, discuss new findings from our laboratory and consider how newly discovered roles for lysosomes and the autophagy pathway could provide insights into retinopathies. Studies of these dynamic, molecular events have also been spurred on by recent advances in optics and imaging technology. Mechanisms underpinning lysosomal impairment in other degenerative conditions including storage disorders, α-synuclein pathologies and Alzheimer's disease are also discussed. Collectively, these findings help transcend conventional understanding of these intracellular compartments as simple waste disposal bags to bring about a paradigm shift in the way lysosomes are perceived.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | - David A Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, Life Science Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
22
|
Sorsby fundus dystrophy - A review of pathology and disease mechanisms. Exp Eye Res 2017; 165:35-46. [PMID: 28847738 DOI: 10.1016/j.exer.2017.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 01/29/2023]
Abstract
Sorsby fundus dystrophy (SFD) is an autosomal dominant macular dystrophy with an estimated prevalence of 1 in 220,000 and an onset of disease around the 4th to 6th decade of life. Similar to age-related macular degeneration (AMD), ophthalmoscopy reveals accumulation of protein/lipid deposits under the retinal pigment epithelium (RPE), referred to as drusen, in the eyes of patients with SFD. SFD is caused by variants in the gene for tissue inhibitor of metalloproteinases-3 (TIMP3), which has been found in drusen-like deposits of SFD patients. TIMP3 is constitutively expressed by RPE cells and, in healthy eyes, resides in Bruch's membrane. Most SFD-associated TIMP3 variants involve the gain or loss of a cysteine residue. This suggests the protein aberrantly forms intermolecular disulphide bonds, resulting in the formation of TIMP3 dimers. It has been demonstrated that SFD-associated TIMP3 variants are more resistant to turnover, which is thought to be a result of dimerisation and thought to explain the accumulation of TIMP3 in drusen-like deposits at the level of Bruch's membrane. An important function of TIMP3 within the outer retina is to regulate the thickness of Bruch's membrane. TIMP3 performs this function by inhibiting the activity of matrix metalloproteinases (MMPs), which have the function of catalysing breakdown of the extracellular matrix. TIMP3 has an additional function to inhibit vascular endothelial growth factor (VEGF) signalling and thereby to inhibit angiogenesis. However, it is unclear whether SFD-associated TIMP3 variant proteins retain these functions. In this review, we discuss the current understanding of the potential mechanisms underlying development of SFD and summarise all known SFD-associated TIMP3 variants. Cell culture models provide an invaluable way to study disease and identify potential treatments. These allow a greater understanding of RPE physiology and pathophysiology, including the ability to study the blood-retinal barrier as well as other RPE functions such as phagocytosis of photoreceptor outer segments. This review describes some examples of such recent in vitro studies and how they might provide new insights into degenerative diseases like SFD. Thus far, most studies on SFD have been performed using ARPE-19 cells or other, less suitable, cell-types. Now, induced pluripotent stem cell (iPSC) technologies allow the possibility to non-invasively collect somatic cells, such as dermal fibroblast cells and reprogram those to produce iPSCs. Subsequent differentiation of iPSCs can generate patient-derived RPE cells that carry the same disease-associated variant as RPE cells in the eyes of the patient. Use of these patient-derived RPE cells in novel cell culture systems should increase our understanding of how SFD and similar macular dystrophies develop.
Collapse
|