1
|
Zbyrad B, Zaborniak M, Kochmański Ł, Jasik K, Kluczyński J, Budzik G, Turek P. Evaluation of High-Temperature Sterilization Processes: Their Influence on the Mechanical Integrity of Additively Manufactured Polymeric Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1356. [PMID: 40141640 PMCID: PMC11943970 DOI: 10.3390/ma18061356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025]
Abstract
The continuous advancement of medical technologies and the increasing demand for high-performance medical devices have driven the search for innovative solutions in biomaterials engineering. However, ensuring the sterility of polymeric biomaterials while maintaining their mechanical integrity remains a significant challenge. This research examines how steam sterilization impacts the mechanical properties of four polymeric biomaterials frequently utilized in medical applications: MED610, PEEK, PET-G HT100, and RGD720. Samples were produced using additive manufacturing (AM), specifically Material Jetting (MJT) and Material Extrusion (MEX) processes, and exposed to steam sterilization at 121 °C and 134 °C. A comprehensive verification process was conducted to ensure the effectiveness of sterilization, including pre-sterilization cleaning, disinfection procedures, and the use of process indicators such as the Bowie-Dick test. Mechanical evaluation included bending tests and Rockwell hardness measurements to assess changes in structural integrity and mechanical strength after sterilization. The results revealed that, while some materials exhibited significant alterations in mechanical properties, others demonstrated high resistance to thermal and humidity exposure during sterilization. These findings provide critical insights into the selection and optimization of polymeric biomaterials for sterilizable medical applications, ensuring their durability and safety in clinical use.
Collapse
Affiliation(s)
- Barbara Zbyrad
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| | - Małgorzata Zaborniak
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| | - Łukasz Kochmański
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| | - Katarzyna Jasik
- Institute of Robots & Machine Design, Faculty of Mechanical Engineering, Military University of Technology, Gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Janusz Kluczyński
- Institute of Robots & Machine Design, Faculty of Mechanical Engineering, Military University of Technology, Gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Grzegorz Budzik
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| | - Paweł Turek
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| |
Collapse
|
2
|
Torabinavid P, Khosropanah MH, Azimzadeh A, Kajbafzadeh AM. Current strategies on kidney regeneration using tissue engineering approaches: a systematic review. BMC Nephrol 2025; 26:66. [PMID: 39934739 PMCID: PMC11816546 DOI: 10.1186/s12882-025-03968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Over the past two decades, there has been a notable rise in the number of individuals afflicted with End-Stage Renal Disease, resulting in an increased demand for renal replacement therapies. While periodic dialysis is beneficial, it can negatively impact a patient's quality of life and does not fully replicate the secretory functions of the kidneys. Additionally, the scarcity of organ donors and complications associated with organ transplants have underscored the importance of tissue engineering. Regenerative medicine is revolutionized by developing decellularized organs and tissue engineering, which is considered a cutting-edge area of study with enormous potential. Developing bioengineered kidneys using tissue engineering approaches for renal replacement therapy is promising. METHOD AND MATERIALS We aimed to systematically review the essential preclinical data to promote the translation of tissue engineering research for kidney repair from the laboratory to clinical practice. A PubMed search strategy was systematically implemented without any linguistic restrictions. The assessment focused on complete circumferential and inlay procedures, thoroughly evaluating parameters such as cell seeding, decellularization techniques, recellularization protocols, and biomaterial types. RESULTS Of the 1,484 studies retrieved from the following primary searches, 105 were included. Kidneys were harvested from eight different species. Nine studies performed kidney decellularization from discarded human kidneys. Sixty-four studies performed whole organ decellularization. Some studies used acellular scaffolds to produce hydrogels, sheets, and solutions. Decellularization is achieved through physical, chemical, or enzymatic treatment or a combination of them. Sterilization of acellular scaffolds was also thoroughly and comparatively evaluated. Lastly, different recellularization protocols and types of cells used for further cell seeding were demonstrated. CONCLUSION A comprehensive review of the existing literature about kidney tissue engineering was conducted to evaluate its effectiveness in preclinical investigations. Our findings indicate that enhancements in the design of preclinical studies are necessary to facilitate the successful translation of tissue engineering technologies into clinical applications.
Collapse
Affiliation(s)
- Parham Torabinavid
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Khosropanah
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, No. 62, Dr. Qarib's St, Keshavarz Blvd, Tehran, 14194 33151, Iran.
| |
Collapse
|
3
|
Morawski M, Krasnodębski M, Rochoń J, Kubiszewski H, Marzęcki M, Topyła D, Murat K, Staszewski M, Szczytko J, Maleszewski M, Grąt M. Decellularized Liver Matrices for Expanding the Donor Pool-An Evaluation of Existing Protocols and Future Trends. Biomolecules 2025; 15:98. [PMID: 39858491 PMCID: PMC11762870 DOI: 10.3390/biom15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Liver transplantation is the only curative option for end-stage liver disease and is necessary for an increasing number of patients with advanced primary or secondary liver cancer. Many patient groups can benefit from this treatment, however the shortage of liver grafts remains an unsolved problem. Liver bioengineering offers a promising method for expanding the donor pool through the production of acellular scaffolds that can be seeded with recipient cells. Decellularization protocols involve the removal of cells using various chemical, physical, and enzymatic steps to create a collagenous network that provides support for introduced cells and future vascular and biliary beds. However, the removal of the cells causes varying degrees of matrix damage, that can affect cell seeding and future organ performance. The main objective of this review is to present the existing techniques of producing decellularized livers, with an emphasis on the assessment and definition of acellularity. Decellularization agents are discussed, and the standard process of acellular matrix production is evaluated. We also introduce the concept of the stepwise assessment of the matrix during decellularization through decellularization cycles. This method may lead to shorter detergent exposure times and less scaffold damage. The introduction of apoptosis induction in the field of organ engineering may provide a valuable alternative to existing long perfusion protocols, which lead to significant matrix damage. A thorough understanding of the decellularization process and the action of the various factors influencing the final composition of the scaffold is essential to produce a biocompatible matrix, which can be the basis for further studies regarding recellularization and retransplantation.
Collapse
Affiliation(s)
- Marcin Morawski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Maciej Krasnodębski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Jakub Rochoń
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Hubert Kubiszewski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Michał Marzęcki
- Institute of Telecommunications, Warsaw University of Technology, 00-665 Warsaw, Poland; (M.M.); (D.T.); (K.M.)
| | - Dominik Topyła
- Institute of Telecommunications, Warsaw University of Technology, 00-665 Warsaw, Poland; (M.M.); (D.T.); (K.M.)
| | - Kacper Murat
- Institute of Telecommunications, Warsaw University of Technology, 00-665 Warsaw, Poland; (M.M.); (D.T.); (K.M.)
| | - Mikołaj Staszewski
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| | - Jacek Szczytko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland;
| | - Marek Maleszewski
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Michał Grąt
- Department of General, Transplant, and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.K.); (J.R.); (H.K.); (M.S.); (M.G.)
| |
Collapse
|
4
|
Sueters J, de Boer L, Groenman F, Huirne JAF, Smit TH, Zaat SAJ. A sterilization method for human decellularized vaginal matrices. Sci Rep 2024; 14:31728. [PMID: 39738284 PMCID: PMC11685901 DOI: 10.1038/s41598-024-82409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Vaginal reconstruction is necessary for various congenital and acquired conditions, including vaginal aplasia, trauma, tumors, and gender incongruency. Current surgical and non-surgical treatments often result in significant complications. Decellularized vaginal matrices (DVMs) from human tissue offer a promising alternative, but require effective sterilization to ensure safety and functionality. This study aimed to develop a sterilization method for decellularized human vaginal wall scaffolds. Based on our previously implemented decellularization technique with minor modifications, we designed and examined three sterilization methods consisting of (i) chemical decellularization, (ii) decellularization with additional peracetic acid/hydrogen peroxide (PAA/H2O2); (iii) decellularization with antibiotic and antimycotic (AAE) based treatment. Sterilization efficacy was evaluated through controlled contamination with common vaginal microbes and sterility testing subsequent to each sterilization method. The extracellular matrix (ECM) structure was assessed via histological staining. Decellularization alone reduced some added bacterial contaminants but did not achieve complete sterilization. PAA/H2O2-sterilization resulted in severe ECM damage, rendering it unsuitable. The AAE-treatment demonstrated effective sterilization without compromising the ECM structure. Combined decellularization and AAE-based treatment forms a viable sterilization method for human vaginal wall tissue, maintaining ECM integrity and achieving effective micro-organism elimination. This method holds potential for clinical application in vaginal transplantation.
Collapse
Affiliation(s)
- Jayson Sueters
- Department of Gynaecology, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Leonie de Boer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Centre of Expertise on Gender Dysphoria, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Judith A F Huirne
- Department of Gynaecology, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Theo H Smit
- Department of Gynaecology, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Hussein KH, Ahmadzada B, Correa JC, Sultan A, Wilken S, Amiot B, Nyberg SL. Liver tissue engineering using decellularized scaffolds: Current progress, challenges, and opportunities. Bioact Mater 2024; 40:280-305. [PMID: 38973992 PMCID: PMC11226731 DOI: 10.1016/j.bioactmat.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Liver transplantation represents the only definitive treatment for patients with end-stage liver disease. However, the shortage of liver donors provokes a dramatic gap between available grafts and patients on the waiting list. Whole liver bioengineering, an emerging field of tissue engineering, holds great potential to overcome this gap. This approach involves two main steps; the first is liver decellularization and the second is recellularization. Liver decellularization aims to remove cellular and nuclear materials from the organ, leaving behind extracellular matrices containing different structural proteins and growth factors while retaining both the vascular and biliary networks. Recellularization involves repopulating the decellularized liver with appropriate cells, theoretically from the recipient patient, to reconstruct the parenchyma, vascular tree, and biliary network. The aim of this review is to identify the major advances in decellularization and recellularization strategies and investigate obstacles for the clinical application of bioengineered liver, including immunogenicity of the designed liver extracellular matrices, the need for standardization of scaffold fabrication techniques, selection of suitable cell sources for parenchymal repopulation, vascular, and biliary tree reconstruction. In vivo transplantation models are also summarized for evaluating the functionality of bioengineered livers. Finally, the regulatory measures and future directions for confirming the safety and efficacy of bioengineered liver are also discussed. Addressing these challenges in whole liver bioengineering may offer new solutions to meet the demand for liver transplantation and improve patient outcomes.
Collapse
Affiliation(s)
- Kamal H. Hussein
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
- Department of Surgery, Anesthesiology, and Radiology, College of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Boyukkhanim Ahmadzada
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Julio Cisneros Correa
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Ahmer Sultan
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Silvana Wilken
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Scott L. Nyberg
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
6
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q, Le Y, Pan W, Yan X, Wang Y, Liu J. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci 2024; 31:96. [PMID: 39334251 PMCID: PMC11429032 DOI: 10.1186/s12929-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro. The ECM-cell interaction is crucial for organoid growth, necessitating hydrogels that meet organoid-specific requirements through modifiable physical and compositional properties. Advanced composite hydrogels have been engineered to more effectively replicate in vivo conditions, offering a more accurate representation of human organs compared to traditional matrices. This review explores the evolution and current uses of decellularized ECM scaffolds, emphasizing the application of decellularized ECM hydrogels in organoid culture. It also explores the fabrication of composite hydrogels and the prospects for their future use in organoid systems.
Collapse
Affiliation(s)
- Chen Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ni An
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Yuelei Hu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenzhen Yin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinpeng Le
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Materials Science and Engineering, Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | - Juan Liu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Soltani Khaboushan A, Azimzadeh A, Behboodi Tanourlouee S, Mamdoohi M, Kajbafzadeh AM, Slavin KV, Rahimi-Movaghar V, Hassannejad Z. Electrical stimulation enhances sciatic nerve regeneration using a silk-based conductive scaffold beyond traditional nerve guide conduits. Sci Rep 2024; 14:15196. [PMID: 38956215 PMCID: PMC11219763 DOI: 10.1038/s41598-024-65286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Despite recent advancements in peripheral nerve regeneration, the creation of nerve conduits with chemical and physical cues to enhance glial cell function and support axonal growth remains challenging. This study aimed to assess the impact of electrical stimulation (ES) using a conductive nerve conduit on sciatic nerve regeneration in a rat model with transection injury. The study involved the fabrication of conductive nerve conduits using silk fibroin and Au nanoparticles (AuNPs). Collagen hydrogel loaded with green fluorescent protein (GFP)-positive adipose-derived mesenchymal stem cells (ADSCs) served as the filling for the conduit. Both conductive and non-conductive conduits were applied with and without ES in rat models. Locomotor recovery was assessed using walking track analysis. Histological evaluations were performed using H&E, luxol fast blue staining and immunohistochemistry. Moreover, TEM analysis was conducted to distinguish various ultrastructural aspects of sciatic tissue. In the ES + conductive conduit group, higher S100 (p < 0.0001) and neurofilament (p < 0.001) expression was seen after 6 weeks. Ultrastructural evaluations showed that conductive scaffolds with ES minimized Wallerian degeneration. Furthermore, the conductive conduit with ES group demonstrated significantly increased myelin sheet thickness and decreased G. ratio compared to the autograft. Immunofluorescent images confirmed the presence of GFP-positive ADSCs by the 6th week. Locomotor recovery assessments revealed improved function in the conductive conduit with ES group compared to the control group and groups without ES. These results show that a Silk/AuNPs conduit filled with ADSC-seeded collagen hydrogel can function as a nerve conduit, aiding in the restoration of substantial gaps in the sciatic nerve with ES. Histological and locomotor evaluations indicated that ES had a greater impact on functional recovery compared to using a conductive conduit alone, although the use of conductive conduits did enhance the effects of ES.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Saman Behboodi Tanourlouee
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Melina Mamdoohi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Sina Hospital, Tehran University of Medical Sciences, Hassan-Abad Square, Imam Khomeini Ave., Tehran, 11365-3876, Iran.
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419733151, Iran.
| |
Collapse
|
8
|
Quinteira R, Gimondi S, Monteiro NO, Sobreiro-Almeida R, Lasagni L, Romagnani P, Neves NM. Decellularized kidney extracellular matrix-based hydrogels for renal tissue engineering. Acta Biomater 2024; 180:295-307. [PMID: 38642787 DOI: 10.1016/j.actbio.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Kidney regeneration is hindered by the limited pool of intrinsic reparative cells. Advanced therapies targeting renal regeneration have the potential to alleviate the clinical and financial burdens associated with kidney disease. Delivery systems for cells, extracellular vesicles, or growth factors aimed at enhancing regeneration can benefit from vehicles enabling targeted delivery and controlled release. Hydrogels, optimized to carry biological cargo while promoting regeneration, have emerged as promising candidates for this purpose. This study aims to develop a hydrogel from decellularized kidney extracellular matrix (DKECM) and explore its biocompatibility as a biomaterial for renal regeneration. The resulting hydrogel crosslinks with temperature and exhibits a high concentration of extracellular matrix. The decellularization process efficiently removes detergent residues, yielding a pathogen-free biomaterial that is non-hemolytic and devoid of α-gal epitope. Upon interaction with macrophages, the hydrogel induces differentiation into both pro-inflammatory and anti-inflammatory phenotypes, suggesting an adequate balance to promote biomaterial functionality in vivo. Renal progenitor cells encapsulated in the DKECM hydrogel demonstrate higher viability and proliferation than in commercial collagen-I hydrogels, while also expressing tubular cells and podocyte markers in long-term culture. Overall, the injectable biomaterial derived from porcine DKECM is anticipated to elicit minimal host reaction while fostering progenitor cell bioactivity, offering a potential avenue for enhancing renal regeneration in clinical settings. STATEMENT OF SIGNIFICANCE: The quest to improve treatments for kidney disease is crucial, given the challenges faced by patients on dialysis or waiting for transplants. Exciting new therapies combining biomaterials with cells can revolutionize kidney repair. In this study, researchers created a hydrogel from pig kidney. This gel could be used to deliver cells and other substances that help in kidney regeneration. Despite coming from pigs, it's safe for use in humans, with no harmful substances and reduced risk of immune reactions. Importantly, it promotes a balanced healing response in the body. This research not only advances our knowledge of kidney repair but also offers hope for more effective treatments for kidney diseases.
Collapse
Affiliation(s)
- Rita Quinteira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara Gimondi
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nelson O Monteiro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rita Sobreiro-Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Laura Lasagni
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Romagnani
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy; Nephrology and Dialysis Unit, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
9
|
Elnawam H, Abdallah A, Nouh S, Khalil NM, Elbackly R. Influence of extracellular matrix scaffolds on histological outcomes of regenerative endodontics in experimental animal models: a systematic review. BMC Oral Health 2024; 24:511. [PMID: 38689279 PMCID: PMC11061952 DOI: 10.1186/s12903-024-04266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Decellularized extracellular matrix (dECM) from several tissue sources has been proposed as a promising alternative to conventional scaffolds used in regenerative endodontic procedures (REPs). This systematic review aimed to evaluate the histological outcomes of studies utilizing dECM-derived scaffolds for REPs and to analyse the contributing factors that might influence the nature of regenerated tissues. METHODS The PRISMA 2020 guidelines were used. A search of articles published until April 2024 was conducted in Google Scholar, Scopus, PubMed and Web of Science databases. Additional records were manually searched in major endodontic journals. Original articles including histological results of dECM in REPs and in-vivo studies were included while reviews, in-vitro studies and clinical trials were excluded. The quality assessment of the included studies was analysed using the ARRIVE guidelines. Risk of Bias assessment was done using the (SYRCLE) risk of bias tool. RESULTS Out of the 387 studies obtained, 17 studies were included for analysis. In most studies, when used as scaffolds with or without exogenous cells, dECM showed the potential to enhance angiogenesis, dentinogenesis and to regenerate pulp-like and dentin-like tissues. However, the included studies showed heterogeneity of decellularization methods, animal models, scaffold source, form and delivery, as well as high risk of bias and average quality of evidence. DISCUSSION Decellularized ECM-derived scaffolds could offer a potential off-the-shelf scaffold for dentin-pulp regeneration in REPs. However, due to the methodological heterogeneity and the average quality of the studies included in this review, the overall effectiveness of decellularized ECM-derived scaffolds is still unclear. More standardized preclinical research is needed as well as well-constructed clinical trials to prove the efficacy of these scaffolds for clinical translation. OTHER The protocol was registered in PROSPERO database #CRD42023433026. This review was funded by the Science, Technology and Innovation Funding Authority (STDF) under grant number (44426).
Collapse
Affiliation(s)
- Hisham Elnawam
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt.
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Amr Abdallah
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Keshavarz Zarjani A, Bijan Nejad D, Neisi N, Taheri Moghadam M, Mansouri E. Kidney Mesenchymal Stem Cell Differentiation: Effect of Scaffold and Basic Fibroblast Growth Factor. Tissue Eng Part C Methods 2024; 30:239-247. [PMID: 38556841 DOI: 10.1089/ten.tec.2024.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Background: Chronic kidney disease (CKD) poses a global health challenge, and it needs alternative therapeutic approaches for patients with end-stage renal disease (ESRD). Although organ transplantation is effective, it faces challenges such as declining quality of life, immunological responses, transplant rejection, and donor shortages. Tissue engineering, by using suitable scaffolds, cells, and growth factors, emerges as a promising treatment option for kidney regeneration. Experiment: We precisely decellularized scaffold, derived from rat kidneys while maintaining its native three-dimensional (3D) architecture. The efficiency of decellularization was evaluated through histological examinations, including hematoxylin and eosin, periodic acid-Schiff, and DAPI staining, as well as scanning electron microscopy. The scaffolds were then recellularized with kidney mesenchymal stem cells (kMSCs), and their adhesion, proliferation, and differentiation were assessed over 1, 2, and 3 weeks. The expression of specific renal markers, including Wt-1, ZO-1, AQP-1, and ANG-1, was examined through quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in monolayer and 3D cultures. Results: The infiltration rate of cells into the scaffold increased in a time-dependent manner, and the expression of specific renal markers significantly increased, demonstrating successful differentiation of kMSCs within the scaffold. The application of basic fibroblast growth factor (bFGF) could intensify the expression of kidney-specific genes. Conclusions: The study highlighted the importance of preserving the 3D architecture of the scaffold during decellularization to achieve optimal cellular responses. Moreover, the capacity of mesenchymal stem cells in recellularized scaffolds facilitated tissue regeneration.
Collapse
Affiliation(s)
- Amirhesam Keshavarz Zarjani
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Bijan Nejad
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- The School of Medicine, Department of Virology, Alimentary Tract Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Taheri Moghadam
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Elomaa L, Almalla A, Keshi E, Hillebrandt KH, Sauer IM, Weinhart M. Rise of tissue- and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins. BIOMATERIALS AND BIOSYSTEMS 2023; 12:100084. [PMID: 38035034 PMCID: PMC10685010 DOI: 10.1016/j.bbiosy.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Thanks to its natural complexity and functionality, decellularized extracellular matrix (dECM) serves as an excellent foundation for creating highly cell-compatible bioinks and bioresins. This enables the bioprinted cells to thrive in an environment that closely mimics their native ECM composition and offers customizable biomechanical properties. To formulate dECM bioinks and bioresins, one must first pulverize and/or solubilize the dECM into non-crosslinked fragments, which can then be chemically modified as needed. In bioprinting, the solubilized dECM-derived material is typically deposited and/or crosslinked in a layer-by-layer fashion to build 3D hydrogel structures. Since the introduction of the first liver-derived dECM-based bioinks, a wide variety of decellularized tissue have been employed in bioprinting, including kidney, heart, cartilage, and adipose tissue among others. This review aims to summarize the critical steps involved in tissue-derived dECM bioprinting, starting from the decellularization of the ECM to the standardized formulation of bioinks and bioresins, ultimately leading to the reproducible bioprinting of tissue constructs. Notably, this discussion also covers photocrosslinkable dECM bioresins, which are particularly attractive due to their ability to provide precise spatiotemporal control over the gelation in bioprinting. Both in extrusion printing and vat photopolymerization, there is a need for more standardized protocols to fully harness the unique properties of dECM-derived materials. In addition to mammalian tissues, the most recent bioprinting approaches involve the use of microbial extracellular polymeric substances in bioprinting of bacteria. This presents similar challenges as those encountered in mammalian cell printing and represents a fascinating frontier in bioprinting technology.
Collapse
Affiliation(s)
- Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Ahed Almalla
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Eriselda Keshi
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Karl H. Hillebrandt
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Charitéplatz 1, Berlin 10117, Germany
| | - Igor M. Sauer
- Experimental Surgery, Department of Surgery, CCM|CVK, Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
- Cluster of Excellence Matters of Activity, Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2025, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, Hannover 30167, Germany
| |
Collapse
|
12
|
Feng J, Qi J, Fu S, Luan J. Effect of radiation sterilization on the ability to induce adipose regeneration in vivo in decellularized adipose-derived matrix. Biotechnol J 2023; 18:e2300098. [PMID: 37449520 DOI: 10.1002/biot.202300098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Decellularized adipose-derived matrix (DAM), a biological scaffold that can induce adipose regeneration. The balance between its sterilization efficiency and its ability to maintain in situ adipose regeneration should be considered in terminal sterilization. The purpose of this study was to investigate the effects of radiation sterilization of cobalt-60 (60 Co)with different doses on adipogenesis induced by different forms of DAM, so as to reduce radiation dose under the premise of safe and effective sterilization and ensure adipogenesis induced by DAM in vivo. METHODS High dose (25 kGy) and low dose (5 kGy) radiation were used to sterilize freeze-dried and wet DAM, respectively. The sterilization efficiency, macro and micro characteristics, mechanical and mechanical properties of DAM were compared, and then implanted into the immunocompromised mice to evaluate the adipose regeneration. RESULTS Under the two radiation doses, no microbial growth was found in the freeze-dried and wet DAM sterility tests, and no significant changes were observed in the macro and micro structures. In terms of mechanical properties, the elastic modulus of high dose freeze-dried DAM decreased significantly (p < 0.001). In vivo animal experiments, the freeze-dried DAM irradiated with high dose almost completely lost its function of adipogenesis in vivo. Although the wet DAM irradiated with high dose could induce fat regeneration in the early stage, the adipocyte deformation and atrophy appeared in the later stage. The freeze-dried and wet DAM after low dose irradiation was similar to the wet DAM without irradiation in the blank control, which could maintain excellent adipogenic and angiogenic functions in vivo. CONCLUSION High dose 60 Co irradiation can completely destroy the ability of freeze-dried DAM to induce adipose regeneration in situ, while low dose irradiation (5 kGy) can effectively sterilize the DAM without damaging in vivo induced adipose regeneration. Radiation has more damage to freeze-dried DAM than wet DAM in adipogenesis properties.
Collapse
Affiliation(s)
- Jiayi Feng
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Qi
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Su Fu
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Luan
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Farzamfar S, Elia E, Richer M, Chabaud S, Naji M, Bolduc S. Extracellular Matrix-Based and Electrospun Scaffolding Systems for Vaginal Reconstruction. Bioengineering (Basel) 2023; 10:790. [PMID: 37508817 PMCID: PMC10376078 DOI: 10.3390/bioengineering10070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Congenital vaginal anomalies and pelvic organ prolapse affect different age groups of women and both have significant negative impacts on patients' psychological well-being and quality of life. While surgical and non-surgical treatments are available for vaginal defects, their efficacy is limited, and they often result in long-term complications. Therefore, alternative treatment options are urgently needed. Fortunately, tissue-engineered scaffolds are promising new treatment modalities that provide an extracellular matrix (ECM)-like environment for vaginal cells to adhere, secrete ECM, and be remodeled by host cells. To this end, ECM-based scaffolds or the constructs that resemble ECM, generated by self-assembly, decellularization, or electrospinning techniques, have gained attention from both clinicians and researchers. These biomimetic scaffolds are highly similar to the native vaginal ECM and have great potential for clinical translation. This review article aims to discuss recent applications, challenges, and future perspectives of these scaffolds in vaginal reconstruction or repair strategies.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1666677951, Iran
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Afzal Z, Huguet EL. Bioengineering liver tissue by repopulation of decellularised scaffolds. World J Hepatol 2023; 15:151-179. [PMID: 36926238 PMCID: PMC10011915 DOI: 10.4254/wjh.v15.i2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Laurent Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
15
|
Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 2023; 27:10. [PMID: 36759929 PMCID: PMC9912640 DOI: 10.1186/s40824-023-00348-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue-engineered decellularized extracellular matrix (ECM) scaffolds hold great potential to address the donor shortage as well as immunologic rejection attributed to cells in conventional tissue/organ transplantation. Decellularization, as the key process in manufacturing ECM scaffolds, removes immunogen cell materials and significantly alleviates the immunogenicity and biocompatibility of derived scaffolds. However, the application of these bioscaffolds still confronts major immunologic challenges. This review discusses the interplay between damage-associated molecular patterns (DAMPs) and antigens as the main inducers of innate and adaptive immunity to aid in manufacturing biocompatible grafts with desirable immunogenicity. It also appraises the impact of various decellularization methodologies (i.e., apoptosis-assisted techniques) on provoking immune responses that participate in rejecting allogenic and xenogeneic decellularized scaffolds. In addition, the key research findings regarding the contribution of ECM alterations, cytotoxicity issues, graft sourcing, and implantation site to the immunogenicity of decellularized tissues/organs are comprehensively considered. Finally, it discusses practical solutions to overcome immunogenicity, including antigen masking by crosslinking, sterilization optimization, and antigen removal techniques such as selective antigen removal and sequential antigen solubilization.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran
| | - Mohammad Reza Hatamnejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985711151, Iran.
| |
Collapse
|
16
|
Rougier G, Maistriaux L, Fievé L, Xhema D, Evrard R, Manon J, Olszewski R, Szmytka F, Thurieau N, Boisson J, Kadlub N, Gianello P, Behets C, Lengelé B. Decellularized vascularized bone grafts: A preliminary in vitro porcine model for bioengineered transplantable bone shafts. Front Bioeng Biotechnol 2023; 10:1003861. [PMID: 36743653 PMCID: PMC9890275 DOI: 10.3389/fbioe.2022.1003861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction: Durable reconstruction of critical size bone defects is still a surgical challenge despite the availability of numerous autologous and substitute bone options. In this paper, we have investigated the possibility of creating a living bone allograft, using the perfusion/decellularization/recellularization (PDR) technique, which was applied to an original model of vascularized porcine bone graft. Materials and Methods: 11 porcine bone forelimbs, including radius and ulna, were harvested along with their vasculature including the interosseous artery and then decellularized using a sequential detergent perfusion protocol. Cellular clearance, vasculature, extracellular matrix (ECM), and preservation of biomechanical properties were evaluated. The cytocompatibility and in vitro osteoinductive potential of acellular extracellular matrix were studied by static seeding of NIH-3T3 cells and porcine adipose mesenchymal stem cells (pAMSC), respectively. Results: The vascularized bone grafts were successfully decellularized, with an excellent preservation of the 3D morphology and ECM microarchitecture. Measurements of DNA and ECM components revealed complete cellular clearance and preservation of ECM's major proteins. Bone mineral density (BMD) acquisitions revealed a slight, yet non-significant, decrease after decellularization, while biomechanical testing was unmodified. Cone beam computed tomography (CBCT) acquisitions after vascular injection of barium sulphate confirmed the preservation of the vascular network throughout the whole graft. The non-toxicity of the scaffold was proven by the very low amount of residual sodium dodecyl sulfate (SDS) in the ECM and confirmed by the high live/dead ratio of fibroblasts seeded on periosteum and bone ECM-grafts after 3, 7, and 16 days of culture. Moreover, cell proliferation tests showed a significant multiplication of seeded cell populations at the same endpoints. Lastly, the differentiation study using pAMSC confirmed the ECM graft's potential to promote osteogenic differentiation. An osteoid-like deposition occurred when pAMSC were cultured on bone ECM in both proliferative and osteogenic differentiation media. Conclusion: Fully decellularized bone grafts can be obtained by perfusion decellularization, thereby preserving ECM architecture and their vascular network, while promoting cell growth and differentiation. These vascularized decellularized bone shaft allografts thus present a true potential for future in vivo reimplantation. Therefore, they may offer new perspectives for repairing large bone defects and for bone tissue engineering.
Collapse
Affiliation(s)
- Guillaume Rougier
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Oncological and Cervicofacial Reconstructive Surgery, Otorhinolaryngology, Maxillofacial Surgery—Institut Curie, Paris, France
| | - Louis Maistriaux
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,*Correspondence: Louis Maistriaux,
| | - Lies Fievé
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Daela Xhema
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Robin Evrard
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Julie Manon
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Raphael Olszewski
- Neuromusculoskeletal Lab (NMSK)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Maxillofacial Surgery and Stomatology—Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Fabien Szmytka
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Nicolas Thurieau
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Jean Boisson
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
| | - Natacha Kadlub
- IMSIA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France,Department of Maxillofacial and Reconstructive Surgery—Necker Enfants Malades, Paris, France
| | - Pierre Gianello
- Pole of Experimental Surgery and Transplantation (CHEX)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Catherine Behets
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium
| | - Benoît Lengelé
- Pole of Morphology (MORF)—Institute of Experimental and Clinical Research (IREC)—UCLouvain, Brussels, Belgium,Department of Plastic and Reconstructive Surgery—Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
17
|
Wang D, Sant S, Lawless C, Ferrell N. A kidney proximal tubule model to evaluate effects of basement membrane stiffening on renal tubular epithelial cells. Integr Biol (Camb) 2022; 14:171-183. [PMID: 36573280 DOI: 10.1093/intbio/zyac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/21/2022] [Accepted: 11/06/2022] [Indexed: 12/28/2022]
Abstract
The kidney tubule consists of a single layer of epithelial cells supported by the tubular basement membrane (TBM), a thin layer of specialized extracellular matrix (ECM). The mechanical properties of the ECM are important for regulating a wide range of cell functions including proliferation, differentiation and cell survival. Increased ECM stiffness plays a role in promoting multiple pathological conditions including cancer, fibrosis and heart disease. How changes in TBM mechanics regulate tubular epithelial cell behavior is not fully understood. Here we introduce a cell culture system that utilizes in vivo-derived TBM to investigate cell-matrix interactions in kidney proximal tubule cells. Basement membrane mechanics was controlled using genipin, a biocompatibility crosslinker. Genipin modification resulted in a dose-dependent increase in matrix stiffness. Crosslinking had a marginal but statistically significant impact on the diffusive molecular transport properties of the TBM, likely due to a reduction in pore size. Both native and genipin-modified TBM substrates supported tubular epithelial cell growth. Cells were able to attach and proliferate to form confluent monolayers. Tubular epithelial cells polarized and assembled organized cell-cell junctions. Genipin modification had minimal impact on cell viability and proliferation. Genipin stiffened TBM increased gene expression of pro-fibrotic cytokines and altered gene expression for N-cadherin, a proximal tubular epithelial specific cell-cell junction marker. This work introduces a new cell culture model for cell-basement membrane mechanobiology studies that utilizes in vivo-derived basement membrane. We also demonstrate that TBM stiffening affects tubular epithelial cell function through altered gene expression of cell-specific differentiation markers and induced increased expression of pro-fibrotic growth factors.
Collapse
Affiliation(s)
- Dan Wang
- Department of Internal Medicine, Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Snehal Sant
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Nicholas Ferrell
- Department of Internal Medicine, Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
18
|
Lacombe J, Zenhausern F. Effect of mechanical forces on cellular response to radiation. Radiother Oncol 2022; 176:187-198. [PMID: 36228760 DOI: 10.1016/j.radonc.2022.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/08/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
While the cellular interactions and biochemical signaling has been investigated for long and showed to play a major role in the cell's fate, it is now also evident that mechanical forces continuously applied to the cells in their microenvironment are as important for tissue homeostasis. Mechanical cues are emerging as key regulators of cellular drug response and we aimed to demonstrate in this review that such effects should also be considered vital for the cellular response to radiation. In order to explore the mechanobiology of the radiation response, we reviewed the main mechanoreceptors and transducers, including integrin-mediated adhesion, YAP/TAZ pathways, Wnt/β-catenin signaling, ion channels and G protein-coupled receptors and showed their implication in the modulation of cellular radiosensitivity. We then discussed the current studies that investigated a direct effect of mechanical stress, including extracellular matrix stiffness, shear stress and mechanical strain, on radiation response of cancer and normal cells and showed through preliminary results that such stress effectively can alter cell response after irradiation. However, we also highlighted the limitations of these studies and emphasized some of the contradictory data, demonstrating that the effect of mechanical cues could involve complex interactions and potential crosstalk with numerous cellular processes also affected by irradiation. Overall, mechanical forces alter radiation response and although additional studies are required to deeply understand the underlying mechanisms, these effects should not be neglected in radiation research as they could reveal new fundamental knowledge for predicting radiosensitivity or understanding resistance to radiotherapy.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA.
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 425 N 5th St, Phoenix, AZ 85004, USA; Department of Biomedical Engineering, College of Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721, USA.
| |
Collapse
|
19
|
Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front Bioeng Biotechnol 2022; 10:805299. [PMID: 35547166 PMCID: PMC9081537 DOI: 10.3389/fbioe.2022.805299] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Reproduction of different tissues using scaffolds and materials is a major element in regenerative medicine. The regeneration of whole organs with decellularized extracellular matrix (dECM) has remained a goal despite the use of these materials for different purposes. Recently, decellularization techniques have been widely used in producing scaffolds that are appropriate for regenerating damaged organs and may be able to overcome the shortage of donor organs. Decellularized ECM offers several advantages over synthetic compounds, including the preserved natural microenvironment features. Different decellularization methods have been developed, each of which is appropriate for removing cells from specific tissues under certain conditions. A variety of methods have been advanced for evaluating the decellularization process in terms of cell removal efficiency, tissue ultrastructure preservation, toxicity, biocompatibility, biodegradability, and mechanical resistance in order to enhance the efficacy of decellularization methods. Modification techniques improve the characteristics of decellularized scaffolds, making them available for the regeneration of damaged tissues. Moreover, modification of scaffolds makes them appropriate options for drug delivery, disease modeling, and improving stem cells growth and proliferation. However, considering different challenges in the way of decellularization methods and application of decellularized scaffolds, this field is constantly developing and progressively moving forward. This review has outlined recent decellularization and sterilization strategies, evaluation tests for efficient decellularization, materials processing, application, and challenges and future outlooks of decellularization in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Afarin Neishabouri
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Daghigh
- Department of Physiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Pediatric Center of Excellence, Tehran University of Medical Science, Tehran, Iran
- *Correspondence: Masoumeh Majidi Zolbin, ; Abdol-Mohammad Kajbafzadeh,
| |
Collapse
|
20
|
Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater 2022; 10:15-31. [PMID: 34901526 PMCID: PMC8637010 DOI: 10.1016/j.bioactmat.2021.09.014] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
The application of scaffolding materials is believed to hold enormous potential for tissue regeneration. Despite the widespread application and rapid advance of several tissue-engineered scaffolds such as natural and synthetic polymer-based scaffolds, they have limited repair capacity due to the difficulties in overcoming the immunogenicity, simulating in-vivo microenvironment, and performing mechanical or biochemical properties similar to native organs/tissues. Fortunately, the emergence of decellularized extracellular matrix (dECM) scaffolds provides an attractive way to overcome these hurdles, which mimic an optimal non-immune environment with native three-dimensional structures and various bioactive components. The consequent cell-seeded construct based on dECM scaffolds, especially stem cell-recellularized construct, is considered an ideal choice for regenerating functional organs/tissues. Herein, we review recent developments in dECM scaffolds and put forward perspectives accordingly, with particular focus on the concept and fabrication of decellularized scaffolds, as well as the application of decellularized scaffolds and their combinations with stem cells (recellularized scaffolds) in tissue engineering, including skin, bone, nerve, heart, along with lung, liver and kidney.
Collapse
Affiliation(s)
| | | | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rubei Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jiashang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
21
|
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021; 10:3041. [PMID: 34831262 PMCID: PMC8616186 DOI: 10.3390/cells10113041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, University of Manchester, Manchester M13 9PL, UK;
| | - Cliona C. Kirwan
- Division of Cancer Sciences and Manchester Breast Centre, Oglesby Cancer Research Building, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
22
|
Effect of sterilization methods on the mechanical stability and extracellular matrix constituents of decellularized brain tissues. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Villalba-Caloca J, Sotres-Vega A, Giraldo-Gómez DM, Gaxiola-Gaxiola MO, Piña-Barba MC, García-Montes JA, Martínez-Fonseca S, Alonso-Gómez M, Santibáñez-Salgado JA. In vivo performance of decellularized tracheal grafts in the reconstruction of long length tracheal defects: Experimental study. Int J Artif Organs 2021; 44:718-726. [PMID: 34365843 DOI: 10.1177/03913988211025991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The repair of long-segment tracheal lesions remains an important challenge. Nowdays no predictable and dependable substitute has been found. Decellularized tracheal scaffolds have shown to be a promising graft for tracheal transplantation, since it is non-immunogenic. OBJECTIVE Evaluate in vivo decellularized tracheal allografts performance to replace long tracheal segment. METHODS Forty-five swines underwent surgery as follows: Fifteen trachea donors and 30 receptors of decellularized trachea allografts. The receptors were randomly divided in five groups (n = 6). In groups I and II, donor trachea segment was decellularized by 15 cycles with sodium deoxycholate and deoxyribonuclease, in group II, the allograft was reinforced with external surgical steel wire. Groups, III, IV, and V decellularization was reduced to seven cycles, supplemented with cryopreservation in group IV and with glutaraldehyde in group V. A 10 rings segment was excised from the receptor swine and the decellularized trachea graft was implanted to re-establish trachea continuity. RESULTS Both decellularization cycles caused decreased stiffness. All trachea receptors underwent euthanasia before the third post-implant week due to severe dyspnea and trachea graft stenosis, necrosis, edema, inflammation, hemorrhage, and granulation tissue formation in anastomotic sites. Histologically all showed total loss of epithelium, separation of collagen fibers, and alterations in staining. CONCLUSIONS Both decellularization techniques severely damaged the structure of the trachea and the extracellular matrix of the cartilage, resulting in a no functional graft, in spite of the use of surgical wire, cryopreservation or glutaraldehyde treatment. An important drawback was the formation of fibrotic stenosis in both anastomosis.
Collapse
Affiliation(s)
- Jaime Villalba-Caloca
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Avelina Sotres-Vega
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - David M Giraldo-Gómez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miguel O Gaxiola-Gaxiola
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Maria C Piña-Barba
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jazmín A García-Montes
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Sergio Martínez-Fonseca
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - Marcelino Alonso-Gómez
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México
| | - J Alfredo Santibáñez-Salgado
- Unidad de Trasplante Pulmonar Experimental, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, México
| |
Collapse
|
24
|
Detection of the residual concentration of sodium dodecyl sulfate in the decellularized whole rabbit kidney extracellular matrix. Cell Tissue Bank 2021; 23:119-128. [PMID: 33909237 DOI: 10.1007/s10561-021-09921-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
To optimize rabbit kidney decellularization protocol, using sodium dodecyl sulfate (SDS) as a commonly used detergent, a methylene blue based assay was employed for detecting the minimum nontoxic SDS level for future cell seeding. The rabbit kidney tissues were decellularized with the perfusion-based method and underwent several investigations to determine the efficacy of decellularization in preserving the extracellular matrix (ECM) and cell removal. SDS detection was performed by incubating with methylene blue and subsequent extraction with chloroform. MTT (3-(4, 5-dimethylthiazol-2-yr)-2,5-diphenyltetrazolium bromide) assay and SDS release were also evaluated during the entire process. After the first washing cycle, SDS concentration was 0.036, in 500 mL of the washing liquid, which slowly decreased and reached to 0.009 % after at the end of seventh washing cycle. In the 9th cycle, SDS was gradually decreased and reached to 0.003 %. SDS was significantly released after one week of incubation which ceased after ten washing cycles. The results of MTT assay demonstrated that different cells exhibited various sensitivity levels when exposed to serial concentrations of SDS. Human embryonic kidney cells (HEK293) with 0.003 % threshold for cellular toxicity and 87.4 % cell viability were more resistant compared with mesenchymal stem cells with 0.001 % threshold and 85.4 % cell viability. Colorimetric assay with methylene blue is a straightforward and non-invasive method to detect residual SDS present in tissue and can also prevent ECM destruction after several washings for detergent removal from decellularized tissues.
Collapse
|
25
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Surface Reformation of Medical Devices with DLC Coating. MATERIALS 2021; 14:ma14020376. [PMID: 33466774 PMCID: PMC7829695 DOI: 10.3390/ma14020376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
We evaluated the adhesion, friction characteristics, durability against bodily acids, sterilization, cleaning, and anti-reflection performance of diamond-like carbon (DLC) coatings formed as a surface treatment of intracorporeal medical devices. The major coefficients of friction during intubation in a living body in all environments were lower with DLC coatings than with black chrome plating. DLC demonstrated an adhesion of approximately 24 N, which is eight times stronger than that of black chrome plating. DLC-coated samples also showed significant stability without being damaged during acid immersion and high-pressure steam sterilization, as suggested by the results of durability tests. In addition, the coatings remained unpeeled in a usage environment, and there was no change in the anti-reflection performance of the DLC coatings. In summary, DLC coatings are useful for improving intracorporeal device surfaces and extending the lives of medical devices.
Collapse
|