1
|
Cordero-Pérez P, Tijerina-Márquez R, Rivas-Galindo VM, Torres-González L, Rodríguez-Rodríguez DR, Mendoza-Hernández OH, Espinosa-Cantú CB, Solís-Cruz GY, Muñoz-Espinosa LE, Pérez-Rodríguez E, Cura-Esquivel I, Alarcón-Galván G, Moreno-Pena DP. Antioxidant and hepatoprotective effect of Jatropha dioica against the valproic acid-induced damage in an in vivo model. BMC Complement Med Ther 2025; 25:207. [PMID: 40483492 PMCID: PMC12145642 DOI: 10.1186/s12906-025-04914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/08/2025] [Indexed: 06/11/2025] Open
Abstract
BACKGROUND Understanding liver diseases is important worldwide due to their prevalence. Apart from liver disease arising from hepatitis C viral infection, most chronic liver diseases currently have no cure. Several therapeutic alternatives, including some natural products, have been proposed to treat liver diseases. The natural product Jatropha dioica has been reported to possess antioxidant activity and, by extension, could have hepatoprotective activity. Accordingly, our aim was to test the hypothesis that an extract of J. dioica is protective against liver damage induced by valproic acid (VPA). METHODS Twelve male and twelve female Wistar rats were sorted into four groups: control, non-toxicity, valproic acid control (VPA-C), and J. dioica + VPA (JdVPA). J. dioica (300 mg/kg, given orally) was used as treatment, followed by a concomitant injection of VPA (500 mg/kg, i.p.) for the first 4 days to induce liver injury. To evaluate the severity of the injury, liver function tests were performed. In addition, oxidative stress biomarkers were quantified, as well as measures of the expression of the genes Actb, Il6, and Nfkb1. RESULTS The VPA-C group showed a significant increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA), a decrease in superoxide dismutase (SOD), and a reduction in glutathione (GSH) vs the control group. The JdVPA group showed a significant decrease in ALT, AST, and MDA and an increase in GSH and SOD vs the VPA-C group. Gene expression of Il6 and Nfkb1 did not show any statistically significant differences between study groups. Histologically, VPA presented an inflammatory infiltrate, which decreased in the JdVPA group. CONCLUSION The extract of J. dioica at the administered dose did not display toxicity and was capable of ameliorating the liver injury generated by VPA in biochemical and oxidative stress biomarkers, which suggests its potential hepatoprotective activity.
Collapse
Affiliation(s)
- Paula Cordero-Pérez
- Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Ramiro Tijerina-Márquez
- Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Veronica Mayela Rivas-Galindo
- Analytic Chemistry Department, School of Medicine, Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Liliana Torres-González
- Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Diana Raquel Rodríguez-Rodríguez
- Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Oscar Humberto Mendoza-Hernández
- Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - César Bigran Espinosa-Cantú
- Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Guadalupe Yazmín Solís-Cruz
- Analytic Chemistry Department, School of Medicine, Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Linda E Muñoz-Espinosa
- Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Edelmiro Pérez-Rodríguez
- Transplant Service, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Idalia Cura-Esquivel
- Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico
| | - Gabriela Alarcón-Galván
- Basic Science Department, School of Medicine, UDEM, Universidad de Monterrey. Av. Ignacio Morones Prieto 4500 poniente Col. Jesús M. Garza, San Pedro Garza García, Nuevo León, 66238, México
| | - Diana Patricia Moreno-Pena
- Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Ave Madero and Ave Gonzalitos s/n, Colonia Mitras Centro, Monterrey, Nuevo Leon, 64460, Mexico.
| |
Collapse
|
2
|
El Tabaa MM, Faheem H, Elballal MS, Rashad E, Mohsen M, El Tabaa MM. The PPAR-α agonist oleoyethanolamide (OEA) ameliorates valproic acid-induced steatohepatitis in rats via suppressing Wnt3a/β-catenin and activating PGC-1α: Involvement of network pharmacology and molecular docking. Eur J Pharmacol 2025; 991:177306. [PMID: 39880183 DOI: 10.1016/j.ejphar.2025.177306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Liver damage is one of the most severe side effects of valproic acid (VPA) therapy. Research indicates that PPAR-α prevents Wnt3a/β-catenin-induced PGC-1α dysregulation, which is linked to liver injury. Although PPAR-α activation has hepatoprotective effects, its role in preventing VPA-induced liver injury remains unclear. Our research used network analysis, molecular docking, and in-vivo validation to predict and assess targets and pathways associated with the hepatoprotective effects of oleoylethanolamide (OEA), a PPAR-α agonist, on VPA-induced steatohepatitis. For in-vivo experiments, 24 rats were assigned to V, OEA, VPA, and OEA + VPA. Liver functions, TGs, cholesterol, and LDL were tested. Hepatic levels of PPAR-α, ACO, TNF-α, IL-1β, HO-1, MDA, and TAC, along with Wnt3a/β-catenin, PGC-1α, and Nrf2 expression were assessed. Further, NF-κB, Bax, Bcl-2, and caspase-3 expression were detected immunohistochemically. Network pharmacology identified 258 targets for OEA-steatohepatitis connection, including NFKB1, PPARA, and NFE2L2, in addition to TNF, non-alcoholic fatty liver, NF-κB, PPAR, and WNT signaling, as contributing to steatohepatitis pathogenesis. The docking revealed a strong affinity between OEA and Wnt3a, β-catenin, and PGC-1α. Therefore, we postulated that the hepatoprotective effect of OEA may be due to Wnt3a/β-catenin-mediated inactivation of PGC1-α pathway. In vivo, OEA inhibited Wnt3a/β-catenin and increased PGC1-α by activating PPAR-α. Hence, PGC1-α reduced fat cell β-oxidation and NF-κB-mediated inflammation. OEA lessened MDA and raised TAC to mitigate oxidative damage. OEA additionally reduced apoptosis by lowering Bax/Bcl-2 ratio and caspase-3. In summary, PPAR-α involvement in the protective effects of OEA against VPA-induced steatohepatitis can be confirmed by suppressing Wnt3a/β-catenin and activating PGC-1α signaling.
Collapse
Affiliation(s)
| | - Heba Faheem
- Physiology Department, Faculty of Medicine, Tanta University, Egypt.
| | - Mohammed Salah Elballal
- Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Mohamed Mohsen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt.
| |
Collapse
|
3
|
Kadam R, Palkar M, Pingili RB. Mechanisms involved in the valproic acid-induced hepatotoxicity: a comprehensive review. Toxicol Mech Methods 2025:1-16. [PMID: 39871487 DOI: 10.1080/15376516.2025.2459176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Adverse drug reactions (ADR) remain a challenge in modern healthcare, particularly given the increasing complexity of therapeutics. An anticonvulsant medicine which is frequently used in treatment of epilepsy and other neurological conditions is valproic acid (VPA), is frequently associated with hepatotoxicity, a severe ADR that complicates its clinical use, which can take two different forms: Type I, which is defined by dose-dependent and reversible liver damage, and Type II, an idiosyncratic reaction that can result in severe liver failure, frequently complicates its clinical application. Oxidative stress, the creation of reactive metabolites, mitochondrial dysfunction, carnitine shortage, immune-mediated reactions, glutathione depletion, and blockage of the bile salt export pump (BSEP) are some of the numerous underlying mechanisms of VA-induced hepatic damage. The production of reactive oxygen species and the liver's antioxidant protection are out of balance as a cause of oxidative stress, which is a significant factor in VPA intoxication. VPA can also accelerate the build-up of fatty acids, which increases the risk of steatosis, due to its interaction with the metabolism of carnitine. Immune-mediated processes have been shown to increase liver injury, implying that the immunity system may possibly be involved in VPA hepatotoxicity. Hepatocyte injury and cholestasis are caused by BSEP inhibition, which impairs bile flow. The complex interaction between biochemical and cellular mechanisms that underlie valproic acid's hepatotoxic potential calls for additional research to clarify the precise pathways implicated and create mitigation techniques for this ADR.
Collapse
Affiliation(s)
- Rohan Kadam
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, India
| | - Mahesh Palkar
- Department of Pharmaceutical Chemistry, SVKM's NMIMS Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, India
| | - Ravindra Babu Pingili
- Department of Pharmacology, SVKM's NMIMS School of Pharmacy and Technology Management, Babulde, Shirpur, India
| |
Collapse
|
4
|
Emad D, Bayoumi AMA, Gebril SM, Ali DME, Waz S. Modulation of keap-1/Nrf2/HO-1 and NF-ĸb/caspase-3 signaling pathways by dihydromyricetin ameliorates sodium valproate-induced liver injury. Arch Biochem Biophys 2024; 758:110084. [PMID: 38971420 DOI: 10.1016/j.abb.2024.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Nuclear factor erythroid factor 2 (Nrf2) is the key regulatory of the antioxidant response elements. Also, Nrf2 interacts with nuclear factor kappa B (NF-ĸB) to inhibit subsequent inflammatory cascade. Activation of Nrf2 signaling ameliorates drug-induced liver injury. Sodium valproate (SVP) is an anti-epilepsy drug with a hepatotoxic adverse effect that restricts its clinical use. In this study, coadministration of Dihydromyricetin (DHM), a natural flavonoid, with SVP to rats upregulated gene expression of Nrf2 and its downstream gene, heme oxygenase 1 (HO-1), while suppressed the Nrf2 repressor, Keap-1. Additionally, DHM led to downregulation of proinflammatory factors in liver tissues, including NF-ĸB, interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α). This was accompanied by a decrease in the proapoptotic protein (cleaved caspase-3) expression level. Furthermore, biochemical and histopathological studies showed that DHM treatment improved liver function and lipid profile while decreased inflammatory cell infiltration, congestion, and hepatocellular damage. According to our knowledge, prior research has not examined the protective effect of DHM on the liver injury induced by SVP. Consequently, this study provides DHM as a promising herbal medication that, when used with SVP, can prevent its induced hepatotoxicity owing to its potential anti-oxidative, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Doaa Emad
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| | - Sahar M Gebril
- Department of Histology and Cell biology, Faculty of Medicine, Sohag University, Sohag, Egypt.
| | | | - Shaimaa Waz
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511, Egypt.
| |
Collapse
|
5
|
Jamal M, Azam M, Simjee SU. Combination of metformin and sub-therapeutic dose of valproic acid prevent valproic acid-induced toxicity in animal model of epilepsy. Drug Chem Toxicol 2024; 47:287-295. [PMID: 36650908 DOI: 10.1080/01480545.2023.2168689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 01/19/2023]
Abstract
Valproic acid (VPA) is one of the most prescribed drugs for epilepsy. Extended use of VPA not only induces hepatotoxicity but also impairs the cognitive functions. Metformin has been reported to prevent epileptogenesis and enhance memory. To counter the VPA-induced adverse events, it is hypothesized that combination of sub-therapeutic dose of VPA with metformin may attenuate the toxicity stemming from the therapeutic dose of VPA. Pentylenetetrazole (PTZ)-induced kindling model of epilepsy in mice was used to assess the combined effects of sub-therapeutic dose of VPA (100 mg/kg) and metformin (200 mg/kg). The memory performance was analyzed by passive avoidance test, while alkaline comet assay was used to determine genotoxicity. Histopathological examination and serum biochemical analysis was performed to determine hepatotoxicity. Results showed that combination dose of VPA with metformin reduced seizure scores. VPA (300 mg/kg) administered as a single agent did not enhance memory impairment caused by PTZ, however, combination of sub-therapeutic dose of VPA with metformin enhanced memory function. Furthermore, in alkaline comet assay, combination therapy demonstrated reduced genotoxicity compared to the VPA 300 mg/kg. Histopathological examination of liver and analysis of serum hepatic enzymes revealed that combination therapy (VPA + metformin) reversed the toxicity as seen in case of PTZ or VPA (300 mg/kg) treated animals with no other treatment given. Based on the study data, it is concluded that the combination of sub-therapeutic dose of VPA with metformin might be used for epileptic seizures. This will prevent the hepatotoxicity and enhanced memory functions as compared to the VPA given as a single agent therapy.
Collapse
Affiliation(s)
- Muhammad Jamal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Azam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shabana Usman Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
6
|
Cergel E, Tuzuner BA, Turkyilmaz IB, Oktay S, Magaji UF, Sacan O, Yanardag R, Yarat A. Reversal of Valproate-Induced Major Salivary Gland Changes By Moringa Oleifera Extract in Rats. Chem Biodivers 2024; 21:e202301959. [PMID: 38469951 DOI: 10.1002/cbdv.202301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.
Collapse
Affiliation(s)
- Eda Cergel
- Biochemistry Master of Science Student, Health Sciences Institute, Marmara University, Maltepe, Istanbul, Turkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Halic University, Eyupsultan, Istanbul, Turkiye
| | - Burcin Alev Tuzuner
- Department of Biochemistry, Faculty of Dentistry, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
- Life Sciences and Biomedical Engineering Application and Research Centre, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
| | - Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Sehkar Oktay
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| | - Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| |
Collapse
|
7
|
de Freitas RN, da Silva LGL, Fiais GA, Ferreira DSDB, Veras ASC, Teixeira GR, Oliveira SHP, Dornelles RCM, Nakamune ACDMS, Fakhouri WD, Chaves-Neto AH. Alterations in salivary biochemical composition and redox state disruption induced by the anticonvulsant valproic acid in male rat salivary glands. Arch Oral Biol 2023; 155:105805. [PMID: 37741048 DOI: 10.1016/j.archoralbio.2023.105805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE To investigate the effects of the anticonvulsant valproic acid (VPA) on salivary glands in male rat using biochemical, functional, histomorphometric, and redox state parameters. MATERIALS AND METHODS Twenty-four male Wistar rats were randomly distributed into three groups (n = 8 per group): Control (0.9% saline solution), VPA100 (100 mg/kg), and VPA400 (400 mg/kg). After 21 consecutive days of treatment with by intragastric gavage. Pilocarpine-induced saliva was collected to determine salivary flow rate, pH, buffering capacity, and biochemical composition. Analyses of histomorphometric parameters and redox balance markers were performed on the parotid and submandibular glands. RESULTS Salivary flow rate, pH, buffering capacity, total protein, potassium, sodium, and chloride were similar between groups. However, phosphate and calcium were reduced in VPA400, while amylase was increased in both VPA100 and VPA400. We did not detect significant differences in the areas of acini, ducts, and connective tissue in the salivary glands between the groups. There were no significant changes in the redox status of the submandibular glands. In turn, in the parotid glands we detected reduced total oxidizing capacity and lipid peroxidation, measured as thiobarbituric acid reactive substances (TBARs) and higher uric acid concentration in both the VPA100 and VPA400 groups, and increased superoxide dismutase (SOD) in the VPA400 group. CONCLUSION Chronic treatment with VPA modified the salivary biochemical composition and caused disruption in the redox state of the parotid gland in rats.
Collapse
Affiliation(s)
- Rayara Nogueira de Freitas
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciências - Saúde Bucal da Criança, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Gabriela Alice Fiais
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Allice Santos Cruz Veras
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciências - Saúde Bucal da Criança, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas - SBFis, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
8
|
Jutrić D, Đikić D, Boroš A, Odeh D, Gračan R, Beletić A, Jurčević IL. Combined effects of valproate and naringin on kidney antioxidative markers and serum parameters of kidney function in C57BL6 mice. Arh Hig Rada Toksikol 2023; 74:218-223. [PMID: 37791674 PMCID: PMC10549880 DOI: 10.2478/aiht-2023-74-3764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/01/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Valproate is known to disturb the kidney function, and high doses or prolonged intake may cause serum ion imbalance, kidney tubular acidosis, proteinuria, hyperuricosuria, polyuria, polydipsia, and dehydration. The aim of this in vivo study was to see whether naringin would counter the adverse effects of high-dose valproate in C57Bl/6 mice and to which extent. As expected, valproate (150 mg/kg bw a day for 10 days) caused serum hyperkalaemia, more in male than female mice. Naringin reversed (25 mg/kg bw a day for 10 days) the hyperkalaemia and activated antioxidative defence mechanisms (mainly catalase and glutathione), again more efficiently in females. In males naringin combined with valproate was not as effective and even showed some prooxidative effects.
Collapse
Affiliation(s)
- David Jutrić
- University of Zagreb Faculty of Science, Zagreb, Croatia
- Regionshospitalet Gødstrup, Herning, Denmark
| | - Domagoj Đikić
- University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Almoš Boroš
- University of Zagreb Faculty of Science, Zagreb, Croatia
- Czech Academy of Sciences, Institute of Physiology, Prague, Czechia
| | - Dyana Odeh
- University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Romana Gračan
- University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Anđelo Beletić
- Genos Ltd., Glycoscience Research Laboratory, Zagreb, Croatia
| | | |
Collapse
|
9
|
Gao S, Chen X, Yu Z, Du R, Chen B, Wang Y, Cai X, Xu J, Chen J, Duan H, Cai Y, Zheng G. Progress of research on the role of active ingredients of Citri Reticulatae Pericarpium in liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154836. [PMID: 37119760 DOI: 10.1016/j.phymed.2023.154836] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Liver is a vital organ responsible for metabolizing and detoxifying both endogenous and exogenous substances in the body. However, it is susceptible to damage from chemical and natural toxins. The high incidence and mortality rates of liver disease and its associated complications impose a significant economic burden and survival pressure on patients and their families. Various liver diseases exist, including cholestasis, viral and non-viral hepatitis, fatty liver disease, drug-induced liver injury, alcoholic liver injury, and severe end-stage liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and cholangiocellular carcinoma (CCA). Recent research has shown that flavonoids found in Citri Reticulatae Pericarpium (CRP) have the potential to normalize blood glucose, cholesterol levels, and liver lipid levels. Additionally, these flavonoids exhibit anti-inflammatory properties, prevent oxidation and lipid peroxidation, and reduce liver toxicity, thereby preventing liver injury. Given these promising findings, it is essential to explore the potential of active components in CRP for developing new drugs to treat liver diseases. OBJECTIVE Recent studies have revealed that flavonoids, including hesperidin (HD), hesperetin (HT), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangerine (TN), and erodcyol (ED), are the primary bioactive components in CRP. These flavonoids exhibit various therapeutic effects on liver injury, including anti-oxidative stress, anti-cytotoxicity, anti-inflammatory, anti-fibrosis, and anti-tumor mechanisms. In this review, we have summarized the research progress on the hepatoprotective effects of HD, HT, NIN, NOB, NRG, TN, ED and limonene (LIM), highlighting their underlying molecular mechanisms. Despite their promising effects, the current clinical application of these active ingredients in CRP has some limitations. Therefore, further studies are needed to explore the full potential of these flavonoids and develop new therapeutic strategies for liver diseases. METHODS For this review, we conducted a systematic search of three databases (ScienceNet, PubMed, and Science Direct) up to July 2022, using the search terms "CRP active ingredient," "liver injury," and "flavonoids." The search data followed the PRISMA standard. RESULTS Our findings indicate that flavonoids found in CRP can effectively reduce drug-induced liver injury, alcoholic liver injury, and non-alcoholic liver injury. These therapeutic effects are mainly attributed to the ability of flavonoids to improve liver resistance to oxidative stress and inflammation while normalizing cholesterol and liver lipid levels by exhibiting anti-free radical and anti-lipid peroxidation properties. CONCLUSION Our review provides new insights into the potential of active components in CRP for preventing and treating liver injury by regulating various molecular targets within different cell signaling pathways. This information can aid in the development of novel therapeutic strategies for liver disease.
Collapse
Affiliation(s)
- Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
10
|
Ezhilarasan D, Mani U. Valproic acid induced liver injury: An insight into molecular toxicological mechanism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103967. [PMID: 36058508 DOI: 10.1016/j.etap.2022.103967] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Valproic acid (VPA) is an anti-seizure drug that causes idiosyncratic liver injury. 2-propyl-4-pentenoic acid (Δ4VPA), a metabolite of VPA, has been implicated in VPA-induced hepatotoxicity. This review summarizes the pathogenesis involved in VPA-induced liver injury. The VPA induce liver injury mainly by i) liberation of Δ4VPA metabolites; ii) decrease in glutathione stores and antioxidants, resulting in oxidative stress; iii) inhibition of fatty acid β-oxidation, inducing mitochondrial DNA depletion and hypermethylation; a decrease in proton leak; oxidative phosphorylation impairment and ATP synthesis decrease; iv) induction of fatty liver via inhibition of carnitine palmitoyltransferase I, enhancing nuclear receptor peroxisome proliferator-activated receptor-gamma and acyl-CoA thioesterase 1, and inducing long-chain fatty acid uptake and triglyceride synthesis. VPA administration aggravates liver injury in individuals with metabolic syndromes. Therapeutic drug monitoring, routine serum levels of transaminases, ammonia, and lipid parameters during VPA therapy may thus be beneficial in improving the safety profile or preventing the progression of DILI.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600 077, India.
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
11
|
AKİN AT, EL BECHİR ML, KAYMAK E, CEYLAN T, SAYAN M, DEĞER N, KARABULUT D, TOLUK A. Naringinin ratlarda bakteriyel endotoksin kaynaklı ince bağırsak hasarı üzerindeki anti-inflamatuvar ve anti-apoptotik etkileri. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1124641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Amaç. Bu çalışmanın amacı, birçok biyolojik özelliği bulunan naringinin (NRG) ratlarda bakteriyel endotoksin kaynaklı ince bağırsak hasarı üzerine anti-inflamatuar ve antiapoptotik etkilerinin araştırılmasıdır.
Gereç ve Yöntem: Bu amaçla, 40 adet dişi Wistar albino ırkı rat 4 gruba ayrılmıştır: Kontrol (hiçbir uygulama yapılmayan grup), LPS (10 mg/kg/ip lipopolisakkarit uygulanan grup), NRG (14 gün boyunca 100 mg/kg/ip naringin uygulanan grup) ve LPS+NRG (10 mg/kg/ip lipopolisakkarit uygulamasından önce 14 gün boyunca naringin uygulanan grup). Deneysel prosedürün uygulanmasından sonra, deney hayvanlarının ince barsak dokuları çıkarıldı ve doku takibi protokolüne göre hazırlandı. Barsak dokusundaki histopatolojik değişiklikleri değerlendirmek amacıyla Hematoksilen-Eozin boyaması gerçekleştirildi ve histopatolojik değişiklikler açısından deney gruplarının karşılaştırılması amacıyla hasar skorlaması yapıldı. Ayrıca, immunohistokimyasal boyamalar ile TNF- ve Kaspaz-3 ekspresyon seviyeleri belirlendi ve gruplar arasında bu proteinlerin ekspresyon seviyelerindeki değişikliklerin belirlenmesi için immunohistokimyasal boyanma yoğunluğu skorlandı.
Bulgular: LPS grubunda epitel ve Brunner bezlerinde hasar, mononüklear hücre infiltrasyonu, hemorajik alanlar belirlendi. Ayrıca TNF- ve Kaspaz-3 ekspresyonları bu grupta anlamlı bir şekilde arttı. Ancak, NRG uygulamaları bu parametreler açısından LPS+NRG grubundaki deney hayvanlarının ince barsak dokusunda güçlü bir koruyucu etki gösterdi.
Sonuç: Bu çalışma, 100 mg/kg NRG enjeksiyonunun endotoksin kaynaklı enfeksiyonun bağırsak mukozası üzerindeki olumsuz etkilerine karşı koruyucu bir ajan olarak kabul edilebileceğini ve daha ileri klinik çalışmalarda göz ardı edilmemesi gerektiğini göstermiştir.
Collapse
Affiliation(s)
| | | | | | - Tayfun CEYLAN
- KAPADOKYA MESLEK YÜKSEKOKULU, KAPADOKYA MESLEK YÜKSEKOKULU
| | | | | | | | | |
Collapse
|
12
|
Exploration of the Protective Mechanism of Naringin in the Acetaminophen-Induced Hepatic Injury by Metabolomics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7138194. [PMID: 36160708 PMCID: PMC9507767 DOI: 10.1155/2022/7138194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Naringin is a dihydroflavone which was found in citrus fruits. Previous studies have indicated the antiapoptotic, antioxidative stress, and anti-inflammatory effects of naringin. It can improve many common diseases, including fibrosis or hepatotoxicity, cardiovascular disease, and diabetes. Acetaminophen (APAP) is a frequently used painkiller, and hepatotoxic side effects limit its use. The purpose of the current examination is to find the impact of naringin on APAP-induced hepatic injury. Firstly, we pretreated mice model groups with naringin. Then, the liver injury model was established by injecting intraperitoneally into mice with APAP. After the mice were euthanized, we obtained serum and liver tissue samples from the mice. Finally, these samples were analyzed using a metabolomics approach to find the underlying mechanism of the effects of naringin on APAP-induced liver injury and provide a new treatment strategy for APAP-induced liver injury. Our data indicate that naringin significantly improves APAP-induced liver injury in mice and reduces the expression levels of liver injury markers in a dose-dependent manner. Furthermore, analysis of differential metabolites in mice with liver injury showed that naringin reduced APAP-induced hepatotoxicity due to reversing multiple metabolite expression levels and the rescue of energy, amino acid, and purine metabolism.
Collapse
|
13
|
Effects of naringin and valproate interaction on liver steatosis and dyslipidaemia parameters in male C57BL6 mice. Arh Hig Rada Toksikol 2022; 73:71-82. [PMID: 35390239 PMCID: PMC8999592 DOI: 10.2478/aiht-2022-73-3608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Valproate is a common antiepileptic drug whose adverse effects include liver steatosis and dyslipidaemia. The aim of our study was to see how natural flavonoid antioxidant naringin would interact with valproate and attenuate these adverse effects. For this reason we treated male C57BL6 mice with a combination of 150 mg/kg of valproate and 25 mg/kg naringin every day for 10 days and compared their serum triglycerides, cholesterol, LDL, HDL, VLDL, and liver PPAR-alpha, PGC-1 alpha, ACOX1, Nrf2, SOD, CAT, GSH, and histological signs of steatosis. Valproate increased lipid peroxidation parameters and caused pronounced microvesicular steatosis throughout the hepatic lobule in all acinar zones, but naringin co-administration limited steatosis to the lobule periphery. In addition, it nearly restored total serum cholesterol, LDL, and triglycerides and liver ACOX1 and MDA to control levels. and upregulated PPAR-alpha and PGC-1 alpha, otherwise severely downregulated by valproate. It also increased SOD activity. All these findings suggest that naringin modulates key lipid metabolism regulators and should further be investigated in this model, either alone or combined with other lipid regulating drugs or molecules.
Collapse
|
14
|
Kandemir FM, Ileriturk M, Gur C. Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Mol Biol Rep 2022; 49:6063-6074. [DOI: 10.1007/s11033-022-07395-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
|
15
|
Hansen JM, Lucas SM, Ramos CD, Green EJ, Nuttall DJ, Clark DS, Marchant ED, Hancock CR, Piorczynski TB. Valproic acid promotes SOD2 acetylation: A potential mechanism of valproic acid-induced oxidative stress in developing systems. Free Radic Res 2021; 55:1130-1144. [PMID: 34895005 DOI: 10.1080/10715762.2021.2017913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Valproic acid (VPA) is an antiepileptic, bipolar and migraine medication, which is associated with embryonic dysmorphology, more specifically neural tube defects (NTDs), if taken while pregnant. One mechanism by which VPA may cause NTDs is through oxidative stress that cause disruption of cell signaling. However, mechanisms of VPA-induced oxidative stress are not fully understood. Since VPA is a deacetylase inhibitor, we propose that VPA promotes mitochondrial superoxide dismutase-2 (SOD2) acetylation, decreasing SOD2 activity and increasing oxidant levels. Using the pluripotent embryonal carcinoma cell line, P19, VPA effects were evaluated in undifferentiated and neurodifferentiated cells. VPA treatments increased oxidant levels, oxidized the glutathione (GSH)/glutathione disulfide (GSSG) redox couple, and decreased total SOD and SOD2 activity in undifferentiated P19 cells but not in differentiated P19 cells. VPA caused a specific increase in mitochondrial oxidants in undifferentiated P19 cells, VPA did not alter respirometry measurements. Immunoblot analyses demonstrated that VPA increased acetylation of SOD2 at lysine68 (AcK68 SOD2) in undifferentiated P19 cells but not in differentiated P19 cells. Pretreatments with the Nrf2 inducer, dithiol-3-thione (D3T), in undifferentiated P19 cells prevented increased oxidant levels, GSH/GSSG redox oxidation and restored total SOD and SOD2 activity, correlating with a decrease in AcK68 SOD2 levels. In embryos, VPA decreased total SOD and SOD2 activity and increased levels of AcK68 SOD2, and D3T pretreatments prevented VPA effects, increasing total SOD and SOD2 activity and lowering levels of AcK68 SOD2. These data demonstrate a potential, contributing oxidizing mechanism by which VPA incites teratogenesis in developing systems. Moreover, these data also suggest that Nrf2 interventions may serve as a means to protect developmental signaling and inhibit VPA-induced malformations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Erik D Marchant
- Department of Nutrition, Dietetics and Food Science, College of Life Sciences, Brigham Young University, Provo, Utah, USA
| | - Chad R Hancock
- Department of Nutrition, Dietetics and Food Science, College of Life Sciences, Brigham Young University, Provo, Utah, USA
| | | |
Collapse
|
16
|
Mousa AM, Soliman KEA, Alhumaydhi F, Almatroudi A, Al Rugaie O, Allemailem KS, Alrumaihi F, Khan A, Rezk MY, Aljasir M, Alwashmi ASS, Aba Alkhayl FF, Albutti AS, Seleem HS. Garlic Extract Alleviates Trastuzumab-Induced Hepatotoxicity in Rats Through Its Antioxidant, Anti-Inflammatory, and Antihyperlipidemic Effects. J Inflamm Res 2021; 14:6305-6316. [PMID: 34866928 PMCID: PMC8636847 DOI: 10.2147/jir.s339092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Trastuzumab is a new biological drug that has been used to treat breast and gastric cancer; however, its cardiotoxicity and hepatotoxicity limit its use. Garlic has antioxidant, anti-inflammatory, antihyperlipidemic, and anticancer effects. The present study aimed to evaluate the effects of garlic on trastuzumab-induced hepatotoxicity in a rat model. METHODS Twenty rats were divided into four equal groups as vehicle control (G1), garlic (G2), trastuzumab (G3), and trastuzumab+garlic (G4). All rats were sacrificed after eight weeks of treatment, followed by blood collection and excision of liver tissues for further analyses. The liver specimens were processed for histopathological (HP), immunohistochemical (expression of TNF-α and PCNA), immunofluorescent expression of Chk2 and p53, biochemical, and flow cytometry investigations to evaluate the extent of hepatocyte injury. The biochemical analysis was conducted for the activity of tissue antioxidants (GPX1, CAT, and SOD2), serum lipid profile, and liver enzymes, whereas ROS was performed by flow cytometry. RESULTS The results revealed remarkable structural changes in hepatocytes of G3 with significant increases in the numbers of inflammatory cells and positive PCNA cells, area % of collagen fibers, and immuno-expression of TNF-α, as well as a significant reduction in the nuclear expression of Chk2. In addition, significant reductions were noticed in the antioxidant enzymes (SOD2, CAT, and GPX1) activity of G3. In contrast, the levels of lipid profile tests (triglycerides, total cholesterol, LDLC, and HDLC), liver enzymes (ALT, AST, and ALP), and ROS revealed significant increases in rats of G3. Likewise, garlic administration in G4 restored all mentioned changes to their average levels deviated by trastuzumab. CONCLUSION Based on the current results, garlic demonstrates hepatoprotective effects against trastuzumab-induced toxicity in rats. The study suggested for the first time that the coadministration of garlic with trastuzumab for treating breast or gastric cancer can augment their efficacy with minimal toxicity.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Khaled E A Soliman
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
- Department of Forensic Medicine and Clinical Toxicology, Sohag Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
| | - Khaled S Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohamad Y Rezk
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
- Department of Medical Physiology, College of Medicine, Zagazig University, Al-Sharquia, 44519, Egypt
| | - Mohammad Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Aqel S Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hanan S Seleem
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, 51452, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shebin Elkoum, Egypt
| |
Collapse
|