1
|
Mendieta I, Leon-Pichardo J, Orizaga-Osti G, Juvera-Avalos ER, Rangel-Chavez U, Delgado-Gonzalez E, Anguiano B, Aceves C. Molecular Iodine Exhibited Differential Antiproliferative Actions in Progenitor and Stem Populations from Chemoresistant Cancer Cells. Int J Mol Sci 2025; 26:4020. [PMID: 40362259 PMCID: PMC12072113 DOI: 10.3390/ijms26094020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Cancer stem cells (CSCs) are described as a subpopulation of cells with capabilities of self-renewal, chemoresistance, and invasiveness. CSCs reside in tumor niches and can be studied in vitro through their enrichment in spheroids (Stem). Molecular iodine (I2) induces apoptosis and differentiation in various cancer cells. I2 can activate peroxisome proliferator-activated receptors type gamma (PPARγ), and its pathways are associated with its oxidant/antioxidant capacity. This work aimed to compare the effect of I2 supplementation in progenitor and CSC populations with low (MCF-7 and S-K-NAS) and high invasiveness (MDA-MB231 and SK-N-BE2) in mammary and neuroblastoma (NB) cell lines. Results showed that the CSC population enriched by the spheroid culture overexpressed stem messengers CD44, SOX2, and NMYC and exhibited the highest mitochondrial metabolism (membrane mitochondrial potential and O2-). The presence of I2 increases PPARγ expression and induces apoptosis through the Bax/Bcl2 index in all populations but silences NMYC expression and reduces mitochondrial metabolism in Stem NB. I2 also enhances the expression of nuclear erythroid factor 2 (Nrf2) in all populations, but the target antioxidant superoxide dismutase 2 (SOD2) is only elevated in progenitor cells. In contrast, the mitophagy inductors PTEN-induced putative kinase 1 (Pink1) and microtubule-associated protein1 light chain3 alpha (LC3) were overexpressed in Stem populations. I2-preselected SK-N-BE2 populations exhibited minor implantation and invasion capacities in the in vivo zebrafish model. These data indicate that I2 interferes with viability, implantation, and invasion capacity in all cell lines, but the molecular mechanisms vary depending on the progenitor or Stem condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autonoma de Mexico, Queretaro 76230, Mexico; (I.M.); (J.L.-P.); (G.O.-O.); (E.R.J.-A.); (E.D.-G.); (B.A.)
| |
Collapse
|
2
|
Rasouli M, Safari F, Roudi R, Sobhani N. Investigation of mesenchymal stem cell secretome on breast cancer gene expression: A bioinformatic approach to identify differentially expressed genes, functional networks, and potential therapeutic targets. Comput Biol Chem 2025; 115:108331. [PMID: 39752852 DOI: 10.1016/j.compbiolchem.2024.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025]
Abstract
The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration. Functional enrichment analyses also highlighted suppression of ECM remodeling pathways, and activation of calcium ion binding and Rap1 signaling pathway. We proposed that Ca2 + medicated activation of Ras-related protein 1 (Rap1) through its its downstream pathways such as Matrix Metalloprotease (MMP), PI3K/Akt, and MEK/ERK signaling pathway contribute to promotion of cell migration. However, the co-culture model by reducing Fibronectin 1 (FN1) and Secreted Protein Acidic and Cysteine Rich (SPARC) gene expression in cancer cells, emphasized on therapeutical aspects of MSC secretome. These findings emphasize on the dual edge sword nature of MSC secretome on cancer cell behaviors, while our major results emphasize on the cancer progression through ECM remodeling, the therapeutic aspects should not be underscored.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
3
|
Rasouli M, Safari F, Kanani MH, Ahvati H. Principles of Hanging Drop Method (Spheroid Formation) in Cell Culture. Methods Mol Biol 2025; 2879:289-300. [PMID: 38411887 DOI: 10.1007/7651_2024_527] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A type of three-dimensional (3D) cell culture models which is simple and easy is hanging drop method. The hanging drop method emerges as a pivotal technique with diverse applications in cancer research and cell biology. This method facilitates the formation of multicellular spheroids, providing a unique environment for studying cell behavior dynamics. The hanging drop method's theoretical underpinning relies on gravity-enforced self-assembly, allowing for cost-effective, reproducible 3D cell cultures with controlled spheroid sizes. The advantages of this approach include its efficiency in producing cellular heterogeneity, particularly in non-adherent 3D cultures, and its ability to create hypoxic spheroids, making it a suitable model for studying cancer. Moreover, the hanging drop method has proven valuable in investigating various aspects such as tissue structure, signaling pathways, immune activation of cancer cells, and notably, cell proliferation. Researchers have utilized the hanging drop method to explore the dynamics of cell proliferation, studying the effects of mesenchymal stem cells (MSC) secretome on cancer cells. The method's application involves co-culturing different cell lines, assessing spheroid formations, and quantifying their sizes over time. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell growth and viability within a three-dimensional co-culture paradigm.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | | | - Hiva Ahvati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Shahrokhi Nejad S, Razi S, Rezaei N. The role of AMPK in pancreatic cancer: from carcinogenesis to treatment. Clin Transl Oncol 2025; 27:70-82. [PMID: 38926257 DOI: 10.1007/s12094-024-03572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Pancreatic cancer has doubled over the previous two decades. Routine therapies are becoming incredibly resistant and failing to compensate for the burden caused by this aggressive neoplasm. As genetic susceptibility has always been a highlighted concern for this disease, identifying the molecular pathways involved in the survival and function of pancreatic cancer cells provides insight into its variant etiologies, one of which is the role of AMPK. This regulating factor of cell metabolism is crucial in the homeostasis and growth of the cell. Herein, we review the possible role of AMPK in pancreatic cancer while considering its leading effects on glycolysis and autophagy. Then, we assess the probable therapeutic agents that have resulted from the suggested pathways. Studying the underlying genetic changes in pancreatic cancer provides a chance to detect and treat patients suffering from advanced stages of the disease, and those who have given up their hope on conventional therapies can gain an opportunity to combat this cancer.
Collapse
Affiliation(s)
- Shahrzad Shahrokhi Nejad
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
5
|
Mahadiuzzaman ASM, Dain Md Opo FA, Alkarim S. Stem cell-based targeted therapy in pancreatic cancer: Current approaches and future prospects. Tissue Cell 2024; 89:102449. [PMID: 38924893 DOI: 10.1016/j.tice.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Despite recent improvements in oncology, diagnosis, and therapy, pancreatic cancer remains extremely difficult to cure due to its aggressive growth pattern with early invasion and distant metastases, chemoresistance, and a lack of effective screening modalities for early detection. Here, novel therapeutic approaches for treating pancreatic cancer are urgently needed. Recently, stem cells have drawn a lot of interest as a possible treatment for pancreatic cancer due to their ability to locate tumors. Though research over the last few decades has revealed some very exciting and promising new treatment approaches, the clinical success of these stem-cell based anti-cancer medicines has been quite limited. The most effective stem cell-mediated therapeutic options will only be available with a deeper understanding of the intricate molecular biology underlying pancreatic cancer and the subsequent identification of cancer stem cells as a novel target that promotes the growth of the cancer and resistance to chemotherapy. This review will highlight the stem cell based anti-cancer therapy targeting pancreatic cancer stem cells and different molecular signaling pathways. A particular focus will be on the therapeutic potential of naïve Stem cells, anti-cancer drug loaded stem cells, genetically engineered stem cells and exosomal miRNA released by stem cells in pancreatic cancer treatment. Similarly, the role of nanotechnology in stem cell based anticancer therapy will be further discussed to better implementation of these cell-based cancer therapy.
Collapse
Affiliation(s)
- A S M Mahadiuzzaman
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - F A Dain Md Opo
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh Alkarim
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Rasouli M, Safari F. Principles of Indirect Co-culture Method Using Transwell. Methods Mol Biol 2024. [PMID: 38502468 DOI: 10.1007/7651_2024_537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The co-culture method is a simple type of cell culture method used to evaluate the effects of communication between various types of cells in an in vitro setting. In the co-culture method, two or more eukaryotic cell types, or eukaryotic and prokaryotic cells, are cultured together. The co-culture method reflects in vivo cell behaviors and thereby emerges as a pivotal technique with diverse applications in cancer research and cell biology. Two categories of co-culture methods (indirect methods and direct methods) are well known. Direct co-culture methods allow physical contact between the various cell types (juxtacrine signaling). In indirect methods, cells are physically separated into two different populations (for example, using a Transwell) that allow communication only via secretory factors (paracrine signaling). Herein, we focus on the principles of the indirect co-culture method. Nowadays, this method is used to explore the effects of mesenchymal stem cell (MSC) secretome on cancer cells. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell proliferation, invasion, apoptosis, and polarity.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
7
|
Wu Y, Zhang F, Xu P, Li P. Brucine Inhibits Proliferation of Pancreatic Ductal Adenocarcinoma through PI3K/AKT Pathway-induced Mitochondrial Apoptosis. Curr Cancer Drug Targets 2024; 24:749-759. [PMID: 38310464 DOI: 10.2174/0115680096274284231116104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 02/05/2024]
Abstract
INTRODUCTION The purpose of this research was to settle the role of brucine in pancreatic ductal adenocarcinoma (PDAC) and the mechanisms involved. METHODS The findings of this study suggest that brucine exerts inhibitory effects on cell growth, clonogenicity, and invasive potential of Panc02 and Mia Paca-2 cells. These effects may be linked to an increase in apoptotic-prone cell population. RESULTS Gene sequencing data suggests that these effects are mediated through the induction of apoptosis. Experimental evidence further supports the notion that brucine reduces mitochondrial membrane potential and upregulates Bax expression while downregulating Bcl-2 expression. These effects are believed to be a result of brucine-mediated suppression of PI3K/Akt activity, which serves as a regulatory factor of mTOR, Bax, and Bcl-2. Suppression of PI3K activity enhances the tumor-suppressing effects of brucine. CONCLUSION Overall, these findings suggest that brucine has therapeutic potential as a remedy option for PDAC.
Collapse
Affiliation(s)
- You Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, 230022, Hefei, Anhui, China
| | - Fenglin Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, 230022, Hefei, Anhui, China
| | - Panling Xu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, 230022, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, 230022, Hefei, Anhui, China
| |
Collapse
|