1
|
Tien MCW, Albonico A, Barton JJS. Face and word superiority effects: Parallel effects of visual expertise. Perception 2025; 54:333-348. [PMID: 40138666 DOI: 10.1177/03010066251322631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
There are several studies that compare perception for written words and faces. However, many draw conclusions from different experimental paradigms, complicating direct comparison between these stimuli. Such comparisons are of interest because of hypotheses based on neuroimaging and neuropsychological data that face and word processing may have common underlying mechanisms and neural substrates. To facilitate such comparisons, we created a novel paradigm studying face recognition that closely resembles the word-superiority test, in which a letter is more easily identified when it is embedded in a whole word than when seen in isolation or in an unpronounceable random string of letters. Forty subjects each completed both of our tests. In the traditional word-superiority test, they briefly saw a word, a pseudoword, or a nonword, then a single test letter, and were asked if the letter had been part of the initial stimulus. In the face-superiority test, they briefly saw a learned, new, or scrambled face initially, then a test facial feature in isolation, and were asked to respond whether the feature had been part of the initial stimulus. For both categories of stimuli, there were similar differences between real, pseudo-, and non-stimuli. Accuracy was lower for non-stimuli compared to pseudo- and real stimuli, which in turn did not differ from each other. Response latency was greater for non-stimuli compared to pseudo-stimuli, which in turn was greater than real stimuli. Bivariate analyses revealed significant correlations between interstimulus trials for reaction times. Our study replicated a face superiority effect utilizing a similar methodology to the word-superiority test. Additionally, response latencies follows similar patterns in the recognition of written words and faces.
Collapse
Affiliation(s)
| | | | - Jason J S Barton
- Human Vision and Eye Movement Laboratory, University of British Columbia, Canada
| |
Collapse
|
2
|
Killanin AD, Ward TW, Rice DL, Ende GC, Coutant AT, Steiner E, Embury CM, Calhoun VD, Wang YP, Stephen JM, Picci G, Heinrichs-Graham E, Wilson TW. Growing together: Dynamic connectivity between developmentally sensitive regions serving verbal working memory in children and adolescents. J Physiol 2025; 603:3107-3121. [PMID: 40320940 DOI: 10.1113/jp287721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/04/2025] [Indexed: 06/02/2025] Open
Abstract
The neural network serving verbal working memory processes undergoes dramatic changes during the transition from childhood to adolescence, including changes in cortical thickness, activation levels, connectivity and inherent dynamics. Of all these neural properties, maturational changes in dynamic functional connectivity among developmentally sensitive regions within this network are among the least understood. To address this, we examined 75 typically developing youth (age range 6-14 years), who completed a verbal working memory task during magnetoencephalography (MEG). All MEG data were imaged and the phase-locking value was computed as an index of functional connectivity between regions exhibiting significant relationships with chronological age. Our results suggested developmental differences in functional connectivity during specific phases of working memory processing. During encoding, connectivity increased with age between left prefrontal and inferior parietal, with such age-related increases varying by sex between right frontal and left occipitotemporal regions. During the maintenance period, connectivity increased with age between left occipitotemporal and right posterior parietal areas and decreased with age between left frontal and right occipital cortices. These findings suggest that neural oscillations within regions serving working memory processing, as well as functional connectivity among these regions, are modulated by development during the transition from childhood to adolescence. KEY POINTS: With development from childhood to adolescence, verbal working memory processing becomes increasingly left lateralized in the prefrontal, parietal and temporal cortices. Several electrophysiological studies have shown that alpha oscillations within these brain regions become stronger with increasing chronological age during the transition from childhood to adolescence. Although such oscillatory power differences are well established, age-related changes in functional connectivity among these brain regions is far less understood. Here, we report novel findings suggesting that functional connectivity between developmentally sensitive cortical regions supporting verbal working memory scales with age among visual, language and attention-related brain systems. These results help to refine models of functional neural development supporting verbal working memory ability for future application in both basic research and clinical studies of typical and atypical cognitive development.
Collapse
Affiliation(s)
- Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grace C Ende
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Erica Steiner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
3
|
Li Y, Zhao X. The Face Processing Deficit in Developmental Dyslexia: A Meta-Analysis. DYSLEXIA (CHICHESTER, ENGLAND) 2025; 31:e70007. [PMID: 40329390 DOI: 10.1002/dys.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/10/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
Many studies have investigated face processing abilities in developmental dyslexia (DD) while conflicting evidence of both impaired and intact face processing has been reported. A systematic meta-analysis was conducted on the topic of the face processing abilities of DD. A total of 15 studies (34 effect sizes) were identified, representing data from 311 individuals with DD and 336 typically developing controls. A random-effects robust variance estimation model was used to synthesise the data. The average weighted standardised mean difference (Hedges' g) was 0.51 (95% confidence interval [0.24, 0.79], p = 0.001). A moderate level of heterogeneity was found while no publication bias was found between study-level effect sizes. Explorative meta-regression analyses showed that age, gender, and task type were not significant moderating factors. The results indicate that individuals with DD have face processing deficits compared with controls, suggesting domain-general deficits in DD and part of shared cognitive mechanisms underlying face and word processing.
Collapse
Affiliation(s)
- YiZhen Li
- College of Education, Hebei University, Baoding, China
| | - XiaoJun Zhao
- College of Education, Hebei University, Baoding, China
| |
Collapse
|
4
|
Ghorbani H, Özturan G, Albonico A, Barton JJS. Reading words versus seeing font or handwriting style: a study of hemifield processing. Exp Brain Res 2025; 243:45. [PMID: 39825894 DOI: 10.1007/s00221-024-06986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Tachistoscopic studies have established a right field advantage for the perception of visually presented words, which has been interpreted as reflecting a left hemispheric specialization. However, it is not clear whether this is driven by the linguistic task of word processing, or also occurs when processing properties such as the style and regularity of text. We had 23 subjects perform a tachistoscopic study while they viewed five-letter words in either computer font or handwriting. The task in one block was to respond if the word in the peripheral field matched a word just seen in the central field. In a second block with the same stimuli, the task was to respond if the style (handwriting or font) matched. We found a main effect of task: there was a right-field advantage for reading the word, but no field advantage for reporting the style of text. There was no effect of stimulus type and no interaction between task and stimulus type. We conclude that the field advantage for processing text is driven by the task, being specific for the processing the identity of the word and not the perception of the style of the text. We did not find evidence to support prior assertions that the type of text and its regularity influenced the field advantage during the word-reading task.
Collapse
Affiliation(s)
- Helena Ghorbani
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada
| | - Gülcenur Özturan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada
| | - Andrea Albonico
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
- Department of Psychology, University of the Fraser Valley, Abbotsford, Canada
| | - Jason J S Barton
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada.
- Department of Medicine (Neurology), University of British Columbia, Vancouver, Canada.
- Department of Psychology, University of British Columbia, Vancouver, Canada.
- Neuro-ophthalmology Section K, VGH Eye Care Centre, British Columbia, 2550 Willow Street, Vancouver, V5G 1Z9, Canada.
| |
Collapse
|
5
|
Behrmann M. Hemispheric asymmetries in face recognition in health and dysfunction. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:433-447. [PMID: 40074413 DOI: 10.1016/b978-0-443-15646-5.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A defining characteristic of the human brain is that, notwithstanding the clear anatomic similarities, the two cerebral hemispheres have several different functional superiorities. The focus of this chapter is on the hemispheric asymmetry associated with the function of face identity processing, a finely tuned and expert behavior for almost all humans that is acquired incidentally from birth and continues to be refined through early adulthood. The first section lays out the well-accepted doctrine that face perception is a product of the right hemisphere, a finding based on longstanding behavioral data from healthy adult human observers. Data are then presented from neuropsychologic studies conducted with individuals with prosopagnosia, which is either acquired after a lesion to the right hemisphere or is developmental in nature with no obvious lesion. The second section reviews data on the neural correlates of face perception, gathered using a host of imaging methodologies all the way from electroencephalography (EEG) through functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) studies to transcranial magnetic stimulation and intracranial depth recording. The penultimate section reviews empirical findings that track the emergence of the hemispheric asymmetry for faces, and offers a theoretical proposal that lays out possible origins of the adult asymmetry profile. Lastly, the hemispheric asymmetry associated with the perception of emotional face expression is considered. While considerable progress has been made in understanding the functional organization of the human cerebral cortex and its biases and asymmetries, much remains to be determined and the many inconsistencies remain to be reconciled in future research.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
6
|
Barton JJS, Albonico A, Starrfelt R. The lateralization of reading. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:301-325. [PMID: 40074404 DOI: 10.1016/b978-0-443-15646-5.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Reports in the 1890s described reading disorders from left hemisphere damage. Subsequent work converging from a variety of research approaches have confirmed a strong dependence of reading on the left ventral occipitotemporal cortex, though there is also evidence for some reading capacity of the right hemisphere. The development of this leftward bias parallels reading acquisition in children and adults and is blunted in developmental dyslexia. Several structural and functional hypotheses have been advanced to explain why reading lateralizes to the left. In the second half of this review we explore the extension of these findings to other forms of reading. Most reading studies used the alphabetic scripts of Europe but there are many writing systems. Comparisons with logographic scripts such as Chinese and kanji have revealed subtle differences. Also, while we often think of reading as the extraction of verbal language from written text, it can be broadened to other types of information extraction from symbols. Reading can occur with visual stimuli that are not written text, as with sign language in the deaf and lip-reading, and with non-visual stimuli that are textual, as with Braille. Musical notation and number reading are other text-based visual forms of reading that do not involve words. Overall, most studies show that the left ventral occipitotemporal cortex is involved in processing these diverse types of reading, with variable contributions from the right hemisphere.
Collapse
Affiliation(s)
- Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Andrea Albonico
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Randi Starrfelt
- Department of Psychology, Center for Visual Cognition, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
7
|
Schintu S, Bartolomeo P. Seeing and visualizing across the hemispheres. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:481-497. [PMID: 40074417 DOI: 10.1016/b978-0-443-15646-5.00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Despite our subjective experience of a largely symmetric visual world, the human brain exhibits varying patterns and degrees of hemispheric asymmetry in distinct processes of visual cognition. This chapter reviews behavioral and neuroimaging evidence from neurotypical individuals and neurological patients, concerning functional asymmetries between the right hemisphere (RH) and the left hemisphere (LH) in visual object processing and mental imagery. Hierarchical perception shows RH preference for global processing and LH preference for local processing. At later stages of visual object processing, RH-based circuits exhibit a relative advantage in terms of perceptual integration, with a subsequent shift toward LH-based circuits for processing at higher conceptual and semantic levels. In voluntary visual mental imagery, circuits in the LH ventral temporal cortex play a pivotal role in transitioning from object meaning to simulated visualization. These hemispheric asymmetries in visual object processing might, in part, be influenced by the overall need to minimize wiring, coupled with the presence of distinct specialized networks within each hemisphere, such as the RH attention networks and the LH language networks. From a broader viewpoint, the evidence examined in this chapter indicates that visual object processing involves the interactions of large-scale cortical circuits within and between the hemispheres.
Collapse
Affiliation(s)
- Selene Schintu
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Trento, Italy; Department of Psychology, George Washington University, Washington, DC, United States
| | - Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau/Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
8
|
Epihova G, Cook R, Andrews TJ. Global changes in the pattern of connectivity in developmental prosopagnosia. Cereb Cortex 2024; 34:bhae435. [PMID: 39514339 PMCID: PMC11546179 DOI: 10.1093/cercor/bhae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Developmental prosopagnosia is a neurodevelopmental condition characterized by difficulties in recognizing the identity of a person from their face. While current theories of the neural basis of developmental prosopagnosia focus on the face processing network, successful recognition of face identities requires broader integration of neural signals across the whole brain. Here, we asked whether disruptions in global functional and structural connectivity contribute to the face recognition difficulties observed in developmental prosopagnosia. We found that the left temporal pole was less functionally connected to the rest of the brain in developmental prosopagnosia. This was driven by weaker contralateral connections to the middle and inferior temporal gyri, as well as to the medial prefrontal cortex. The pattern of global connectivity in the left temporal pole was also disrupted in developmental prosopagnosia. Critically, these changes in global functional connectivity were only evident when participants viewed faces. Structural connectivity analysis revealed localized reductions in connectivity between the left temporal pole and a number of regions, including the fusiform gyrus, inferior temporal gyrus, and orbitofrontal cortex. Our findings underscore the importance of whole-brain integration in supporting typical face recognition and provide evidence that disruptions in connectivity involving the left temporal pole may underlie the characteristic difficulties of developmental prosopagnosia.
Collapse
Affiliation(s)
- Gabriela Epihova
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| | - Richard Cook
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- School of Psychology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Timothy J Andrews
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
9
|
Barton JJS. The 2024 Richardson Lecture: Prosopagnosia - A Classic Neurologic Deficit Meets the Modern Era. Can J Neurol Sci 2024:1-9. [PMID: 39391940 DOI: 10.1017/cjn.2024.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Acquired prosopagnosia is a rare disorder, but it serves as a model for impairments in expert-level visual processing. This review discusses five key observations made over the past 30 years. First, there are variants, an apperceptive type linked to damage to the inferior occipitotemporal cortex and an amnestic type associated with anterior temporal lesions, both either right or bilateral. Second, these variants are clustered in syndromes with other perceptual deficits, the apperceptive type with field defects, dyschromatopsia and topographagnosia, and the amnestic type with topographagnosia and the auditory disorders of phonagnosia and acquired amusia. Third, extensive testing often shows additional problems with recognizing exemplars of other objects, especially when degrees of expertise are taken into account. Fourth, the prosopagnosic impairment does not affect all facial information. For example, the perception of expression and lip-reading likely depends on other neural substrates than those for processing facial identity. Last, face perception in prosopagnosia is not immutable but can improve with extensive training, though as yet this does not represent a cure for the condition. Continuing work with neural networks and animal models will enhance our understanding of this intriguing condition and what it tells us about how our brains process vision.
Collapse
Affiliation(s)
- Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Burns EJ. Improving the DSM-5 approach to cognitive impairment: Developmental prosopagnosia reveals the need for tailored diagnoses. Behav Res Methods 2024; 56:7872-7891. [PMID: 38977608 PMCID: PMC11362378 DOI: 10.3758/s13428-024-02459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
The Diagnostic Statistical Manual of Mental Disorders (DSM-5) recommends diagnosing neurocognitive disorders (i.e., cognitive impairment) when a patient scores beyond - 1 SD below neurotypical norms on two tests. I review how this approach will fail due to cognitive tests' power limitations, validity issues, imperfect reliabilities, and biases, before summarizing their resulting negative consequences. As a proof of concept, I use developmental prosopagnosia, a condition characterized by difficulties recognizing faces, to show the DSM-5 only diagnoses 62-70% (n1 = 61, n2 = 165) versus 100% (n1 = 61) through symptoms alone. Pooling the DSM-5 missed cases confirmed the presence of group-level impairments on objective tests, which were further evidenced through meta-analyses, thus validating their highly atypical symptoms. These findings support a paradigm shift towards bespoke diagnostic approaches for distinct cognitive impairments, including a symptom-based method when validated effective. I reject dogmatic adherence to the DSM-5 approach to neurocognitive disorders, and underscore the importance of a data driven, transdiagnostic approach to understanding patients' subjective cognitive impairments. This will ultimately benefit patients, their families, clinicians, and scientific progress.
Collapse
Affiliation(s)
- Edwin J Burns
- Department of Psychology, Swansea University, Swansea, UK.
| |
Collapse
|
11
|
Vinci-Booher S, McDonald DJ, Berquist E, Pestilli F. Associative white matter tracts selectively predict sensorimotor learning. Commun Biol 2024; 7:762. [PMID: 38909103 PMCID: PMC11193801 DOI: 10.1038/s42003-024-06420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/06/2024] [Indexed: 06/24/2024] Open
Abstract
Human learning varies greatly among individuals and is related to the microstructure of major white matter tracts in several learning domains, yet the impact of the existing microstructure of white matter tracts on future learning outcomes remains unclear. We employed a machine-learning model selection framework to evaluate whether existing microstructure might predict individual differences in learning a sensorimotor task, and further, if the mapping between tract microstructure and learning was selective for learning outcomes. We used diffusion tractography to measure the mean fractional anisotropy (FA) of white matter tracts in 60 adult participants who then practiced drawing a set of 40 unfamiliar symbols repeatedly using a digital writing tablet. We measured drawing learning as the slope of draw duration over the practice session and measured visual recognition learning for the symbols using an old/new 2-AFC task. Results demonstrated that tract microstructure selectively predicted learning outcomes, with left hemisphere pArc and SLF3 tracts predicting drawing learning and the left hemisphere MDLFspl predicting visual recognition learning. These results were replicated using repeat, held-out data and supported with complementary analyses. Results suggest that individual differences in the microstructure of human white matter tracts may be selectively related to future learning outcomes.
Collapse
Affiliation(s)
- S Vinci-Booher
- Department of Psychological and Brain Sciences, Program for Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - D J McDonald
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - E Berquist
- Department of Psychological and Brain Sciences, Program for Neuroscience, Indiana University, Bloomington, IN, USA
| | - F Pestilli
- Department of Psychological and Brain Sciences, Program for Neuroscience, Indiana University, Bloomington, IN, USA.
- Department of Psychology, Center for Perceptual Systems, Center for Theoretical and Computational Neuroscience, Center for Aging Populations Sciences, Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
12
|
Boring MJ, Richardson RM, Ghuman AS. Interacting ventral temporal gradients of timescales and functional connectivity and their relationships to visual behavior. iScience 2024; 27:110003. [PMID: 38868193 PMCID: PMC11166696 DOI: 10.1016/j.isci.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Cortical gradients in endogenous and stimulus-evoked neurodynamic timescales, and long-range cortical interactions, provide organizational constraints to the brain and influence neural populations' roles in cognition. It is unclear how these functional gradients interrelate and which influence behavior. Here, intracranial recordings from 4,090 electrode contacts in 35 individuals map gradients of neural timescales and functional connectivity to assess their interactions along category-selective ventral temporal cortex. Endogenous and stimulus-evoked information processing timescales were not significantly correlated with one another suggesting that local neural timescales are context dependent and may arise through distinct neurophysiological mechanisms. Endogenous neural timescales correlated with functional connectivity even after removing the effects of shared anatomical gradients. Neural timescales and functional connectivity correlated with how strongly a population's activity predicted behavior in a simple visual task. These results suggest both interrelated and distinct neurophysiological processes give rise to different functional connectivity and neural timescale gradients, which together influence behavior.
Collapse
Affiliation(s)
- Matthew J. Boring
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - R. Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Avniel Singh Ghuman
- Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Faghel-Soubeyrand S, Ramon M, Bamps E, Zoia M, Woodhams J, Richoz AR, Caldara R, Gosselin F, Charest I. Decoding face recognition abilities in the human brain. PNAS NEXUS 2024; 3:pgae095. [PMID: 38516275 PMCID: PMC10957238 DOI: 10.1093/pnasnexus/pgae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Why are some individuals better at recognizing faces? Uncovering the neural mechanisms supporting face recognition ability has proven elusive. To tackle this challenge, we used a multimodal data-driven approach combining neuroimaging, computational modeling, and behavioral tests. We recorded the high-density electroencephalographic brain activity of individuals with extraordinary face recognition abilities-super-recognizers-and typical recognizers in response to diverse visual stimuli. Using multivariate pattern analyses, we decoded face recognition abilities from 1 s of brain activity with up to 80% accuracy. To better understand the mechanisms subtending this decoding, we compared representations in the brains of our participants with those in artificial neural network models of vision and semantics, as well as with those involved in human judgments of shape and meaning similarity. Compared to typical recognizers, we found stronger associations between early brain representations of super-recognizers and midlevel representations of vision models as well as shape similarity judgments. Moreover, we found stronger associations between late brain representations of super-recognizers and representations of the artificial semantic model as well as meaning similarity judgments. Overall, these results indicate that important individual variations in brain processing, including neural computations extending beyond purely visual processes, support differences in face recognition abilities. They provide the first empirical evidence for an association between semantic computations and face recognition abilities. We believe that such multimodal data-driven approaches will likely play a critical role in further revealing the complex nature of idiosyncratic face recognition in the human brain.
Collapse
Affiliation(s)
- Simon Faghel-Soubeyrand
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| | - Meike Ramon
- Institute of Psychology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Eva Bamps
- Center for Contextual Psychiatry, Department of Neurosciences, KU Leuven, Leuven ON5, Belgium
| | - Matteo Zoia
- Department for Biomedical Research, University of Bern, Bern 3008, Switzerland
| | - Jessica Woodhams
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
- School of Psychology, University of Birmingham, Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, UK
| | | | - Roberto Caldara
- Département de Psychology, Université de Fribourg, Fribourg CH-1700, Switzerland
| | - Frédéric Gosselin
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| | - Ian Charest
- Département de psychologie, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| |
Collapse
|
14
|
Shechter A, Medina S, Share DL, Yashar A. Language-universal and script-specific factors in the recognition of letters in visual crowding: The effects of lexicality, hemifield, and transitional probabilities in a right-to-left script. Cortex 2024; 171:319-329. [PMID: 38070387 DOI: 10.1016/j.cortex.2023.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 02/12/2024]
Abstract
Peripheral letter recognition is fundamentally limited not by the visibility of letters but by the spacing between them, i.e., 'crowding'. Crowding imposes a significant constraint on reading, however, the interplay between crowding and reading is not fully understood. Using a letter recognition task in varying display conditions, we investigated the effects of lexicality (words versus pseudowords), visual hemifield, and transitional letter probability (bigram/trigram frequency) among skilled readers (N = 14. and N = 13) in Hebrew - a script read from right to left. We observed two language-universal effects: a lexicality effect and a right hemifield (left hemisphere) advantage, as well as a strong language-specific effect - a left bigram advantage stemming from the right-to-left reading direction of Hebrew. The latter finding suggests that transitional probabilities are essential for parafoveal letter recognition. The results reveal that script-specific contextual information such as letter combination probabilities is used to accurately identify crowded letters.
Collapse
Affiliation(s)
- Adi Shechter
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, The University of Haifa, Haifa, Israel; Department of Learning Disabilities, Faculty of Education, University of Haifa, Haifa, Israel
| | - Sivan Medina
- Department of Learning and Instructional Sciences, Faculty of Education, University of Haifa, Haifa, Israel
| | - David L Share
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, The University of Haifa, Haifa, Israel; Department of Learning Disabilities, Faculty of Education, University of Haifa, Haifa, Israel
| | - Amit Yashar
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, The University of Haifa, Haifa, Israel; Department of Special Education, Faculty of Education, University of Haifa, Haifa, Israel.
| |
Collapse
|
15
|
Ventura P, Pascual M, Cruz F, Araújo S. From Perugino to Picasso revisited: Electrophysiological responses to faces in paintings from different art styles. Neuropsychologia 2024; 193:108742. [PMID: 38056623 DOI: 10.1016/j.neuropsychologia.2023.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Behavioral research (Ventura, et al., 2023) suggested that pictorial representations of faces varying along a realism-distortion spectrum elicit holistic processing as natural faces. Whether holistic face neural responses are engaged similarly remains, however, underexplored. In the present study, we evaluated the neural correlates of naturalist and artistic face processing, by exploring electrophysiological responses to faces in photographs versus in four major painting styles. The N170 response to faces in photographs was indistinguishable from that elicited by faces in the renaissance art style (depicting the most realistic faces), whilst both categories elicited larger N170 than faces in other art styles (post-impressionism, expressionism, and cubism), with a gradation in brain activity. The present evidence suggest that visual processing may become finer grained the more the realistic nature of the face. Despite behavioral equivalence, the neural mechanisms for holistic processing of natural faces and faces in diverse art styles are not equivalent.
Collapse
Affiliation(s)
- Paulo Ventura
- Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013, Lisboa, Portugal.
| | - Mariona Pascual
- Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013, Lisboa, Portugal
| | - Francisco Cruz
- Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013, Lisboa, Portugal
| | - Susana Araújo
- Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013, Lisboa, Portugal
| |
Collapse
|
16
|
Rich TJ, Palmer J. Neglect dyslexia: whole-word and within-word errors with parafoveal and foveal viewing. Exp Brain Res 2023; 241:2655-2668. [PMID: 37773416 PMCID: PMC10635956 DOI: 10.1007/s00221-023-06708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Patients with left-sided neglect dyslexia often omit whole words positioned on the left, termed whole-word errors, or commit errors on the left-sided letters of words, termed unilateral paralexias. In addition, the errors have been shown to be exacerbated by simultaneously presented distractors, which has been interpreted as a failure of selective attention. In two experiments, we examined the dependency of these error types on parafoveal versus foveal viewing. The first experiment used a paradigm with parafoveal targets and distractors; the second a paradigm with foveal targets and parafoveal distractors. This enabled a separate evaluation of the influences of stimulus position within an egocentric frame, a two-word allocentric frame, and a within-word allocentric frame. First, regarding whole-word errors, we found the expected spatial and distractor effects with parafoveal targets and distractors. With foveal targets and parafoveal distractors, however, the spatial effect was effectively eliminated. Surprisingly, intrusions from the distractor word were common in distractor conditions. This is consistent with an egocentric account and not a two-word allocentric account. Second, we found that unilateral paralexias remained largely consistent regardless of spatial position or the presence of a distractor. Thus, there is a contrast in spatial and distractor effects between whole-word errors and unilateral paralexias. These results are consistent with three distinct deficits: an egocentric deficit across space resulting in whole-word errors, a failure of selective attention that results in whole-word intrusion errors, and a within-word allocentric deficit resulting in unilateral paralexias.
Collapse
Affiliation(s)
- Timothy J Rich
- Center for Stroke Rehabilitation Research, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, NJ, USA.
- Department of Physical Medicine and Rehabilitation, Rutgers University, New Brunswick, NJ, USA.
| | - John Palmer
- Department of Psychology, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Burns EJ, Gaunt E, Kidane B, Hunter L, Pulford J. A new approach to diagnosing and researching developmental prosopagnosia: Excluded cases are impaired too. Behav Res Methods 2023; 55:4291-4314. [PMID: 36459376 PMCID: PMC9718472 DOI: 10.3758/s13428-022-02017-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/04/2022]
Abstract
Developmental prosopagnosia is characterized by severe, lifelong difficulties when recognizing facial identity. Unfortunately, the most common diagnostic assessment (Cambridge Face Memory Test) misses 50-65% of individuals who believe that they have this condition. This results in such excluded cases' absence from scientific knowledge, effect sizes of impairment potentially overestimated, treatment efficacy underrated, and may elicit in them a negative experience of research. To estimate their symptomology and group-level impairments in face processing, we recruited a large cohort who believes that they have prosopagnosia. Matching prior reports, 56% did not meet criteria on the Cambridge Face Memory Test. However, the severity of their prosopagnosia symptoms and holistic perception deficits were comparable to those who did meet criteria. Excluded cases also exhibited face perception and memory impairments that were roughly one standard deviation below neurotypical norms, indicating the presence of objective problems. As the prosopagnosia index correctly classified virtually every case, we propose it should be the primary method for providing a diagnosis, prior to subtype categorization. We present researchers with a plan on how they can analyze these excluded prosopagnosia cases in their future work without negatively impacting their traditional findings. We anticipate such inclusion will enhance scientific knowledge, more accurately estimate effect sizes of impairments and treatments, and identify commonalities and distinctions between these different forms of prosopagnosia. Owing to their atypicalities in visual perception, we recommend that the prosopagnosia index should be used to screen out potential prosopagnosia cases from broader vision research.
Collapse
Affiliation(s)
- Edwin J Burns
- Department of Psychology, Edge Hill University, Ormskirk, UK.
| | - Elizabeth Gaunt
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Betiel Kidane
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Lucy Hunter
- Department of Psychology, Edge Hill University, Ormskirk, UK
| | - Jaylea Pulford
- Department of Psychology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
18
|
Coutanche MN, Sauter J, Akpan E, Buckser R, Vincent A, Caulfield MK. Novel approaches to functional lateralization: Assessing information in activity patterns across hemispheres and more accurately identifying structural homologues. Neuropsychologia 2023; 190:108684. [PMID: 37741550 DOI: 10.1016/j.neuropsychologia.2023.108684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 05/16/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Functional lateralization is typically measured by comparing activation levels across the right and left hemispheres of the brain. Significant additional information, however, exists within distributed multi-voxel patterns of activity - a format not detectable by traditional activation-based analysis of functional magnetic resonance imaging (fMRI) data. We introduce and test two methods -one anatomical, one functional- that allow hemispheric information asymmetries to be detected. We first introduce and apply a novel tool that draws on brain 'surface fingerprints' to pair every location in one hemisphere with its hemispheric homologue. We use anatomical data to show that this approach is more accurate than the common distance-from-midline method for comparing bilateral regions. Next, we introduce a complementary analysis method that quantifies multivariate laterality in functional data. This new 'multivariate Laterality Index' (mLI) reflects both quantitative and qualitative information-differences across homologous activity patterns. We apply the technique here to functional data collected as participants viewed faces and non-faces. Using the previously generated surface fingerprints to pair-up homologous searchlights in each hemisphere, we use the novel multivariate laterality technique to identify face-information asymmetries across right and left counterparts of the fusiform gyrus, inferior temporal gyrus, superior parietal lobule, and early visual areas. The typical location of the fusiform face area has greater information asymmetry for faces than for shapes. More generally, we argue that the field should consider an information-based approach to lateralization.
Collapse
Affiliation(s)
- Marc N Coutanche
- Department of Psychology, University of Pittsburgh, PA, 15260, USA; Learning Research & Development Center, University of Pittsburgh, PA, 15260, USA; Brain Institute, University of Pittsburgh, PA, 15260, USA.
| | - Jake Sauter
- State University of New York at Oswego, Oswego, NY, USA
| | - Essang Akpan
- Department of Psychology, University of Pittsburgh, PA, 15260, USA; Learning Research & Development Center, University of Pittsburgh, PA, 15260, USA
| | - Rae Buckser
- Department of Psychology, University of Pittsburgh, PA, 15260, USA; Learning Research & Development Center, University of Pittsburgh, PA, 15260, USA
| | - Augusta Vincent
- Department of Psychology, University of Pittsburgh, PA, 15260, USA; Learning Research & Development Center, University of Pittsburgh, PA, 15260, USA
| | | |
Collapse
|
19
|
Jozranjbar B, Kristjánsson Á, Starrfelt R, Gerlach C, Sigurdardottir HM. Using representational similarity analysis to reveal category and process specificity in visual object recognition. Cortex 2023; 166:172-187. [PMID: 37390594 DOI: 10.1016/j.cortex.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/12/2023] [Accepted: 05/19/2023] [Indexed: 07/02/2023]
Abstract
Cross-condition comparisons on neurodevelopmental conditions are central in neurodiversity research. In the realm of visual perception, the performance of participants with different category-specific disorders such as developmental prosopagnosia (problems with faces) and dyslexia (problems with words) have contributed to understanding of perceptual processes involved in word and face recognition. Alterations in face and word recognition are present in several neurodiverse populations, and improved knowledge about their relationship may increase our understanding of this variability of impairment. The present study investigates organizing principles of visual object processing and their implications for developmental disorders of recognition. Some accounts suggest that distinct mechanisms are responsible for recognizing objects of different categories, while others propose that categories share or even compete for cortical resources. We took an individual differences approach to estimate the relationship between abilities in recognition. Neurotypical participants (N = 97 after outlier exclusion) performed a match-to-sample task with faces, houses, and pseudowords. Either individual features or feature configurations were manipulated. To estimate the separability of visual recognition mechanisms, we used representational similarity analysis (RSA) where correlational matrices for accuracy were compared to predicted data patterns. Recognition abilities separated into face recognition on one hand and house/pseudoword recognition on the other, indicating that face recognition may rely on relatively selective mechanisms in neurotypicals. We also found evidence for a general visual object recognition mechanism, while some combinations of category (faces, houses, words) and processing type (featural, configural) likely rely on additional mechanisms. Developmental conditions may therefore reflect combinations of impaired and intact aspects of specific and general visual object recognition mechanisms, where featural and configural processes for one object category separate from the featural or configural processing of another. More generally, RSA is a promising approach for advancing understanding of neurodiversity, including shared aspects and distinctions between neurodevelopmental conditions of visual recognition.
Collapse
Affiliation(s)
- Bahareh Jozranjbar
- Icelandic Vision Lab, Department of Psychology, University of Iceland, Iceland.
| | - Árni Kristjánsson
- Icelandic Vision Lab, Department of Psychology, University of Iceland, Iceland
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Gerlach
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
20
|
Thye M, Hoffman P, Mirman D. The words that little by little revealed everything: Neural response to lexical-semantic content during narrative comprehension. Neuroimage 2023; 276:120204. [PMID: 37257674 DOI: 10.1016/j.neuroimage.2023.120204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/19/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
The ease with which narratives are understood belies the complexity of the information being conveyed and the cognitive processes that support comprehension. The meanings of the words must be rapidly accessed and integrated with the reader's mental representation of the overarching, unfolding scenario. A broad, bilateral brain network is engaged by this process, but it is not clear how words that vary on specific semantic dimensions, such as ambiguity, emotion, or socialness, engage the semantic, semantic control, or social cognition systems. In the present study, data from 48 participants who listened to The Little Prince audiobook during MRI scanning were selected from the Le Petit Prince dataset. The lexical and semantic content within the narrative was quantified from the transcript words with factor scores capturing Word Length, Semantic Flexibility, Emotional Strength, and Social Impact. These scores, along with word quantity variables, were used to investigate where these predictors co-vary with activation across the brain. In contrast to studies of isolated word processing, large networks were found to co-vary with the lexical and semantic content within the narrative. An increase in semantic content engaged the ventral portion of ventrolateral ATL, consistent with its role as a semantic hub. Decreased semantic content engaged temporal pole and inferior parietal lobule, which may reflect semantic integration. The semantic control network was engaged by words with low Semantic Flexibility, perhaps due to the demand required to process infrequent, less semantically diverse language. Activation in ATL co-varied with an increase in Social Impact, which is consistent with the claim that social knowledge is housed within the neural architecture of the semantic system. These results suggest that current models of language processing may present an impoverished estimate of the neural systems that coordinate to support narrative comprehension, and, by extension, real-world language processing.
Collapse
Affiliation(s)
- Melissa Thye
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom.
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
21
|
Doshi FR, Konkle T. Cortical topographic motifs emerge in a self-organized map of object space. SCIENCE ADVANCES 2023; 9:eade8187. [PMID: 37343093 PMCID: PMC10284546 DOI: 10.1126/sciadv.ade8187] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
The human ventral visual stream has a highly systematic organization of object information, but the causal pressures driving these topographic motifs are highly debated. Here, we use self-organizing principles to learn a topographic representation of the data manifold of a deep neural network representational space. We find that a smooth mapping of this representational space showed many brain-like motifs, with a large-scale organization by animacy and real-world object size, supported by mid-level feature tuning, with naturally emerging face- and scene-selective regions. While some theories of the object-selective cortex posit that these differently tuned regions of the brain reflect a collection of distinctly specified functional modules, the present work provides computational support for an alternate hypothesis that the tuning and topography of the object-selective cortex reflect a smooth mapping of a unified representational space.
Collapse
Affiliation(s)
- Fenil R. Doshi
- Department of Psychology and Center for Brain Sciences, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
22
|
Tablante J, Krossa L, Azimi T, Chen L. Dysfunctions associated with the intraparietal sulcus and a distributed network in individuals with math learning difficulties: An ALE meta-analysis. Hum Brain Mapp 2023; 44:2726-2740. [PMID: 36807960 PMCID: PMC10089103 DOI: 10.1002/hbm.26240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Math learning difficulty (MLD) is a learning disorder characterized by persistent impairments in the understanding and application of numbers independent of intelligence or schooling. The current study aims to review existing neuroimaging studies to characterize the neurobiological basis in MLD for their quantity and arithmetic dysfunctions. We identified a total of 24 studies with 728 participants through the literature. Using the activation likelihood estimate (ALE) method, we found that the most consistent neurobiological dysfunction in MLD was observed in the right intraparietal sulcus (IPS) with distinct patterns of the anterior and posterior aspects. Meanwhile, neurobiological dysfunctions were also observed in a distributed network including the fusiform gyrus, inferior temporal gyrus, insula, prefrontal cortex, anterior cingulate cortex, and claustrum. Our results suggest a core dysfunction in the right anterior IPS and left fusiform gyrus with atypically upregulated functions in brain regions for attention, working memory, visual processing, and motivation, serving as the neurobiological basis of MLD.
Collapse
Affiliation(s)
| | - Lani Krossa
- Neuroscience ProgramSanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Tannaz Azimi
- Neuroscience ProgramSanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Lang Chen
- Neuroscience ProgramSanta Clara UniversitySanta ClaraCaliforniaUSA
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| |
Collapse
|
23
|
Vinci-Booher S, McDonald DJ, Berquist E, Pestilli F. Associative white matter tracts selectively predict sensorimotor learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523345. [PMID: 37131816 PMCID: PMC10153388 DOI: 10.1101/2023.01.10.523345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human learning is a complex phenomenon that varies greatly among individuals and is related to the microstructure of major white matter tracts in several learning domains, yet the impact of the existing myelination of white matter tracts on future learning outcomes remains unclear. We employed a machine-learning model selection framework to evaluate whether existing microstructure might predict individual differences in the potential for learning a sensorimotor task, and further, if the mapping between the microstructure of major white matter tracts and learning was selective for learning outcomes. We used diffusion tractography to measure the mean fractional anisotropy (FA) of white matter tracts in 60 adult participants who then underwent training and subsequent testing to evaluate learning. During training, participants practiced drawing a set of 40 novel symbols repeatedly using a digital writing tablet. We measured drawing learning as the slope of draw duration over the practice session and visual recognition learning as the performance accuracy in an old/new 2-AFC recognition task. Results demonstrated that the microstructure of major white matter tracts selectively predicted learning outcomes, with left hemisphere pArc and SLF 3 tracts predicting drawing learning and the left hemisphere MDLFspl predicting visual recognition learning. These results were replicated in a repeat, held-out data set and supported with complementary analyses. Overall, results suggest that individual differences in the microstructure of human white matter tracts may be selectively related to future learning outcomes and open avenues of inquiry concerning the impact of existing tract myelination in the potential for learning. Significance statement A selective mapping between tract microstructure and future learning has been demonstrated in the murine model and, to our knowledge, has not yet been demonstrated in humans. We employed a data-driven approach that identified only two tracts, the two most posterior segments of the arcuate fasciculus in the left hemisphere, to predict learning a sensorimotor task (drawing symbols) and this prediction model did not transfer to other learning outcomes (visual symbol recognition). Results suggest that individual differences in learning may be selectively related to the tissue properties of major white matter tracts in the human brain.
Collapse
|
24
|
Tien M, Albonico A, Barton JJS. Faces, English words and Chinese characters: a study of dual-task interference in mono-and bilingual speakers. Exp Brain Res 2023; 241:1131-1144. [PMID: 36856801 PMCID: PMC9975443 DOI: 10.1007/s00221-023-06580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
The many-to-many hypothesis suggests that face and visual-word processing tasks share neural resources in the brain, even though they show opposing hemispheric asymmetries in neuroimaging and neuropsychologic studies. Recently it has been suggested that both stimulus and task effects need to be incorporated into the hypothesis. A recent study found dual-task interference between face and text functions that lateralized to the same hemisphere, but not when they lateralized to different hemispheres. However, it is not clear whether a lack of interference between word and face recognition would occur for other languages, particularly those with a morpho-syllabic script, like Chinese, for which there is some evidence of greater right hemispheric involvement. Here, we used the same technique to probe for dual-task interference between English text, Chinese characters and face recognition. We tested 20 subjects monolingual for English and 20 subjects bilingual for Chinese and English. We replicated the prior result for English text and showed similar results for Chinese text with no evidence of interference with faces. We also did not find interference between Chinese and English text. The results support a view in which reading English words, reading Chinese characters and face identification have minimal sharing of neural resources.
Collapse
Affiliation(s)
- Marko Tien
- grid.17091.3e0000 0001 2288 9830Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9 Canada
| | - Andrea Albonico
- grid.17091.3e0000 0001 2288 9830Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9 Canada
| | - Jason J. S. Barton
- grid.17091.3e0000 0001 2288 9830Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, 2550 Willow Street, Vancouver, BC V5Z 3N9 Canada
| |
Collapse
|
25
|
Perez DC, Dworetsky A, Braga RM, Beeman M, Gratton C. Hemispheric Asymmetries of Individual Differences in Functional Connectivity. J Cogn Neurosci 2023; 35:200-225. [PMID: 36378901 PMCID: PMC10029817 DOI: 10.1162/jocn_a_01945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resting-state fMRI studies have revealed that individuals exhibit stable, functionally meaningful divergences in large-scale network organization. The locations with strongest deviations (called network "variants") have a characteristic spatial distribution, with qualitative evidence from prior reports suggesting that this distribution differs across hemispheres. Hemispheric asymmetries can inform us on constraints guiding the development of these idiosyncratic regions. Here, we used data from the Human Connectome Project to systematically investigate hemispheric differences in network variants. Variants were significantly larger in the right hemisphere, particularly along the frontal operculum and medial frontal cortex. Variants in the left hemisphere appeared most commonly around the TPJ. We investigated how variant asymmetries vary by functional network and how they compare with typical network distributions. For some networks, variants seemingly increase group-average network asymmetries (e.g., the group-average language network is slightly bigger in the left hemisphere and variants also appeared more frequently in that hemisphere). For other networks, variants counter the group-average network asymmetries (e.g., the default mode network is slightly bigger in the left hemisphere, but variants were more frequent in the right hemisphere). Intriguingly, left- and right-handers differed in their network variant asymmetries for the cingulo-opercular and frontoparietal networks, suggesting that variant asymmetries are connected to lateralized traits. These findings demonstrate that idiosyncratic aspects of brain organization differ systematically across the hemispheres. We discuss how these asymmetries in brain organization may inform us on developmental constraints of network variants and how they may relate to functions differentially linked to the two hemispheres.
Collapse
Affiliation(s)
| | | | | | | | - Caterina Gratton
- Northwestern University, Evanston, IL
- Florida State University, Tallahassee
| |
Collapse
|
26
|
Li J, Kean H, Fedorenko E, Saygin Z. Intact reading ability despite lacking a canonical visual word form area in an individual born without the left superior temporal lobe. Cogn Neuropsychol 2023; 39:249-275. [PMID: 36653302 DOI: 10.1080/02643294.2023.2164923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The visual word form area (VWFA), a region canonically located within left ventral temporal cortex (VTC), is specialized for orthography in literate adults presumbly due to its connectivity with frontotemporal language regions. But is a typical, left-lateralized language network critical for the VWFA's emergence? We investigated this question in an individual (EG) born without the left superior temporal lobe but who has normal reading ability. EG showed canonical typical face-selectivity bilateraly but no wordselectivity either in right VWFA or in the spared left VWFA. Moreover, in contrast with the idea that the VWFA is simply part of the language network, no part of EG's VTC showed selectivity to higher-level linguistic processing. Interestingly, EG's VWFA showed reliable multivariate patterns that distinguished words from other categories. These results suggest that a typical left-hemisphere language network is necessary for acanonical VWFA, and that orthographic processing can otherwise be supported by a distributed neural code.
Collapse
Affiliation(s)
- Jin Li
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Hope Kean
- Department of Brain and Cognitive Sciences / McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences / McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Zeynep Saygin
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Maratos FA, Chu K, Lipka S, Stupple EJN, Parente F. Exploring pattern recognition: what is the relationship between the recognition of words, faces and other objects? Cogn Process 2023; 24:59-70. [PMID: 36376612 PMCID: PMC9898371 DOI: 10.1007/s10339-022-01111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
Abstract
Debate surrounds processes of visual recognition, with no consensus as to whether recognition of distinct object categories (faces, bodies, cars, and words) is domain specific or subserved by domain-general visual recognition mechanisms. Here, we investigated correlations between the performance of 74 participants on recognition tasks for words, faces and other object categories. Participants completed a counter-balanced test battery of the Cambridge Face, Car and Body Parts Memory tests, as well as a standard four category lexical decision task, with response time and recognition accuracy as dependent variables. Results revealed significant correlations across domains for both recognition accuracy and response time, providing some support for domain-general pattern recognition. Further exploration of the data using principal component analysis (PCA) revealed a two-component model for both the response time and accuracy data. However, how the various word and object recognition tasks fitted these components varied considerably but did hint at familiarity/expertise as a common factor. In sum, we argue a complex relationship exists between domain-specific processing and domain-general processing, but that this is shaped by expertise. To further our understanding of pattern recognition, research investigating the recognition of words, faces and other objects in dyslexic individuals is recommended, as is research exploiting neuroimaging methodologies, with excellent temporal resolution, to chart the temporal specifics of different forms of visual pattern recognition.
Collapse
Affiliation(s)
- F. A. Maratos
- School of Psychology, College of Health, Psychology and Social Care, University of Derby, Derby, UK
| | - K. Chu
- Hong Kong Polytechnic University, Hong Kong, China
| | - S. Lipka
- School of Psychology, College of Health, Psychology and Social Care, University of Derby, Derby, UK
| | - E. J. N. Stupple
- School of Psychology, College of Health, Psychology and Social Care, University of Derby, Derby, UK
| | - F. Parente
- School of Psychology, College of Health, Psychology and Social Care, University of Derby, Derby, UK
| |
Collapse
|
28
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023. [PMID: 36427753 DOI: 10.1101/2022.04.08.487562v1.full.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
29
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023; 265:119765. [PMID: 36427753 PMCID: PMC9889174 DOI: 10.1016/j.neuroimage.2022.119765] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
30
|
Gerlach C, Barton JJS, Albonico A, Malaspina M, Starrfelt R. Contrasting domain-general and domain-specific accounts in cognitive neuropsychology: An outline of a new approach with developmental prosopagnosia as a case. Behav Res Methods 2022; 54:2829-2842. [PMID: 35106730 DOI: 10.3758/s13428-021-01774-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
The backbone of cognitive neuropsychology is the observation of (double) dissociations in performance between patients, suggesting some degree of independence between cognitive processes (domain specificity). In comparison, observations of associations between disorders/deficits have been deemed less evidential in neuropsychological theorizing about cognitive architecture. The reason is that associations can reflect damage to independent cognitive processes that happen to be mediated by structures commonly affected by the same brain disorder rather than damage to a shared (domain-general) mechanism. Here we demonstrate that it is in principle possible to discriminate between these alternatives by means of a procedure involving large unbiased samples. We exemplify the procedure in the context of developmental prosopagnosia (DP), but the procedure is in principle applicable to all neuropsychological deficits/disorders. A simulation of the procedure on a dataset yields estimates of dissociations/associations that are well in line with existing DP-studies, and also suggests that seemingly selective disorders can reflect damage to both domain-general and domain-specific cognitive processes. However, the simulation also highlights some limitations that should be considered if the procedure is to be applied prospectively. The main advantage of the procedure is that allows for examination of both associations and dissociations in the same sample. Hence, it may help even the balance in the use of associations and dissociations as grounds for neuropsychological theorizing.
Collapse
Affiliation(s)
- Christian Gerlach
- Department of Psychology, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| | - Jason J S Barton
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| | - Andrea Albonico
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| | - Manuela Malaspina
- Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, København, Denmark
| |
Collapse
|
31
|
The mechanisms supporting holistic perception of words and faces are not independent. Mem Cognit 2022; 51:966-981. [PMID: 36376620 DOI: 10.3758/s13421-022-01369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 11/15/2022]
Abstract
The question of whether word and face recognition rely on overlapping or dissociable neural and cognitive mechanisms received considerable attention in the literature. In the present work, we presented words (aligned or misaligned) superimposed on faces (aligned or misaligned) and tested the interference from the unattended stimulus category on holistic processing of the attended category. In Experiment 1, we found that holistic face processing is reduced when a face was overlaid with an unattended, aligned word (processed holistically). In Experiment 2, we found a similar reduction of holistic processing for words when a word was superimposed on an unattended, aligned face (processed holistically). This reciprocal interference effect indicates a trade-off in holistic processing of the two stimuli, consistent with the idea that word and face recognition may rely on non-independent, overlapping mechanisms.
Collapse
|
32
|
Complementary hemispheric lateralization of language and social processing in the human brain. Cell Rep 2022; 41:111617. [DOI: 10.1016/j.celrep.2022.111617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/10/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
|
33
|
With childhood hemispherectomy, one hemisphere can support—but is suboptimal for—word and face recognition. Proc Natl Acad Sci U S A 2022; 119:e2212936119. [PMID: 36282918 PMCID: PMC9636967 DOI: 10.1073/pnas.2212936119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The right and left cerebral hemispheres are important for face and word recognition, respectively—a specialization that emerges over human development. The question is whether this bilateral distribution is necessary or whether a single hemisphere, be it left or right, can support both face and word recognition. Here, face and word recognition accuracy in patients (median age 16.7 y) with a single hemisphere following childhood hemispherectomy was compared against matched typical controls. In experiment 1, participants viewed stimuli in central vision. Across both face and word tasks, accuracy of both left and right hemispherectomy patients, while significantly lower than controls' accuracy, averaged above 80% and did not differ from each other. To compare patients' single hemisphere more directly to one hemisphere of controls, in experiment 2, participants viewed stimuli in one visual field to constrain initial processing chiefly to a single (contralateral) hemisphere. Whereas controls had higher word accuracy when words were presented to the right than to the left visual field, there was no field/hemispheric difference for faces. In contrast, left and right hemispherectomy patients, again, showed comparable performance to one another on both face and word recognition, albeit significantly lower than controls. Altogether, the findings indicate that a single developing hemisphere, either left or right, may be sufficiently plastic for comparable representation of faces and words. However, perhaps due to increased competition or “neural crowding,” constraining cortical representations to one hemisphere may collectively hamper face and word recognition, relative to that observed in typical development with two hemispheres.
Collapse
|
34
|
Janini D, Hamblin C, Deza A, Konkle T. General object-based features account for letter perception. PLoS Comput Biol 2022; 18:e1010522. [PMID: 36155642 PMCID: PMC9536565 DOI: 10.1371/journal.pcbi.1010522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/06/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
After years of experience, humans become experts at perceiving letters. Is this visual capacity attained by learning specialized letter features, or by reusing general visual features previously learned in service of object categorization? To explore this question, we first measured the perceptual similarity of letters in two behavioral tasks, visual search and letter categorization. Then, we trained deep convolutional neural networks on either 26-way letter categorization or 1000-way object categorization, as a way to operationalize possible specialized letter features and general object-based features, respectively. We found that the general object-based features more robustly correlated with the perceptual similarity of letters. We then operationalized additional forms of experience-dependent letter specialization by altering object-trained networks with varied forms of letter training; however, none of these forms of letter specialization improved the match to human behavior. Thus, our findings reveal that it is not necessary to appeal to specialized letter representations to account for perceptual similarity of letters. Instead, we argue that it is more likely that the perception of letters depends on domain-general visual features. For over a century, scientists have conducted behavioral experiments to investigate how the visual system recognizes letters, but it has proven difficult to propose a model of the feature space underlying this capacity. Here we leveraged recent advances in machine learning to model a wide variety of features ranging from specialized letter features to general object-based features. Across two large-scale behavioral experiments we find that general object-based features account well for letter perception, and that adding letter specialization did not improve the correspondence to human behavior. It is plausible that the ability to recognize letters largely relies on general visual features unaltered by letter learning.
Collapse
Affiliation(s)
- Daniel Janini
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Chris Hamblin
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Arturo Deza
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Talia Konkle
- Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
35
|
Li M, Huang H, Guo B, Meng M. Distinct response properties between the FFA to faces and the PPA to houses. Brain Behav 2022; 12:e2706. [PMID: 35848943 PMCID: PMC9392545 DOI: 10.1002/brb3.2706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION The object recognition system involves both selectivity to specific object category and invariance to changes in low-level visual features. Mounting neuroimaging evidence supports that brain areas in the ventral temporal cortex, such as the FFA and PPA, respond preferentially to faces and houses, respectively. However, how regions in human ventral temporal cortex partitioned and functionally organized to selectively and invariantly respond to different object categories remains unclear. What are the changes of response properties at the intersection of adjacent but distinctively-selective regions? METHOD Here, we conducted an fMRI study and three-pronged analyses to compare the brain mapping relationships between the FFA to faces and the PPA to houses. Specifically, we examined: 1) the response properties of object selectivity to the preferred category; 2) the response properties of invariance to contrast and a concurrently presented non-preferred category; 3) whether there are asymmetrical changes of response properties across the boundary from the FFA to PPA versus from the PPA to FFA. RESULTS We found that the response properties of FFA are highly selective and reliably invariant, whereas the responses of PPA vary with the image contrast and concurrently presented face. Moreover, the response properties across the boundary between the FFA and PPA are asymmetrical from face-selective to house-selective relative to from house-selective to face-selective. CONCLUSIONS These results convergently revealed distinct response properties between the FFA to faces and the PPA to houses, implying a combination of spatially discrete domain-specific and relatively distributed domain-general organization mapping in human ventral temporal cortex.
Collapse
Affiliation(s)
- Mengjin Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Hong Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, China
| | - Bingbing Guo
- School of Teacher Education, Nanjing Xiaozhuang University, Nanjing, China
| | - Ming Meng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| |
Collapse
|
36
|
Face processing still predicts reading ability: evidence from developmental prosopagnosia. A reply to Gerlach and Starrfelt (2022). Cortex 2022; 154:340-347. [DOI: 10.1016/j.cortex.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022]
|
37
|
Qing T, Chen J, Xue L, Tan Y, Huang Z, Yang S, Chen Y, Wang J, Zou Q, Lv Y, Zhao J. Decreasing integration within face network and segregation beyond the face network in the aging brain. Psych J 2022; 11:448-459. [PMID: 35599334 DOI: 10.1002/pchj.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/10/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tianying Qing
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Zhejiang China
- Institute of Psychological Science Hangzhou Normal University Zhejiang China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Zhejiang China
| | - Jing Chen
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Zhejiang China
- Institute of Psychological Science Hangzhou Normal University Zhejiang China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Zhejiang China
| | - Licheng Xue
- Institute for Brain Research and Rehabilitation, Center for Studies of Psychological Application South China Normal University Guangzhou China
| | - Yufei Tan
- Laboratoire de Psychologie Cognitive Aix‐Marseille Université and CNRS Marseille France
| | - Zehao Huang
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Zhejiang China
- Institute of Psychological Science Hangzhou Normal University Zhejiang China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Zhejiang China
| | - Shimeng Yang
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Zhejiang China
- Institute of Psychological Science Hangzhou Normal University Zhejiang China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Zhejiang China
| | - Yuqiu Chen
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Zhejiang China
- Institute of Psychological Science Hangzhou Normal University Zhejiang China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Zhejiang China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Center for Studies of Psychological Application South China Normal University Guangzhou China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Yating Lv
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Zhejiang China
- Institute of Psychological Science Hangzhou Normal University Zhejiang China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Zhejiang China
| | - Jing Zhao
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Zhejiang China
- Institute of Psychological Science Hangzhou Normal University Zhejiang China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Zhejiang China
| |
Collapse
|
38
|
Provazza S, Carretti B, Giofrè D, Adams AM, Montesano L, Roberts D. Shallow or deep? The impact of orthographic depth on visual processing impairments in developmental dyslexia. ANNALS OF DYSLEXIA 2022; 72:171-196. [PMID: 35286579 PMCID: PMC8942915 DOI: 10.1007/s11881-021-00249-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
The extent to which impaired visual and phonological mechanisms may contribute to the manifestation of developmental dyslexia across orthographies of varying depth has yet to be fully established. By adopting a cross-linguistic approach, the current study aimed to explore the nature of visual and phonological processing in developmental dyslexic readers of shallow (Italian) and deep (English) orthographies, and specifically the characterisation of visual processing deficits in relation to orthographic depth. To achieve this aim, we administered a battery of non-reading visual and phonological tasks. Developmental dyslexics performed worse than typically developing readers on all visual and phonological tasks. Critically, readers of the shallow orthography were disproportionately impaired on visual processing tasks. Our results suggest that the impaired reading and associated deficits observed in developmental dyslexia are anchored by dual impairments to visual and phonological mechanisms that underpin reading, with the magnitude of the visual deficit varying according to orthographic depth.
Collapse
Affiliation(s)
- Serena Provazza
- School of Psychology, Liverpool John Moores University, Liverpool, UK
| | - Barbara Carretti
- Department of General Psychology, University of Padova, Padua, Italy
| | - David Giofrè
- School of Psychology, Liverpool John Moores University, Liverpool, UK
- Department of Educational Sciences, University of Genoa, Genoa, Italy
| | - Anne-Marie Adams
- School of Psychology, Liverpool John Moores University, Liverpool, UK
| | | | - Daniel Roberts
- Centre for Cognitive Neuroscience, Division of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| |
Collapse
|
39
|
Recognition Of Pareidolic Objects In Developmental Prosopagnosic And Neurotypical Individuals. Cortex 2022; 153:21-31. [DOI: 10.1016/j.cortex.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/02/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
|
40
|
Lateralization of word and face processing in developmental dyslexia and developmental prosopagnosia. Neuropsychologia 2022; 170:108208. [PMID: 35278463 DOI: 10.1016/j.neuropsychologia.2022.108208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
In right-handed adults, face processing is lateralized to the right hemisphere and visual word processing to the left hemisphere. According to the many-to-many account (MTMA) of functional cerebral organization this lateralization pattern is partly dependent on the acquisition of literacy. Hence, the MTMA predicts that: (i) processing of both words and faces should show no or at least less lateralization in individuals with developmental dyslexia compared with controls, and (ii) lateralization in word processing should be normal in individuals with developmental prosopagnosia whereas lateralization in face processing should be absent. To test these hypotheses, 21 right-handed adults with developmental dyslexia and 21 right-handed adults with developmental prosopagnosia performed a divided visual field paradigm with delayed matching of faces, words and cars. Contrary to the predictions, we find that lateralization effects in face processing are within the normal range for both developmental dyslexics and prosopagnosics. Moreover, the group with developmental dyslexia showed right hemisphere lateralization for word processing. We argue that these findings are incompatible with the specific predictions of the MTMA.
Collapse
|
41
|
Beach SD, Lim SJ, Cardenas-Iniguez C, Eddy MD, Gabrieli JDE, Perrachione TK. Electrophysiological correlates of perceptual prediction error are attenuated in dyslexia. Neuropsychologia 2022; 165:108091. [PMID: 34801517 PMCID: PMC8807066 DOI: 10.1016/j.neuropsychologia.2021.108091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
A perceptual adaptation deficit often accompanies reading difficulty in dyslexia, manifesting in poor perceptual learning of consistent stimuli and reduced neurophysiological adaptation to stimulus repetition. However, it is not known how adaptation deficits relate to differences in feedforward or feedback processes in the brain. Here we used electroencephalography (EEG) to interrogate the feedforward and feedback contributions to neural adaptation as adults with and without dyslexia viewed pairs of faces and words in a paradigm that manipulated whether there was a high probability of stimulus repetition versus a high probability of stimulus change. We measured three neural dependent variables: expectation (the difference between prestimulus EEG power with and without the expectation of stimulus repetition), feedforward repetition (the difference between event-related potentials (ERPs) evoked by an expected change and an unexpected repetition), and feedback-mediated prediction error (the difference between ERPs evoked by an unexpected change and an expected repetition). Expectation significantly modulated prestimulus theta- and alpha-band EEG in both groups. Unexpected repetitions of words, but not faces, also led to significant feedforward repetition effects in the ERPs of both groups. However, neural prediction error when an unexpected change occurred instead of an expected repetition was significantly weaker in dyslexia than the control group for both faces and words. These results suggest that the neural and perceptual adaptation deficits observed in dyslexia reflect the failure to effectively integrate perceptual predictions with feedforward sensory processing. In addition to reducing perceptual efficiency, the attenuation of neural prediction error signals would also be deleterious to the wide range of perceptual and procedural learning abilities that are critical for developing accurate and fluent reading skills.
Collapse
Affiliation(s)
- Sara D. Beach
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Program in Speech and Hearing Bioscience and Technology, Harvard University, 260 Longwood Avenue, Boston, MA 02115 U.S.A
| | - Sung-Joo Lim
- Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215 U.S.A
| | - Carlos Cardenas-Iniguez
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Marianna D. Eddy
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - John D. E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A
| | - Tyler K. Perrachione
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 U.S.A.,Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215 U.S.A.,Correspondence: Tyler K. Perrachione, Ph.D., Department of Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, Phone: +1.617.358.7410,
| |
Collapse
|
42
|
A connectivity-constrained computational account of topographic organization in primate high-level visual cortex. Proc Natl Acad Sci U S A 2022; 119:2112566119. [PMID: 35027449 PMCID: PMC8784138 DOI: 10.1073/pnas.2112566119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Inferotemporal (IT) cortex in humans and other primates is topographically organized, containing multiple hierarchically organized areas selective for particular domains, such as faces and scenes. This organization is commonly viewed in terms of evolved domain-specific visual mechanisms. Here, we develop an alternative, domain-general and developmental account of IT cortical organization. The account is instantiated in interactive topographic networks (ITNs), a class of computational models in which a hierarchy of model IT areas, subject to biologically plausible connectivity-based constraints, learns high-level visual representations optimized for multiple domains. We find that minimizing a wiring cost on spatially organized feedforward and lateral connections, alongside realistic constraints on the sign of neuronal connectivity within model IT, results in a hierarchical, topographic organization. This organization replicates a number of key properties of primate IT cortex, including the presence of domain-selective spatial clusters preferentially involved in the representation of faces, objects, and scenes; columnar responses across separate excitatory and inhibitory units; and generic spatial organization whereby the response correlation of pairs of units falls off with their distance. We thus argue that topographic domain selectivity is an emergent property of a visual system optimized to maximize behavioral performance under generic connectivity-based constraints.
Collapse
|
43
|
Li CH, Wang MY, Kuo BC. The effects of stimulus inversion on the neural representations of Chinese character and face recognition. Neuropsychologia 2022; 164:108090. [PMID: 34801520 DOI: 10.1016/j.neuropsychologia.2021.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
This study investigates whether stimulus inversion influences neural responses of Chinese character recognition similarly to its effect on face recognition in category-selective and object-related brain areas using functional magnetic resonance imaging. Participants performed a one-back matching task for simple (one radical) and compound (two radicals) Chinese characters and faces with upright and inverted orientations. Inverted stimuli produced slower response times with stronger activity within the fusiform gyrus (FG) than upright stimuli for faces and Chinese characters. While common inversion-related activation was identified in the left FG among stimulus types, we observed a significant inter-regional correlation between the left FG and the intraparietal sulcus for face inversion. Importantly, analyses of region-of-interest (ROI) multivariate pattern classification showed that classifiers trained on face inversion can decode the representations of character inversion in the character-selective ROI. However, this was not true for face inversion in face-selective ROIs when the classifiers were trained on characters. Similar activity patterns for character and face inversion were observed in the object-related ROIs. We also showed higher decoding accuracy for upright stimuli in the face-selective ROI than in the character-selective ROI but this was not true for inverted ones or when patterns were examined in the object-related ROIs. Together, our results support shared and distinct configural representations for character and face recognition in category-selective and object-related brain areas.
Collapse
Affiliation(s)
- Chun-Hui Li
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Man-Ying Wang
- Department of Psychology, Soochow University, Taipei, Taiwan
| | - Bo-Cheng Kuo
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
44
|
Abstract
Face perception is a socially important but complex process with many stages and many facets. There is substantial evidence from many sources that it involves a large extent of the temporal lobe, from the ventral occipitotemporal cortex and superior temporal sulci to anterior temporal regions. While early human neuroimaging work suggested a core face network consisting of the occipital face area, fusiform face area, and posterior superior temporal sulcus, studies in both humans and monkeys show a system of face patches stretching from posterior to anterior in both the superior temporal sulcus and inferotemporal cortex. Sophisticated techniques such as fMRI adaptation have shown that these face-activated regions show responses that have many of the attributes of human face processing. Lesions of some of these regions in humans lead to variants of prosopagnosia, the inability to recognize the identity of a face. Lesion, imaging, and electrophysiologic data all suggest that there is a segregation between identity and expression processing, though some suggest this may be better characterized as a distinction between static and dynamic facial information.
Collapse
Affiliation(s)
- Jason J S Barton
- Division of Neuro-ophthalmology, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Ptak R, Doganci N, Bourgeois A. From Action to Cognition: Neural Reuse, Network Theory and the Emergence of Higher Cognitive Functions. Brain Sci 2021; 11:1652. [PMID: 34942954 PMCID: PMC8699577 DOI: 10.3390/brainsci11121652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this article is to discuss the logic and assumptions behind the concept of neural reuse, to explore its biological advantages and to discuss the implications for the cognition of a brain that reuses existing circuits and resources. We first address the requirements that must be fulfilled for neural reuse to be a biologically plausible mechanism. Neural reuse theories generally take a developmental approach and model the brain as a dynamic system composed of highly flexible neural networks. They often argue against domain-specificity and for a distributed, embodied representation of knowledge, which sets them apart from modular theories of mental processes. We provide an example of reuse by proposing how a phylogenetically more modern mental capacity (mental rotation) may appear through the reuse and recombination of existing resources from an older capacity (motor planning). We conclude by putting arguments into context regarding functional modularity, embodied representation, and the current ontology of mental processes.
Collapse
Affiliation(s)
- Radek Ptak
- Division of Neurorehabilitation, University Hospitals Geneva, 1205 Geneva, Switzerland
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (N.D.); (A.B.)
| | - Naz Doganci
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (N.D.); (A.B.)
| | - Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (N.D.); (A.B.)
| |
Collapse
|
46
|
Hagen S, Lochy A, Jacques C, Maillard L, Colnat-Coulbois S, Jonas J, Rossion B. Dissociated face- and word-selective intracerebral responses in the human ventral occipito-temporal cortex. Brain Struct Funct 2021; 226:3031-3049. [PMID: 34370091 PMCID: PMC8541991 DOI: 10.1007/s00429-021-02350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023]
Abstract
The extent to which faces and written words share neural circuitry in the human brain is actively debated. Here, we compare face-selective and word-selective responses in a large group of patients (N = 37) implanted with intracerebral electrodes in the ventral occipito-temporal cortex (VOTC). Both face-selective (i.e., significantly different responses to faces vs. non-face visual objects) and word-selective (i.e., significantly different responses to words vs. pseudofonts) neural activity is isolated with frequency-tagging. Critically, this sensitive approach allows to objectively quantify category-selective neural responses and disentangle them from general visual responses. About 70% of significant electrode contacts show either face-selectivity or word-selectivity only, with the expected right and left hemispheric dominance, respectively. Spatial dissociations are also found within core regions of face and word processing, with a medio-lateral dissociation in the fusiform gyrus (FG) and surrounding sulci, respectively. In the 30% of overlapping face- and word-selective contacts across the VOTC or in the FG and surrounding sulci, between-category-selective amplitudes (faces vs. words) show no-to-weak correlations, despite strong correlations in both the within-category-selective amplitudes (face-face, word-word) and the general visual responses to words and faces. Overall, these observations support the view that category-selective circuitry for faces and written words is largely dissociated in the human adult VOTC.
Collapse
Affiliation(s)
- Simen Hagen
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HR, Nijmegen, The Netherlands
| | - Aliette Lochy
- Cognitive Science and Assessment Institute, University of Luxembourg, 365, Esch-sur-Alzette, Luxembourg
| | - Corentin Jacques
- Psychological Sciences Research Institute and Institute of Neuroscience, UCLouvain, 1348, Louvain-La-Neuve, Belgium
| | - Louis Maillard
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Sophie Colnat-Coulbois
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Service de Neurochirurgie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Jacques Jonas
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Bruno Rossion
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France.
- Psychological Sciences Research Institute and Institute of Neuroscience, UCLouvain, 1348, Louvain-La-Neuve, Belgium.
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France.
| |
Collapse
|
47
|
Sigurdardottir HM, Arnardottir A, Halldorsdottir ET. Faces and words are both associated and dissociated as evidenced by visual problems in dyslexia. Sci Rep 2021; 11:23000. [PMID: 34837013 PMCID: PMC8626489 DOI: 10.1038/s41598-021-02440-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
Faces and words are traditionally assumed to be independently processed. Dyslexia is also traditionally thought to be a non-visual deficit. Counter to both ideas, face perception deficits in dyslexia have been reported. Others report no such deficits. We sought to resolve this discrepancy. 60 adults participated in the study (24 dyslexic, 36 typical readers). Feature-based processing and configural or global form processing of faces was measured with a face matching task. Opposite laterality effects in these tasks, dependent on left-right orientation of faces, supported that they tapped into separable visual mechanisms. Dyslexic readers tended to be poorer than typical readers at feature-based face matching while no differences were found for global form face matching. We conclude that word and face perception are associated when the latter requires the processing of visual features of a face, while processing the global form of faces apparently shares minimal-if any-resources with visual word processing. The current results indicate that visual word and face processing are both associated and dissociated-but this depends on what visual mechanisms are task-relevant. We suggest that reading deficits could stem from multiple factors, and that one such factor is a problem with feature-based processing of visual objects.
Collapse
Affiliation(s)
- Heida Maria Sigurdardottir
- Icelandic Vision Lab, Department of Psychology, University of Iceland, Saemundargata 12, 102, Reykjavik, Iceland.
| | - Alexandra Arnardottir
- Icelandic Vision Lab, Department of Psychology, University of Iceland, Saemundargata 12, 102, Reykjavik, Iceland
| | | |
Collapse
|
48
|
Jozranjbar B, Kristjánsson Á, Sigurdardottir HM. Featural and configural processing of faces and houses in matched dyslexic and typical readers. Neuropsychologia 2021; 162:108059. [PMID: 34637801 DOI: 10.1016/j.neuropsychologia.2021.108059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
While dyslexia is typically described as a phonological deficit, recent evidence suggests that ventral stream regions, important for visual categorization and object recognition, are hypoactive in dyslexic readers who might accordingly show visual recognition deficits. By manipulating featural and configural information of faces and houses, we investigated whether dyslexic readers are disadvantaged at recognizing certain object classes or using particular visual processing mechanisms. Dyslexic readers found it harder to recognize objects (houses), suggesting that visual problems in dyslexia are not completely domain-specific. Face recognition accuracy was equivalent in the two groups. Lower recognition accuracy for houses was also related to reading difficulties even when accuracy for faces was kept constant, which could indicate a specific relationship between visual word processing and visual processing of non-face objects. Representational similarity analyses (RSA) revealed that featural and configural processes were clearly separable in typical readers, which was not the case for dyslexic readers who appear to rely on a single process. This was not restricted to particular visual categories, occurring for both faces and houses. We speculate that reading deficits in some dyslexic readers reflect their reliance on a single process for object recognition.
Collapse
Affiliation(s)
- Bahareh Jozranjbar
- Icelandic Vision Laboratory, Department of Psychology, University of Iceland, Iceland.
| | - Árni Kristjánsson
- Icelandic Vision Laboratory, Department of Psychology, University of Iceland, Iceland; School of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation
| | | |
Collapse
|
49
|
Burns EJ, Bukach CM. Face processing predicts reading ability: Evidence from prosopagnosia. Cortex 2021; 145:67-78. [PMID: 34689033 DOI: 10.1016/j.cortex.2021.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
There is considerable interest in whether face and word processing are reliant upon shared or dissociable processes. Developmental prosopagnosia is associated with lifelong face processing deficits, with these cases providing strong support for a dissociation between face and word recognition in three recent papers (Burns et al., 2017; Rubino et al., 2016; Starrfelt et al., 2018). However, the sample sizes in each of these studies may have been too small to detect significant effects. We therefore combined their data to increase power and reassessed their results. While only a non-significant trend for reading impairments was found in prosopagnosia using a one-sample t-test, poorer face memory performance was correlated with slower reading speeds across prosopagnosia and control participants. Surprisingly, poorer face perception skills in prosopagnosia were associated with smaller word length effects. This suggests that while mild reading impairments exist in developmental prosopagnosia, there may be a trade-off between their residual face perception abilities and reading skill. A reanalysis of Hills and colleagues' (2015) acquired prosopagnosia data also revealed a positive relationship between words and faces: severe impairments in face recognition were related to poorer word processing. In summary, the developmental and acquired prosopagnosia literature supports models of visual perception that posit face and word processing are reliant upon broadly shared processes.
Collapse
|
50
|
Feizabadi M, Albonico A, Starrfelt R, Barton JJS. Whole-object effects in visual word processing: Parallels with and differences from face recognition. Cogn Neuropsychol 2021; 38:231-257. [PMID: 34529548 DOI: 10.1080/02643294.2021.1974369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Visual words and faces differ in their structural properties, but both are objects of high expertise. Holistic processing is said to characterize expert face recognition, but the extent to which whole-word processes contribute to word recognition is unclear, particularly as word recognition is thought to proceed by a component-based process. We review the evidence for experimental effects in word recognition that parallel those used to support holistic face processing, namely inversion effects, the part-whole task, and composite effects, as well as the status of whole-word processing in pure alexia and developmental dyslexia, contrasts between familiar and unfamiliar languages, and the differences between handwriting and typeset font. The observations support some parallels in whole-object influences between face and visual word recognition, but do not necessarily imply similar expert mechanisms. It remains to be determined whether and how the relative balance between part-based and whole-object processing differs for visual words and faces.
Collapse
Affiliation(s)
- Monireh Feizabadi
- Department of Medicine (Neurology), Ophthalmology and Visual Science, University of British Columbia, Vancouver, Canada
| | - Andrea Albonico
- Department of Medicine (Neurology), Ophthalmology and Visual Science, University of British Columbia, Vancouver, Canada
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Jason J S Barton
- Department of Medicine (Neurology), Ophthalmology and Visual Science, University of British Columbia, Vancouver, Canada
| |
Collapse
|