1
|
Bryant KL, Camilleri J, Warrington S, Blazquez Freches G, Sotiropoulos SN, Jbabdi S, Eickhoff S, Mars RB. Connectivity profile and function of uniquely human cortical areas. J Neurosci 2025; 45:e2017242025. [PMID: 40097185 PMCID: PMC11984073 DOI: 10.1523/jneurosci.2017-24.2025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
Determining the brain specializations unique to humans requires directly comparative anatomical information from other primates, especially our closest relatives. Human (Homo sapiens) (m/f), chimpanzee (Pan troglodytes) (f), and rhesus macaque (Macaca mulatta) (m/f) white matter atlases were used to create connectivity blueprints, i.e., descriptions of the cortical grey matter in terms of the connectivity with homologous white matter tracts. This allowed a quantitative comparative of cortical organization across the species. We identified human-unique connectivity profiles concentrated in temporal and parietal cortices, and hominid-unique organization in prefrontal cortex. Functional decoding revealed human-unique hotspots correlated with language processing and social cognition. Overall, our results counter models that assign primacy to prefrontal cortex for human uniqueness.Significance statement Understanding what makes the human brain unique requires direct comparisons with other primates, particularly our closest relatives. Using connectivity blueprints, we compared to cortical organization of the human to that of the macaque and, for the first time, the chimpanzee. This approach revealed human-specific connectivity patterns in the temporal and parietal lobes, regions linked to language and social cognition. These findings challenge traditional views that prioritize the prefrontal cortex in defining human cognitive uniqueness, emphasizing instead the importance of temporal and parietal cortical evolution in shaping our species' abilities.
Collapse
Affiliation(s)
- Katherine L. Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
- Institute for Language, Cognition and the Brain (ILCB), Aix-Marseille University, Marseille 13604, France
| | - Julia Camilleri
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Center Jülich, Jülich 52428, Germany
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, United Kingdom
| | - Guilherme Blazquez Freches
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HD, The Netherlands
| | - Stamatios N. Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham NG7 2QX, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham NG1 5DU, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Simon Eickhoff
- Institute of Neuroscience and Medicine: Brain and Behavior (INM-7), Research Center Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6500 HD, The Netherlands
| |
Collapse
|
2
|
Ghosh S, Yadav RK, Soni S, Giri S, Muthukrishnan SP, Kumar L, Bhasin S, Roy S. Decoding the brain-machine interaction for upper limb assistive technologies: advances and challenges. Front Hum Neurosci 2025; 19:1532783. [PMID: 39981127 PMCID: PMC11839673 DOI: 10.3389/fnhum.2025.1532783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Understanding how the brain encodes upper limb movements is crucial for developing control mechanisms in assistive technologies. Advances in assistive technologies, particularly Brain-machine Interfaces (BMIs), highlight the importance of decoding motor intentions and kinematics for effective control. EEG-based BMI systems show promise due to their non-invasive nature and potential for inducing neural plasticity, enhancing motor rehabilitation outcomes. While EEG-based BMIs show potential for decoding motor intention and kinematics, studies indicate inconsistent correlations with actual or planned movements, posing challenges for achieving precise and reliable prosthesis control. Further, the variability in predictive EEG patterns across individuals necessitates personalized tuning to improve BMI efficiency. Integrating multiple physiological signals could enhance BMI precision and reliability, paving the way for more effective motor rehabilitation strategies. Studies have shown that brain activity adapts to gravitational and inertial constraints during movement, highlighting the critical role of neural adaptation to biomechanical changes in creating control systems for assistive devices. This review aims to provide a comprehensive overview of recent progress in deciphering neural activity patterns associated with both physiological and assisted upper limb movements, highlighting avenues for future exploration in neurorehabilitation and brain-machine interface development.
Collapse
Affiliation(s)
- Sutirtha Ghosh
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Kumar Yadav
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sunaina Soni
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Shivangi Giri
- Department of Biomedical Engineering, National Institute of Technology, Raipur, India
- Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, India
| | | | - Lalan Kumar
- Department of Electrical Engineering, Bharti School of Telecommunication, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Shubhendu Bhasin
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sitikantha Roy
- Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
3
|
Bouret S, Paradis E, Prat S, Castro L, Perez P, Gilissen E, Garcia C. Linking the evolution of two prefrontal brain regions to social and foraging challenges in primates. eLife 2024; 12:RP87780. [PMID: 39468920 PMCID: PMC11521368 DOI: 10.7554/elife.87780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
The diversity of cognitive skills across primates remains both a fascinating and a controversial issue. Recent comparative studies provided conflicting results regarding the contribution of social vs ecological constraints to the evolution of cognition. Here, we used an interdisciplinary approach combining comparative cognitive neurosciences and behavioral ecology. Using brain imaging data from 16 primate species, we measured the size of two prefrontal brain regions, the frontal pole (FP) and the dorso-lateral prefrontal cortex (DLPFC), respectively, involved in metacognition and working memory, and examined their relation to a combination of socio-ecological variables. The size of these prefrontal regions, as well as the whole brain, was best explained by three variables: body mass, daily traveled distance (an index of ecological constraints), and population density (an index of social constraints). The strong influence of ecological constraints on FP and DLPFC volumes suggests that both metacognition and working memory are critical for foraging in primates. Interestingly, FP volume was much more sensitive to social constraints than DLPFC volume, in line with laboratory studies showing an implication of FP in complex social interactions. Thus, our data highlights the relative weight of social vs ecological constraints on the evolution of specific prefrontal brain regions and their associated cognitive operations in primates.
Collapse
Affiliation(s)
- Sebastien Bouret
- Team Motivation Brain & Behavior, ICM – Brain and Spine InstituteParisFrance
| | | | - Sandrine Prat
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Musée de l’HommeParisFrance
| | - Laurie Castro
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Musée de l’HommeParisFrance
- UMR 7206 Eco-anthropologie, CNRS – MNHN – Univ. Paris Cité, Musée de l'HommeParisFrance
| | - Pauline Perez
- Team Motivation Brain & Behavior, ICM – Brain and Spine InstituteParisFrance
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central AfricaTervurenBelgium
- Université Libre de Bruxelles, Laboratory of Histology and NeuropathologyBrusselsBelgium
| | - Cecile Garcia
- UMR 7206 Eco-anthropologie, CNRS – MNHN – Univ. Paris Cité, Musée de l'HommeParisFrance
| |
Collapse
|
4
|
Mecklenbrauck F, Gruber M, Siestrup S, Zahedi A, Grotegerd D, Mauritz M, Trempler I, Dannlowski U, Schubotz RI. The significance of structural rich club hubs for the processing of hierarchical stimuli. Hum Brain Mapp 2024; 45:e26543. [PMID: 38069537 PMCID: PMC10915744 DOI: 10.1002/hbm.26543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 03/07/2024] Open
Abstract
The brain's structural network follows a hierarchy that is described as rich club (RC) organization, with RC hubs forming the well-interconnected top of this hierarchy. In this study, we tested whether RC hubs are involved in the processing of hierarchically higher structures in stimulus sequences. Moreover, we explored the role of previously suggested cortical gradients along anterior-posterior and medial-lateral axes throughout the frontal cortex. To this end, we conducted a functional magnetic resonance imaging (fMRI) experiment and presented participants with blocks of digit sequences that were structured on different hierarchically nested levels. We additionally collected diffusion weighted imaging data of the same subjects to identify RC hubs. This classification then served as the basis for a region of interest analysis of the fMRI data. Moreover, we determined structural network centrality measures in areas that were found as activation clusters in the whole-brain fMRI analysis. Our findings support the previously found anterior and medial shift for processing hierarchically higher structures of stimuli. Additionally, we found that the processing of hierarchically higher structures of the stimulus structure engages RC hubs more than for lower levels. Areas involved in the functional processing of hierarchically higher structures were also more likely to be part of the structural RC and were furthermore more central to the structural network. In summary, our results highlight the potential role of the structural RC organization in shaping the cortical processing hierarchy.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Marius Gruber
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Department for Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital Frankfurt, Goethe UniversityFrankfurtGermany
| | - Sophie Siestrup
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Anoushiravan Zahedi
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Marco Mauritz
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
| | - Ima Trempler
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Ricarda I. Schubotz
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
5
|
Levy R. The prefrontal cortex: from monkey to man. Brain 2024; 147:794-815. [PMID: 37972282 PMCID: PMC10907097 DOI: 10.1093/brain/awad389] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The prefrontal cortex is so important to human beings that, if deprived of it, our behaviour is reduced to action-reactions and automatisms, with no ability to make deliberate decisions. Why does the prefrontal cortex hold such importance in humans? In answer, this review draws on the proximity between humans and other primates, which enables us, through comparative anatomical-functional analysis, to understand the cognitive functions we have in common and specify those that distinguish humans from their closest cousins. First, a focus on the lateral region of the prefrontal cortex illustrates the existence of a continuum between rhesus monkeys (the most studied primates in neuroscience) and humans for most of the major cognitive functions in which this region of the brain plays a central role. This continuum involves the presence of elementary mental operations in the rhesus monkey (e.g. working memory or response inhibition) that are constitutive of 'macro-functions' such as planning, problem-solving and even language production. Second, the human prefrontal cortex has developed dramatically compared to that of other primates. This increase seems to concern the most anterior part (the frontopolar cortex). In humans, the development of the most anterior prefrontal cortex is associated with three major and interrelated cognitive changes: (i) a greater working memory capacity, allowing for greater integration of past experiences and prospective futures; (ii) a greater capacity to link discontinuous or distant data, whether temporal or semantic; and (iii) a greater capacity for abstraction, allowing humans to classify knowledge in different ways, to engage in analogical reasoning or to acquire abstract values that give rise to our beliefs and morals. Together, these new skills enable us, among other things, to develop highly sophisticated social interactions based on language, enabling us to conceive beliefs and moral judgements and to conceptualize, create and extend our vision of our environment beyond what we can physically grasp. Finally, a model of the transition of prefrontal functions between humans and non-human primates concludes this review.
Collapse
Affiliation(s)
- Richard Levy
- AP–HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Sorbonne Université, Institute of Memory and Alzheimer’s Disease, 75013 Paris, France
- Sorbonne Université, INSERM U1127, CNRS 7225, Paris Brain Institute- ICM, 75013 Paris, France
| |
Collapse
|
6
|
Tolentino-Castro JW, Schroeger A, Cañal-Bruland R, Raab M. Increasing auditory intensity enhances temporal but deteriorates spatial accuracy in a virtual interception task. Exp Brain Res 2024:10.1007/s00221-024-06787-x. [PMID: 38334793 DOI: 10.1007/s00221-024-06787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Humans are quite accurate and precise in interception performance. So far, it is still unclear what role auditory information plays in spatiotemporal accuracy and consistency during interception. In the current study, interception performance was measured as the spatiotemporal accuracy and consistency of when and where a virtual ball was intercepted on a visible line displayed on a screen based on auditory information alone. We predicted that participants would more accurately indicate when the ball would cross a target line than where it would cross the line, because human hearing is particularly sensitive to temporal parameters. In a within-subject design, we manipulated auditory intensity (52, 61, 70, 79, 88 dB) using a sound stimulus programmed to be perceived over the screen in an inverted C-shape trajectory. Results showed that the louder the sound, the better was temporal accuracy, but the worse was spatial accuracy. We argue that louder sounds increased attention toward auditory information when performing interception judgments. How balls are intercepted and practically how intensity of sound may add to temporal accuracy and consistency is discussed from a theoretical perspective of modality-specific interception behavior.
Collapse
Affiliation(s)
- J Walter Tolentino-Castro
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Anna Schroeger
- Department for General Psychology, Justus Liebig University Giessen, Giessen, Germany
| | - Rouwen Cañal-Bruland
- Department for the Psychology of Human Movement and Sport, Institute of Sport Science, Friedrich Schiller University Jena, Jena, Germany
| | - Markus Raab
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- School of Applied Sciences, London South Bank University, London, England.
| |
Collapse
|
7
|
Karadachka K, Assem M, Mitchell DJ, Duncan J, Medendorp WP, Mars RB. Structural connectivity of the multiple demand network in humans and comparison to the macaque brain. Cereb Cortex 2023; 33:10959-10971. [PMID: 37798142 PMCID: PMC10646692 DOI: 10.1093/cercor/bhad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
Fluid intelligence encompasses a wide range of abilities such as working memory, problem-solving, and relational reasoning. In the human brain, these abilities are associated with the Multiple Demand Network, traditionally thought to involve combined activity of specific regions predominantly in the prefrontal and parietal cortices. However, the structural basis of the interactions between areas in the Multiple Demand Network, as well as their evolutionary basis among primates, remains largely unexplored. Here, we exploit diffusion MRI to elucidate the major white matter pathways connecting areas of the human core and extended Multiple Demand Network. We then investigate whether similar pathways can be identified in the putative homologous areas of the Multiple Demand Network in the macaque monkey. Finally, we contrast human and monkey networks using a recently proposed approach to compare different species' brains within a common organizational space. Our results indicate that the core Multiple Demand Network relies mostly on dorsal longitudinal connections and, although present in the macaque, these connections are more pronounced in the human brain. The extended Multiple Demand Network relies on distinct pathways and communicates with the core Multiple Demand Network through connections that also appear enhanced in the human compared with the macaque.
Collapse
Affiliation(s)
- Katrin Karadachka
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Faculty of Social Sciences, Radboud University Nijmegen, 6525HR Nijmegen, The Netherlands
- Wellcome Centre for Integrative Neuroimaging Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
8
|
Rozzi S, Gravante A, Basile C, Cappellaro G, Gerbella M, Fogassi L. Ventrolateral prefrontal neurons of the monkey encode instructions in the 'pragmatic' format of the associated behavioral outcomes. Prog Neurobiol 2023; 229:102499. [PMID: 37429374 DOI: 10.1016/j.pneurobio.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
The prefrontal cortex plays an important role in coding rules and producing context-appropriate behaviors. These processes necessarily require the generation of goals based on current context. Indeed, instructing stimuli are prospectively encoded in prefrontal cortex in relation to behavioral demands, but the coding format of this neural representation is, to date, largely unknown. In order to study how instructions and behaviors are encoded in prefrontal cortex, we recorded the activity of monkeys (Macaca mulatta) ventrolateral prefrontal neurons in a task requiring to perform (Action condition) or withhold (Inaction condition) grasping actions on real objects. Our data show that there are neurons responding in different task phases, and that the neuronal population discharge is stronger in the Inaction condition when the instructing cue is presented, and in the Action condition in the subsequent phases, from object presentation to action execution. Decoding analyses performed on neuronal populations showed that the neural activity recorded during the initial phases of the task shares the same type of format with that recorded during the final phases. We propose that this format has a pragmatic nature, that is instructions and goals are encoded by prefrontal neurons as predictions of the behavioral outcome.
Collapse
Affiliation(s)
- Stefano Rozzi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | - Alfonso Gravante
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Claudio Basile
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Giorgio Cappellaro
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
| |
Collapse
|
9
|
Reilly OT, Brosnan SF, Benítez ME, Phillips KA, Hecht EE. Sex differences in white matter tracts of capuchin monkey brains. J Comp Neurol 2023; 531:1096-1107. [PMID: 37127839 PMCID: PMC10247455 DOI: 10.1002/cne.25480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Nonhuman primates exhibit sexual dimorphism in behavior, suggesting that there could be underlying differences in brain organization and function. Understanding this neuroanatomical variation is critical for enhancing our understanding of the evolution of sex differences in the human brain. Tufted capuchin monkeys (Sapajus [Cebus] apella) represent a phylogenetically diverse taxa of neotropical primates that converge on several behavioral characteristics with humans relevant to social organization, making them an important point of comparison for studying the evolution of sex differences in primates. While anatomical sex differences in gray matter have previously been found in capuchin monkeys, the current study investigates sex differences in white matter tracts. We carried out tract-based spatial statistical analysis on fractional anisotropy images of tufted capuchin monkeys (15 female, 5 male). We found that females showed significantly higher fractional anisotropy than males in regions of frontal-parietal white matter in the right cerebral hemisphere. Paralleling earlier findings in gray matter, male and female fractional anisotropy values in these regions were nonoverlapping. This complements prior work pointing toward capuchin sex differences in limbic circuitry and higher-order visual regions. We propose that these sex differences are related to the distinct socioecological niches occupied by male and female capuchins. Capuchin neuroanatomical sex differences appear to be more pronounced than in humans, which we suggest may relate to human adaptations for prolonged neurodevelopmental trajectories and increased plasticity.
Collapse
Affiliation(s)
- Olivia T Reilly
- Department of Psychology, Georgia State University, Atlanta, Georgia
- Language Research Center, Georgia State University, Atlanta, Georgia
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Sarah F Brosnan
- Department of Psychology, Georgia State University, Atlanta, Georgia
- Language Research Center, Georgia State University, Atlanta, Georgia
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Marcela E Benítez
- Language Research Center, Georgia State University, Atlanta, Georgia
- Department of Anthropology, Emory University, Atlanta, Georgia
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
10
|
Vallender EJ, Hotchkiss CE, Lewis AD, Rogers J, Stern JA, Peterson SM, Ferguson B, Sayers K. Nonhuman primate genetic models for the study of rare diseases. Orphanet J Rare Dis 2023; 18:20. [PMID: 36721163 PMCID: PMC9887761 DOI: 10.1186/s13023-023-02619-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Pre-clinical research and development relies heavily upon translationally valid models of disease. A major difficulty in understanding the biology of, and developing treatments for, rare disease is the lack of animal models. It is important that these models not only recapitulate the presentation of the disease in humans, but also that they share functionally equivalent underlying genetic causes. Nonhuman primates share physiological, anatomical, and behavioral similarities with humans resulting from close evolutionary relationships and high genetic homology. As the post-genomic era develops and next generation sequencing allows for the resequencing and screening of large populations of research animals, naturally occurring genetic variation in nonhuman primates with clinically relevant phenotypes is regularly emerging. Here we review nonhuman primate models of multiple rare genetic diseases with a focus on the similarities and differences in manifestation and etiologies across species. We discuss how these models are being developed and how they can offer new tools and opportunities for researchers interested in exploring novel therapeutics for these and other genetic diseases. Modeling human genetic diseases in translationally relevant nonhuman primates presents new prospects for development of therapeutics and a better understanding of rare diseases. The post-genomic era offers the opportunity for the discovery and further development of more models like those discussed here.
Collapse
Affiliation(s)
- Eric J. Vallender
- University of Mississippi Medical Center, Jackson, MS USA
- Tulane National Primate Research Center, Covington, LA USA
| | - Charlotte E. Hotchkiss
- University of Washington, Seattle, WA USA
- Washington National Primate Research Center, Seattle, WA USA
| | - Anne D. Lewis
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Jeffrey Rogers
- Baylor College of Medicine, Houston, TX USA
- Wisconsin National Primate Research Center, Madison, WI USA
| | - Joshua A. Stern
- University of California-Davis, Davis, CA USA
- California National Primate Research Center, Davis, CA USA
| | - Samuel M. Peterson
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Betsy Ferguson
- Oregon Health and Sciences University, Beaverton, OR USA
- Oregon National Primate Research Center, Beaverton, OR USA
| | - Ken Sayers
- Texas Biomedical Research Institute, San Antonio, TX USA
- Southwest National Primate Research Center, San Antonio, TX USA
| |
Collapse
|
11
|
Hassett TC, Hampton RR. Control of Attention in Rhesus Monkeys Measured Using a Flanker Task. Atten Percept Psychophys 2022; 84:2155-2166. [PMID: 35174464 PMCID: PMC9885799 DOI: 10.3758/s13414-022-02452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
Abstract
At least three processes determine whether information we encounter is attended to or ignored. First, attentional capture occurs when attention is drawn automatically by "bottom up" processes, to distinctive, salient, rewarding, or unexpected stimuli when they enter our sensory field. Second, "top down" attentional control can direct cognitive processing towards goal-relevant targets. Third, selection history, operates through repeated exposure to a stimulus, particularly when associated with reward. Attentional control is measured using tasks that require subjects to selectively attend to goal-relevant stimuli in the face of distractions. In the Eriksen flanker task, human participants report which direction a centrally placed arrow is facing, while ignoring "flanking" arrows that may point in the opposite direction. Attentional control is evident to the extent that performance reflects only the direction of the central arrow. We describe four experiments in which we systematically assessed attentional control in rhesus monkeys using a flanker task. In Experiment 1, monkeys responded according to the identity of a central target, and accuracy and latency varied systematically with manipulations of flanking stimuli, validating our adaptation of the Eriksen flanker task. We then tested for converging evidence of attentional control across three experiments in which flanker performance was modulated by the distance separating targets from flankers (Experiment 2), luminance differences (Experiment 3), and differences in associative value (Experiment 4). The approach described is a new and reliable measure of attentional control in rhesus monkeys that can be applied to a wide range of situations with freely behaving animals.
Collapse
Affiliation(s)
- Thomas C Hassett
- Department of Psychology, Yerkes National Primate Research Center, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| | - Robert R Hampton
- Department of Psychology, Yerkes National Primate Research Center, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| |
Collapse
|
12
|
Lamichhane B, Di Rosa E, Braver TS. Delay of gratification dissociates cognitive control and valuation brain regions in healthy young adults. Neuropsychologia 2022; 173:108303. [PMID: 35714970 DOI: 10.1016/j.neuropsychologia.2022.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
Abstract
Delay of gratification (DofG) refers to an inter-temporal choice phenomenon that is of great interest in many domains, including animal learning, cognitive development, economic decision-making, and executive control. Yet experimental tools for investigating DofG in human adults are almost non-existent, and as a consequence, very little is known regarding the brain basis of core DofG behaviors. Here, we utilize a novel DofG paradigm, adapted for use in neuroimaging contexts, to examine event-related changes in neural activity as healthy young adult participants made repeated choices to continue waiting for a delayed reward, rather than take an immediately available one of lesser value. On DofG trials, choose-to-wait events were associated with increased activation in fronto-parietal and cingulo-opercular regions associated with cognitive control. Activity in the right lateral prefrontal cortex (PFC) was also associated with individual variability in task performance and strategy. Fronto-parietal activity was clearly dissociable from that observed in ventromedial PFC, as this latter region exhibited a ramping-up pattern of activity during the waiting period prior to reward delivery. Ventromedial PFC ramping activity dynamics were further selective to DofG trials associated with increased future reward rate, consistent with the involvement of this region in subjective reward valuation that incorporates higher-order task structure. These results provide important initial validation of this experimental paradigm as a useful tool for investigating and isolating unique DofG neural mechanisms, which can now be utilized to study a wide-variety of populations and task factors.
Collapse
Affiliation(s)
- Bidhan Lamichhane
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Center for Health Sciences, Oklahoma State University, 1013 E 66th Pl, Tulsa, OK, 74136, USA
| | - Elisa Di Rosa
- Department of General Psychology, University of Padova, Padova, Italy
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
13
|
Hogeveen J, Mullins TS, Romero JD, Eversole E, Rogge-Obando K, Mayer AR, Costa VD. The neurocomputational bases of explore-exploit decision-making. Neuron 2022; 110:1869-1879.e5. [PMID: 35390278 PMCID: PMC9167768 DOI: 10.1016/j.neuron.2022.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/11/2021] [Accepted: 03/10/2022] [Indexed: 02/04/2023]
Abstract
Flexible decision-making requires animals to forego immediate rewards (exploitation) and try novel choice options (exploration) to discover if they are preferable to familiar alternatives. Using the same task and a partially observable Markov decision process (POMDP) model to quantify the value of choices, we first determined that the computational basis for managing explore-exploit tradeoffs is conserved across monkeys and humans. We then used fMRI to identify where in the human brain the immediate value of exploitative choices and relative uncertainty about the value of exploratory choices were encoded. Consistent with prior neurophysiological evidence in monkeys, we observed divergent encoding of reward value and uncertainty in prefrontal and parietal regions, including frontopolar cortex, and parallel encoding of these computations in motivational regions including the amygdala, ventral striatum, and orbitofrontal cortex. These results clarify the interplay between prefrontal and motivational circuits that supports adaptive explore-exploit decisions in humans and nonhuman primates.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Teagan S Mullins
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - John D Romero
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Elizabeth Eversole
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kimberly Rogge-Obando
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew R Mayer
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychiatry & Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, NM 87106, USA
| | - Vincent D Costa
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| |
Collapse
|
14
|
Averbeck B, O'Doherty JP. Reinforcement-learning in fronto-striatal circuits. Neuropsychopharmacology 2022; 47:147-162. [PMID: 34354249 PMCID: PMC8616931 DOI: 10.1038/s41386-021-01108-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023]
Abstract
We review the current state of knowledge on the computational and neural mechanisms of reinforcement-learning with a particular focus on fronto-striatal circuits. We divide the literature in this area into five broad research themes: the target of the learning-whether it be learning about the value of stimuli or about the value of actions; the nature and complexity of the algorithm used to drive the learning and inference process; how learned values get converted into choices and associated actions; the nature of state representations, and of other cognitive machinery that support the implementation of various reinforcement-learning operations. An emerging fifth area focuses on how the brain allocates or arbitrates control over different reinforcement-learning sub-systems or "experts". We will outline what is known about the role of the prefrontal cortex and striatum in implementing each of these functions. We then conclude by arguing that it will be necessary to build bridges from algorithmic level descriptions of computational reinforcement-learning to implementational level models to better understand how reinforcement-learning emerges from multiple distributed neural networks in the brain.
Collapse
Affiliation(s)
| | - John P O'Doherty
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
15
|
Pitti A, Quoy M, Lavandier C, Boucenna S, Swaileh W, Weidmann C. In Search of a Neural Model for Serial Order: a Brain Theory for Memory Development and Higher-Level Cognition. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2022.3168046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Roumazeilles L, Lange FJ, Benn RA, Andersson JLR, Bertelsen MF, Manger PR, Flach E, Khrapitchev AA, Bryant KL, Sallet J, Mars RB. Cortical Morphology and White Matter Tractography of Three Phylogenetically Distant Primates: Evidence for a Simian Elaboration. Cereb Cortex 2021; 32:1608-1624. [PMID: 34518890 PMCID: PMC9016287 DOI: 10.1093/cercor/bhab285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Comparative neuroimaging has been used to identify changes in white matter architecture across primate species phylogenetically close to humans, but few have compared the phylogenetically distant species. Here, we acquired postmortem diffusion imaging data from ring-tailed lemurs (Lemur catta), black-capped squirrel monkeys (Saimiri boliviensis), and rhesus macaques (Macaca mulatta). We were able to establish templates and surfaces allowing us to investigate sulcal, cortical, and white matter anatomy. The results demonstrate an expansion of the frontal projections of the superior longitudinal fasciculus complex in squirrel monkeys and rhesus macaques compared to ring-tailed lemurs, which correlates with sulcal anatomy and the lemur’s smaller prefrontal granular cortex. The connectivity of the ventral pathway in the parietal region is also comparatively reduced in ring-tailed lemurs, with the posterior projections of the inferior longitudinal fasciculus not extending toward parietal cortical areas as in the other species. In the squirrel monkeys we note a very specific occipito-parietal anatomy that is apparent in their surface anatomy and the expansion of the posterior projections of the optical radiation. Our study supports the hypothesis that the connectivity of the prefrontal-parietal regions became relatively elaborated in the simian lineage after divergence from the prosimian lineage.
Collapse
Affiliation(s)
- Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13TA, UK
| | - Frederik J Lange
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, UK
| | - R Austin Benn
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Jesper L R Andersson
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, UK
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg 2000, Denmark
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London NW14RY, UK (now retired)
| | - Alexandre A Khrapitchev
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX37DQ, UK
| | - Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, UK
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX13TA, UK.,Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX39DU, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen 6525 HR, The Netherlands
| |
Collapse
|
17
|
Aellen M, Dufour V, Bshary R. Cleaner fish and other wrasse match primates in their ability to delay gratification. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Visual response of ventrolateral prefrontal neurons and their behavior-related modulation. Sci Rep 2021; 11:10118. [PMID: 33980932 PMCID: PMC8115110 DOI: 10.1038/s41598-021-89500-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 11/08/2022] Open
Abstract
The ventral part of lateral prefrontal cortex (VLPF) of the monkey receives strong visual input, mainly from inferotemporal cortex. It has been shown that VLPF neurons can show visual responses during paradigms requiring to associate arbitrary visual cues to behavioral reactions. Further studies showed that there are also VLPF neurons responding to the presentation of specific visual stimuli, such as objects and faces. However, it is largely unknown whether VLPF neurons respond and differentiate between stimuli belonging to different categories, also in absence of a specific requirement to actively categorize or to exploit these stimuli for choosing a given behavior. The first aim of the present study is to evaluate and map the responses of neurons of a large sector of VLPF to a wide set of visual stimuli when monkeys simply observe them. Recent studies showed that visual responses to objects are also present in VLPF neurons coding action execution, when they are the target of the action. Thus, the second aim of the present study is to compare the visual responses of VLPF neurons when the same objects are simply observed or when they become the target of a grasping action. Our results indicate that: (1) part of VLPF visually responsive neurons respond specifically to one stimulus or to a small set of stimuli, but there is no indication of a “passive” categorical coding; (2) VLPF neuronal visual responses to objects are often modulated by the task conditions in which the object is observed, with the strongest response when the object is target of an action. These data indicate that VLPF performs an early passive description of several types of visual stimuli, that can then be used for organizing and planning behavior. This could explain the modulation of visual response both in associative learning and in natural behavior.
Collapse
|
19
|
Food is special by itself: Neither valence, arousal, food appeal, nor caloric content modulate the attentional bias induced by food images. Appetite 2020; 156:104984. [PMID: 33017592 DOI: 10.1016/j.appet.2020.104984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
When food cues appear in a visual context, such information is likely to influence eating behavior by enhancing attention for food cues. We investigated whether active but task-irrelevant information could modulate the attentional bias for food stimuli using a novel paradigm in which participants were purposely deceived by being enrolled in a memory experiment. A set of images were first held in working memory and then used as task-irrelevant distractors in a subsequent single target rapid serial visual presentation (RSVP) task, allowing us to investigate the attentional blink (AB) effect elicited by those images. In Experiment 1, the results revealed that food images elicited a larger AB effect than nonfood images. In three follow-up experiments, we investigated whether valence or arousal (Experiment 2), food preparation (Experiment 3), or food caloric content (Experiment 4) were factors related to the attentional bias for food. Overall, our results demonstrated that when held in working memory, food images can easily capture attention, even in circumstances in which the information retained in memory is irrelevant to solve the task, as indicated by the strong correlation found between items that were recognized in the RSVP task and the AB effect. Nonetheless, none of the food-related properties we examined were found to be associated with this attentional bias for food.
Collapse
|
20
|
Averbeck BB, Murray EA. Hypothalamic Interactions with Large-Scale Neural Circuits Underlying Reinforcement Learning and Motivated Behavior. Trends Neurosci 2020; 43:681-694. [PMID: 32762959 PMCID: PMC7483858 DOI: 10.1016/j.tins.2020.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 02/02/2023]
Abstract
Biological agents adapt behavior to support the survival needs of the individual and the species. In this review we outline the anatomical, physiological, and computational processes that support reinforcement learning (RL). We describe two circuits in the primate brain that are linked to specific aspects of learning and goal-directed behavior. The ventral circuit, that includes the amygdala, ventral medial prefrontal cortex, and ventral striatum, has substantial connectivity with the hypothalamus. The dorsal circuit, that includes inferior parietal cortex, dorsal lateral prefrontal cortex, and the dorsal striatum, has minimal connectivity with the hypothalamus. The hypothalamic connectivity suggests distinct roles for these circuits. We propose that the ventral circuit defines behavioral goals, and the dorsal circuit orchestrates behavior to achieve those goals.
Collapse
Affiliation(s)
- Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD 20892-4415, USA.
| | - Elisabeth A Murray
- Laboratory of Neuropsychology, National Institute of Mental Health (NIMH), National Institutes of Health, Bethesda, MD 20892-4415, USA
| |
Collapse
|
21
|
Marcos E, Tsujimoto S, Mattia M, Genovesio A. A Network Activity Reconfiguration Underlies the Transition from Goal to Action. Cell Rep 2020; 27:2909-2920.e4. [PMID: 31167137 DOI: 10.1016/j.celrep.2019.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 03/10/2018] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Neurons in prefrontal cortex (PF) represent mnemonic information about current goals until the action can be selected and executed. However, the neuronal dynamics underlying the transition from goal into specific actions are poorly understood. Here, we show that the goal-coding PF network is dynamically reconfigured from mnemonic to action selection states and that such reconfiguration is mediated by cell assemblies with heterogeneous excitability. We recorded neuronal activity from PF while monkeys selected their actions on the basis of memorized goals. Many PF neurons encoded the goal, but only a minority of them did so across both memory retention and action selection stages. Interestingly, about half of this minority of neurons switched their goal preference across the goal-action transition. Our computational model led us to propose a PF network composed of heterogeneous cell assemblies with single-state and bistable local dynamics able to produce both dynamical stability and input susceptibility simultaneously.
Collapse
Affiliation(s)
- Encarni Marcos
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández de Elche, San Juan de Alicante, Spain
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan; The Nielsen Company Pte. Ltd., Singapore, Singapore
| | | | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
22
|
Luckett P, Lee JJ, Park KY, Dierker D, Daniel AGS, Seitzman BA, Hacker CD, Ances BM, Leuthardt EC, Snyder AZ, Shimony JS. Mapping of the Language Network With Deep Learning. Front Neurol 2020; 11:819. [PMID: 32849247 PMCID: PMC7419701 DOI: 10.3389/fneur.2020.00819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Pre-surgical functional localization of eloquent cortex with task-based functional MRI (T-fMRI) is part of the current standard of care prior to resection of brain tumors. Resting state fMRI (RS-fMRI) is an alternative method currently under investigation. Here, we compare group level language localization using T-fMRI vs. RS-fMRI analyzed with 3D deep convolutional neural networks (3DCNN). Methods: We analyzed data obtained in 35 patients with brain tumors that had both language T-fMRI and RS-MRI scans during pre-surgical evaluation. The T-fMRI data were analyzed using conventional techniques. The language associated resting state network was mapped using a 3DCNN previously trained with data acquired in >2,700 normal subjects. Group level results obtained by both methods were evaluated using receiver operator characteristic analysis of probability maps of language associated regions, taking as ground truth meta-analytic maps of language T-fMRI responses generated on the Neurosynth platform. Results: Both fMRI methods localized major components of the language system (areas of Broca and Wernicke). Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. Conclusion: 3DCNN was able to accurately localize the language network. Additionally, 3DCNN performance was remarkably tolerant of a limited quantity of RS-fMRI data.
Collapse
Affiliation(s)
- Patrick Luckett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - John J. Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ki Yun Park
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andy G. S. Daniel
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| | - Benjamin A. Seitzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Carl D. Hacker
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric C. Leuthardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
23
|
Hecht EE, Reilly OT, Benítez ME, Phillips KA, Brosnan SF. Sex differences in the brains of capuchin monkeys (Sapajus [Cebus] apella). J Comp Neurol 2020; 529:327-339. [PMID: 32410227 DOI: 10.1002/cne.24950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/20/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022]
Abstract
This study reports an analysis of 20 T1-weighted magnetic resonance imaging scans from tufted capuchin monkeys (5 male, 15 female). We carried out a data-driven, whole-brain volumetric analysis on regional gray matter anatomy using voxel-based morphometry. This revealed that males showed statistically significant expansion of a region of the hypothalamus, while females showed significant expansion in a distributed set of regions, including the cerebellum, early visual cortex, and higher-order visual regions spanning occipital and temporal cortex. In order to elucidate the network connectivity of these regions, we employed probabilistic tractography on diffusion tensor imaging data. This showed that the female-enlarged regions connect with distributed association networks across the brain. Notably, this contrasts with rodent studies, where sex differences are focused in deep, ancestral limbic regions involved in the control of reproductive behavior. Additionally, in our data set, for several regions, male and female volumetric measures were completely nonoverlapping. This contrasts with human studies, where sex differences in cortical regions have been reported but are characterized by overlapping rather than divergent male and female values. We suggest that these results can be understood in the context of the different lifetime experiences of males and females, which may produce increased experience-dependent cortical plasticity in capuchins compared to rodents, and in humans compared to capuchins.
Collapse
Affiliation(s)
- Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Olivia T Reilly
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Language Research Center, Georgia State University, Atlanta, Georgia, USA
| | - Marcela E Benítez
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Language Research Center, Georgia State University, Atlanta, Georgia, USA.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, Texas, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Sarah F Brosnan
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA.,Language Research Center, Georgia State University, Atlanta, Georgia, USA.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, USA.,Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Fascianelli V, Tsujimoto S, Marcos E, Genovesio A. Autocorrelation Structure in the Macaque Dorsolateral, But not Orbital or Polar, Prefrontal Cortex Predicts Response-Coding Strength in a Visually Cued Strategy Task. Cereb Cortex 2020; 29:230-241. [PMID: 29228110 DOI: 10.1093/cercor/bhx321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/05/2017] [Indexed: 11/14/2022] Open
Abstract
In previous work, we studied the activity of neurons in the dorsolateral (PFdl), orbital (PFo), and polar (PFp) prefrontal cortex while monkeys performed a strategy task with 2 spatial goals. A cue instructed 1 of 2 strategies in each trial: stay with the previous goal or shift to the alternative goal. Each trial started with a fixation period, followed by a cue. Subsequently, a delay period was followed by a "go" signal that instructed the monkeys to choose one goal. After each choice, feedback was provided. In this study, we focused on the temporal receptive fields of the neurons, as measured by the decay in autocorrelation (time constant) during the fixation period, and examined the relationship with response and strategy coding. The temporal receptive field in PFdl correlated with the response-related but not with the strategy-related modulation in the delay and the feedback periods: neurons with longer time constants in PFdl tended to show stronger and more prolonged response coding. No such correlation was found in PFp or PFo. These findings demonstrate that the temporal specialization of neurons for temporally extended computations is predictive of response coding, and neurons in PFdl, but not PFp or PFo, develop such predictive properties.
Collapse
Affiliation(s)
- Valeria Fascianelli
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan.,The Nielsen Company Singapore Pte Ltd, Singapore, Singapore
| | - Encarni Marcos
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
25
|
Differences in Frontal Network Anatomy Across Primate Species. J Neurosci 2020; 40:2094-2107. [PMID: 31949106 PMCID: PMC7055147 DOI: 10.1523/jneurosci.1650-18.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
The frontal lobe is central to distinctive aspects of human cognition and behavior. Some comparative studies link this to a larger frontal cortex and even larger frontal white matter in humans compared with other primates, yet others dispute these findings. The discrepancies between studies could be explained by limitations of the methods used to quantify volume differences across species, especially when applied to white matter connections. In this study, we used a novel tractography approach to demonstrate that frontal lobe networks, extending within and beyond the frontal lobes, occupy 66% of total brain white matter in humans and 48% in three monkey species: vervets (Chlorocebus aethiops), rhesus macaque (Macaca mulatta) and cynomolgus macaque (Macaca fascicularis), all male. The simian-human differences in proportional frontal tract volume were significant for projection, commissural, and both intralobar and interlobar association tracts. Among the long association tracts, the greatest difference was found for tracts involved in motor planning, auditory memory, top-down control of sensory information, and visuospatial attention, with no significant differences in frontal limbic tracts important for emotional processing and social behaviour. In addition, we found that a nonfrontal tract, the anterior commissure, had a smaller volume fraction in humans, suggesting that the disproportionally large volume of human frontal lobe connections is accompanied by a reduction in the proportion of some nonfrontal connections. These findings support a hypothesis of an overall rearrangement of brain connections during human evolution.SIGNIFICANCE STATEMENT Tractography is a unique tool to map white matter connections in the brains of different species, including humans. This study shows that humans have a greater proportion of frontal lobe connections compared with monkeys, when normalized by total brain white matter volume. In particular, tracts associated with language and higher cognitive functions are disproportionally larger in humans compared with monkeys, whereas other tracts associated with emotional processing are either the same or disproportionally smaller. This supports the hypothesis that the emergence of higher cognitive functions in humans is associated with increased extended frontal connectivity, allowing human brains more efficient cross talk between frontal and other high-order associative areas of the temporal, parietal, and occipital lobes.
Collapse
|
26
|
Pitti A, Quoy M, Lavandier C, Boucenna S. Gated spiking neural network using Iterative Free-Energy Optimization and rank-order coding for structure learning in memory sequences (INFERNO GATE). Neural Netw 2019; 121:242-258. [PMID: 31581065 DOI: 10.1016/j.neunet.2019.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
We present a framework based on iterative free-energy optimization with spiking neural networks for modeling the fronto-striatal system (PFC-BG) for the generation and recall of audio memory sequences. In line with neuroimaging studies carried out in the PFC, we propose a genuine coding strategy using the gain-modulation mechanism to represent abstract sequences based solely on the rank and location of items within them. Based on this mechanism, we show that we can construct a repertoire of neurons sensitive to the temporal structure in sequences from which we can represent any novel sequences. Free-energy optimization is then used to explore and to retrieve the missing indices of the items in the correct order for executive control and compositionality. We show that the gain-modulation mechanism permits the network to be robust to variabilities and to have long-term dependencies as it implements a gated recurrent neural network. This model, called Inferno Gate, is an extension of the neural architecture Inferno standing for Iterative Free-Energy Optimization of Recurrent Neural Networks with Gating or Gain-modulation. In experiments performed with an audio database of ten thousand MFCC vectors, Inferno Gate is capable of encoding efficiently and retrieving chunks of fifty items length. We then discuss the potential of our network to model the features of working memory in the PFC-BG loop for structural learning, goal-direction and hierarchical reinforcement learning.
Collapse
Affiliation(s)
- Alexandre Pitti
- Laboratoire ETIS UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.
| | - Mathias Quoy
- Laboratoire ETIS UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.
| | - Catherine Lavandier
- Laboratoire ETIS UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.
| | - Sofiane Boucenna
- Laboratoire ETIS UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, France.
| |
Collapse
|
27
|
Finlay B. Generic Homo sapiens and Unique Mus musculus: Establishing the Typicality of the Modeled and the Model Species. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:122-136. [DOI: 10.1159/000500111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
The question of how complex human abilities evolved, such as language or face recognition, has been pursued by means of multiple strategies. Highly specialized non-human species have been examined analytically for formal similarities, close phylogenetic relatives have been examined for continuity, and simpler species have been analyzed for the broadest view of functional organization. All these strategies require empirical evidence of what is variable and predictable in both the modeled and the model species. Turning to humans, allometric analyses of the evolution of brain mass and brain components often return the interesting, but disappointing answer that volumetric organization of the human brain is highly predictable seen in its phylogenetic context. Reconciling this insight with unique human behavior, or any species-typical behavior, represents a serious challenge. Allometric analyses of the order and duration of mammalian neural development show that, while basic neural development in humans is allometrically predictable, conforming to adult neural architecture, some life history features deviate, notably that weaning is unusually early. Finally, unusual deviations in the retina and central auditory system in the laboratory mouse, which is widely assumed to be “generic,” as well as severe deviations from expected brain allometry in some mouse strains, underline the need for a deeper understanding of phylogenetic variability even in those systems believed to be best understood.
Collapse
|
28
|
Vanier D, Sherwood C, Smaers J. Distinct Patterns of Hippocampal and Neocortical Evolution in Primates. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:171-181. [DOI: 10.1159/000500625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/28/2019] [Indexed: 11/19/2022]
Abstract
Because of the central role of the hippocampus in representing spatial and temporal details of experience, comparative studies of its volume and structure are relevant to understanding the evolution of representational memory across species. The hippocampal formation, however, is organized into separate anatomical subregions with distinct functions, and little is known about the evolutionary diversification of these subregions. We investigate relative volumetric changes in hippocampal subregions across a large sample of primate species. We then compare the evolution of the hippocampal formation to the neocortex. Results across hippocampal subregions indicate that, compared to strepsirrhines, the anthropoid lineage displays a decrease in relative CA3, fascia dentata, subiculum, and rhinal cortex volume in tandem with an increase in relative neocortical volume. These findings indicate that hippocampal function in anthropoids might be substantially augmented by the executive decision-making functions of the neocortex. Humans are found to have a unique cerebral organization combining increased relative CA3, subiculum, and rhinal cortex with increased relative neocortical volumes, suggesting that these regions may play a role in behaviors that are uniquely specialized in humans.
Collapse
|
29
|
Södersten P, Brodin U, Zandian M, Bergh C. Eating Behavior and the Evolutionary Perspective on Anorexia Nervosa. Front Neurosci 2019; 13:596. [PMID: 31249503 PMCID: PMC6584107 DOI: 10.3389/fnins.2019.00596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023] Open
Abstract
On the standard perspective, anorexia nervosa and other eating disorders are caused by genetically determined, neurochemically mediated mental illnesses. Standard treatment, cognitive behavioral therapy (CBT), targets cognitive processes thought to maintain the disorders. Effective neurochemically based treatments are not available and the rate of remission is ≤25% 1 year after CBT, with unknown outcomes in the long-term. With starvation as the major threat in biological history, the evolutionary perspective focuses on foraging for food and eating behavior. A neural network, including hypothalamic arcuate peptide-neurons, brainstem serotonin- and dopamine-neurons and their prefrontal cortical projections, mediates (rather than controls) the behavioral adaptations to variations in food availability; activation of the network is associated with opposing behavioral outcomes depending upon external variations. In the clinic, the control of eating behavior is therefore outsourced to a machine that provides feedback on how to eat. Hundreds of eating disorders patients have recovered by practicing eating; the rate of remission is 75% in on average 1 year of treatment, the rate of relapse is 10% over 5 years of follow-up and no patient has died. A two-parameter asymptotic exponential growth curve modeled the eating behavior of 17 healthy women but not that of 17 women with anorexia nervosa. When in remission, the eating behavior of the anorexic women approached that of the healthy women. It is suggested that the treatment of eating disorders should focus on eating behavior.
Collapse
Affiliation(s)
- P. Södersten
- Karolinska Institutet, Mandometer Clinic, Huddinge, Sweden
| | | | | | | |
Collapse
|
30
|
|
31
|
Mione V, Tsujimoto S, Genovesio A. Neural Correlations Underlying Self-Generated Decision in the Frontal Pole Cortex during a Cued Strategy Task. Neuroscience 2019; 404:519-528. [PMID: 30811970 DOI: 10.1016/j.neuroscience.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 11/30/2022]
Abstract
We have previously shown how the Frontal Pole cortex (FPC) neurons play a unique role in both the monitoring and evaluating of self-generated decisions during feedback in a visually cued strategy task. For each trial of this task, a cue instructed one of two strategies: to either stay with the previous goal or shift to the alternative goal. Each cue was followed by a delay period, then each choice was followed by a feedback. FPC neurons show goal-selective activity exclusively during the feedback period. Here, we studied how neural correlation dynamically changes, along with a trial in FPC. We classified the cells as goal-selective and not goal-selective (NS) and analyzed the time-course of the cross-correlations in 76 pairs of neurons from each group. We compared a control epoch with the feedback epoch and we found higher correlations in the latter one between goal-selective neurons than between NS neurons, in which the correlated activity dropped during feedback. This supports the involvement of goal-selective cells in the evaluation of self-generated decisions at the feedback time. We also observed a dynamic change of the correlations in time, indicating that the connections among cell-assemblies were transient, changing between internal states at the feedback time. These results indicate that the changing of the pattern of neural correlations can underlie the flexibility of the prefrontal computations.
Collapse
Affiliation(s)
- Valentina Mione
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan; The Nielsen Company Singapore Pte Ltd, Singapore
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
32
|
Patel GH, Sestieri C, Corbetta M. The evolution of the temporoparietal junction and posterior superior temporal sulcus. Cortex 2019; 118:38-50. [PMID: 30808550 DOI: 10.1016/j.cortex.2019.01.026] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
The scale at which humans can handle complex social situations is massively increased compared to other animals. However, the neural substrates of this scaling remain poorly understood. In this review, we discuss how the expansion and rearrangement of the temporoparietal junction and posterior superior temporal sulcus (TPJ-pSTS) may have played a key role in the growth of human social abilities. Comparing the function and anatomy of the TPJ-pSTS in humans and macaques, which are thought to be separated by 25 million years of evolution, we find that the expansion of this region in humans has shifted the architecture of the dorsal and ventral processing streams. The TPJ-pSTS contains areas related to face-emotion processing, attention, theory of mind operations, and memory; its expansion has allowed for the elaboration and rearrangement of the cortical areas contained within, and potentially the introduction of new cortical areas. Based on the arrangement and the function of these areas in the human, we propose that the TPJ-pSTS is the basis of a third frontoparietal processing stream that underlies the increased social abilities in humans. We then describe a model of how the TPJ-pSTS areas interact as a hub that coordinates the activities of multiple brain networks in the exploration of the complex dynamic social scenes typical of the human social experience.
Collapse
Affiliation(s)
- Gaurav H Patel
- Columbia University, USA; New York State Psychiatric Institute, USA.
| | | | - Maurizio Corbetta
- University of Padova, Italy; Washington University School of Medicine, USA
| |
Collapse
|
33
|
Jadhav KS, Boutrel B. Prefrontal cortex development and emergence of self-regulatory competence: the two cardinal features of adolescence disrupted in context of alcohol abuse. Eur J Neurosci 2019; 50:2274-2281. [PMID: 30586204 DOI: 10.1111/ejn.14316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 01/21/2023]
Abstract
Adolescence is a tumultuous period in the lifetime of an individual confronted to major changes in emotional, social and cognitive appraisal. During this period of questioning and doubt, while the executive functions are still maturing, the abstract reasoning remains vague and the response inhibition loose; ultimately the adolescent scarcely resists temptation. Consequently, adolescence is often associated with uninhibited risk-taking, reckless behaviours, among which are alcohol and illicit drugs use. Here, we discuss how the development of the prefrontal cortex (which critically contributes to rational decision-making and temporal processing of complex events) can be associated with the idiosyncratic adolescent behaviour, and potentially uncontrolled alcohol use. Most importantly, we present clinical and preclinical evidence supporting that ethanol exposure has deleterious effects on the adolescent developing brain. Ultimately, we discuss why a late maturing prefrontal cortex represents a ripe candidate to environmental influences that contribute to shape the adolescent brain but, potentially, can also trigger lifelong maladaptive responses, including increased vulnerability to develop substance use disorder later in life.
Collapse
Affiliation(s)
- Kshitij S Jadhav
- Laboratory on the Neurobiology of Addictive and Eating Disorders, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly, Switzerland
| | - Benjamin Boutrel
- Laboratory on the Neurobiology of Addictive and Eating Disorders, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly, Switzerland.,Division of Adolescent and Child Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
34
|
Oemisch M, Westendorff S, Azimi M, Hassani SA, Ardid S, Tiesinga P, Womelsdorf T. Feature-specific prediction errors and surprise across macaque fronto-striatal circuits. Nat Commun 2019; 10:176. [PMID: 30635579 PMCID: PMC6329800 DOI: 10.1038/s41467-018-08184-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 12/20/2018] [Indexed: 01/23/2023] Open
Abstract
To adjust expectations efficiently, prediction errors need to be associated with the precise features that gave rise to the unexpected outcome, but this credit assignment may be problematic if stimuli differ on multiple dimensions and it is ambiguous which feature dimension caused the outcome. Here, we report a potential solution: neurons in four recorded areas of the anterior fronto-striatal networks encode prediction errors that are specific to feature values of different dimensions of attended multidimensional stimuli. The most ubiquitous prediction error occurred for the reward-relevant dimension. Feature-specific prediction error signals a) emerge on average shortly after non-specific prediction error signals, b) arise earliest in the anterior cingulate cortex and later in dorsolateral prefrontal cortex, caudate and ventral striatum, and c) contribute to feature-based stimulus selection after learning. Thus, a widely-distributed feature-specific eligibility trace may be used to update synaptic weights for improved feature-based attention. In order to adjust expectations efficiently, prediction errors need to be associated with the features that gave rise to the unexpected outcome. Here, the authors show that neurons in anterior fronto-striatal networks encode prediction errors that are specific to feature values of different stimulus dimensions.
Collapse
Affiliation(s)
- Mariann Oemisch
- Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M6J 1P3, Canada. .,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Stephanie Westendorff
- Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M6J 1P3, Canada.,Institute of Neurobiology, University of Tübingen, Tübingen, 72076, Germany
| | - Marzyeh Azimi
- Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M6J 1P3, Canada
| | - Seyed Alireza Hassani
- Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M6J 1P3, Canada.,Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA
| | - Salva Ardid
- Department of Mathematics and Statistics, Boston University, Boston, MA, 02215, USA
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6525 EN, Netherlands
| | - Thilo Womelsdorf
- Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON, M6J 1P3, Canada. .,Department of Psychology, Vanderbilt University, Nashville, TN, 37240, USA.
| |
Collapse
|
35
|
Ramakrishnan A, Hayden BY, Platt ML. Local field potentials in dorsal anterior cingulate sulcus reflect rewards but not travel time costs during foraging. Brain Neurosci Adv 2019; 3:2398212818817932. [PMID: 32166176 PMCID: PMC7058217 DOI: 10.1177/2398212818817932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
To maximise long-term reward rates, foragers deciding when to leave a patch must compute a decision variable that reflects both the immediately available reward and the time costs associated with travelling to the next patch. Identifying the mechanisms that mediate this computation is central to understanding how brains implement foraging decisions. We previously showed that firing rates of dorsal anterior cingulate sulcus neurons incorporate both variables. This result does not provide information about whether integration of information reflected in dorsal anterior cingulate sulcus spiking activity arises locally or whether it is inherited from upstream structures. Here, we examined local field potentials gathered simultaneously with our earlier recordings. In the majority of recording sites, local field potential spectral bands - specifically theta, beta, and gamma frequency ranges - encoded immediately available rewards but not time costs. The disjunction between information contained in spiking and local field potentials can constrain models of foraging-related processing. In particular, given the proposed link between local field potentials and inputs to a brain area, it raises the possibility that local processing within dorsal anterior cingulate sulcus serves to more fully bind immediate reward and time costs into a single decision variable.
Collapse
Affiliation(s)
- Arjun Ramakrishnan
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Y. Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Smaers JB, Mongle CS, Safi K, Dechmann DK. Allometry, evolution and development of neocortex size in mammals. PROGRESS IN BRAIN RESEARCH 2019; 250:83-107. [DOI: 10.1016/bs.pbr.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Koch SB, Mars RB, Toni I, Roelofs K. Emotional control, reappraised. Neurosci Biobehav Rev 2018; 95:528-534. [DOI: 10.1016/j.neubiorev.2018.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/17/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
|
38
|
Dunn JC, Smaers JB. Neural Correlates of Vocal Repertoire in Primates. Front Neurosci 2018; 12:534. [PMID: 30140202 PMCID: PMC6095195 DOI: 10.3389/fnins.2018.00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 01/07/2023] Open
Abstract
Understanding the nature of the relationship between vocal complexity and brain architecture across non-human primates may help elucidate some of the key elements underlying the evolution of human speech. Here, we report a positive correlation between vocal repertoire size and the relative size of cortical association areas (governing voluntary control over behavioural output) in non-human primates. We further demonstrate that a hominid grade shift in the relative volume of cortical association areas coincides with a similar grade shift in the hypoglossal nucleus (which is associated with the cranial nerve that innervates the muscles of the tongue). Our results support a qualitative continuity in the neural correlates of vocal repertoire, but a quantitative discontinuity in the extent to which the neural system supporting speech is innervated by cortical association areas in great apes and humans.
Collapse
Affiliation(s)
- Jacob C Dunn
- Behavioural Ecology Research Group, Department of Biology, Anglia Ruskin University, Cambridge, United Kingdom.,Biological Anthropology, Department of Archaeology, University of Cambridge, Cambridge, United Kingdom
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
39
|
Smaers JB, Turner AH, Gómez-Robles A, Sherwood CC. A cerebellar substrate for cognition evolved multiple times independently in mammals. eLife 2018; 7:e35696. [PMID: 29809137 PMCID: PMC6003771 DOI: 10.7554/elife.35696] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022] Open
Abstract
Given that complex behavior evolved multiple times independently in different lineages, a crucial question is whether these independent evolutionary events coincided with modifications to common neural systems. To test this question in mammals, we investigate the lateral cerebellum, a neurobiological system that is novel to mammals, and is associated with higher cognitive functions. We map the evolutionary diversification of the mammalian cerebellum and find that relative volumetric changes of the lateral cerebellar hemispheres (independent of cerebellar size) are correlated with measures of domain-general cognition in primates, and are characterized by a combination of parallel and convergent shifts towards similar levels of expansion in distantly related mammalian lineages. Results suggest that multiple independent evolutionary occurrences of increased behavioral complexity in mammals may at least partly be explained by selection on a common neural system, the cerebellum, which may have been subject to multiple independent neurodevelopmental remodeling events during mammalian evolution.
Collapse
Affiliation(s)
- Jeroen B Smaers
- Department of AnthropologyStony Brook UniversityNew YorkUnited States
- Center for the Advanced Study of Human PaleobiologyStony Brook UniversityNew YorkUnited States
| | - Alan H Turner
- Department of Anatomical SciencesStony Brook UniversityNew YorkUnited States
| | - Aida Gómez-Robles
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUnited Kingdom
- Department of AnthropologyThe George Washington UniversityWashingtonUnited States
| | - Chet C Sherwood
- Department of AnthropologyThe George Washington UniversityWashingtonUnited States
| |
Collapse
|
40
|
Pezzulo G, Rigoli F, Friston KJ. Hierarchical Active Inference: A Theory of Motivated Control. Trends Cogn Sci 2018; 22:294-306. [PMID: 29475638 PMCID: PMC5870049 DOI: 10.1016/j.tics.2018.01.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022]
Abstract
Motivated control refers to the coordination of behaviour to achieve affectively valenced outcomes or goals. The study of motivated control traditionally assumes a distinction between control and motivational processes, which map to distinct (dorsolateral versus ventromedial) brain systems. However, the respective roles and interactions between these processes remain controversial. We offer a novel perspective that casts control and motivational processes as complementary aspects - goal propagation and prioritization, respectively - of active inference and hierarchical goal processing under deep generative models. We propose that the control hierarchy propagates prior preferences or goals, but their precision is informed by the motivational context, inferred at different levels of the motivational hierarchy. The ensuing integration of control and motivational processes underwrites action and policy selection and, ultimately, motivated behaviour, by enabling deep inference to prioritize goals in a context-sensitive way.
Collapse
Affiliation(s)
- Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| | - Francesco Rigoli
- City, University of London, London, UK; Wellcome Trust Centre for Neuroimaging, UCL, London, UK
| | | |
Collapse
|
41
|
Abstract
Activity in a network of areas spanning the superior temporal sulcus, dorsomedial frontal cortex, and anterior cingulate cortex is concerned with how nonhuman primates negotiate the social worlds in which they live. Central aspects of these circuits are retained in humans. Activity in these areas codes for primates' interactions with one another, their attempts to find out about one another, and their attempts to prevent others from finding out too much about themselves. Moreover, important features of the social world, such as dominance status, cooperation, and competition, modulate activity in these areas. We consider the degree to which activity in these regions is simply encoding an individual's own actions and choices or whether this activity is especially and specifically concerned with social cognition. Recent advances in comparative anatomy and computational modeling may help us to gain deeper insights into the nature and boundaries of primate social cognition.
Collapse
Affiliation(s)
- Marco K Wittmann
- Department of Experimental Psychology, University of Oxford, OX1 3UD Oxford, United Kingdom; , , .,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3UD Oxford, United Kingdom
| | - Patricia L Lockwood
- Department of Experimental Psychology, University of Oxford, OX1 3UD Oxford, United Kingdom; , , .,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3UD Oxford, United Kingdom
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, OX1 3UD Oxford, United Kingdom; , , .,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3UD Oxford, United Kingdom
| |
Collapse
|
42
|
Marcos E, Genovesio A. Interference between Space and Time Estimations: From Behavior to Neurons. Front Neurosci 2017; 11:631. [PMID: 29209159 PMCID: PMC5702290 DOI: 10.3389/fnins.2017.00631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/30/2017] [Indexed: 02/02/2023] Open
Abstract
Influences between time and space can be found in our daily life in which we are surrounded by numerous spatial metaphors to refer to time. For instance, when we move files from one folder to another in our computer a horizontal line that grows from left to right informs us about the elapsed and remaining time to finish the procedure and, similarly, in our communication we use several spatial terms to refer to time. Although with some differences in the degree of interference, not only space has an influence on time but both magnitudes influence each other. Indeed, since our childhood our estimations of time are influenced by space even when space should be irrelevant and the same occurs when estimating space with time as distractor. Such interference between magnitudes has also been observed in monkeys even if they do not use language or computers, suggesting that the two magnitudes are tightly coupled beyond communication and technology. Imaging and lesion studies have indicated that same brain areas are involved during the processing of both magnitudes and have suggested that rather than coding the specific magnitude itself the brain represents them as abstract concepts. Recent neurophysiological studies in prefrontal cortex, however, have shown that the coding of absolute and relative space and time in this area is realized by independent groups of neurons. Interestingly, instead, a high overlap was observed in this same area in the coding of goal choices across tasks. These results suggest that rather than during perception or estimation of space and time the interference between the two magnitudes might occur, at least in the prefrontal cortex, in a subsequent phase in which the goal has to be chosen or the response provided.
Collapse
Affiliation(s)
- Encarni Marcos
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Barack DL, Chang SWC, Platt ML. Posterior Cingulate Neurons Dynamically Signal Decisions to Disengage during Foraging. Neuron 2017; 96:339-347.e5. [PMID: 29024659 DOI: 10.1016/j.neuron.2017.09.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 01/27/2023]
Abstract
Foraging for resources is a fundamental behavior balancing systematic search and strategic disengagement. The foraging behavior of primates is especially complex and requires long-term memory, value comparison, strategic planning, and decision-making. Here we provide evidence from two different foraging tasks that neurons in primate posterior cingulate cortex (PCC) signal decision salience during foraging to motivate disengagement from the current strategy. In our foraging tasks, salience refers to the difference between decision thresholds and the net harvested reward. Salience signals were stronger in poor foraging contexts than rich ones, suggesting low harvest rates recruit mechanisms in PCC that regulate strategic disengagement and exploration during foraging.
Collapse
Affiliation(s)
- David L Barack
- Department of Philosophy and Center for Cognitive Neuroscience, Duke University, Durham, NC 27701, USA.
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael L Platt
- Departments of Neuroscience, Psychology, and Marketing, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Rozzi S, Fogassi L. Neural Coding for Action Execution and Action Observation in the Prefrontal Cortex and Its Role in the Organization of Socially Driven Behavior. Front Neurosci 2017; 11:492. [PMID: 28936159 PMCID: PMC5594103 DOI: 10.3389/fnins.2017.00492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 11/13/2022] Open
Abstract
The lateral prefrontal cortex (LPF) plays a fundamental role in planning, organizing, and optimizing behavioral performance. Neuroanatomical and neurophysiological studies have suggested that in this cortical sector, information processing becomes more abstract when moving from caudal to rostral and that such processing involves parietal and premotor areas. We review studies that have shown that the LPF, in addition to its involvement in implementing rules and setting behavioral goals, activates during the execution of forelimb movements even in the absence of a learned relationship between an instruction and its associated motor output. Thus, we propose that the prefrontal cortex is involved in exploiting contextual information for planning and guiding behavioral responses, also in natural situations. Among contextual cues, those provided by others' actions are particularly relevant for social interactions. Functional studies of macaques have demonstrated that the LPF is activated by the observation of biological stimuli, in particular those related to goal-directed actions. We review these studies and discuss the idea that the prefrontal cortex codes high-order representations of observed actions rather than simple visual descriptions of them. Based on evidence that the same sector of the LPF contains both neurons coding own action goals and neurons coding others' goals, we propose that this sector is involved in the selection of own actions appropriate for reacting in a particular social context and for the creation of new action sequences in imitative learning.
Collapse
Affiliation(s)
- Stefano Rozzi
- Department of Medicine and Surgery, Unit of Neuroscience, University of ParmaParma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, Unit of Neuroscience, University of ParmaParma, Italy
| |
Collapse
|
45
|
Gygax L. Wanting, liking and welfare: The role of affective states in proximate control of behaviour in vertebrates. Ethology 2017. [DOI: 10.1111/eth.12655] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lorenz Gygax
- Centre for Proper Housing of Ruminants and Pigs; Federal Food Safety and Veterinary Office FSVO; Ettenhausen Switzerland
| |
Collapse
|
46
|
Abstract
Culture suffuses all aspects of human life. It shapes our minds and bodies and has provided a cumulative inheritance of knowledge, skills, institutions, and artifacts that allows us to truly stand on the shoulders of giants. No other species approaches the extent, diversity, and complexity of human culture, but we remain unsure how this came to be. The very uniqueness of human culture is both a puzzle and a problem. It is puzzling as to why more species have not adopted this manifestly beneficial strategy and problematic because the comparative methods of evolutionary biology are ill suited to explain unique events. Here, we develop a more particularistic and mechanistic evolutionary neuroscience approach to cumulative culture, taking into account experimental, developmental, comparative, and archaeological evidence. This approach reconciles currently competing accounts of the origins of human culture and develops the concept of a uniquely human technological niche rooted in a shared primate heritage of visuomotor coordination and dexterous manipulation.
Collapse
|
47
|
Shankar S, Kayser AS. Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction. J Neurophysiol 2017; 117:2088-2103. [PMID: 28250149 DOI: 10.1152/jn.00512.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/03/2017] [Accepted: 03/01/2017] [Indexed: 01/03/2023] Open
Abstract
To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects' decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings.NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making.
Collapse
Affiliation(s)
- Swetha Shankar
- Department of Neurology, University of California, San Francisco, California; .,Center for Brain Imaging, New York University, New York, New York; and
| | - Andrew S Kayser
- Department of Neurology, University of California, San Francisco, California.,Department of Neurology, Department of Veterans Affairs Northern California Health Care System, Martinez, California
| |
Collapse
|
48
|
Smaers JB, Gómez-Robles A, Parks AN, Sherwood CC. Exceptional Evolutionary Expansion of Prefrontal Cortex in Great Apes and Humans. Curr Biol 2017; 27:714-720. [PMID: 28162899 DOI: 10.1016/j.cub.2017.01.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 01/09/2023]
Abstract
One of the enduring questions that has driven neuroscientific enquiry in the last century has been the nature of differences in the prefrontal cortex of humans versus other animals [1]. The prefrontal cortex has drawn particular interest due to its role in a range of evolutionarily specialized cognitive capacities such as language [2], imagination [3], and complex decision making [4]. Both cytoarchitectonic [5] and comparative neuroimaging [6] studies have converged on the conclusion that the proportion of prefrontal cortex in the human brain is greatly increased relative to that of other primates. However, considering the tremendous overall expansion of the neocortex in human evolution, it has proven difficult to ascertain whether this extent of prefrontal enlargement follows general allometric growth patterns, or whether it is exceptional [1]. Species' adherence to a common allometric relationship suggests conservation through phenotypic integration, while species' deviations point toward the occurrence of shifts in genetic and/or developmental mechanisms. Here we investigate prefrontal cortex scaling across anthropoid primates and find that great ape and human prefrontal cortex expansion are non-allometrically derived features of cortical organization. This result aligns with evidence for a developmental heterochronic shift in human prefrontal growth [7, 8], suggesting an association between neurodevelopmental changes and cortical organization on a macroevolutionary scale. The evolutionary origin of non-allometric prefrontal enlargement is estimated to lie at the root of great apes (∼19-15 mya), indicating that selection for changes in executive cognitive functions characterized both great ape and human cortical organization.
Collapse
Affiliation(s)
- Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Circle Road, Stony Brook, NY 11794-4364, USA.
| | - Aida Gómez-Robles
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, 800 22(nd) St NW, Washington, DC 20052, USA
| | - Ashley N Parks
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Circle Road, Stony Brook, NY 11794-4364, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, 800 22(nd) St NW, Washington, DC 20052, USA
| |
Collapse
|
49
|
Brain morphometry predicts individual creative potential and the ability to combine remote ideas. Cortex 2017; 86:216-229. [DOI: 10.1016/j.cortex.2016.10.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/19/2016] [Accepted: 10/28/2016] [Indexed: 11/21/2022]
|
50
|
Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med 2017; 102:203-216. [PMID: 27908782 PMCID: PMC5209274 DOI: 10.1016/j.freeradbiomed.2016.11.045] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023]
Abstract
An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca2+, CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.
Collapse
Affiliation(s)
- Sophia M Raefsky
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|